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On the evaluation complexity of constrained nonlinear

least-squares and general constrained nonlinear optimization

using second-order methods

C. Cartis∗, N. I. M. Gould† and Ph. L. Toint‡

3 April 2013

Abstract

When solving the general smooth nonlinear optimization problem involving equality and/or in-
equality constraints, an approximate first-order critical point of accuracy ǫ can be obtained by a
second-order method using cubic regularization in at most O(ǫ−3/2) problem-functions evaluations,
the same order bound as in the unconstrained case. This result is obtained by first showing that
the same result holds for inequality constrained nonlinear least-squares. As a consequence, the
presence of (possibly nonlinear) equality/inequality constraints does not affect the complexity of
finding approximate first-order critical points in nonconvex optimization. This result improves on
the best known (O(ǫ−2)) evaluation-complexity bound for solving general nonconvexly constrained
optimization problems.

1 Introduction

The past few years have seen several contributions on the worst-case complexity of solving smooth but
nonlinear and possibly nonconvex optimization problems. Starting with contributions of Vavasis (1993),
Nesterov (2004) and Gratton, Sartenaer and Toint (2008) on (essentially) first-order methods for the
unconstrained case, a significant step was made with the proposal by Nesterov and Polyak (2006) of a
second-order method including cubic regularization terms. This paper showed that solving the smooth
unconstrained nonlinear optimization method can be achieved in at most O(ǫ−3/2) problem-functions
evaluations, if one is happy to terminate the process with an approximate first-order critical point at
which the Euclidean norm of the objective function’s gradient is at most a user-prescribed threshold
ǫ ∈ (0, 1). This is in contrast with what can be obtained for first-order methods, which require at
most O(ǫ−2) problem-function evaluations in a similar context. This remarkable result by Nesterov was
subsequently extended by Cartis, Gould and Toint (2011a, 2011b) to a wider class of algorithms, leading
to the conclusion that the class of cubic regularization (ARC) methods and its evaluation complexity
of order O(ǫ−3/2) are optimal for the smooth unconstrained nonlinear optimization problem in terms of
problem-function evaluations.

Following up on these results for the unconstrained problem, the authors of this paper then examined
the smooth constrained problem and showed that, somewhat surprisingly, the complexity in O(ǫ−2)
problem-function evaluations obtained for first-order methods is not affected at all (in order) by the
presence of equality and/or inequality constraints (see Cartis, Gould and Toint, 2012a, for the convex
inequality case, and Cartis, Gould and Toint, 2013a, for the general case). Moreover, the first of these
papers also showed that a complexity of order O(ǫ−3/2) problem-function evaluations can also be achieved
under some conditions for the problem involving convex inequalities, while a very similar result was
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presented for the general equality constrained case in Cartis, Gould and Toint (2013b), provided one is
ready to solve the primal more accurately than the dual. This left open the central question of whether
the general smooth problem involving both equality and inequality constraints can be solved in at most
O(ǫ−3/2) problem-functions evaluations using a cubic regularization method under the same conditions.

The purpose of the present note is to confirm this proposition, thereby providing a complete worst-
case analysis for the computation of approximate first-order critical points in smooth optimization. This
is achieved by exhibiting an algorithm for which the O(ǫ−3/2) upper complexity bound holds, and which
is inspired by the two-stages methods of Cartis et al. (2013a) and Cartis et al. (2013b), combined with
the projection technique described in Cartis et al. (2012a). Broadly speaking, it consists of a first phase
where a least-squares formulation of the constraint violation is minimized subject to convex constraints,
resulting in either an (approximate) feasible point or an local infeasible minimizer of the constraint
violation, an outcome which cannot be excluded from our analysis barring the use of global optimization
techniques. If an approximate feasible point is obtained, then a short-step target-following technique is
used to reduce the objective function while preserving (approximate) feasibility.

Because both phases of our algorithm crucially depend on the solution of a convexly-constrained
nonlinear least-squares problem, we start by considering this minimization problem and its complexity
in Section 2. We then turn to the general constrained case, present our two-phase method and analyze
its complexity in Section 3. Some conclusions and perspectives are finally discussed in Section 4.

2 Constrained nonlinear least-squares problems

We start by considering the smooth constrained nonlinear least-squares problem given by

min
x∈F

φ(x)
def
= 1

2
‖r(x)‖2 (2.1)

where r is a twice-continuously differentiable “residual” function from IRn into IRm, ‖ · ‖ is the standard
Euclidean norm and F is a non-empty closed convex set. Our objective is to apply the cubically regular-
ized COCARC-S method described in Cartis et al. (2012a) for general nonconvex optimization subject
to convex constraints to this problem and to specialize the corresponding complexity results.

2.1 A review of the COCARC-S algorithm

The COCARC-S algorithm is designed for minimizing a general nonlinear twice continuously differen-
tiable objective function f : IRn → IR within the closed convex set F , that is

min
x∈F

f(x) (2.2)

Iteration k of the COCARC-S algorithm proceeds by first checking the approximate first-order criti-
cality of the current iterate. This is achieved by testing if

χf (xk) ≤ ǫ (2.3)

where ǫ > 0 is a user-specified accuracy threshold and where

χf (x)
def
=

∣

∣

∣

∣

min
x+d∈F,‖d‖≤1

〈∇xf(x), d〉
∣

∣

∣

∣

(2.4)

(〈·, ·〉 denotes the standard Euclidean inner-product) is the linearized decrease in f achievable inside a
feasible neighbourhood of diameter one (Conn, Gould, Sartenaer and Toint, 1993, see also Yuan, 1985).
If (2.3) fails, a step sk is computed from the iterate xk by (approximately) minimizing a cubic model of
f of the form

mk(xk + s)
def
= f(xk) + 〈∇xf(xk), s〉+ 1

2
〈s,Bks〉+ 1

3
σk‖s‖3 (2.5)

subject to xk + s ∈ F , for a given ‘regularization weight’ σk > 0, and where Bk is a symmetric approxi-
mation of ∇xxf(xk). What is meant by approximate minimization of the constrained model (2.5) is not
detailed here (see AS7 in Cartis et al., 2012a for the full details, involving the reduction of a model-specific
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first-order criticality measure). For what follows, it is important to assume that this model minimization
can be seen as performing a number ℓk of successive (possibly incomplete) line minimizations of the
model mk between feasible points (see AS8 in Cartis et al., 2012a). Once the trial point x+

k = xk + sk
is computed, the achieved reduction f(xk) − f(x+

k ) is compared to the predicted one, f(xk) −mk(x
+
k ).

If the ratio of the former to the latter is sufficiently positive, x+
k is accepted as the next iterate xk+1

and the regularizaton weight is (possibly) decreased (an iteration where this occurs is called a successful

iteration). If this ratio is not sufficiently positive, i.e. is below some constant η1 ∈ (0, 1), the trial point
is rejected (xk+1 = xk) and the regularization weight is increased (by a factor at least γ1 > 1).

Algorithm 2.1: COCARC-S Algorithm for (2.2)

A starting point x0 ∈ F , a minimum regularization parameter σmin > 0, an initial regularization
parameter σ0 ≥ σmin, and algorithmic parameters γ2 ≥ γ1 > 1 and 1 > η1 > 0, as well as the
tolerance ǫ ∈ (0, 1) are given.

Step 0: Check for termination. If χf (xk) ≤ ǫ, terminate.

Step 1: Computation of the step. Starting from xk, approximately minimize mk(xk + s) sub-
ject to the xk + s ∈ F , yielding a trial point x+

k = xk + sk.

Step 2: Acceptance of the trial point. Compute f(x+
k ) and define

ρk =
f(xk)− f(x+

k )

mk(xk)−mk(x
+
k )

. (2.6)

If ρk ≥ η1, then xk+1 = x+
k , else set xk+1 = xk.

Step 3: Regularization parameter update. If ρk ≥ η1, choose

σk+1 ∈ [σmin, γ1σk). (2.7)

Otherwise, choose σk+1 ∈ [γ1σk, γ2σk].

Note that a feasible x0 can be obtained by projection of any user-supplied initial guess onto the convex
set F . For future reference, we define S to be the index set of the successful iterations, that is

S def
= {k ≥ 0 | ρk ≥ η1}. (2.8)

Denote by X the closed convex hull of all iterates xk and trial points x+
k .

What is the maximum number of COCARC-S iterations that can be necessary before an iterate xk

is found which satifies (2.3)? In order to answer this question, we now recall the assumptions used to
derive that the required complexity results for the COCARC-S algorithm and those of these results that
are of interest in our context. More specifically, we assume that

AS1 F is closed, convex and non-empty;

AS2f f is twice continuously differentiable, its gradient is uniformly Lipschitz continuous on X
and its Hessian is “weakly” uniformly Lipschitz-continuous on the segments [xk, x

+
k ], in the sense

that there exists a constant κL ≥ 0 such that, for all k and all y ∈ [xk, x
+
k ],

‖[∇xxf(y)−∇xxf(xk)]sk‖ ≤ κL‖sk‖2;

AS3f the Hessian ∇xxf(xk) is well approximated by Bk, in the sense that there exists a constant
κB > 0 such that, for all k,

‖[Bk −∇xxf(xk)]sk‖ ≤ κB‖sk‖2.
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AS4 ℓk is bounded above by a constant independent of k and ǫ;

AS5 X is bounded.

Assumptions ASA, AS2f, AS3f and AS5 are relatively standard, even if AS5 may be judged to be
somewhat restrictive. AS4 is really an assumption on the solution of the subproblem of minimizing the
model (2.5) subject to convex constraints, which raises the question of a practical algorithm to perform
this task. However, since this minimization involves the model and not the objective function itself, the
complexity of the task does not affect the function-evaluation complexity of the COCARC-S algorithm.
See Cartis et al. (2012a) for further discussion.

The above conditions guarantee that the following holds.

Lemma 2.1 Suppose that AS1, AS2f, AS3f, AS4 and AS5 hold. Then there exists a positive
constant κC ∈ (0, 1) independent of k and ǫ such that

f(xk)− f(xk+1) ≥ η1κCχf (xk+1)
3
2 , for all k ∈ S. (2.9)

Moreover, there exists a constant σsucc > 0 independent of k and ǫ such that, if σk ≥ σsucc, then
iteration k of the COCARC-S algorithm is successful (k ∈ S). Finally, there exists a constant
σmax ≥ σsucc such that σk ≤ σmax for all k ≥ 0.

Proof. Relation (2.9) follows from Theorem 4.7 in Cartis et al. (2012a). In order to prove the
second statement, we may follow the line of thought of Lemma 5.2 in Cartis et al. (2011a): we note
that, using (2.5), AS2f and AS3f,

f(x+
k )−mk(x

+
k ) ≤ 1

2
‖H(ξk)−H(xk)‖ ‖s‖2 + 1

2
‖(H(xk)−Bk)sk‖ ‖sk‖ − 1

3
σk‖sk‖3

≤ [ 1
2
(κL + κB)− 1

3
σk] ‖sk‖3,

where ξk belongs to the segment [xk, x
+
k ] and thus ‖ξk − xk‖ ≤ ‖sk‖. This relation shows that

f(x+
k ) ≤ mk(x

+
l ), and hence that k ∈ S, provided σk ≥ κsucc = 3

2
(κL + κB). The final statement of

the Lemma follows from Lemma 4.3 in Cartis et al. (2012a). 2

2.2 Application to constrained nonlinear least-squares

We now return to considering the complexity of problem (2.1). In the spirit of Cartis et al. (2013b), this
involves redefining a suitable termination criterion that exploits the particularity of the least-squares
problem. In the latter paper, we have indeed argued that, for the unconstrained case (F = IRn), it is
advisable to replace the standard rule where the algorithm is terminated as soon as an iterate xk is found
such that

‖∇xφ(xk)‖ = ‖J(xk)
T r(xk)‖ ≤ ǫ (2.10)

(where J(x) denotes the Jacobian of r at x and ǫ ∈ (0, 1) is a user defined accuracy threshold) by the rule
that iterations are instead terminated as soon as an iterate xk is found such that, for some user-defined
accuracy thresholds ǫp ∈ (0, 1) and ǫd ∈ (0, 1),

‖r(xk)‖ ≤ ǫp or ‖∇x‖r(xk)‖ ‖ ≤ ǫd, (2.11)

where

∇x‖r(x)‖ def
=







J(x)T r(x)
‖r(x)‖ when r(x) 6= 0,

0 otherwise.
(2.12)

The case corresponding to the first condition in (2.11) is the situation where an ǫp-approximate optimal
point is found with ‘zero’ residual, while the second corresponds to the case where the residual at the
approximate first-order critical point is nonzero.
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If we now consider the constrained case (F ⊂ IRn), making the gradient of the objective function
small, as requested in (2.10), is no longer appropriate, because the solution might lie on the boundary
of F . In the spirit of (2.3), an alternative to (2.10) in the constrained case is to stop the COCARC-S
algorithm when applied to (2.1) as soon as a point xk is found such that

χφ(xk) ≤ ǫ, (2.13)

where

χφ(x) =

∣

∣

∣

∣

min
x+d∈F,‖d‖≤1

〈J(x)T r(x), d〉
∣

∣

∣

∣

. (2.14)

(see (2.4)). However, since we are considering a least-squares problem, we may apply the same reasoning
as in the unconstrained case, and we therefore suggest terminating the COCARC-S algorithm as soon
as an xk is found in F such that

‖r(xk)‖ ≤ ǫp or χ‖r‖(xk) =

∣

∣

∣

∣

min
xk+d∈F,‖d‖≤1

〈∇x‖r(xk)‖, d〉
∣

∣

∣

∣

≤ ǫd. (2.15)

Note that χ‖r‖(x) is continuous as a function of x for r(x) 6= 0 and is zero if and only if x is a first-order
critical point of problem (2.1). Condition (2.15) therefore replaces (2.11) in the constrained case.

In order to adapt this framework of Section 2.1 to the constrained nonlinear least-squares case (2.1),
we first note that AS1, AS4 and AS5 need not to be modified(1). AS2f and AS3f must however be
reformulated in terms of the residual function r.

AS2 Each ri (i = 1 . . . ,m) is twice continuously differentiable, uniformly Lipschitz continuous

on X and its Hessian is “weakly” uniformly Lipschitz-continuous on the segments [xk, x
+
k ], in the

sense that there exists a constant κL ≥ 0 such that, for all k, all y ∈ [xk, x
+
k ] and all i = 1, . . . ,m,

‖[∇xxri(y)−∇xxri(xk)]sk‖ ≤ κL‖sk‖2;

Moreover, the Jacobian J(x) is Lipschitz continuous on X , in the sense that there exists a constant
κJ ≥ 0 such that, for all x, y ∈ X ,

‖J(x)− J(y)‖ ≤ κJ‖x− y‖.

AS3 The Hessian ∇xxφ(xk) is well approximated by Bk, in the sense that there exists a constant
κB > 0 such that, for all k,

‖[Bk −∇xxφ(xk)]sk‖ ≤ κB‖sk‖2.

We refer the reader to the discussion in Cartis et al. (2013b) showing that these assumptions ensure AS2f
with φ playing the role of f . Observe that, strictly speaking, the fact that the residuals ri(x) are twice
continuously differentiable (AS.2) on a bounded set X (AS.5) is enough to ensure that ri and ∇xri are
Lipschitz continuous on X , but we prefer to require these properties explicitly for clarity.

Having reformulated our assumptions, we are now entitled to deduce that (2.9) (with f = φ) holds as
AS1–AS5 are satisfied. The next step is then to modify this lower bound in the spirit of Lemma 3.1 in
Cartis et al. (2013b). Assume first that, for a given β ∈ (0, 1), ‖r(xk+1)‖ ≤ β‖r(xk)‖. Then k ∈ S and

‖r(xk)‖ − ‖r(xk+1)‖ ≥ (1− β)‖r(xk)‖ (2.16)

and

‖r(xk)‖
1
2 − ‖r(xk+1)‖

1
2 ≥ (1−

√

β)‖r(xk)‖
1
2 ≥ (1−

√
β)√

β
‖r(xk+1)‖

1
2 . (2.17)

(1)Except for the obvious change from ǫ to ǫp and ǫd in AS4.



Cartis, Gould, Toint: Complexity of CNLS and NLO 6

If, on the other hand, ‖r(xk+1)‖ > β‖r(xk)‖, we nevertheless know that, for k ∈ S, ‖r(xk+1)‖ =
‖r(x+

k )‖ < ‖r(xk)‖, and thus that

‖r(xk)‖ − ‖r(xk+1)‖ =
‖r(xk)‖2 − ‖r(xk+1)‖2
‖r(xk)‖+ ‖r(xk+1)‖

≥ φ(xk)− φ(xk+1)
‖r(xk)‖

≥ η1κC

(

‖r(xk+1)‖
‖r(xk)‖

)
3
2

‖r(xk)‖
1
2

(

χφ(xk+1)
‖r(xk+1)‖

)
3
2

> η1κCβ
3
2 ‖r(xk)‖

1
2

(

χ‖r‖(xk+1)
)

3
2 ,

(2.18)

where we have used (2.9) to obtain the penultimate inequality and (2.12), (2.4) and the inequality
‖r(xk+1)‖ > β‖r(xk)‖ to obtain the last. Hence, using this latter inequality again, we have that

√

‖r(xk)‖ −
√

‖r(xk+1)‖ =
‖r(xk)‖ − ‖r(xk+1)‖

√

‖r(xk)‖+
√

‖r(xk+1)‖
≥ 1

2
η1κCβ

3
2

(

χ‖r‖(xk+1)
)

3
2 (2.19)

As a consequence, we conclude from (2.16) and (2.18) that

‖r(xk)‖ − ‖r(xk+1)‖ ≥ min[η1κCβ
3
2 , (1− β)] min[ ‖r(xk)‖

1
2

(

χ‖r‖(xk+1)
)

3
2 , ‖r(xk)‖ ] (2.20)

Similarly, we deduce from (2.17) and (2.19) that

‖r(xk)‖
1
2 − ‖r(xk+1)‖

1
2 ≥ κφ min[

(

χ‖r‖(xk+1)
)

3
2 , ‖r(xk+1)‖

1
2 ],

where κφ
def
= min[ 1

2
η1κCβ

3
2 , β− 1

2 − 1]. Thus, as long as the COCARC-S algorithm applied to problem
(2.1) is not terminated, i.e. as long as (2.15) is violated, we have that, for k ∈ S,

‖r(xk)‖
1
2 − ‖r(xk+1)‖

1
2 ≥ κφ min[ ǫ

3
2

d , ǫ
1
2
p ]. (2.21)

Because, obviously, 0 ≤ ‖r(xk)‖
1
2 ≤ ‖r(x0)‖

1
2 for all k, we deduce that, provided AS1–AS5 hold, there

are at most
⌊

‖r(x0)‖
1
2

κφ min[ ǫ
3
2

d , ǫ
1
2
p ]

⌋

successful iterations until the COCARC-S algorithm applied to the constrained nonlinear least-squares
problem (2.1) finds an iterate xk such that (2.15) holds at xk+1. We also observe that the final statement
of Lemma 2.1 and Theorem 2.1 in Cartis et al. (2011a) then allow us to conclude that the total number
of (successful and unsuccessful) iterations required by algorithm COCARC-S to find xj is bounded above
by

⌊

κCNLS

min[ ǫ
3
2

d , ǫ
1
2
p ]

⌋

(2.22)

with

κCNLS

def
=

‖r(x0)‖
1
2

κφ
+

(

1 +
‖r(x0)‖

1
2

κφ

)

log(σmax/σmin)

log γ1
. (2.23)

We summarize our findings in the form of the following theorem.

Theorem 2.2 Assume that AS1–AS5 hold. Consider ǫp, ǫd ∈ (0, 1). Then there is a constant
κCNLS > 0 whose expression is given by (2.23) such that the COCARC-S algorithm applied to
problem (2.1) requires at most

⌊

κCNLS max[ ǫ
− 3

2

d , ǫ
− 1

2
p ]

⌋

(2.24)

iterations (and evaluations of r and possibly its derivatives) to find an iterate xk such that

‖r(xk)‖ ≤ ǫp or χ‖r‖(xk) ≤ ǫd. (2.25)
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Note that this bound is identical in order to that obtained by Cartis et al. (2013b) (Theorem 3.2) for the
unconstrained nonlinear least-squares problem (F = IRn). Moreover, provided ǫp ≥ ǫ3d, then the number

of COCARC-S iterations is bounded above by O(ǫ
−3/2
d ), which is the same complexity as that of solving

the general unconstrained nonlinear optimization problem with the ARC cubic regularization algorithm
(see Nesterov and Polyak, 2006, and Cartis, Gould and Toint, 2012b).

3 The general nonlinear optimization problem

Having considered the constrained nonlinear least-squares case, we now turn to the general nonlinear
optimization problem. Without loss of generality, we consider it in the form

min
x∈IRn

f(x) subject to c(x) = 0 and x ∈ F (3.1)

where F is again a closed non-empty convex set. Of particular interested is the case where F def
= {x ∈

IRn | x ≥ xlow}, where xlow is a vector of lower bounds with some components being possible equal to
−∞ and the inequality in this definition being understood componentwise. Indeed, it is well-known that
this more specific formulation covers that involving explicit inequality constraints, and can be obtained
from the former by the incorporation of slack variables.

Both phases of our proposed analysis critically depend on applying the COCARC-S algorithm, first
to the squared norm of the constraint violation

θ(x)
def
= 1

2
‖c(x)‖2 for x ∈ F , (3.2)

terminating the computation as soon as a point x1 ∈ F is found such that, for some user-defined accuracy
thresholds ǫp ∈ (0, 1) and ǫd ∈ (0, 1),

‖c(x1)‖ ≤ δǫp or χ‖c‖(x1) ≤ ǫd, (3.3)

(for some δ ∈ (0, 1)), and subsequently to a sequence of suitably defined least-squares problems whose
objective function is denoted by

µ(x, tk)
def
= 1

2
‖r(x, tk)‖2 def

= 1
2

∥

∥

∥

∥

(

c(x)
f(x)− tk

)∥

∥

∥

∥

2

for x ∈ F , (3.4)

for some monotonically decreasing sequence of “targets” tk (k = 1, . . .).
We now describe our two-phases algorithm as Algorithm 3.1, where we use the symbol P to denote

the projection onto the set F . Note that the iterations in Step 2(a) of Phase 2 correspond to applying the
COCARC-S algorithm (ignoring the termination test in Step 0) for each new value of the target tk until
the first successful iteration occurs. Also observe that χ‖r(·,t)‖(xk+1, tk) (in Step 2(b)) is well-defined
when ‖r(xk+1, tk)‖ > δǫp > 0.

Analyzing the worst-case behaviour of this algorithm once more requires to specify the necessary
assumptions. As above, we denote by X ⊆ F the closed convex hull of all Phase 1 and Phase 2 iterates
and trials points, and by X2 ⊆ X that of all Phase 2 iterates and trials points.

AS6 The function c is twice continuously differentiable on an open neighbourhood of X and f is
twice continuously differentiable in an open neighbourhood of X2.

AS7 The components ci (i = 1, . . . ,m) and the Jacobian J(x) is globally Lipschitz continuous in
X with Lipschitz constants Lci > 0 and LJ > 0, respectively. The components ∇2ci(x) are weakly
Lipschitz continuous on the segments [xk, x

+
k ] (for both phases) with Lipschitz constant LH,ci , for

i ∈ {1, . . . ,m}.

AS8 f(x), and g(x) are Lipschitz continuous in X2 with Lipschitz constants Lf and Lg,f > 0,

respectively. Moreover, ∇2f(x) is weakly Lipschitz continuous on all Phase 2 segments [xk, x
+
k ]

with Lipschitz constant LH,f .
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Algorithm 3.1: Short-Step ARC Algorithm for (3.1)

A starting point x0, a minimum regularization parameter σmin > 0, an initial regularization
parameter σ0 ≥ σmin, a parameter δ ∈ (0, 1), as well as the tolerances ǫp ∈ (0, 1) and ǫd ∈ (0, 1),
are given.

Phase 1:
Starting from P(x0), apply the COCARC-S algorithm to minimize θ(x) subject to x ∈ F
until a point x1 ∈ F is found at which (3.3) holds. If ‖c(x1)‖ > δǫp, terminate.

Phase 2:

1. Set t1 = f(x1)−
√

ǫ2p − ‖c(x1)‖2 and k = 1.

2. For k = 1, 2, . . ., do:

(a) Loop on Steps 1 to 3 of the COCARC-S algorithm to minimize µ(x, tk) as a function
of x ∈ F until a successful iteration is obtained, yielding a new iterate xk+1 ∈ F
and a new value of the regularization parameter σk+1 ≥ σmin.

(b) If ‖r(xk+1, tk)‖ > δǫp, then terminate if χ‖r(·,t)‖(xk+1, tk) ≤ ǫd.
Otherwise (i.e., if either ‖r(xk+1, tk)‖ ≤ δǫp or χ‖r(·,t)‖(xk+1, tk) > ǫd and
‖r(xk+1, tk)‖ > δǫp), set

tk+1 = f(xk+1)−
√

‖r(xk, tk)‖2 − ‖r(xk+1, tk)‖2 + (f(xk+1)− tk)2. (3.5)

AS.9 The objective f(x) is bounded above and below in a neighbourhood of the feasible set, that
is there exist constants α > 0, flow and fup ≥ flow + 1 such that

flow ≤ f(x) ≤ fup for all x ∈ F ∩ Cα.

where
Cα = {x ∈ IRn | ‖c(x)‖ ≤ α}. (3.6)

AS10 ℓk is bounded above by a constant independent of k and ǫ in all constrained cubic model
minimizations (in both phases of the algorithm),

AS11 X is bounded.

From here on, our analysis is nearly identical to that presented in Cartis et al. (2013b). We know
from the previous section that Phase 1 of Algorithm 3.1 will terminate in a number of iterations (and
function evaluations) as given by (2.24). Let us now consider Phase 2, and exploit again the least-squares
structure of the minimizations carried on in Step 2. We obtain the following properties.

Lemma 3.1 Suppose that ǫp ≤ α. Then in every Phase 2 iteration k ≥ 1 of Algorithm 3.1 we have
that

tk ≥ tk+1, (3.7)

f(xk)− tk ≥ 0, (3.8)

‖r(xk, tk)‖ = ǫp, (3.9)

‖c(xk)‖ ≤ ǫp and |f(xk)− tk| ≤ ǫp, (3.10)

and so xk ∈ F ∩ Cα. In addition, if AS6–AS8 hold, each Phase 2 iteration requires at most κS

problem function (and derivatives) evaluations, where κS ≥ 1 is a constant independent of k.
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Proof. See Lemma 4.1 in Cartis et al. (2013b) for the proof of (3.7)–(3.10) and the conclusion
that xk ∈ Cα. But xk ∈ F for all k, and thus xk ∈ F ∩ Cα. Consider now a Phase 2 iteration in
Algorithm 3.1. In each such iteration, Steps 1 to 3 of the COCARC-S Algorithm 2.1 are iterated
upon until an (inner) successful iteration is obtained in Step 2. Because the regularization parameter
is increased by a factor at least γ1 > 1 at unsuccessful (inner) iterations, because σk ≥ σmin and
because of the first part of Lemma 2.1, we know that at most

κS
def
= max

[

log(σsucc/σmin)

log γ1
, 1

]

inner iterations of this algorithm are necessary to compute xk+1. Since each of these iterations
involves a single problem function evaluation (in Step 2), we obtain the desired result. 2

We may the pursue our analysis exactly as in Cartis et al. (2013b) and deduce the following important
result on the decrease in tk, directly inspired from Lemma 5.3 in that reference.

Lemma 3.2 Suppose that AS3 (with φ = r(·, tk)) and AS6-AS11 hold and that

ǫp ≤ α and ǫd ≤ ǫ1/3p . (3.11)

Then, for every Phase 2 iteration k of Algorithm 3.1, we have that,

tk − tk+1 ≥ κtǫ
3/2
d ǫ1/2p (3.12)

for some constant κt ∈ (0, 1) independent of k, ǫd and ǫp.

Proof. We consider two cases. The first is when ‖r(xk+1, tk)‖ ≤ δǫp. In this case, we have, from
(3.5), (3.4) and (3.9) that

tk − tk+1 = −(f(xk+1)− tk) +
√

‖r(xk, tk)‖2 − ‖c(xk+1)‖2

= −(f(xk+1)− tk) +
√

ǫ2p − ‖c(xk+1)‖2.
(3.13)

It also follows from (3.4) that

(f(xk+1)− tk)
2 + ‖c(xk+1)‖2 = ‖r(xk+1, tk)‖2 ≤ δ2ǫ2p. (3.14)

Minimizing (3.13) subject to (3.14) (see Lemma 5.2 in Cartis et al., 2013b) then yields that

tk − tk+1 ≥ −δǫp + ǫp = (1− δ)ǫp ≥ (1− δ)ǫ
3
2

d ǫ
1
2
p , (3.15)

where we have used the second part of (3.11) to deduce the last inequality. The second case is when
‖r(xk+1, tk)‖ > δǫd and χ‖r(·,t)‖(xk+1, tk) > ǫd. Then, from (2.20) and the second part of (3.11), we
have that

tk − tk+1 ≥ κ1ǫ
3/2
d ǫ1/2p

for some κ1 ∈ (0, 1). Combining this last bound with (3.15) then gives (3.12) with κt = min[κ1, (1−
δ)]. 2

It is then easy to combine the complexity analysis we already mentioned for Phase 1 of Algorithm 3.1
with the second part of (3.10) and AS9.
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Lemma 3.3 Suppose that AS6-AS11 and (3.11) hold. Then Algorithm 3.1 generates an iterate
xj ∈ F such that either

χ‖c‖(xj) ≤ ǫd and ‖c(xj)‖ > δǫp (3.16)

or
‖r(xj , tj−1)‖ > δǫp, χ‖r(·,t)‖(xj , tj−1) ≤ ǫd and ‖c(xj)‖ ≤ ǫp (3.17)

in at most
⌊

κNLO ǫ
− 1

2
p ǫ

− 3
2

d

⌋

(3.18)

evaluations of f and c (and their derivatives), where κNLO > 0 is a problem dependent constant
independent from ǫp, ǫd and x0.

Proof. We have already discussed above (see Theorem 2.2) the fact that Phase 1 of Algorithm 3.1
will terminate in at most
⌊

κCNLS max[(δǫp)
− 1

2 ǫ
− 3

2

d , (δǫp)
−1]
⌋

≤
⌊

κCNLSδ
−1 max[ǫ

− 1
2

p ǫ
− 3

2

d , ǫ−1
p ]
⌋

≤
⌊

κCNLSδ
−1 ǫ

− 1
2

p ǫ
− 3

2

d

⌋

(3.19)

iterations (and problem functions evaluations), where we have taken our change of primal accuracy
from ǫp to δǫp specified in (3.3) and (3.11) into account. If the algorithm terminates at this stage,
then (3.16) most hold, as required. Assume now that Phase 2 of Algorithm 3.1 is entered. We start
by observing that AS9 implies that, for every k,

flow ≤ f(xk) ≤ tk + ǫp ≤ t1 − k κtǫ
3
2

d ǫ
1
2
p + ǫp ≤ f(x1)− k κtǫ

3
2

d ǫ
1
2
p + ǫp

where we have also used (3.12) and the definition of t1 in Algorithm 3.1. Hence, we obtain from the
inequality f(x1) ≤ fup (itself implied by AS9 again), the second part of (3.10) and ǫp ∈ (0, 1) that at
most

fup − flow + 1

κtǫ
3
2

d ǫ
1
2
p

Phase 2 iterations may occur before χ‖r(·,t)‖(xk+1, tk) ≤ ǫd with ‖r(xk+1, tk)‖ > δǫp. Since the last
part of Lemma 3.1 states that at most κS evaluations of f and c (and their derivatives) occur for
each such iteration, we therefore deduce that at most

κphase2

def
=

⌊

κS(fup − flow + 1)

κtǫ
3
2

d ǫ
1
2
p

⌋

Phase 2 iterations are needed to satisfy the termination test in Step 2(b) of Algorithm 3.1. Combining
this result with (3.19) and the first part of (3.10), we obtain the desired conclusion with κNLO =
max[κCNLSδ

−1, κphase2]. 2

To complete our analysis, we now comment on the meaning of the termination test (3.17); we already
discussed (3.16) in Section 2.2. This meaning is best expressed by using

ℓ(x, y)
def
= f(x) + 〈y, c(x)〉, (3.20)

the Lagrangian of the original problem where only equality constraints are kept, that is

min
x∈IRn

f(x) such that c(x) = 0. (3.21)
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Lemma 3.4 Assume that, at iteration k in Phase 2 of Algorithm 3.1,

‖r(xk+1, tk)‖ > δǫp and χ‖r(·,t)‖(xk+1, tk) ≤ ǫd. (3.22)

Then, either, for some vector yk+1 ∈ IRm,

χℓ(xk+1, yk+1) ≤ ǫd‖(yk+1, 1)‖ and ‖c(xk+1)‖ ≤ ǫp (3.23)

where ℓ(x, y) is the Lagrangian of the equality constrained problem given by (3.20) , or

χ‖c‖(xk+1) ≤ ǫd and ‖c(xk+1)‖ ∈ (δǫp, ǫp) (3.24)

Proof. Assume that f(xk+1) 6= tk. Then the second part of (3.22) can be rewritten as

ǫd ≥
∣

∣

∣

∣

min
x+d∈F,‖d‖≤1

〈

J(xk+1)
T c(xk+1) + (f(xk+1)− tk)gk+1

‖r(xk+1, tk)‖
, d

〉∣

∣

∣

∣

=

∣

∣

∣

∣

min
x+d∈F,‖d‖≤1

〈

J(xk+1)
T yk+1 + gk+1

‖(yk+1, 1)‖
, d

〉∣

∣

∣

∣

where yk+1 = c(xk+1)/(f(xk+1)− tk). Thus, given the definition of ℓ(x, y) in (3.20) and that of χ in
(2.4), we obtain that the first part of (3.23) holds. The second part of this statement results from
the first inequality in (3.10). Suppose now that f(xk+1) = tk. The second part of (3.24) is easily
deduced from the observation that, in this case,

‖c(xk+1)‖ = ‖r(xk+1, tk)‖ ∈ (δǫp, ‖r(xk, tk)‖) = (δǫp, ǫp), (3.25)

where we successively used (3.4), the first part of (3.22), the monotonic nature of the COCARC-S
algorithm and (3.9). The first part of (3.24) then follows directly from (3.22) and the relation

χ‖r(·,t)‖(xk+1, tk) =

∣

∣

∣

∣

min
x+d∈F,‖d‖≤1

〈

J(xk+1)
T c(xk+1)

‖r(xk+1, tk)‖
, d

〉
∣

∣

∣

∣

= χ‖c‖(xk+1),

where we used (3.25) to deduce the second equality. 2

Condition (3.23) expresses the approximate first-order criticality of (xk+1, yk+1) by assessing that the
maximum feasible linearized decrease in the Lagrangian corresponding to the problem (3.21) only involv-
ing equalities is small compared to the size of the multiplier. The use of a scaled measure of criticality
of this type was already argued in Cartis et al. (2013b).

Combining Lemmas 3.3 and 3.4 then gives our final complexity result.

Theorem 3.5 Suppose that AS3 (with φ = r(·, tk)) and AS6-AS11 and (3.11) hold. Then Algo-
rithm 3.1 generates an iterate xk ∈ F such that either

χℓ(xk, yk) ≤ ǫd‖(yk, 1)‖ and ‖c(xk)‖ ≤ δǫp (3.26)

where ℓ(x, y) is the Lagrangian of the equality constrained problem (3.20) and yk ∈ IRm is an
approximate Lagrange multiplier for problem (3.21), or

χ‖c‖(xk) ≤ ǫp and ‖c(xk)‖ > δǫp (3.27)

in at most
⌊

κNLO ǫ
− 1

2
p ǫ

− 3
2

d

⌋

(3.28)

evaluations of f and c (and their derivatives), where κNLO > 0 is a problem dependent constant
independent from ǫp, ǫd and x0.
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Again, we note that if ǫd = ǫ
2/3
p , Lemma 3.3 implies an overall complexity bound of O(ǫ

−3/2
p ) itera-

tions and problem function evaluations for applying Algorithm 3.1 to the general nonlinear optimization
problem (3.1).

4 Conclusions and perspectives

We have examined the worst-case complexity of finding approximate first-order critical points for the non-
linear least-squares problem with inequality constraints and the general nonlinear optimization problem
(involving both equality and inequality constraints). We have shown that, under acceptable assumptions,
both these problems can be approximately solved using a second-order method with cubic regularization

in a number of problem functions (objective, constraints and derivatives) that is at most O(ǫ
−3/2
d ) (for

the contrained nonlinear least-squares) and O(ǫ
−3/2
d ǫ

−1/2
p ) (for the general problem), where ǫd and ǫp are

the dual and primal accuracy thresholds, respectively. The latter bound reduces to O(ǫ
−3/2
p ) problem

function evaluations if the dual threshold is chosen such that ǫd = ǫ
2/3
p . It is also known that this last

bound is sharp for methods using cubic regularization (see Cartis, Gould and Toint, 2010) and optimal
in a large class of second-order methods (see Cartis et al., 2011b).

This result remains surprising because it shows that the inclusion of nonlinear (in)equality constraints
in the problem does not affect its worst-case evaluation analysis. Indeed, the worst-case complexity of
the general nonlinear optimization problem is identical (in order) to that of the unconstrained case.
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