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QUALITATIVE ANALYSIS OF A COOPERATIVE
REACTION-DIFFUSION SYSTEM IN A SPATIOTEMPORALLY

DEGENERATE ENVIRONMENT∗

PABLO ÁLVAREZ-CAUDEVILLA†, YIHONG DU‡ , AND RUI PENG§

Abstract. In this paper, we are concerned with the cooperative system in which ∂tu − Δu =
μu+ α(x, t)v − a(x, t)up and ∂tv −Δv = μv + β(x, t)u− b(x, t)vq in Ω× (0,∞); (∂νu, ∂νv) = (0, 0)
on ∂Ω× (0,∞); and (u(x, 0), v(x, 0)) = (u0(x), v0(x)) > (0, 0) in Ω, where p, q > 1, Ω ⊂ R

N (N ≥ 2)
is a bounded smooth domain, α, β > 0 and a, b ≥ 0 are smooth functions that are T -periodic in t,
and μ is a varying parameter. The unknown functions u(x, t) and v(x, t) represent the densities of
two cooperative species. We study the long-time behavior of (u, v) in the case that a and b vanish on
some subdomains of Ω × [0, T ]. Our results show that, compared to the nondegenerate case where
a, b > 0 on Ω × [0, T ], such a spatiotemporal degeneracy can induce a fundamental change to the
dynamics of the cooperative system.

Key words. cooperative reaction-diffusion system, spatiotemporal degeneracy, positive periodic
solutions, principal eigenvalue, dynamical behavior
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1. Introduction. In this paper, we analyze a class of cooperative reaction-
diffusion systems of the form

(1.1)⎧⎪⎪⎨⎪⎪⎩
∂tu− div(d1(x, t)∇u) = μ1(x, t)u + α(x, t)v − a(x, t)up

∂tv − div(d2(x, t)∇v) = μ2(x, t)v + β(x, t)u − b(x, t)vq
in Ω× (0,∞),

(∂νu, ∂νv) = (0, 0) on ∂Ω× (0,∞),
(u(x, 0), v(x, 0)) = (u0(x), v0(x)) > (0, 0) in Ω.

This problem may be used to describe the evolution of two cooperative species, with
densities u(x, t) and v(x, t), respectively, that are randomly dispersing in a habitat Ω,
whose mutual cooperative effects are measured by the positive functions α and β.
The function pair (u0(x), v0(x)) stands for the initial density of the populations, and
μ1, μ2 are the intrinsic growth rates of the species. The nonnegative functions a
and b measure the strengths of intraspecific competition of the species, while the
positive functions d1 and d2 represent the diffusion rates of the species. Moreover,
the Neumann boundary condition means that the species are enclosed in Ω, with no
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population flux across the boundary ∂Ω. Note that if the region Ω is surrounded by
a lethal environment, then the homogeneous Dirichlet boundary conditions should be
used instead. Throughout this paper, we assume that p, q > 1 and Ω is a bounded
smooth domain in R

N (N ≥ 2).
In the case that all the coefficient functions in (1.1) are positive constants, and

homogeneous Dirichlet boundary conditions are used, this system was investigated in
[18, 19]. In [20] and [3], such a system was considered when all the coefficients are
functions of x only (independent of t), with a−1(0) = b−1(0) �= ∅. It was shown in
[19] that in the situation considered there, qualitatively the system behaves like the
classical scalar logistic equation, and in the case of [20, 3], it follows from [3] that
the system behaves like the time-autonomous degenerate scalar logistic equation (as
described in [8, 13]).

Since the natural environment is typically periodic in time, it is reasonable to
assume that the coefficient functions in (1.1) are time-dependent with a common
period T in t. In such a situation, in the absence of a second species, namely (1.1)
with v ≡ 0, the problem reduces to a periodic-parabolic logistic problem, which
was considered in [9]. It was shown in [9] that the degenerate periodic-parabolic
logistic problem may behave in a drastically different way from the time-autonomous
degenerate logistic problem as described in [8, 12].

The main purpose of this paper is to investigate the degenerate system (1.1), and
to reveal some fundamental changes of behavior from those obtained in [3]. As re-
marked in [9], a good understanding of the model in the degenerate cases is important
in order to determine the scope of changes of dynamical behaviors that a heteroge-
neous environment may cause to ecological systems. For example, based on the results
of this paper, it is possible to use a perturbation approach as in [10] to reveal sophis-
ticated patterns of the solutions to the corresponding standard cooperative system in
a spatiotemporal environment which is close to the degenerate case considered here.

In order to make the main points of this paper more transparent, we consider only
a special case of (1.1) by setting d1 = d2 ≡ 1 and μ1 = μ2 ≡ μ, with μ regarded as a
bifurcation parameter. The general case can be handled largely by the same method,
but with more involved notation, etc. Therefore the system to be investigated in
detail in this paper is given by

(1.2)

⎧⎪⎪⎨⎪⎪⎩
∂tu−Δu = μu+ α(x, t)v − a(x, t)up

∂tv −Δv = μv + β(x, t)u − b(x, t)vq
in Ω× (0,∞),

(∂νu, ∂νv) = (0, 0) on ∂Ω× (0,∞),
(u(x, 0), v(x, 0)) = (u0(x), v0(x)) > (0, 0) in Ω.

Here α(x, t), β(x, t), a(x, t), and b(x, t) are T -periodic in time, i.e.,

γ(x, t+ T ) = γ(x, t), with γ ∈ {α, β, a, b}.

The habitat Ω is a bounded domain of RN , N ≥ 2, with ∂Ω of class C2+θ for some
θ ∈ (0, 1), μ ∈ R , ν is the outward unit normal vector of ∂Ω, and γ ∈ Cθ,θ/2(Ω× R)
for all γ ∈ {α, β, a, b}. By (u0(x), v0(x)) > (0, 0), we mean that both u0 and v0 are
nonnegative and not identically zero.

We always assume that α, β > 0 and a, b ≥ 0. If a and b are positive, then it is
easy to show that (1.2) behaves like the scalar periodic-parabolic logistic problem as
described in [17]. More precisely, let μ0 be the principal eigenvalue of the cooperative
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periodic eigenvalue problem

(1.3)

⎧⎪⎪⎨⎪⎪⎩
∂tΦ−ΔΦ− α(x, t)Ψ = μ0Φ
∂tΨ−ΔΨ − β(x, t)Φ = μ0Ψ

in Ω× [0, T ],

(∂νΦ, ∂νΨ) = (0, 0) on ∂Ω× [0, T ],
(Φ(x, 0),Ψ(x, 0)) = (Φ(x, T ),Ψ(x, T )) in Ω.

Then the nonlinear periodic cooperative problem

(1.4)

⎧⎪⎪⎨⎪⎪⎩
∂tu−Δu = μu+ α(x, t)v − a(x, t)up

∂tv −Δv = μv + β(x, t)u − b(x, t)vq
in Ω× R,

(∂νu, ∂νv) = (0, 0) on ∂Ω× R,
(u(x, 0), v(x, 0)) = (u(x, T ), v(x, T )) in Ω

has a unique positive solution (uμ, vμ) if and only if μ ∈ (μ0,∞). Moreover, the
unique solution of (1.2) converges to (0, 0) as t → ∞ if μ ≤ μ0, while for μ > μ0,
(u(x, t), v(x, t)) converges to (uμ, vμ) as t → ∞.

In this paper, we will focus on the degenerate case that both a−1(0) and b−1(0)
are nonempty, but not identical. Specifically, we assume that

{(x, t) ∈ Ω× [0, T ] : a(x, t) = 0} = (Ω× [0, T ∗]) ∪ (Ωa
0 × [T ∗, T ]),

{(x, t) ∈ Ω× [0, T ] : b(x, t) = 0} = (Ω× [0, T ∗]) ∪ (Ωb
0 × [T ∗, T ]),

where T ∗ ∈ (0, T ) and Ωa
0 , Ωb

0 are nonempty, open, connected sets satisfying

Ωa
0 ⊂ Ω, Ωb

0 ⊂ Ω and Ωa
0 ∩ Ωb

0 = ∅.

We also assume that ∂Ωa
0 and ∂Ωb

0 are smooth.
These assumptions are ecologically reasonable. Mathematically they allow us to

avoid certain excessive technicalities. For example, if (∂Ωa
0 ∪ ∂Ωb

0) ∩ ∂Ω �= ∅, then
considerable technical difficulties arise in the mathematical analysis, since singularly
mixed boundary value problems have to be considered in the limit. Moreover, when

Ωa
0 ∩Ωb

0 �= ∅, additional techniques are required in the analysis. To keep the paper at
a reasonable length, we have refrained from discussing these cases here.

Obviously,

Σa
+ := {(x, t) ∈ Ω× [0, T ] : a(x, t) > 0} = (Ωa

+ ∪ ∂Ω)× (T ∗, T ),

Σb
+ := {(x, t) ∈ Ω× [0, T ] : b(x, t) > 0} = (Ωb

+ ∪ ∂Ω)× (T ∗, T ),

with

Ωa
+ := Ω \ Ωa

0 , Ωb
+ := Ω \ Ωb

0.

For convenience, we also use the notation

Σa
0 := (Ω× [0, T ∗]) ∪ (Ωa

0 × [T ∗, T ]),

Σb
0 := (Ω× [0, T ∗]) ∪ (Ωb

0 × [T ∗, T ]).

Clearly,

{(x, t) ∈ Ω× [0, T ] : a(x, t) = 0} = Σa
0 , {(x, t) ∈ Ω× [0, T ] : b(x, t) = 0} = Σb

0.
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Fig. 1. Illustrative graphs of Ω× [0, T ] (left), Σa
0 (middle), and Σb

0 (right).

See Figure 1 for the illustrative graphs of Ω× [0, T ],Σa
0, and Σb

0.
A simple special case in which the above conditions are satisfied is given by

c1pa(x)q(t) ≤ a(x, t) ≤ c2pa(x)q(t), c1pb(x)q(t) ≤ b(x, t) ≤ c2pb(x)q(t),

where c1, c2 are positive constants, pa(x), pb(x) are nonnegative functions satisfying

p−1
a (0) = Ωa

0 , p−1
b (0) = Ωb

0,

and q(t) is a nonnegative T -periodic function satisfying q−1(0) ∩ [0, T ] = [0, T ∗].
Clearly, our assumptions on a and b allow much more general situations to happen.

We remark that the results in [9, 10] also hold under more general conditions along
the lines of this paper.

Under the above assumptions, we first consider the periodic-parabolic cooperative
system (1.4), proving the following result.

Theorem 1.1. Problem (1.4) has a unique positive solution (uμ, vμ) if and only if
μ ∈ (μ0, μ∞), where μ∞ is the principal eigenvalue of the periodic eigenvalue problem

(1.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tΦ−ΔΦ− α(x, t)χΩ×[0,T∗]Ψ = μ∞Φ in Σa
0 ,

∂tΨ−ΔΨ − β(x, t)χΩ×[0,T∗]Φ = μ∞Ψ in Σb
0,

∂νΦ = ∂νΨ = 0 on ∂Ω× (0, T ∗],
Φ = 0 on ∂Ωa

0 × (T ∗, T ],
Ψ = 0 on ∂Ωb

0 × (T ∗, T ],
Φ(x, 0) = Φ(x, T ) in Ωa

0 ,
Ψ(x, 0) = Ψ(x, T ) in Ωb

0,

where χω denotes the characteristic function of a set ω.
We remark that the existence of the principal eigenvalue μ∞ of (1.5), the regular-

ity of the associated eigenfunction (Φ,Ψ), as well as upper and lower bounds of μ∞,
will be proved in detail in section 2 below.

Second, we study the long-time behavior of the unique solution (u, v) of (1.2),
and our result reads as follows.

Theorem 1.2. Let (u, v) be the unique solution of (1.2). Then the following
assertions hold:

(a) If μ ≤ μ0, then limt→∞(u(x, t), v(x, t)) = (0, 0) uniformly in Ω.
(b) If μ ∈ (μ0, μ∞), then limt→∞ |(u(x, t), v(x, t)) − (uμ(x, t), vμ(x, t))| = 0 uni-

formly in Ω.
(c) If μ ≥ μ∞, then

lim
n→∞

(
u(x, t+ nT ), v(x, t+ nT )

)
= (∞,∞)

uniformly in compact subsets of (Ω× (0, T ∗]) ∪ ((Ωa
0 ∪ Ωb

0)× [0, T ]), and

lim
n→∞

(
u(x, t+ nT ), v(x, t+ nT )

)
=

(
Uμ(x, t), V μ(x, t)

)
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uniformly in every compact subset of (Ω\(Ωa
0∪Ωb

0))×(T ∗, T ), where (Uμ, V μ)
is the minimal positive solution of

(1.6)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tu−Δu = μu+ α(x, t)v − a(x, t)up

∂tv −Δv = μv + β(x, t)u − b(x, t)vq
in (Ω \ (Ωa

0 ∪Ωb
0))× (T ∗, T ),

(∂νu, ∂νv) = (0, 0) on ∂Ω× (T ∗, T ),
(u, v) = (∞,∞) on (∂Ωa

0 ∪ ∂Ωb
0)× (T ∗, T ),

(u(x, T ∗), v(x, T ∗)) = (∞,∞) in Ω \ (Ωa
0 ∪ Ωb

0).

In Theorem 1.2(c), by u = ∞ on (∂Ωa
0 ∪ ∂Ωb

0)× (T ∗, T ), we mean that

u(x, t) → ∞ as d(x, ∂Ωa
0 ∪ ∂Ωb

0) → 0 uniformly for t ∈ (T ∗, T ),

and by u(x, T ∗) = ∞ in Ω \ (Ωa
0 ∪ Ωb

0) we mean that

u(x, t) → ∞ as t decreases to T ∗ uniformly for x ∈ Ω \ (Ωa
0 ∪ Ωb

0).

The same interpretation applies to v. The existence of a minimal positive solution
to (1.6) will follow from a more general result proved in section 3. As in [11], under
further conditions on a and b at t = T , we can obtain a better understanding of the

behavior of (Uμ, V μ) (and hence that of (u(x, t + nT ), v(x, t + nT ) in Ω \ (Ωa
0 ∪ Ωb

0)
at t = T as n → ∞) in part (c) of Theorem 1.2.

Compared with the nondegenerate case of a, b > 0 on Ω × [0, T ], we see from
Theorem 1.2 that the dynamical behavior of (1.2) is fundamentally changed when
degeneracy occurs. Moreover, the change is significantly different from the time-
autonomous degenerate case described in [3]. The long-time dynamical behavior of
the cooperative system obtained in this paper resembles that of the single species case
considered in [9], but the mathematical techniques here are very different. Indeed, the
system here is much harder to treat, and several new ideas and techniques are intro-
duced in this paper to overcome a number of highly nontrivial difficulties associated
with the system. Additional techniques are required to handle the other ecologically
natural case Ωa

0 ∩ Ωb
0 �= ∅, which we have left for future work. We believe that the

ideas and techniques developed in this paper should be useful for future investigations
on this and related systems.

2. Linear eigenvalue problems. Our main aim in this section is to analyze the
asymptotic behavior of the following linear periodic–parabolic eigenvalue problem:

(2.1)

⎧⎪⎪⎨⎪⎪⎩
∂tφ−Δφ+ λa(x, t)φ − α(x, t)ψ = μφ
∂tψ −Δψ + λb(x, t)ψ − β(x, t)φ = μψ

in Ω× R,

(∂νφ, ∂νψ) = (0, 0) on ∂Ω× R,
(φ(x, t), ψ(x, t)) = (φ(x, t+ T ), ψ(x, t+ T )) in Ω× R,

as the nonnegative parameter λ goes to infinity. We will show that the limits of
the principal eigenvalue and the corresponding principal eigenfunction of (2.1) satisfy
(1.5). Our results in this section will become crucial in the study of the qualitative
properties of the nonlinear problem (1.2).

If (2.1) is time-autonomous, i.e., the coefficients are independent of time t, such an
asymptotic limit (as λ → ∞) was obtained in [2, 5, 15, 1, 6] under various conditions
of the coefficient functions.
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2.1. Basic properties of the principal eigenvalue of (2.1). Problem (2.1)
can be formulated as an abstract eigenvalue problem,

(2.2) Lλ

(
φ

ψ

)
= μ

(
φ

ψ

)
,

in the space

X0 := {(φ, ψ) ∈ (Cθ,θ/2(Ω× R))2 : φ, ψ are T -periodic in t},

where Lλ is the operator defined by

Lλ :=

(
∂t −Δ+ λa(x, t) −α

−β ∂t −Δ+ λb(x, t)

)
,

assuming Neumann boundary conditions and T -periodicity, and with the domain of
the operator dom(Lλ) = X1 defined by

X1 = {(φ, ψ)∈(C2+θ,1+θ/2(Ω×R))2 : ∂νφ= ∂νψ=0 on ∂Ω×R, φ, ψ are T -periodic in t}.

One may argue as in [4] to show that, for fixed λ and large constant m > 0, the
inverse operator (Lλ+mI)−1 from X1 to X1 is compact and strongly positive. Hence
it follows from the Krein–Rutman theorem that there exists a unique r > 0 and a
unique (subject to constant multiples) positive function pair (φλ, ψλ) ∈ X1 such that
(Lλ +mI)−1(φλ, ψλ) = r(φλ, ψλ). It follows that there is a unique value μ = μ1(λ)
such that (2.2), and equivalently (2.1), has a unique positive solution (φλ, ψλ) (subject
to a constant multiple). Such a value μ is known as the principal eigenvalue of (2.1)
in Ω (under Neumann boundary conditions), and we denote it by

μ1[Lλ,Ω] := μ1(λ).

The corresponding positive eigenfunction pair (φλ, ψλ) ∈ X1 is called the principal
eigenfunction. When Dirichlet boundary conditions are used, this kind of eigenvalue
problem was discussed in detail in [4].

For convenience and later use, we denote by

σ1[L(V1, V2),Ω] and μ1[L(V1, V2),Ω]

the principal eigenvalue of the operator

L(V1, V2) :=

(
∂t −Δ+ V1 −α

−β ∂t −Δ+ V2

)
for any (V1, V2) ∈ X0 under Dirichlet and Neumann boundary conditions, respectively.
Moreover, the following properties are easily deduced from [4]:

(1) σ1[L(V1, V2),Ω] > μ1[L(V1, V2),Ω].
(2) Monotonicity with respect to the potentials,

σ1[L(V1, V2),Ω] > σ1[L[U1, U2),Ω],

μ1[L(V1, V2),Ω] > μ1[L(U1, U2),Ω],

if V1 ≥ U1, V2 ≥ U2 and (V1, V2) �= (U1, U2).
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(3) Monotonicity with respect to the domain for Dirichlet boundary conditions,

σ1[L(V1, V2),Ω0] ≥ σ1[L[V1, V2),Ω],

if Ω0 ⊂ Ω.
Lemma 2.1. The principal eigenvalue μ1(λ) of (2.1) is continuous and strictly

increasing. Moreover, the limit μ∞ := limλ→∞ μ1(λ) satisfies

(2.3) μ0 := μ1(0) < μ∞ ≤ min{σa
1 , σb

1},

where σj
1, j ∈ {a, b} is the principal eigenvalue of the elliptic problem

−Δϕ = σϕ in Ωj
0, ϕ = 0 on ∂Ωj

0.

Proof. Since a, b are nonnegative and not identically zero, the monotonicity of
μ1(λ) is clear, and we also have μ0 = μ1(0) < μ1(λ) < μ∞ for all λ > 0.

To prove the continuity, for any given λ, take a sequence {λn} such that λn → λ.
Then consider the sequence of operators

Lλn :=

(
∂t −Δ+ λna −α

−β ∂t −Δ+ λnb

)
.

For any ε > 0, there exists an integer n0 = n0(ε) such that, for every n ≥ n0,

λa− ε ≤ λna ≤ λa+ ε, λb− ε ≤ λnb ≤ λb+ ε.

Thus, we find that, for any n ≥ n0,

μ1[Lλ − ε diag {1, 1}; Ω] ≤ μ1[Lλn ; Ω] ≤ μ1[Lλ + ε diag {1, 1}; Ω]

or, equivalently,

μ1[Lλ; Ω]− ε ≤ μ1[Lλn ; Ω] ≤ μ1[Lλ; Ω] + ε, n ≥ n0.

This proves the continuity of μ1(λ).
Furthermore, we have

μ1(λ) ≤ σ1[L(λa, λb),Ω] ≤ σ1[L(λa, λb),Ωa
0 ].

Let (φ0, ψ0) be the principal eigenfunction corresponding to σ0 := σ1[L(λa, λb),Ωa
0 ].

Then we have

∂tφ0 −Δφ0 ≥ σ0φ0, φ0(x, t) = φ0(x, t+ T ) in Ωa
0 × R.

Multiplying the above inequality by a principal eigenfunction corresponding to σa
1

and then integrating over Ωa
0 × (0, T ) by parts, it follows immediately, using the

periodicity of φ0, that σ
0 ≤ σa

1 . Therefore μ1(λ) ≤ σa
1 for all λ ∈ R, and so μ∞ ≤ σa

1 .
Similarly, we have μ∞ ≤ σb

1.

2.2. Characterization of μ∞. In this subsection, we study the qualitative
properties of μ∞ as the principal eigenvalue of (1.5), as well as its associated principal
eigenfunction. Our first result in this direction is the following.
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Theorem 2.2. Let μ∞ be given as above. Then there exists a function pair
(Φ,Ψ) such that

(2.4)

Φ ∈ C2+θ,1+θ/2
(
(Ω× (0, T ∗]) ∪ (Ωa

0 × (T ∗, T ])
)
,

Ψ ∈ C2+θ,1+θ/2
(
(Ω× (0, T ∗]) ∪ (Ωb

0 × (T ∗, T ])
)
,

Φ ∈ C1+θ,(1+θ)/2
(
(Ωa

0 × [T ∗, T ]) \ (∂Ωa
0 × {T ∗})

)
,

Ψ ∈ C1+θ,(1+θ)/2
(
(Ωb

0 × [T ∗, T ]) \ (∂Ωb
0 × {T ∗})

)
,

Φ = 0 in Ωa
+ × (T ∗, T ],

Ψ = 0 in Ωb
+ × (T ∗, T ],

Φ > 0 in (Ω× (0, T ∗]) ∪ (Ωa
0 × (T ∗, T ]),

Ψ > 0 in (Ω× (0, T ∗]) ∪ (Ωb
0 × (T ∗, T ]),

and (Φ,Ψ, μ∞) satisfies (1.5).
Proof. Let {(φλ, ψλ)} be the principal eigenfunction corresponding to μ1(λ),

normalized by

(2.5) max
Ω×[0,T ]

(φλ + ψλ) = 1,

and satisfying φλ, ψλ > 0. Since 0 ≤ φλ, ψλ ≤ 1 in Ω× [0, T ], we can find a sequence
{λn} with λn → ∞ as n → ∞ such that {(φλn , ψλn)} satisfies

(2.6)

⎧⎪⎪⎨⎪⎪⎩
∂tφλn −Δφλn + λna(x, t)φλn − α(x, t)ψλn = μ1(λn)φλn

∂tψλn −Δψλn + λnb(x, t)ψλn − β(x, t)φλn = μ1(λn)ψλn

in Ω× R,

(∂νφλn , ∂νψλn) = (0, 0) on ∂Ω× R,
(φλn(x, 0), ψλn(x, 0)) = (φλn(x, T ), ψλn(x, T )) in Ω,

and

(φλn , ψλn) −→ (Φ,Ψ) weakly in L2(Ω× (0, T ))× L2(Ω× (0, T )) as n → ∞,

for some Φ, Ψ ∈ L2(Ω × (0, T )) with 0 ≤ Φ, Ψ ≤ 1 almost everywhere (a.e.) in
Ω× (0, T ). To avoid excessive notation, from now on we will write {(φn, ψn)} instead
of {(φλn , ψλn)}.

Step 1. In this step, we prove

(2.7) (Φ,Ψ) �= (0, 0) in Ω× (0, T ).

To do so we argue by contradiction. Suppose that

(φn, ψn) −→ (0, 0) weakly in L2(Ω× (0, T ))× L2(Ω× (0, T )) as n → ∞.

For any fixed n ≥ 1, let us consider the auxiliary problem

(2.8)

⎧⎪⎪⎨⎪⎪⎩
∂tϕ−Δϕ+ ϕ = (μ∞ + 1)φn + α(x, t)ψn

∂tη −Δη + η = (μ∞ + 1)ψn + β(x, t)φn
in Ω× (0,∞),

(∂νϕ, ∂νη) = (0, 0) on ∂Ω× (0,∞),
(ϕ(x, 0), η(x, 0)) = (1, 1) in Ω.
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For each n ≥ 1, problem (2.8) admits a unique solution, denoted by

(ϕn, ηn) ∈ C2+θ,1+θ/2(Ω× (0,∞))× C2+θ,1+θ/2(Ω× (0,∞)).

Moreover, by the parabolic comparison principle one can easily see that

(2.9)
φn(x, t) ≤ ϕn(x, t) ≤ C0

ψn(x, t) ≤ ηn(x, t) ≤ C0
in Ω× (0,∞) for all large n,

where

C0 = |μ∞|+ 1 + max
Ω×[0,T ]

{α, β}.

On the other hand, following the same argument as in step 1 of the proof of Theorem
3.3 of [9], we can conclude that

(ϕn, ηn) → (e−t, e−t) in C1,1/2(Ω× [0, T̂ ])× C1,1/2(Ω× [0, T̂ ])

for any 0 < T̂ < ∞. Using (2.9), it therefore follows that, for any integer k ≥ 1,

maxΩ×[0,T ](φn(x, t) + ψn(x, t)) = maxΩ×[0,T ](φn(x, t+ kT ) + ψn(x, t+ kT ))

≤ maxΩ×[0,T ](ϕn(x, t+ kT ) + ηn(x, t+ kT ))

≤ 4e−kT

for all large n. By sending k → ∞ we immediately have

lim
n→∞ max

Ω×[0,T ]
(φn(x, t) + ψn(x, t)) = 0.

This is a contradiction with (2.5). So (2.7) holds.
Step 2. (Φ,Ψ) in the range (x, t) ∈ Ω× (0, T ∗].
In this range, since a(x, t) = b(x, t) = 0, (φn, ψn) is the unique solution of

(2.10)

⎧⎪⎪⎨⎪⎪⎩
∂tϕ−Δϕ = α(x, t)ψn + μ1(λn)φn

∂tη −Δη = β(x, t)φn + μ1(λn)ψn
in Ω× (0, T ∗],

(∂νϕ, ∂νη) = (0, 0) on ∂Ω× (0, T ∗],
(ϕ(x, 0), η(x, 0)) = (φn(x, 0), ψn(x, 0)) in Ω.

Note that the right-hand side of the equations in (2.10) possesses an L∞ bound that
is independent of n. We use standard parabolic Lp-estimates and conclude that, for
any r > 1 and 0 < ε0 < T ∗,

||(φn, ψn)||Xr ≤ Cε0

for some constant Cε0 > 0, independent of n, where

Xr = W 2,1
r (Ω× (ε0, T

∗))×W 2,1
r (Ω× (ε0, T

∗)).

By taking r large enough and applying the embedding theorems, we see that

||(φn, ψn)||Y ≤ C = C(ε0),

with

Y = C1+θ,(1+θ)/2(Ω× [ε0, T
∗])× C1+θ,(1+θ)/2(Ω× [ε0, T

∗]).
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Thus, using a standard diagonal argument we can pass to a further subsequence
such that

(φn, ψn) −→ (φ̂, ψ̂) in C1,1/2(Ω× [ε0, T
∗])× C1,1/2(Ω× [ε0, T

∗]) as n → ∞

for every given ε0 ∈ (0, T ∗). Necessarily (φ̂, ψ̂) = (Φ,Ψ). Thus, (Φ,Ψ) solves

(2.11)

⎧⎨⎩
∂tΦ−ΔΦ = α(x, t)Ψ + μ∞Φ
∂tΨ−ΔΨ = β(x, t)Φ + μ∞Ψ

in Ω× (0, T ∗],

(∂νΦ, ∂νΨ) = (0, 0) on ∂Ω× (0, T ∗].

By standard parabolic regularity we see that (Φ,Ψ) ∈ Z, and (Φ,Ψ) satisfies (2.11)
in the classical sense, where

Z = C2+θ,1+θ/2(Ω× (0, T ∗])× C2+θ,1+θ/2(Ω× (0, T ∗]).

Step 3. (Φ,Ψ) in the range Ω× (T ∗, T ].
We choose ζ to be a smooth T -periodic function on Ω×R with ζ = 0 near ∂Ω×R.

Multiplying the first equation in (2.6) by ζ and then integrating the resulting equation
over Ω× (0, T ) by parts, we have∫ T

0

∫
Ω

{−φnζt − φnΔζ + λna(x, t)φnζ − α(x, t)ψnζ} = μ1(λn)

∫ T

0

∫
Ω

φnζ.

Dividing the above identity by λn and then letting n → ∞, combined with (2.3) and
(2.5), we obtain ∫ T

0

∫
Ω

a(x, t)Φ(x, t)ζ(x, t) = 0.

By the arbitrariness of ζ, it is necessary that

a(x, t)Φ(x, t) = 0 a.e. in Ω× (0, T ).

In view of a(x, t) > 0 in Ωa
+ × (T ∗, T ), it follows that

(2.12) Φ(x, t) = 0 a.e. in Ωa
+ × (T ∗, T ).

Arguing in a similar manner, from the second equation of (2.6) we can prove

(2.13) Ψ(x, t) = 0 a.e. in Ωb
+ × (T ∗, T ).

We now restrict ourselves to Ωa
0 × R. In this range, φn satisfies

(2.14)

{
∂tφn −Δφn − α(x, t)ψn = μ1(λn)φn in Ωa

0 × R,
φn(x, 0) = φn(x, T ) in Ωa

0 .

Due to (2.3) and 0 ≤ φn, ψn ≤ 1, by standard parabolic interior estimates (see, e.g.,
[14] or [16]) and embedding theorems, for any compact subset K ⊂ Ωa

0 × R and any
r > 1, there exists a positive constant C = CK which is independent of n such that

‖φn(x, t)‖W 2,1
r (K) ≤ C.
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Therefore, by passing to a subsequence of {φn} and a diagonal argument, we may
assume that

φn → Φ in C
1+θ,(1+θ)/2
loc (Ωa

0 × R),

and Φ satisfies, in W 2,1
r and, hence, in the classical sense,

∂tΦ−ΔΦ = μ∞Φ in Ωa
0 × (T ∗, T ).

Here we have used (2.13) and Ωa
0 ⊂ Ωb

+.
In the following, we will determine the boundary condition satisfied by Φ|Ωa

0×(T∗,T ]

over ∂Ωa
0 × (T ∗, T ]. Multiplying the first equation in (2.6) by φn and then integrating

over Ω× [0, T ], we deduce∫ T

0

∫
Ω

|∇φn|2 ≤ μ1(λn)

∫ T

0

∫
Ω

φ2
n+

∫ T

0

∫
Ω

αφnψn ≤ (|μ∞|+‖α‖∞)T |Ω| for all large n.

Hence, it follows that

(2.15)

∫ T

0

∫
Ω

|∇φn|2 +
∫ T

0

∫
Ω

φ2
n ≤ (1 + |μ∞|+ ‖α‖∞)T |Ω| for all large n.

That is, {φn} is a bounded set in the Hilbert spaceW 1,0
2 (Ω×[0, T ]) with inner product

(u, v) =

∫ T

0

∫
Ω

∇u · ∇v +

∫ T

0

∫
Ω

uv.

Hence by passing to a subsequence if necessary, we have

φn → Φ weakly in W 1,0
2 (Ω× (0, T )).

Thus Φ ∈ W 1,0
2 (Ω× (0, T )), and so for a.e. t ∈ [0, T ], Φ(·, t) ∈ H1(Ω). Moreover, due

to (2.12), for a.e. t ∈ (T ∗, T ], Φ(·, t) = 0 over Ω \ Ωa
0 . Thanks to the smoothness of

Ωa
0 , it then follows that

Φ(·, t)|Ωa
0
∈ H1

0 (Ω
a
0) for a.e. t ∈ (T ∗, T ].

As a result, our analysis shows that Φ is the unique weak solution of

(2.16)

⎧⎨⎩
∂tφ−Δφ− μ∞φ = 0 in Ωa

0 × (T ∗, T ],
φ = 0 on ∂Ωa

0 × (T ∗, T ],
φ(x, T ∗) = Φ(x, T ∗) in Ωa

0 .

By standard regularity theory (see, for instance, [16]), Φ ∈ C2+θ,1+θ/2(Ωa
0 × (T ∗, T ]).

Similarly, using the second equation in (2.6), we can show that Ψ ∈ C2+θ,1+θ/2(Ωb
0×

(T ∗, T ]) solves

(2.17)

⎧⎨⎩
∂tψ −Δψ − μ∞ψ = 0 in Ωb

0 × (T ∗, T ],
ψ = 0 on ∂Ωb

0 × (T ∗, T ],
ψ(x, T ∗) = Ψ(x, T ∗) in Ωb

0,

and passing to a subsequence,

ψn → Ψ in C
(1+θ),(1+θ)/2
loc (Ωb

0 × R).
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Step 4. φn → 0 uniformly on any compact subset of Ωa
+ × (T ∗, T ], and ψn → 0

uniformly on any compact subset of Ωb
+ × (T ∗, T ].

We will prove this conclusion in three substeps. We first prove a weaker conclusion
that φn → 0 uniformly in any compact subset of (Ωa

+ ∪ ∂Ω) × (T ∗, T ), and ψn → 0
weakly uniformly in any compact subset of (Ωb

+ ∪ ∂Ω)× (T ∗, T ).
For sufficiently small ε > 0, we denote

Ωa
+,ε = {x ∈ Ωa

+ : d(x, ∂Ωa
+ \ ∂Ω) > ε}.

We note that Ωa
+,ε is nonempty and smooth for all small ε > 0. Clearly, ∂Ω ⊂ Ωa

+,ε.
Furthermore, there exists σ = σ(ε) > 0 such that a(x, t) ≥ σ for (x, t) ∈ Ωa

+,ε × [T ∗ +
ε, T − ε]. Therefore, we have

(2.18) ∂tφn −Δφn + λnσφn ≤ |μ∞|+ ‖α‖∞ := C0 in Ωa
+,ε × [T ∗ + ε, T − ε]

for all large n.
We now take a function � ∈ C2([T ∗ + ε, T − ε]) such that �(T ∗ + ε) = 0, �(t) = 1

for t ∈ [T ∗ + 2ε, T − ε] and 0 ≤ �(t) ≤ 1 for t ∈ [T ∗ + ε, T − ε]. Then, for each n ≥ 1,
we define

hn(x, t) = �(t)φn(x, t).

By simple calculation, using (2.18), we find that, for all large n, hn satisfies

(2.19)

⎧⎪⎪⎨⎪⎪⎩
∂thn −Δhn + λnσhn ≤ C1 in Ωa

+,ε × (T ∗ + ε, T − ε],
∂νhn = 0 on ∂Ω× (T ∗ + ε, T − ε],
hn ≤ 1 on (∂Ωa

+,ε \ ∂Ω)× (T ∗ + ε, T − ε],
hn(x, T

∗ + ε) = 0 in Ωa
+,ε,

where C1 = C1(ε) =: C0 +max[T∗+ε,T−ε] |�′(t)| > 0. Consequently, a simple compari-
son consideration shows that the unique solution un of the elliptic problem

(2.20)

⎧⎨⎩
−Δun + λnσun = C1 in Ωa

+,ε,
∂νun = 0 on ∂Ω,
un = 1 on (∂Ωa

+,ε \ ∂Ω)

satisfies

hn(x, t) ≤ un(x) for (x, t) ∈ Ωa
+,ε × [T ∗ + ε, T − ε].

In particular, as �(t) = 1 for t ∈ [T ∗ + 2ε, T − ε], we have

φn(x, t) ≤ un(x) for (x, t) ∈ Ωa
+,ε × [T ∗ + 2ε, T − ε].

We will show that un → 0 uniformly on Ωa
+,2ε, and clearly our weaker conclusion on

φn will follow from this claim due to the definition of Ωa
+,ε. We choose v ∈ C2(Ωa

+,ε)
such that ⎧⎨⎩

v = 0 on Ωa
+,2ε,

v = 1 on a small neighborhood of ∂Ωa
+,ε \ ∂Ω,

0 ≤ v ≤ 1 on Ωa
+,ε.
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It is easy to check that, for all large n, vn := λ
−1/2
n + v is a supersolution to (2.20)

and 0 is a subsolution. So the uniqueness of solutions to (2.20) ensures un ≤ vn in
Ωa

+,ε. Hence, we have

un(x, t) ≤ λ
− 1

2
n → 0 in Ωa

+,2ε, as n → ∞,

which is what we wanted. This proves our weaker conclusion on φn. The same
argument carries over to prove the weaker conclusion for ψn.

Second, we prove that on any compact subset of (Ω \ (Ωa
0 ∪ Ωb

0)) × (T ∗, T ],
(φn, ψn) → (0, 0) uniformly.

Recall that (φn, ψn) → (Φ,Ψ) weakly in L2(Ω × [0, T ]) × L2(Ω × [0, T ]), Φ = 0
over Ωa

+ × (T ∗, T ], and Ψ = 0 over Ωb
+ × (T ∗, T ]. We now define

ξn(t) =

∫
Ωa

+

φn(x, t)dx, ϑn(t) =

∫
Ωb

+

ψn(x, t)dx.

Then (ξn, ϑn) → (0, 0) in L1([T ∗, T ]). Hence (ξn, ϑn) → (0, 0) a.e. in [T ∗, T ]. Thus we
can find a sequence tk decreasing to T ∗ such that (ξn(tk), ϑn(tk)) → (0, 0) as n → ∞
for each k ≥ 1. So we have

0 ≤
∫
Ωa

+

φn(x, tk)
2dx ≤

∫
Ωa

+

φn(x, tk)dx → 0

and

0 ≤
∫
Ωb

+

ψn(x, tk)
2dx ≤

∫
Ωb

+

ψn(x, tk)dx → 0,

as n → ∞ for each k ≥ 1.
In view of what we have proved in the last part of Step 3, for any given small

δ > 0 and k ≥ 1, we can find σ > 0 small such that, for all large n,

0 ≤ Φ < δ in (Ω \ Ωa
σ)× [tk, T ], 0 < φn < δ on ∂Ωa

σ × [tk, T ],

and

0 ≤ Ψ < δ in (Ω \ Ωb
σ)× [tk, T ], 0 < ψn < δ on ∂Ωb

σ × [tk, T ],

where

Ωa
σ = {x ∈ Ωa

0 : d(x, ∂Ωa
0) > σ} and Ωb

σ = {x ∈ Ωb
0 : d(x, ∂Ωb

0) > σ}.
We now take a sequence {εm} which strictly decreases to 0 as m → ∞. Since

∂Ωb
σ ⊂ Ωa

+ and ∂Ωa
σ ⊂ Ωb

+, by the weaker conclusions proved above for φn and ψn, for
any given small δ > 0, k ≥ 1, and m ≥ 1, we can find a large n(m) with the sequence
{n(m)} converging to infinity as m → ∞ such that

φn(m)(x, t) < δ on ∂Ωb
σ × [tk, T − εm], ψn(m)(x, t) < δ on ∂Ωa

σ × [tk, T − εm]

for each n(m).
Let ξn(m)(t) be a smooth nondecreasing function such that

ξn(m)(t) = δ for t ∈ [tk, T − εm−1], ξn(m)(t) = 1 for t ∈ [T − εm, T ].
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We then consider the problem

(2.21)

⎧⎪⎪⎨⎪⎪⎩
∂tg −Δg = μ∞φn(m) + ‖α‖∞ψn(m) in [Ω \ (Ωa

σ ∪ Ωb
σ)]× (tk, T ],

∂νg = 0 on∂Ω× (tk, T ],
g = ξn(m) on (∂Ωa

σ ∪ ∂Ωb
σ)× (tk, T ],

g(x, tk) = φn(m)(x, tk) in Ω \ (Ωa
σ ∪ Ωb

σ).

Let gn(m) denote the unique solution of (2.21). Then a simple comparison considera-
tion gives that, for all large n(m),

φn(m) ≤ gn(m) in Ω \ (Ωa
σ ∪ Ωb

σ)× (tk, T ].

Moreover, by using Lp-estimates away from {t = tk} and {t = T }, and using a
diagonal process, we find that, as m → ∞, by passing to a subsequence,

gn(m) → g∗ in C1+θ,(1+θ)/2(Ω \ (Ωa
σ ∪ Ωb

σ))× [τ, T̃ ]) for all [τ, T̃ ] ⊂ (tk, T ),

and g = g∗ is a weak solution of

(2.22)

⎧⎪⎪⎨⎪⎪⎩
∂tg −Δg = μ∞Φ+ ‖α‖∞Ψ in Ω \ (Ωa

σ ∪ Ωb
σ)× (tk, T ],

∂νg = 0 on ∂Ω× (tk, T ],
g = δ on (∂Ωa

σ ∪ ∂Ωb
σ)× (tk, T ],

g(x, tk) = g0(x) in Ω \ (Ωa
σ ∪ Ωb

σ),

where g0(x) = 0 in Ω \ Ωa
0 , and g0(x) = Φ(x, tk) for x ∈ Ωa

0 \ Ωa
σ. Thus g0 ≤ δ in

Ω \ (Ωa
σ ∪ Ωb

σ). Hence, we find that

ĝ(x, t) = [(|μ∞|+ ‖α‖∞)t+ 1]δ

is a supersolution of (2.22). It follows that

g∗(x, t) ≤ Cδ in Ω \ (Ωa
σ ∪Ωb

σ)× [tk, T ],

with C = (|μ∞|+ ‖α‖∞)T + 1.
Applying interior parabolic estimates to (2.21) we find that there exists C0 inde-

pendent of n(m) such that {gn(m)} over Ω \ (Ωa
σ/2 ∪ Ωb

σ/2) × [tk−1, T ] has a uniform

bound for its W 2,1
r norm for any r > 1. It follows that gn(m) → g∗ in the C(1+θ),(1+θ)/2

norm over this set. As a result, for all large n(m),

φn(m) ≤ gn(m) ≤ g∗ + δ ≤ (C + 1)δ in Ω \ (Ωa
σ/2 ∪ Ωb

σ/2)× [tk−1, T ].

Obviously, this implies φn(m) → 0 uniformly in Ω \ (Ωa
0 ∪ Ωb

0) × [tk−1, T ] as m → ∞
for each k ≥ 2. Since tk → T ∗, this implies that a subsequence of {φn}, and hence
{φn} itself, converges to 0 uniformly on any compact subset of Ω\ (Ωa

0 ∪Ωb
0)× (T ∗, T ].

The conclusion for ψn can be proved similarly.
Third, to complete the proof of Step 4, it remains to show that φn → 0 uniformly

on any compact subset of Ωb
0× (T ∗, T ], and ψn → 0 uniformly on any compact subset

of Ωa
0 × (T ∗, T ].
Again we give only the proof for φn, since that for ψn is similar. For any given

small ε > 0, the above proved conclusion tells us that there exists n0 = n0(ε) large
such that

φn ≤ ε on ∂Ωb
0 × [T − ε, T ] for n ≥ n0.



 

 
 

 

 
 
 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
 
 
 
 
 
 

Copyright  by SIAM. Unauthorized reproduction of this article is prohibited.

COOPERATIVE REACTION-DIFFUSION SYSTEMS 513

Since Ωb
0 ⊂ Ωa

+, our earlier weaker conclusion infers that, by enlarging n0 if necessary,

(2.23) φn(x, t) ≤ ε for (x, t) ∈ Ωb
0 × [T ∗ + ε, T − ε], n ≥ n0.

It follows that, for n ≥ n0,

(2.24)

⎧⎨⎩
∂tφn −Δφn ≤ |μ∞|+ ‖α‖∞ in Ωb

0 × [T − ε, T ],
φn ≤ ε on ∂Ωb

0 × [T − ε, T ],
φn ≤ ε in Ωb

0 × {T − ε}.
A simple comparison consideration applied to (2.24) then gives

φn(x, t) ≤ ε+ (|μ∞|+ ‖α‖∞)(t− T + ε) in Ωb
0 × [T − ε, T ]

for all n ≥ n0. Therefore, we get

φn ≤ ε(1 + |μ∞|+ ‖α‖∞) in Ωb
0 × [T − ε, T ] for all n ≥ n0.

This, combined with (2.23), indicates that

φn ≤ ε(1 + |μ∞|+ ‖α‖∞) in Ωb
0 × [T ∗ + ε, T ] for all n ≥ n0,

which implies that φn → 0 uniformly on any compact subset of Ωb
0 × (T ∗, T ]. The

proof of Step 4 is thus complete.
Step 5. Summary and positivity of (Φ,Ψ).
According to the above analysis, we have proved that, by passing to a subsequence,
• over Ω× (0, T ∗], (φn, ψn) → (Φ,Ψ) locally in the C2+θ,1+θ/2 norm;
• over Ωa

0 × R, φn → Φ locally in the C1+θ,(1+θ)/2 norm;
• over Ωb

0 × R, ψn → Ψ locally in the C1+θ,(1+θ)/2 norm;
• over Ωa

+ × (T ∗, T ], φn → 0 = Φ locally uniformly;

• over Ωb
+ × (T ∗, T ], ψn → 0 = Ψ locally uniformly;

• Φ ∈ C2+θ,1+θ/2(Ωa
0 × (T ∗, T ]), Φ = 0 on ∂Ωa

0 × (T ∗, T ];
• Ψ ∈ C2+θ,1+θ/2(Ωb

0 × (T ∗, T ]), Ψ = 0 on ∂Ωb
0 × (T ∗, T ].

The above properties and the argument in Step 4 also tell us that, in the C(Ω)
norm,

φn(·, 0) = φn(·, T ) → Φ(·, T ) = Φ(·, 0) and ψn(·, 0) = ψn(·, T ) → Ψ(·, T ) = Ψ(·, 0).
In addition, from (2.11), it follows that (φ, ψ) = (Φ,Ψ) is the unique classical solution
of the problem

(2.25)

⎧⎪⎪⎨⎪⎪⎩
∂tφ−Δφ = α(x, t)ψ + μ∞φ
∂tψ −Δψ = β(x, t)φ + μ∞ψ

in Ω× (0, T ∗],

(∂νφ, ∂νψ) = (0, 0) on ∂Ω× (0, T ∗],
(φ(x, 0), ψ(x, 0)) = (Φ(x, 0),Ψ(x, 0)) in Ω.

From (2.16) and (2.17), it further follows that (φ, ψ) = (Φ,Ψ) is the unique weak
solution of

(2.26)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tφ−Δφ = μ∞φ in Ωa
0 × (T ∗, T ],

∂tψ −Δψ = μ∞ψ in Ωb
0 × (T ∗, T ],

φ = 0 on ∂Ωa
0 × (T ∗, T ],

ψ = 0 on ∂Ωb
0 × (T ∗, T ],

φ(x, T ∗) = Φ(x, T ∗) in Ωa
0 ,

ψ(x, T ∗) = Ψ(x, T ∗) in Ωb
0.
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We now use the strong maximum principle to show that

Φ > 0 in {Ω× (0, T ∗]} ∪ {Ωa
0 × (T ∗, T ]}

and

Ψ > 0 in {Ω× (0, T ∗]} ∪ {Ωb
0 × (T ∗, T ]}.

We first claim Φ(·, 0) + Ψ(·, 0) �≡ 0 in Ω. Otherwise Φ(·, 0) = Ψ(·, 0) ≡ 0, and so
(φ, ψ) = (0, 0) is the unique solution of (2.25). In particular, this implies (Φ(·, T ∗),
Ψ(·, T ∗)) = (0, 0). Hence, the unique solution of (2.26) must be (φ, ψ) = (Φ,Ψ) =
(0, 0).

Furthermore, we have already shown that Φ = 0 over (Ω \ Ωa
0) × (T ∗, T ] and

Ψ = 0 over (Ω \Ωb
0)× (T ∗, T ]. Hence (Φ,Ψ) ≡ (0, 0) over Ω× [0, T ], contradicting our

conclusion in Step 1 that (Φ,Ψ) �≡ (0, 0), which therefore verifies Φ(·, 0) + Ψ(·, 0) �≡
0 in Ω.

Notice that (2.25) is a cooperative system and (0, 0) is a strict subsolution. So
the well-known parabolic comparison principle for cooperative systems infers that
Φ(x, t) > 0 and Ψ(x, t) > 0 for (x, t) ∈ Ω × (0, T ∗]. In particular, Φ(x, T ∗) > 0
and Ψ(x, T ∗) > 0 on Ω. Thus, applying the parabolic comparison principle to the
decoupled system (2.26), we can conclude Φ > 0 in Ωa

0 × (T ∗, T ] and Ψ > 0 in
Ωb

0 × (T ∗, T ]. Our analysis also indicates that Φ(x, t) has a jumping discontinuity
across (Ω\Ωa

0)×{T ∗} and Ψ(x, t) has a jumping discontinuity across (Ω\Ωb
0)×{T ∗}.

From Step 1 through to Step 5, we see that (Φ,Ψ) satisfies (2.4) and (1.5). The
proof of Theorem 2.2 is now complete.

Consider the eigenvalue problem

(2.27)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tφ−Δφ− α(x, t)χΩ×[0,T∗]ψ = μφ in Σa
0 ,

∂tψ −Δψ − β(x, t)χΩ×[0,T∗]φ = μψ in Σb
0,

∂νφ = ∂νψ = 0 on ∂Ω× (0, T ∗],
φ = 0 on ∂Ωa

0 × (T ∗, T ],
ψ = 0 on ∂Ωb

0 × (T ∗, T ],
φ(x, 0) = φ(x, T ) in Ωa

0 ,
ψ(x, 0) = ψ(x, T ) in Ωb

0.

Theorem 2.3. The eigenvalue problem (2.27) admits a principal eigenvalue
μ = μ∞ > 0 which corresponds to a positive eigenfunction (φ, ψ) satisfying (2.4).
Conversely, if (2.27) has a solution (φ, ψ) satisfying (2.4), then necessarily μ = μ∞,
and (φ, ψ) is unique up to a constant multiple.

Proof. For any given (g0, h0) ∈ E := C1
0 (Ω

a
0) × C1

0 (Ω
b
0), we extend g0 and h0 by

0 to Ω and denote the extended function pair by (g̃, h̃). Thus, (g̃, h̃) ∈ C(Ω)× C(Ω).
Let (g, h) be the unique solution of the problem

(2.28)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tφ−Δφ− α(x, t)ψ = 0
∂tψ −Δψ − β(x, t)φ = 0

in Ω× (0, T ∗],

(∂νφ, ∂νψ) = (0, 0) on ∂Ω× (0, T ∗],
φ(x, 0) = g̃ in Ω,

ψ(x, 0) = h̃ in Ω.
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Clearly, g, h ∈ C2+θ,1+θ/2(Ω×(0, T ∗])∩C(Ω× [0, T ∗]). We then consider the problem

(2.29)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tφ−Δφ = 0 in Ωa
0 × (T ∗, T ],

∂tψ −Δψ = 0 in Ωb
0 × (T ∗, T ],

φ = 0 on ∂Ωa
0 × (T ∗, T ],

ψ = 0 on ∂Ωb
0 × (T ∗, T ],

φ(x, T ∗) = g(x, T ∗) in Ωa
0 ,

ψ(x, T ∗) = h(x, T ∗) in Ωb
0.

By the well-known existence result for parabolic equations, we know that this
problem has a unique solution (w, z) ∈ Cθ((T ∗, T ], E1) ∩ C1+θ((T ∗, T ], E0), where
E0 = Lr(Ωa

0) × Lr(Ωb
0) and E1 = W 2,r

0 (Ωa
0) × W 2,r

0 (Ωb
0), r > 1. We may choose r

large enough such that W 2,r
0 (Ωa

0)×W 2,r
0 (Ωb

0) embeds compactly into E.
With (g0, h0) and (w, z) as above, we define the operator K : E → E by

K(g0, h0) = (w, z)(·, T ).

It is easily seen that K is a linear operator. We show next that K is compact. Suppose
that {(gn, hn)} is a bounded sequence in E. Then there exists C > 0 such that
−C ≤ g̃n, h̃n ≤ C in Ω, where g̃n, h̃n are the extended functions as before. Denote
by (gn, hn) the unique solution of (2.28), with (g̃, h̃) replaced by (g̃n, h̃n). Clearly,

(−CetmaxΩ×[0,T ](α+β),−CetmaxΩ×[0,T ](α+β))

and (CetmaxΩ×[0,T ](α+β), CetmaxΩ×[0,T ](α+β))

are a pair of sub-supersolutions of (2.28); then a comparison consideration gives

−CetmaxΩ×[0,T ](α+β) ≤ gn, hn ≤ CetmaxΩ×[0,T ](α+β) in Ω× [0, T ∗].

In particular, we have

−CeT
∗ maxΩ×[0,T ](α+β) ≤ gn(x, T

∗) ≤ CeT
∗ maxΩ×[0,T ](α+β) in Ωa

0

and

−CeT
∗ maxΩ×[0,T ](α+β) ≤ hn(x, T

∗) ≤ CeT
∗ maxΩ×[0,T ](α+β) in Ωb

0.

Again, a simple comparison consideration, as applied to (2.29), yields

−CeT
∗ maxΩ×[0,T ](α+β) ≤ wn ≤ CeT

∗ maxΩ×[0,T ](α+β) in Ωa
0 × (T ∗, T ]

and

−CeT
∗ maxΩ×[0,T ](α+β) ≤ zn ≤ CeT

∗ maxΩ×[0,T ](α+β) in Ωb
0 × (T ∗, T ],

where (wn, zn) is the solution of (2.29), with (g(x, T ∗), h(x, T ∗)) replaced by (gn(x, T
∗),

hn(x, T
∗)). We may now apply the standard parabolic Lp-estimates to the equation

satisfied by (wn, zn) to conclude that, for any r > 1 and τ ∈ (T ∗, T ), there exists
C0 > 0 such that

‖wn‖W 2,1
r (Ωa

0×[τ,T ]) + ‖zn‖W 2,1
r (Ωb

0×[τ,T ]) ≤ C0 for all n ≥ 1.
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Moreover, by the Sobolev embedding result in [14] (Lemma II 3.3) we deduce

‖wn‖C1+θ,(1+θ)/2(Ωa
0×[τ,T ]) + ‖zn‖C1+θ,(1+θ)/2(Ωb

0×[τ,T ])
≤ C

for some constant C and all n ≥ 1. In particular, we have

‖wn(·, T )‖C1+θ(Ωa
0 )

+ ‖zn(·, T )‖C1+θ(Ωb
0)

≤ C.

Therefore, it follows from the compact embedding theorem that {(wn(·, T ), zn(·, T ))}
has a convergent subsequence in E. This proves the compactness of K.

Let P denote the cone of nonnegative functions in E and P o denote the interior
of P . It is easily seen that P is reproducing, namely, E = P − P . We show that

K is strongly positive, i.e., K(P \ {(0, 0)}) ⊂ P o.

Indeed, if g, h ≥ 0 and (g, h) �≡ (0, 0) in E, then due to the comparison principle for
cooperative systems we know that the unique solution (g, h) of (2.28) satisfies g, h > 0
in Ω × (0, T ∗]. Applying the comparison principle to (2.29) again, we find that the
unique solution (w, z) of (2.29) satisfies

w > 0 in Ωa
0 × (T ∗, T ] and z > 0 in Ωb

0 × (T ∗, T ].

Moreover, thanks to the Hopf boundary lemma we also know that

∂νa
0
w < 0 on ∂Ωa

0 × (T ∗, T ] and ∂νb
0
z < 0 on ∂Ωb

0 × (T ∗, T ],

where νa0 and νb0, respectively, denote the unit outward normal of ∂Ωa
0 and ∂Ωb

0. In
particular we have

w(x, T ) > 0 in Ωa
0 , ∂νa

0
w(x, T ) < 0 on ∂Ωa

0

and

z(x, T ) > 0 in Ωb
0, ∂νb

0
z(x, T ) < 0 on ∂Ωb

0.

This implies that (w(·, T ), z(·, T )) ∈ P o. Hence K is strongly positive.
With the above properties for K, we can now apply the Krein–Rutman theorem

to conclude that the spectral radius r(K) of K is positive and corresponds to an
eigenvector �0 ∈ P o. Moreover, if K�1 = r�1 for some �1 ∈ P o, then necessarily
r = r(K) and �1 = c�0 for some constant c.

Let us now see how K and r(K) are related to the eigenvalue problem (2.27). Let
�0 ∈ P o be an eigenvector of K corresponding to r(K): K�0 = r(K)�0. Let U0(t)
be defined by

U0(t) = (g(·, t)|Ω, h(·, t)|Ω) for t ∈ [0, T ∗]

and

U0(t) = (w(·, t)|Ωa
0
, z(·, t)|

Ωb
0

) for t ∈ (T ∗, T ],

where (g, h) denotes the unique solution of (2.28) with �0 in place of (g0, h0), and
(w, z) is the unique solution of (2.29).
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By definition, U0(T ) = K�0 = r(K)�0 in Ωa
0 × Ωb

0. Denote (Φ̂(·, t), Ψ̂(·, t)) =

eμtU0(t) and μ = − 1
T ln r(K). Then, a simple analysis shows that ((Φ̂, Ψ̂), μ) satisfies

(2.4) and (2.27).
Conversely, if (2.27) has a solution (Φ,Ψ) satisfying (2.4), then let

r0 = e−μT and (φ, ψ) = e−μt(Φ,Ψ).

We easily see (φ, ψ) satisfies (2.28) with (g̃(x, 0), h̃(x, 0)) replaced by (φ(x, 0), ψ(x, 0)),
and it satisfies (2.29) with (g(x, T ∗), h(x, T ∗)) replaced by (φ(x, T ∗), ψ(x, T ∗)).
Moreover,

K(φ(·, 0), ψ(·, 0)) = (φ(·, T ), ψ(·, T )) = e−μT (Φ(·, T ),Ψ(·, T ))
= r0(Φ(·, 0),Ψ(·, 0)) = r0(φ(·, 0), ψ(·, 0)).

We also note that (φ(·, 0)|Ωa
0
, ψ(·, 0)|

Ωb
0

) = (Φ(·, T ),Ψ(·, T )) ∈ P o and it satisfies the

equation K� = r0� in E. Thus, due to the Krein–Rutman theorem, we necessarily
have r0 = r(K) and (φ(·, 0)|Ωa

0
, ψ(·, 0)|

Ωb
0

) = c�0 for some constant c. It then follows

that (Φ,Ψ) = c(Φ̂, Ψ̂). The proof is now complete.
In Lemma 2.1 we have obtained an explicit upper bound for the principal eigen-

value μ∞ of (2.27); we now deduce an explicit lower bound for μ∞.
Theorem 2.4. There holds

μ∞ ≥
(
1− T ∗

T

)
min{σa

1 , σb
1} − max

Ω×[0,T ]
{α, β}.

Proof. Let μ1(λ) be the principal eigenvalue in (2.1). Denote γ(x, t) = min{a(x, t),
b(x, t)} on Ω× [0, T ]. Then, γ is a continuous and T -periodic function on Ω×R, γ = 0

on (Ωa
0 ∪Ωb

0)× [0, T ], and γ > 0 in (Ω\ (Ωa
0 ∪Ωb

0))× [0, T ]. Then, by the monotonicity
of the principal eigenvalue on the weight functions, we have

(2.30) μ1(λ) ≥ μ1(λ),

where μ1(λ) is the principal eigenvalue of the problem

(2.31)

⎧⎪⎪⎨⎪⎪⎩
∂tφ−Δφ+ λγ(x, t)φ − α(x, t)ψ = μφ
∂tψ −Δψ + λγ(x, t)ψ − β(x, t)φ = μψ

in Ω× R,

(∂νφ, ∂νψ) = (0, 0) on ∂Ω× R,
(φ(x, 0), ψ(x, 0)) = (φ(x, T ), ψ(x, T )) in Ω.

Let (φ̃, ψ̃) be a principal eigenfunction corresponding to μ1(λ). It is easy to check
that ρ = φ̃+ ψ̃ satisfies

(2.32)

⎧⎨⎩
∂tρ−Δρ+ λγ(x, t)ρ ≤ (maxΩ×[0,T ]{α, β}+ μ1(λ))ρ in Ω× R,

∂νρ = 0 on ∂Ω× R,
ρ(x, 0) = ρ(x, T ) in Ω.

We now denote by μ
1
(λ) the principal eigenvalue of

(2.33)

⎧⎨⎩
∂tw −Δw + λγ(x, t)w = μw in Ω× R,
∂νw = 0 on ∂Ω× R,
w(x, 0) = w(x, T ) in Ω.
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It is well known (see, for instance, [17]) that μ
1
(λ) is also the principal eigenvalue of

the adjoint problem to (2.33):

(2.34)

⎧⎨⎩
−∂tw −Δw + λγ(x, t)w = μw in Ω× R,
∂νw = 0 on ∂Ω× R,
w(x, 0) = w(x, T ) in Ω.

Take a principal eigenfunction w associated to μ
1
(λ) in (2.34). We then multiply the

inequality in (2.32) by w and integrate over Ω × (0, T ) to obtain

(2.35) max
Ω×[0,T ]

{α, β}+ μ1(λ) ≥ μ
1
(λ).

On the other hand, in view of the choice of γ, from Proposition 3.5 of [10] it follows
that

lim
λ→∞

μ
1
(λ) ≥ (1− T ∗/T )min{σa

1 , σb
1}.

Therefore, this, combined with (2.30) and (2.35), implies

μ∞ = lim
λ→∞

μ1(λ) ≥ lim
λ→∞

μ1(λ) ≥ (1− T ∗/T )min{σa
1 , σb

1} − max
Ω×[0,T ]

{α, β},

as we wanted.

3. Nonlinear cooperative problems.

3.1. Existence and global stability of positive periodic solutions. In this
subsection, we investigate positive solutions of the periodic-parabolic system (1.4).
As in [9] for the scalar logistic equation, we can obtain the necessary and sufficient
condition for the existence of positive solutions of (1.4) as well as the global attractiv-
ity of such a unique positive periodic solution for the corresponding initial-boundary
value problem (1.2). Precisely, we have the following.

Theorem 3.1. Problem (1.4) possesses a unique positive solution (uμ, vμ) if and
only if

(3.1) μ0 < μ < μ∞.

Moreover, if (3.1) holds, the unique solution of (1.2) satisfies

lim
t→∞

∣∣(u(x, t), v(x, t)) − (
uμ(x, t), vμ(x, t)

)∣∣ = 0 uniformly for x ∈ Ω,

and if μ ≤ μ0, then

lim
t→∞(u(x, t), v(x, t)) = (0, 0) uniformly for x ∈ Ω.

Proof. Assume that (u∗, v∗) is a positive solution to (1.4). We set

m = max
Ω×[0,T ]

{u∗(x, t) + v∗(x, t)} + 1 and r∗ = max{p, q} > 1.

Due to the uniqueness of the principal eigenvalues, it follows from (1.4) that

μ = μ1[L(a(u∗)p−1, b(v∗)q−1),Ω].
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Hence, in view of the monotonicity properties stated in section 2, we have

μ0 = μ1[L(0, 0),Ω] < μ

and

μ = μ1[L(a(u∗)p−1, b(v∗)q−1),Ω] < μ1[L(amr∗−1, bmr∗−1),Ω] < μ∞.

This shows that (3.1) is a necessary condition for (1.4) to admit a positive solution.
We now assume that (3.1) holds. We use a simple super-subsolution method to

show that (1.4) has a positive solution. Indeed, we choose

(u, v) = (kφ, kψ),

where (φ, ψ) is a principal eigenfunction corresponding to the principal eigenvalue
μ1[L(λa, λb),Ω]. By the definition of μ∞ and our assumption of μ < μ∞, we can take
λ > 0 sufficiently large such that

μ < μ1[L(λa, λb),Ω],

and we then choose k > 0 large enough so that

(kφ)p−1 ≥ λ and (kψ)q−1 ≥ λ on Ω× [0, T ].

Then, it is easy to check that (u, v) is a positive supersolution of (1.4). On the other
hand, we set

(u, v) = (εφ, εψ),

where (φ, ψ) is a principal eigenfunction corresponding to the principal eigenvalue μ0.
Thus, if one chooses ε > 0 small enough such that

max
Ω×[0,T ]

(aφp−1)εp−1 < μ− μ0 and max
Ω×[0,T ]

(bψq−1)εq−1 < μ− μ0,

then (u, v) is a subsolution of (1.4). Hence, a standard iteration consideration implies
that (1.4) has a positive solution.

Furthermore, when condition (3.1) is satisfied, a simple modification of the ar-
guments shown in [3] can be used to show that (1.4) has a unique positive solution,
denoted by (uμ, vμ), which attracts all positive solutions of (1.4) in the sense that

lim
n→∞(u(x, t+ nT ), v(x, t+ nT )) = (uμ(x, t), vμ(x, t)) uniformly on Ω× [0, T ],

and if μ ≤ μ0, (0, 0) is the unique nonnegative solution of (1.4), which is a global
attractor of (1.2) in the sense that

lim
t→∞(u(x, t), v(x, t)) = (0, 0) uniformly on Ω.

Clearly Theorem 1.1 and parts (a) and (b) of Theorem 1.2 follow directly from
Theorem 3.1 and the results in section 2.
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3.2. Asymptotic behavior of the positive solution of (1.4) when μ →
μ∞. In this subsection, we discuss the asymptotic behavior of the positive solution
(uμ, vμ) of (1.4) as μ → μ∞. First, by a simple comparison and sub-supersolution
argument we can easily see that (uμ, vμ) is strictly increasing in μ for μ ∈ (μ0, μ∞) in
the sense of uμ1 < uμ2 and vμ1 < vμ2 on Ω× [0, T ] for any μ0 < μ1 < μ2 < μ∞.

We begin with the following lemma.

Lemma 3.2. For j ∈ {a, b}, denote Ωj
∗ = Ω \ Ωj

0. Let m ∈ C2(Ωj
∗ × [0, T ])

be a given positive T -periodic function. Then, for any k ∈ (−∞,∞) and r > 1, the
periodic-parabolic problem

(3.2)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tw −Δw = kw − j(x, t)wr in Ωj
∗ × [0, T ],

∂νw = 0 on ∂Ω× [0, T ],

w = m(x, t) on ∂Ωj
0 × [0, T ],

w(x, 0) = w(x, T ) in Ωj
∗

has a unique solution wm
k ∈ C2,1(Ωj

∗ × [0, T ]). Moreover wm
k > 0 on Ωj

∗ × [0, T ], and
wm

k is a strictly increasing function with respect to m(x, t) and k in the sense that

wm1

k > wm2

k in Ωj
∗× [0, T ] if m1 ≥, �≡ m2 on ∂Ωj

0× [0, T ], and wm
k1

> wm
k2

in Ωj
∗× [0, T ]

if k1 > k2.
We remark that Lemma 3.2 is the same as Lemma 4.2 of [9] except that the

condition imposed on a and b in this paper is less restrictive; the proof of Lemma 3.2
is similar to that of Lemma 4.2 of [9] (with some obvious modifications).

Lemma 3.3. Let (uμ, vμ) be the unique positive solution of (1.4) for μ ∈ (μ0, μ∞).
Then, as μ → μ∞, uμ and vμ, respectively, converge to ∞ uniformly on every compact

subset of (Ω× (0, T ∗]) ∪ (Ωa
0 × [0, T ]) and (Ω× (0, T ∗]) ∪ (Ωb

0 × [0, T ]).
Proof. By the monotonicity of (uμ, vμ) with respect to μ, we need only prove the

desired result along a sequence μn → μ∞. Since μ1[L(λa, λb),Ω] → μ∞ as λ → ∞,
we take

μn := μ1[L(λna, λnb),Ω] → μ∞ with λn → ∞, as n → ∞.

For simplicity, we denote (uμn , vμn) by (un, vn). For fixed μn, we also let (φn, ψn) be
the principal eigenfunction associated with the eigenvalue μn, with maxΩ×[0,T ](φn +

ψn) = 1.
A simple computation shows that

(u, v) = (λ
1

r∗−1
n φn, λ

1
r∗−1
n ψn), (u, v) = (Mnφn,Mnψn),

form a pair of sub-supersolutions of (1.4), where r∗ = max{p, q} > 1 and Mn is chosen
to be so large that

(Mnφn)
p−1 ≥ λn, (Mnψn)

q−1 ≥ λn on Ω× [0, T ],

which also implies

(u, v) ≤ (u, v) on Ω× [0, T ].

Thus, due to the uniqueness of (un, vn) it follows that

λ
1

r∗−1
n φn ≤ un ≤ Mnφn, λ

1
r∗−1
n ψn ≤ vn ≤ Mnψn on Ω× [0, T ].
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On the other hand, from Theorem 2.2 and its proof, for any compact subsets K1 and
K2 satisfying

K1 ⊂ (Ω× (0, T ∗]) ∪ (Ωa
0 × R), K2 ⊂ (Ω× (0, T ∗]) ∪ (Ωb

0 × R),

we have that

(φn, ψn) → (Φ,Ψ) in C2,1(K1)× C2,1(K2), as n → ∞,

where (Φ,Ψ) satisfies (1.5) and (2.4) with Φ > 0 in K1 and Ψ > 0 and K2. Hence,

un(x, t) ≥ λ
1

r∗−1
n φn(x, t) → ∞ uniformly in K1

and

vn(x, t) ≥ λ
1

r∗−1
n ψn(x, t) → ∞ uniformly in K2.

To conclude the proof, it suffices to show that

(3.3) un(x, t) → ∞ uniformly in Ωa
0 × [0, T ], as n → ∞

and

(3.4) vn(x, t) → ∞ uniformly in Ωb
0 × [0, T ], as n → ∞.

In what follows, we prove only (3.3) since (3.4) can be verified similarly. We first
observe that un satisfies

∂tun −Δun = μnun + α(x, t)vn in Ωa
0 × [0, T ],

with un(x, t) > 0 on Ωa
0 × [0, T ], and we have already proved that

un(x, t) → ∞ uniformly on any compact subset of Ωa
0 × [0, T ], as n → ∞,

and

un(x, T
∗) → ∞ uniformly in Ωa

0 , as n → ∞.

We need only handle the case of μ∞ > 0; if μ∞ ≤ 0, the proof is similar by con-
sidering the equation satisfied by zn(x, t) = e(1−μ∞) tun(x, t). Thus, we may assume
that μn > 0 for all n ≥ 1, and so

∂tun −Δun = μnun + α(x, t)vn ≥ 0 in Ωa
0 × [0, T ].

Hence, by the parabolic maximum principle, it is enough to prove

(3.5) un(xn, tn) = min
∂Ωa

0×R

un(x, t) → ∞ as n → ∞,

where (xn, tn) on ∂Ωa
0 × [T ∗, T + T ∗].

To verify (3.5) we proceed by contradiction. Suppose that (3.5) does not hold
and so, by passing to a subsequence, we may assume that

un(xn, tn) ≤ C∗ for all n ≥ 1
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for some positive constant C∗. Due to the smoothness of ∂Ωa
0, we can find a small

R > 0 such that for any x ∈ ∂Ωa
0 , there exists a ball Bx,R of radius R such that

Bx,R ⊂ Ωa
0 and Bx,R ∩ ∂Ωa

0 = {x}.
To produce a contradiction, we first claim that there is a constant δ > 0 and a

sequence of constants cn satisfying cn → ∞ such that

(3.6) un(xn, tn) + cnω(x) ≤ un(x, t) if
R

2
≤ |x− yn| ≤ R, T ∗ ≤ t ≤ T + T ∗,

where ω(x) = e−δ|x−yn|2 − e−δR2

, and yn is the center of the ball Bxn,R.
A simple computation gives

Δω + μnω = (4δ2|x− yn|2 − 2Nδ + μn)e
−δ|x−yn|2 − μne

−δR2

.

Thus, we can take a large δ > 0 such that

Δω + μnω ≥ (4δ2|x− yn|2 − 2Nδ)e−δ|x−yn|2 ≥ 0 for all x ∈ Bxn,R\BR/2(yn),

where BR/2(yn) = {x ∈ RN : |x− yn| < R/2}.
We now choose a compact set K ⊂⊂ Ωa

0 such that K ⊃ ∪∞
n=1BR/2(yn). By what

has already been proved, un(x, t) → ∞ uniformly in K × R, and hence there is a
sequence cn with cn → ∞ such that

un(xn, tn)+cn(e
−δR2/4−e−δR2

) ≤ un(x, t) for all x ∈ BR/2(yn) ⊂ K, t ∈ [T ∗, T+T ∗].

We may further require that

un(xn, tn) + cn(e
−δR2/4 − e−δR2

) ≤ un(x, T
∗) for all x ∈ Ωa

0 .

Then, as un(x, t) ≥ un(xn, tn) on Ωa
0 × [T ∗, T + T ∗], we find that un(x, t) is a super-

solution of the problem

(3.7)⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tw −Δw = μnw in Bxn,R\BR/2(yn)× [T ∗, T + T ∗],

w = un(xn, tn) on ∂Bxn,R × [T ∗, T + T ∗],

w = un(xn, tn) + cn(e
−δR2/4 − e−δR2

) on ∂BR/2(yn)× [T ∗, T + T ∗],

w(x, T ∗) = un(x, T
∗) in {R/2 < |x− yn| < R}.

One also sees that un(xn, tn) + cnω(x) is a subsolution to (3.7). The comparison
principle for parabolic equations then yields (3.6). Consequently, as n → ∞, we find

(3.8) ∂νnun|(xn,tn) ≥ cn∂νnω|xn = 2cnδRe−δR2 → ∞,

where νn = (yn − xn)/|yn − xn|.
On the other hand, by Lemma 3.2, for any n ≥ 1, the T -periodic problem

(3.9)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tw −Δw = μnw − a(x, t)wp in Ω\Ωa
0 × [0, T ],

∂νw = 0 on ∂Ω× [0, T ],

w = un(xn, tn) on ∂Ωa
0 × [0, T ],

w(x, 0) = w(x, T ) in Ω\Ωa
0
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admits a unique positive solution, denoted by vn. It is easily seen that un is a
supersolution of (3.9). Due to Lemma 3.2, we have vn ≤ un on Ω\Ωa

0 × [0, T ]. If we
replace μn by μ∞ and replace un(xn, tn) by its upper bound C∗ in (3.9), we obtain
a unique positive solution of (3.9), denoted by U0. By Lemma 3.2 again, vn ≤ U0

on Ω\Ωa
0 × [0, T ]. In particular, ‖vn‖L∞(Ω\Ωa

0×[0,T ]) has a bound independent of n.

Thus, the Lp-estimates and Sobolev embedding theorem imply that {vn} is bounded
in C1+θ,θ/2(Ω\Ωa

0× [0, T ]), and so ‖∇vn(xn, tn)‖L∞(Ω\Ωa
0×[0,T ]) ≤ C0 for some C0 > 0.

Since

vn(x, t) ≤ un(x, t) for all (x, t) ∈ Ω\Ωa
0 × [T ∗, T + T ∗] and un(xn, tn) = vn(xn, tn),

we conclude that

(3.10) ∂νnun|(xn,tn) ≤ ∂νnvn|(xn,tn) ≤ C0.

Clearly (3.8) and (3.10) contradict each other. This then implies that (3.3) is true.
The proof is now complete.

To better understand the asymptotic behavior of (uμ, vμ) as μ → μ∞, we need
the following lemma.

Lemma 3.4. Given two smooth bounded domains D0, D ⊂ R
N with D0 ⊂⊂ D.

Let {cn}∞n=1 be a given positive sequence with cn → ∞ as n → ∞, and let ϕn be the
unique solution of

(3.11) −Δϕ+ cnϕ = cnχD0
in D, ϕ = 0 on ∂D.

Then, for all n ≥ 1, we have

max
D

ϕn ≤ 1, min
D0

ϕn ≥ δ0

for some constant δ0 > 0.
Proof. The existence and uniqueness of ϕn is obvious, and ϕn > 0 in D. Since 0

and 1 are a pair of sub-supersolutions to (3.11), the uniqueness ensures maxD ϕn ≤ 1.
To show minD0

ϕn ≥ δ0 > 0, we will argue indirectly. By passing to a subse-
quence, we may assume that

(3.12) ϕn(xn) = min
D0

ϕn → 0 as n → ∞,

where xn ∈ D0. We may also assume that xn → x∗ ∈ D0 as n → ∞. Then, we set
x = xn + 1√

cn
y, namely, y =

√
cn(x− xn), and define

ϕ̃n(y) = ϕn

(
1√
cn

y + xn

)
.

Clearly, ϕ̃n solves

−Δϕ̃n = χD
n
0
− ϕ̃n in Dn, ϕ̃n = 0 on ∂Dn,

where

Dn
0 =

{
y :

1√
cn

y + xn ∈ D0

}
, Dn =

{
y :

1√
cn

y + xn ∈ D
}
.
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Moreover, 0 < ϕ̃n ≤ 1 and ϕ̃n(0) = ϕn(xn) → 0 as n → ∞ due to (3.12).
If x∗ ∈ D0, then we notice that χD

n
0

→ 1 locally uniformly in R
N . By the

standard elliptic interior Lp-estimates, for a given ball B ⊂ R
N and r > 1, we can

conclude that ‖ϕ̃n‖W 2,r ≤ C0 for some positive constant C0, independent of n. Hence,
using the Sobolev embedding theorem, a diagonal argument gives that, by passing to
a subsequence if necessary, ϕ̃n → ϕ̃ in C1(B), for any B ⊂ R

N . Additionally, ϕ̃
satisfies

(3.13) −Δϕ̃ = 1− ϕ̃ in R
N , 0 ≤ ϕ̃ ≤ 1, ϕ̃(0) = 0 = min

RN
ϕ̃.

Standard elliptic regularity theory implies that ϕ̃ ∈ C2(RN ). Thus, −Δϕ̃(0) ≤ 0,
which gives 1 = 1− ϕ̃(0) ≤ 0, a contradiction.

If x∗ ∈ ∂D0, we assume that x∗
n ∈ ∂D0 is the closest point on ∂D0 to xn.

By a translation and rotation of the coordinate system, we may also assume that
x∗ = 0 and the outward unit normal vector of ∂D0 at 0 is the x1-axis, where we
write x = (x1, x2, . . . , xN ) and xn = (x1

n, x
2
n, . . . , x

N
n ). Passing to a subsequence if

necessary, we may assume that

ξ = lim
n→∞

√
cn |xn − x∗

n| for some ξ ∈ [0,+∞].

If ξ = +∞, it is easy to see that, subject to a subsequence, ϕ̃ = limn→∞ ϕ̃n satisfies
(3.13), and we obtain a contradiction as before.

We now assume that +∞ > ξ ≥ 0. In this case, one can see that, up to a
subsequence, ϕ̃ = limn→∞ ϕ̃n satisfies

−Δϕ̃ = χ{y1≤ξ} − ϕ̃ in R
N , 0 ≤ ϕ̃ ≤ 1, ϕ̃(0) = 0 = min

RN
ϕ̃.

Furthermore, the elliptic regularity theory guarantees ϕ̃ ∈ C1(RN )∩C2({y1 < ξ}). If
ξ > 0, then 0 is an interior point of {y1 ≤ ξ} and we can obtain a contradiction as
before by using −Δϕ̃(0) ≤ 0.

If ξ = 0, then 0 lies on the boundary of {y1 ≤ ξ} = {y1 ≤ 0}. We must have
ϕ̃(y) > 0 for y ∈ {y1 < 0} since otherwise we reach a contradiction as before using
the fact that −Δϕ̃(y) ≤ 0 whenever ϕ̃(y) = 0 and y is an interior point. We now
consider ϕ̃ on the half space {y1 < 0}, where ϕ̃ satisfies

−Δϕ̃+ ϕ̃ = 1 > 0.

Since 0 = ϕ̃(0) < ϕ̃(y) for y ∈ {y1 < 0}, by the Hopf boundary lemma, we deduce
∂y1ϕ̃(0) < 0. On the other hand, 0 = ϕ̃(0) = minRN ϕ̃ and ϕ̃ ∈ C1(RN ). So we have
∇ϕ̃(0) = 0, which therefore implies ∂y1ϕ̃(0) = 0. Again, we have a contradiction.

Since every possibility leads to a contradiction, we have proved minD0
ϕn ≥ δ0

for some positive constant δ0.
Theorem 3.5. Let (uμ, vμ) be the unique positive solution of (1.4) for μ ∈

(μ0, μ∞). Then, as μ → μ∞,

(uμ, vμ) → (∞,∞) uniformly on compact subsets of (Ω×(0, T ∗])∪((Ωa
0∪Ωb

0)×[0, T ])

and

(uμ, vμ) → (Uμ∞ , V μ∞) uniformly on compact subsets of (Ω \ (Ωa
0 ∪ Ωb

0))× (T ∗, T ),
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where (Uμ∞ , V μ∞) is the minimal positive solution of

(3.14)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tu−Δu = μ∞u+ α(x, t)v − a(x, t)up

∂tv −Δv = μ∞v + β(x, t)u − b(x, t)vq
in (Ω \ (Ωa

0 ∪Ωb
0))× (T ∗, T ),

(∂νu, ∂νv) = (0, 0) on ∂Ω× (T ∗, T ),
(u, v) = (∞,∞) on (∂Ωa

0 ∪ ∂Ωb
0)× (T ∗, T ),

(u(x, T ∗), v(x, T ∗)) = (∞,∞) in Ω \ (Ωa
0 ∪ Ωb

0).

Proof. As before, since (uμ, vμ) is increasing in μ ∈ (μ0, μ∞), we need only
consider the limit of (un, vn) := (uμn , vμn) along an increasing sequence {μn} which
converges to μ∞ as n → ∞. For clarity, we divide our proof into several steps.

Step 1. We show that for every compact subset K of (Ω \ (Ωa
0 ∪ Ωb

0))× (T ∗, T ),

(3.15) {un} and {vn} are both uniformly bounded in K.

For given small ε > 0, we denote

Ωε = {x ∈ Ω \ (Ωa
0 ∪ Ωb

0) : d(x,Ωa
0 ∪ Ωb

0) > ε}.

Then, for all small ε, Ωε is nonempty and smooth. Since a(x, t), b(x, t) > 0 in Ωε ×
(T ∗, T ), we may assume that

a(x, t), b(x, t) ≥ cε on Ωε × [T ∗ + ε, T − ε]

for some positive constant cε. We also assume that

α(x, t) + β(x, t) ≤ m0 on Ω× [0, T ]

for some constant m0 > 0, and denote r∗ = min{p, q} > 1. We may require μ∞ +
m0 ≥ cε.

For fixed n ≥ 1, we consider the problem

(3.16)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu−Δu = μ∞u+m0v − cεu
p

∂tv −Δv = μ∞v +m0u− cεv
q in Ωε × (T ∗ + ε, T − ε],

(∂νu, ∂νv) = (0, 0) on ∂Ω× (T ∗ + ε, T − ε],
u = un on (∂Ωε \ ∂Ω)× (T ∗ + ε, T − ε],
v = vn on (∂Ωε \ ∂Ω)× (T ∗ + ε, T − ε],
u(x, T ∗ + ε) = un(x, T

∗ + ε) in Ωε,
v(x, T ∗ + ε) = vn(x, T

∗ + ε) in Ωε.

Clearly, (3.16) has a classical solution, which is unique. In addition, (un, vn) is a
subsolution of (3.16).

In what follows, we are going to find a supersolution of (3.16). To this aim, let
us consider the following two auxiliary problems:

(3.17) wt = (μ∞ +m0)w − cεw
r∗ , t > T ∗ + ε; w(T ∗ + ε) = ∞,

and

(3.18)

{ −Δz = (μ∞ +m0)z − cεz
r∗ in Ωε,

∂νz = 0 on ∂Ω, z = ∞ on ∂Ωε \ ∂Ω.
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The unique solution w(t) of (3.17) can be explicitly written as

w(t)=
(μ∞ +m0

cε

) 1
r∗−1e(μ∞+m0)t[e(μ∞+m0)(r∗−1)t−e(μ∞+m0)(r∗−1)(T∗+ε)]

1
1−r∗ , t>T ∗+ε.

From [7, 8], we also know that (3.18) admits a unique positive solution, denoted by
z(x). Clearly, 1 is a subsolution to (3.17) and (3.18) due to μ∞ +m0 ≥ cε, and so it
follows from a comparison analysis that w(t) ≥ 1 in [T ∗ + ε, T ] and z(x) ≥ 1 on Ωε.

According to the definitions of w(t) and z(x), for fixed n, it is easy to see that

w(t) + z(x) > un(x, t) and w(t) + z(x) > vn(x, t) in (∂Ωε \ ∂Ω)× (T ∗ + ε, T − ε)

and

w(T ∗ + ε) > un(x, T
∗ + ε) and w(T ∗ + ε) > vn(x, T

∗ + ε) on Ωε.

Furthermore, using the fact that w(t), z(x) ≥ 1, and p, q ≥ r∗ > 1, one can easily
check that (w(t) + z(x), w(t) + z(x)) satisfies the required differential inequalities for
a supersolution of (3.16). Hence, for any n ≥ 1, by the comparison principle for
cooperative parabolic systems, we conclude that

un(x, t), vn(x, t) ≤ w(t) + z(x) on Ωε × [T ∗ + ε, T − ε].

In view of the fact that for fixed small ε > 0, w(t) + z(x) is bounded on Ω2ε × [T ∗ +
2ε, T − ε], we can find a positive constant C0 such that

un, vn ≤ C0 on Ω2ε × [T ∗ + 2ε, T − ε] for all n ≥ 1.

Due to the arbitrariness of ε and the choice of Ωε, this clearly implies (3.15).
Step 2. We now show that

(3.19) un → ∞ uniformly in Ωb
0 × [T ∗, T ], as n → ∞,

and

(3.20) vn → ∞ uniformly in Ωa
0 × [T ∗, T ], as n → ∞.

We prove only (3.19) since (3.20) can be verified similarly.
According to Lemma 3.3, for any given small ε > 0 and a small neighborhood

Ω̃b
0 ⊂ Ω of Ωb

0, we can find a sequence {σn} satisfying σn → ∞ as n → ∞ such that
un satisfies

(3.21)
(un)t −Δun = μnun + α(x, t)vn − a(x, t)up

n

≥ μnun + σnχ(Ωb
0×[T∗−ε,T ])

− a0u
p
n,

on Ω̃b
0 × [T ∗ − ε, T ], for some constant a0 > 0. Moreover, we have un(x, T

∗ − ε) ≥ σ̃n

on Ω̃b
0 with σ̃n → ∞ as n → ∞.

To simplify notation, we denote Ωb
0 = D0 and Ω̃b

0 = D. So D0 ⊂ D, and D0, D
are smooth. We need only consider the case of μ∞ > 0; if μ∞ ≤ 0, the proof is similar
by considering the equation satisfied by zn(x, t) = e(1−μ∞) tun(x, t). Furthermore, we
also replace σn and σ̃n by min{σn, σ̃n}, which is still denoted by σn. Thus, from
(3.21), for all large n, we have

(3.22)

{
(un)t −Δun ≥ σnχ(D0×[T∗−ε,T ]) − a0u

p
n in D × [T ∗ − ε, T ],

un(x, T
∗ − ε) ≥ σn in D,
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with σn → ∞ as n → ∞.
We next construct a lower bound for un. For this purpose, in Lemma 3.4 we take

D0, D as above, and the sequence {cn} satisfying cn → ∞ as n → ∞ will be chosen
later. For η > 0 to be determined, we define

wn(x) = ηc
1

p−1
n ϕn(x),

where cn and ϕn are given as in Lemma 3.4. Then, a simple calculation gives

(3.23)
−Δwn = ηc

p
p−1
n χD0

− ηc
p

p−1
n ϕn

≤ ηc
p

p−1
n χD0

− a0w
p
n in D,

provided that

(3.24) ηc
p

p−1
n ϕn ≥ a0w

p
n.

In view of wp
n = ηpc

p
p−1
n ϕp

n and ϕn ≤ 1, it is easy to check that (3.24) holds by choosing

η = a
1

p−1

0 . Moreover, if we take

cn = a
− 1

p

0 σ
p−1
p

n ,

then cn → ∞ as n → ∞ and wn satisfies

(3.25) −Δwn ≤ σnχD0
− a0w

p
n in D, wn = 0 on ∂D.

Thanks to the choice of η, cn, and the fact of ϕn ≤ 1, we have wn ≤ (a0σn)
1
p on D.

Thus, for all large n, wn ≤ σn on D. This, together with (3.25) and (3.22), allows us
to use the comparison principle to conclude that wn ≤ un in D × [T ∗ − ε, T ] for all
large n. In particular, over D0 × [T ∗ − ε, T ], we have

un ≥ wn ≥ ηc
1

p−1
n ϕn(x) ≥ (a0σn)

1
p δ0 → ∞ as n → ∞,

where δ0 > 0 is given in Lemma 3.4. Clearly, this implies (3.19).
Step 3. Completion of the proof.
By Lemma 3.3 and the conclusions proved in Step 2, we find that, as n → ∞,

(un, vn) → (∞,∞) uniformly in compact subsets of (Ω×(0, T ∗])∪((Ωa
0∪Ωb

0)×[0, T ]).

Thanks to (3.15), a standard regularity argument concludes that

(un, vn) → (Uμ∞ , Vμ∞) uniformly on any compact subset of (Ω\(Ωa
0 ∪ Ωb

0))×(T ∗, T ),

as n → ∞, where (Uμ∞ , Vμ∞) satisfies the first two equations of (3.14), and ∂νUμ∞ =
∂νVμ∞ = 0 on ∂Ω× (T ∗, T ).

We next show that

(3.26) lim
t↓T∗

(Uμ∞ , Vμ∞) = (∞,∞) uniformly for x ∈ Ω \ (Ωa
0 ∪ Ωb

0),

(3.27) lim
d(x,Ωa

0∪Ωb
0)→0

(Uμ∞ , Vμ∞) = (∞,∞) uniformly for t ∈ [T ∗, T ).
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Since (un, vn) increases to (Uμ∞ , Vμ∞) as n → ∞, we have Uμ∞ > uk and Vμ∞ > vk for
all k ≥ 1. In (3.26), we verify only limt↓T∗ Uμ∞ = ∞ uniformly for x ∈ Ω \ (Ωa

0 ∪Ωb
0),

since the other assertion can be proved similarly. Suppose that this is not true.
Thus, there exist sequences xn ∈ Ω \ (Ωa

0 ∪ Ωb
0) and tn decreasing to T ∗ such that

Uμ∞(xn, tn) ≤ M for all n ≥ 1 and some constant M > 0. So we have

(3.28) uk(xn, tn) ≤ M for all n ≥ 1, for all k ≥ 1.

On the other hand, by Lemma 3.3, we know that uk(xn, T
∗) → ∞ as k → ∞ uniformly

in n ≥ 1. Thus there exists k0 large such that uk0(xn, T
∗) ≥ 3M for all n ≥ 1. Since

the function uk0(x, t) is uniformly continuous in its variables, and tn → T ∗, we deduce
|uk0(xn, tn)− uk0(xn, T

∗)| → 0 as n → ∞. Thus for all large n,

uk0(xn, tn) ≥ uk0(xn, T
∗)−M ≥ 2M,

which is in contradiction to (3.28). This proves (3.26). The proof of (3.27) is similar,
where we use Lemma 3.3, (3.19), and (3.20).

The above analysis shows that (Uμ∞ , Vμ∞) is a solution to (3.14). It remains to
show that (Uμ∞ , Vμ∞) is the minimal positive solution of (3.14). Let (U, V ) be any
positive solution of (3.14). Then applying the comparison principle for cooperative
parabolic systems, we easily see that

(un, vn) < (U, V ) in (Ω \ (Ωa
0 ∪ Ωb

0))× (T ∗, T ).

Letting n → ∞ we deduce (Uμ∞ , Vμ∞) ≤ (U, V ). Hence (Uμ∞ , Vμ∞) is the minimal
positive solution of (3.14).

3.3. Long-time behavior of the positive solution of (1.2) when μ ≥ μ∞.
As preparation, we first consider a more general version of (3.14); namely, for any
given μ ∈ (−∞,∞), we study the problem

(3.29)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tu−Δu = μu+ α(x, t)v − a(x, t)up

∂tv −Δv = μv + β(x, t)u − b(x, t)vq
in (Ω \ (Ωa

0 ∪ Ωb
0))× (T ∗, T ),

(∂νu, ∂νv) = (0, 0) on ∂Ω× (T ∗, T ),
(u, v) = (∞,∞) on (∂Ωa

0 ∪ ∂Ωb
0)× (T ∗, T ),

(u(x, T ∗), v(x, T ∗)) = (∞,∞) in Ω \ (Ωa
0 ∪Ωb

0).

Lemma 3.6. For any μ ∈ (−∞,∞), problem (3.29) has a minimal positive
solution (Uμ, V μ) and a maximal positive solution (Uμ, V μ) in the sense that any
positive solution (U, V ) of (3.29) satisfies

Uμ ≤ U ≤ Uμ, V μ ≤ V ≤ V μ in (Ω \ (Ωa
0 ∪ Ωb

0))× (T ∗, T ).

Proof. Given small ε ≥ 0, define

Ωε := {x ∈ Ω : d(x,Ωa
0 ∪ Ωb

0) ≤ ε}.
Then, for each integer n ≥ 1, let us consider the initial-boundary value problem

(3.30)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tu−Δu = μu+ α(x, t)v − a(x, t)up

∂tv −Δv = μv + β(x, t)u − b(x, t)vq
in Ω \ Ωε × (T ∗ + ε, T ),

(∂νu, ∂νv) = (0, 0) on ∂Ω× (T ∗ + ε, T ),
(u, v) = (n, n) on ∂Ωε × (T ∗ + ε, T ),

(u(x, T ∗ + ε), v(x, T ∗ + ε)) = (n, n) in Ω \ Ωε.
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A standard analysis shows that (3.30) admits a unique positive solution, which is
denoted by (un, vn). Moreover, it is easy to show by a comparison argument that
(un, vn) increases to (Uε, Vε) as n → ∞, where (Uε, Vε) stands for the minimal positive
solution of⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂tu−Δu = μu+ α(x, t)v − a(x, t)up

∂tv −Δv = μv + β(x, t)u − b(x, t)vq
in Ω \ Ωε × (T ∗ + ε, T ),

(∂νu, ∂νv) = (0, 0) on ∂Ω× (T ∗ + ε, T ),
(u, v) = (∞,∞) on ∂Ωε × (T ∗ + ε, T ),

(u(x, T ∗ + ε), v(x, T ∗ + ε)) = (∞,∞) in Ω \ Ωε.

Taking ε = 0 we find that (U0, V0) is the minimal positive solution of (3.29). Fur-
thermore, using the parabolic comparison principle for cooperative systems we easily
deduce that

Uε1 ≥ Uε2 ≥ U0, Vε1 ≥ Vε2 ≥ V0 when ε1 > ε2 > 0.

Thus, we can find a decreasing sequence εn with εn → 0 such that

(Uεn , Vεn) → (U, V ),

where (U, V ) is a positive solution of (3.29). Let (U, V ) be any positive solution of
(3.29). Then, applying the parabolic comparison principle, we deduce that

Uεn > U, Vεn > V for every n.

Passing to the limit n → ∞ yields

U ≥ U, V ≥ V,

which indicates that (U, V ) is the maximal positive solution of (3.29), and this com-
pletes the proof.

We are now ready to complete the proof of part (c) of Theorem 1.2.
Theorem 3.7. Assume that μ ≥ μ∞, u0, v0 ∈ C(Ω), and u0 ≥ 0 v0 ≥ 0, with

u0 �≡ 0 and v0 �≡ 0. Then, the unique solution (u, v) of problem (1.2) satisfies

lim
n→∞(u(x, t+ nT ), v(x, t+ nT )) = (∞,∞)

uniformly on compact subsets of (Ω× (0, T ∗]) ∪ ((Ωa
0 ∪ Ωb

0)× [0, T ]), and

lim
n→∞(u(x, t+ nT ), v(t+ nT )) = (Uμ(x, t), V μ(x, t))

uniformly on every compact subset of (Ω \ (Ωa
0 ∪ Ωb

0))× (T ∗, T ).
Proof. For any given ε > 0, let us denote by (uε, vε) the unique solution of the

initial-boundary value problem

(3.31)

⎧⎪⎪⎨⎪⎪⎩
∂tu−Δu = (μ∞ − ε)u+ α(x, t)v − a(x, t)up

∂tv −Δv = β(x, t)u + (μ∞ − ε)v − b(x, t)vq
in Ω× (0,∞),

(∂νu, ∂νv) = (0, 0) on ∂Ω× (0,∞),
(u(x, 0), v(x, 0)) = (u0(x), v0(x)) in Ω.

Since μ ≥ μ∞, it is clear that (u, v) is a supersolution of (3.31). So we have

(3.32) uε(x, t) ≤ u(x, t) and vε(x, t) ≤ v(x, t) on Ω× [0,∞).
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Furthermore, let (uμ∞−ε, vμ∞−ε) be the unique positive solution of⎧⎪⎪⎨⎪⎪⎩
∂tu−Δu = (μ∞ − ε)u+ α(x, t)v − a(x, t)up

∂tv −Δv = β(x, t)u + (μ∞ − ε)v − b(x, t)vq
in Ω× R,

(∂νu, ∂νv) = (0, 0) on ∂Ω× R,
(u(x, t), v(x, t)) = (u(x, t+ T ), v(x, t+ T )) in Ω× R.

It follows from Theorem 3.1 that, as t → ∞,

(3.33) (uε(x, t), vε(x, t))−(uμ∞−ε(x, t), vμ∞−ε(x, t)) → (0, 0) uniformly on Ω×[0, T ].

Thus, due to (3.32) we obtain

lim inf
n→∞ u(x, t+ nT ) ≥ uμ∞−ε(x, t), lim inf

n→∞ v(x, t + nT ) ≥ vμ∞−ε(x, t),

uniformly on Ω× [0, T ], for every small ε > 0. Letting ε → 0 and using Theorem 3.5,
we conclude that

lim
n→∞(u(x, t+ nT ), v(x, t+ nT )) = (∞,∞),

uniformly on compact subsets of (Ω× (0, T ∗]) ∪ ((Ωa
0 ∪ Ωb

0)× [0, T ]), and

(3.34) lim inf
n→∞ u(x, t+ nT ) ≥ Uμ∞(x, t), lim inf

n→∞ v(x, t+ nT ) ≥ V μ∞(x, t)

locally uniformly in (Ω \ (Ωa
0 ∪ Ωb

0)) × (T ∗, T ). Furthermore, by the parabolic com-
parison principle, we easily see that, for every n ≥ 1,

(3.35) u(x, t+nT ) ≤ Uμ(x, t), v(x, t+nT ) ≤ V μ(x, t) in (Ω\ (Ωa
0 ∪Ωb

0))× (T ∗, T ).

Hence, if we denote

(ũn(x, t), ṽn(x, t)) := (u(x, t+ nT ), v(x, t+ nT )),

then we can apply the standard parabolic regularity theory, together with (3.34), to
deduce that, subject to a subsequence,

(ũn, ṽn) → (Ũμ, Ṽμ) locally uniformly in (Ω \ (Ωa
0 ∪Ωb

0))× (T ∗, T ) as n → ∞,

where (Ũμ, Ṽμ) is a positive solution of (3.29). Moreover,

Ũμ ≥ Uμ and Ṽμ ≥ V μ.

From this, combined with (3.35), we find that

(Ũμ, Ṽμ) = (Uμ, V μ),

and therefore,

lim
n→∞(u(x, t+ nT ), v(x, t+ nT )) = (Uμ(x, t), V μ(x, t))

locally uniformly in (Ω \ (Ωa
0 ∪ Ωb

0))× (T ∗, T ).
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[2] P. Álvarez-Caudevilla and J. López-Gómez, Asymptotic behaviour of principal eigenvalues
for a class of cooperative systems, J. Differential Equations, 244 (2008), pp. 1093–1113;
Corrigendum, 245 (2008), pp. 566–567.
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