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ASYMPTOTICS OF THE FIRST LAPLACE EIGENVALUE WITH

DIRICHLET REGIONS OF PRESCRIBED LENGTH

PAOLO TILLI AND DAVIDE ZUCCO

Abstract. We consider the problem of maximizing the first eigenvalue of the
p-laplacian (possibly with non-constant coefficients) over a fixed domain Ω,
with Dirichlet conditions along ∂Ω and along a supplementary set Σ, which is
the unknown of the optimization problem. The set Σ, that plays the role of
a supplementary stiffening rib for a membrane Ω, is a compact connected set
(e.g. a curve or a connected system of curves) that can be placed anywhere in

Ω, and is subject to the constraint of an upper bound L to its total length (one-
dimensional Hausdorff measure). This upper bound prevents Σ from spreading
throughout Ω and makes the problem well-posed. We investigate the behavior
of optimal sets ΣL as L → ∞ via Γ-convergence, and we explicitly construct
certain asymptotically optimal configurations. We also study the behavior as
p → ∞ with L fixed, finding connections with maximum-distance problems
related to the principal frequency of the ∞-laplacian.

Keywords: First Laplace eigenvalue, optimization, Γ-convergence.
AMS: 35P15, 35P20, 49Q10.

1. Introduction

Variational problems for the eigenvalues of the Laplace operator have a long
history, which dates back to 1877 when Lord Rayleigh observed and conjectured
that of all membranes with a given area, the circle has the minimum principal
frequency. Lord Rayleigh’s conjecture was proved many years later by G. Faber in
1923 and, independently, by E. Krahn in 1924, and many other contributions to
similar problems were given ever since (see [11] for other references on the subject).

Here we consider a new optimization problem for the first eigenvalue of an iso-
tropic elliptic operator with nonconstant coefficients in two dimensions, where the
unknown is the location of the Dirichlet condition. The general setting consists of:

• a bounded connected open set Ω ⊂ R
2, with Lipschitz boundary ∂Ω (we

do not assume that Ω is simply connected);
• two functions ρ, σ, continuous over Ω and strictly positive;
• a real number p ≥ 1.

With these ingredients, for any open set A ⊂ Ω one can define the first Dirichlet
eigenvalue λσ,ρ

p (A) through the variational formula

(1) λσ,ρ
p (A) := inf

u∈W
1,p
0

(A)

u6≡0

∫

A
σ(x)|∇u(x)|pdx

∫

A ρ(x)|u(x)|pdx

(when p > 1 the infimum is attained by the so called first eigenfunction, while for
p = 1 it is not attained and is tightly related to the Cheeger constant see [4]). Note
that, if ρ = σ ≡ 1, we obtain the first eigenvalue of the p-laplacian, denoted for
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simplicity by λp:

(2) λp(A) := inf
u∈W

1,p
0 (A)

u6≡0

∫

A
|∇u(x)|pdx

∫

A |u(x)|pdx .

For every L > 0, as in [5] we define the class of admissible sets

(3) AL(Ω) :=
{

Σ ⊂ Ω : Σ is a continuum, and H1(Σ) ≤ L
}

where “continuum” stands for “connected, compact and non-empty set” and H1

denotes the one-dimensional Hausdorff measure.
The variational problem we consider is

(4) max
{

λσ,ρ
p (Ω \ Σ) : Σ ∈ AL(Ω)

}

,

that is, to find the best location Σ ∈ AL(Ω) for an extra Dirichlet condition (in
addition to that along ∂Ω), in order to maximize the first eigenvalue λσ,ρ

p . In
particular, we shall study the behavior of the optimal sets, as L → ∞, via Γ-
convergence.

A possible physical interpretation of (4), at least when p = 2, is the following.
The domain Ω represents an elastic structure (e.g. a membrane) in the plane (with
density ρ and Young modulus σ) which is fixed along its boundary ∂Ω and, as such,

has a fundamental frequency given by
√

λσ,ρ
p (Ω). One is interested in augmenting

and possibly maximizing this fundamental frequency, by fixing the membrane along
a supplementary curve (or system of curves) Σ of given length, which may be placed
anywhere in Ω. One may think of Σ as a sort of stiffening rib, to obtain a reinforced
structure Ω \ Σ. Note that not only the location, but also the shape of Σ is free
(cf. [10], where the shape is a ball of given radius and only its placement is to be
optimized). The role of the parameter L is an upper bound to the total resources
available: if fixing the structure along a system of curves Σ has a cost proportional
to its total length H1(Σ), then L is the maximum cost one is willing to spend to
reinforce the membrane.

Another problem, in the same spirit but with the compliance functional instead
of the first eigenvalue, has been treated in [5]. Among the main differences is the
fact that (4) is not driven by an a priori given PDE, which reflects into the non-
locality of the resulting Γ-limit (see below). The class of admissible sets AL(Ω)
is also typical of the well-studied average distance problems, where the distance
function to Σ is to be minimized. These were first introduced by Buttazzo, Oudet
and Stepanov in [7, 6], while the asymptotics of minimizers was studied in [18] (see
also [15]).

As in [7, 5], the geometric restrictions on Σ entailed by (3) are useful in view of
an existence result for (4) (connectedness of Σ can be relaxed to a bound on the
number of connected components, but some control is needed to prevent Σ from
spreading throughout Ω and prejudice existence). By classical results of Blaschke
and Go lab (see [1]) the space AL(Ω) is compact in the Hausdorff metric, and the
map Σ 7→ λσ,ρ

p (Ω \Σ) is continuous (see [22] for p = 2 and [2] for the general case).
This leads to

Theorem 1.1 (Existence). For every L > 0, there exists a maximizer in (4).
Moreover, every maximizer Σ satisfies H1(Σ) = L.
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The second claim follows from the elementary consideration that, if H1(Σ) < L,
then one could increase λσ,ρ

p (Ω \ Σ) by attaching to Σ some short segments, thus
reducing all the connected components of Ω \ Σ (cf. [7, 5]). Also note that the
minimization problem analogous to (4) would be trivial, since λσ,ρ

p (Ω\Σ) ≥ λσ,ρ
p (Ω)

for every Σ ∈ AL(Ω) and equality is achieved by any admissible Σ hidden inside
∂Ω.

Contrary to average distance problems where regularity results are available for
the optimal sets Σ (see [6, 20]), similar questions for (4) are open (except for Ahlfors
regularity which we will not discuss here).

In this paper we mainly focus on the asymptotic behavior of optimal sets ΣL of
problem (4) as L → ∞, with the goal of studying the limit distribution of ΣL within
Ω. Of course, as L increases, the optimal configurations ΣL tend to saturate Ω (i.e.
ΣL → Ω in the Hausdorff distance), and any information concerning the density
(length of ΣL per unit area in Ω) is lost in the limit. To retrieve this information
we prove a Γ-convergence result, in the space P(Ω) of probability measures in Ω,
identifying each admissible Σ ∈ AL(Ω) with the probability measure

(5) µΣ =
H1 Σ

H1(Σ)
,

where H1 Σ denotes the restriction of the one-dimensional Hausdorff measure to Σ
(this expedient is natural in this kind of problems, see [18, 5]). Thus, our problem
(4) becomes equivalent to the minimization of the functional FL : P(Ω) → [0,∞]
defined as

(6) FL(µ) =







Lp

λσ,ρ
p (Ω \ Σ)

if µ = µΣ for some Σ ∈ AL(Ω),

∞ otherwise.

The scaling factor Lp, as we will see, is natural as the maximum achieved in (4)
grows as Lp for large L (and, of course, rescaling does not alter the original problem
anyhow). The Γ-convergence result we will prove is then the following.

Theorem 1.2. As L → ∞, the functionals FL defined in (6) Γ-converge, with
respect to the weak* topology on P(Ω), to the functional F : P(Ω) 7→ [0,∞] defined
as

(7) F (µ) :=
1

Λp
ess sup
x∈Ω

ρ(x)

σ(x)f(x)p

where f ∈ L1(Ω) is the density (Radon-Nikodym derivative) of µ with respect to the
Lebesgue measure, while Λp is the numerical constant

Λp := (p− 1)

(

2π

p sin (π/p)

)p

if p > 1, Λ1 := 2.

Remark 1.3. The constant Λp (see [3, 16]) is just the first Dirichlet eigenvalue for
the p-laplacian in one variable, namely

(8) Λp = inf
u∈W

1,p
0 (0,1)

u6≡0

∫ 1

0 |u′(z)|p dz
∫ 1

0
|u(z)|p dz

.
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If p > 1, the infimum is attained by the first eigenfunction u1 that solves the
equation

(9) − (|u′
1|p−2u′

1)′ = Λp|u1|p−2u1, u1(0) = u1(1) = 0.

When p = 1, the infimum is not attained and Λ1 = 2, as one can see letting u
approximate the characteristic function χ(0,1). See [3, 16] for more details.

The Γ-limit functional F defined in (7) has a unique minimizer. Indeed

min
µ∈P(Ω)

F (µ) =
1

Λp
min
f≥0∫
Ω
f≤1

ess sup
x∈Ω

ρ(x)

σ(x)f(x)p
=

1

Λp

(

∫

Ω

(

ρ(x)

σ(x)

)1/p

dx
)p

achieved only when µ = µ∞, the absolutely continuous measure with density

(10) f(x) =
(ρ(x)/σ(x))1/p

∫

Ω (ρ(y)/σ(y))
1/p

dy

(note that µ∞ reduces to normalized Lebesgue measure, if ρ and σ are constant).
As the space P(Ω) is compact in the weak* topology, from standard Γ-convergence
theory (see [8]) we can recover the limiting distribution of the optimal sets ΣL for
large L:

Corollary 1.4. If ΣL is a maximizer of problem (4), then as L → ∞ the probability
measures µΣL converge, in the weak* topology of P(Ω), to the probability measure
µ∞, absolutely continuous with respect to the Lebesgue measure, having the density
given in (10). In particular, for every square Q ⊂ Ω,

(11) lim
L→∞

H1(ΣL ∩Q)

H1(ΣL)
=

∫

Q

f(x) dx

and, moreover,

(12) lim
L→∞

Lp

λσ,ρ
p (Ω \ ΣL)

= F (µ∞) =

(∫

Ω
(ρ(x)/σ(x))1/pdx

)p

Λp
.

This corollary formalizes the ansatz that, in order to maximize the principal
frequency of a membrane with density ρ and Young modulus σ, it is convenient
to concentrate the stiffening rib Σ in those regions with higher ratio ρ/σ, with a
density proportional to (ρ/σ)1/p. In particular, for a homogeneous membrane with
constant ρ and σ, it is convenient to distribute Σ with, roughly speaking, a constant
ratio of length per unit area in Ω.

Moreover, the proof of Theorem 1.2 is constructive: it turns out that certain
comb-shaped patterns (see Definition 3.6), periodically reproduced inside Ω at dif-
ferent scales, can be used to build examples of asymptotically optimal sets (that is,
those sets ΣL satisfying (12)).

In section 4 we will also see that the eigenvalue problems (4), as p → ∞ with L
being fixed, converge to the so called maximum distance problem, for which several
qualitative results on the minimizers have been proved in [17] and [19].

Finally, let us mention that Theorem 1.2 may be considered as the “eigenvalue
counterpart” of the Γ-convergence results obtained in [18] and [5] for average dis-
tance and compliance problems.
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2. Estimates for the first eigenvalue under length constraints

Throughout the paper, we denote by d(x,C) = miny∈C|y − x| the distance
function to the set C, a generic closed subset of R

2. Moreover, we denote by
meas(E) the two-dimensional Lebesgue measure and by H1(E) the one-dimensional
Hausdorff measure of a Borel set E ⊂ R

2. We will deal with the level sets of the
distance function, and in particular we need the following result proved in [21] (see
also Lemma 4.2 in [18]).

Lemma 2.1. Fix L > 0 and Σ ∈ AL(Ω). For t ≥ 0 let

(13) At = {x ∈ Ω | d(x,Σ ∪ ∂Ω) < t}
be the sublevel set of the distance function to Σ∪∂Ω. If κ is the number of connected
components of ∂Ω and

(14) t :=
meas(Ω)

(

H1(Σ ∪ ∂Ω) +
√

H1(Σ ∪ ∂Ω)2 + (κ + 1)π meas(Ω)
)

is the positive root of the quadratic equation 2H1(Σ∪∂Ω)t+ (κ+ 1)πt
2

= meas(Ω),
then for every t ≥ 0

(15) meas(At) ≤ H(t) :=

{

2H1(Σ ∪ ∂Ω)t + (κ + 1)πt2 if t ≤ t,

meas(Ω) if t > t.

Remark 2.2. The number of connected components of ∂Ω is necessarily finite, since
∂Ω is Lipschitzian and compact. Similarly, also H1(∂Ω) is finite.

Remark 2.3. From the definition of t in Lemma 2.1 we see that the function H(t)
in (15) is Lipschitzian and increasing. Letting T = maxx∈Ω d(x,Σ ∪ ∂Ω), since

AT = Ω while H(t) < meas(Ω) for t < t, we see that

(16) 0 < t ≤ T := max
x∈Ω

d(x,Σ ∪ ∂Ω)

and

(17) meas(AT ) = meas(Ω) = H(T ).

Moreover, H ′(t) ≡ 0 for t > t.

We start by proving an upper bound for the first eigenvalue λp(Ω\Σ) (defined as
in (2)) in terms of the length H1(Σ). As we will see in Theorem 3.7, this estimate
is sharp when H1(Σ) is large. Some of the techniques that we use are refinements
of those in [21], where a similar bound was proved for the compliance functional.

Theorem 2.4. Let Ω ⊂ R
2 be a bounded, connected open set with a Lipschitz

boundary ∂Ω made of κ connected components. For any L and Σ ∈ AL(Ω), it holds

(18) λp(Ω \ Σ) ≤ Λp
(

2t
)p

(

1 +
(κ + 1)πt

H1(Σ ∪ ∂Ω)

)

,

where t is the number defined in (14).

Proof. By (2), for any non-zero function u ∈ W 1,p
0 (Ω \ Σ) we have

(19) λp(Ω \ Σ) ≤
∫

Ω |∇u(x)|pdx
∫

Ω
|u(x)|pdx ,
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and a suitable choice of u will lead to (18). More precisely, we choose u depending
on the distance function

(20) u(x) := g(d(x,Σ ∪ ∂Ω)), x ∈ Ω,

where g : R+ → R
+ is C1,1, increasing and concave, and such that g(0) = 0. Then u

vanishes along Σ∪∂Ω, is Lipschitzian and, in particular, it is an admissible function
for the Rayleigh quotient in (19).

We first estimate the numerator in (19). Since |∇ d(x,Σ ∪ ∂Ω)| = 1 a.e., from
the coarea formula (see [9]) we have

(21)

∫

Ω

|∇u(x)|pdx =

∫

Ω

g′(d(x,Σ ∪ ∂Ω))pdx =

∫ T

0

g′(t)pP (At,Ω) dt,

where T = maxx∈Ω d(x,Σ ∪ ∂Ω), At is as in (13) and P (At,Ω) is the perimeter of
At in Ω (see [9] for more details on perimeters). Recall that still from the coarea

formula one has meas(At) =
∫ t

0
P (At,Ω)dt for every t > 0 and hence

P (At,Ω) =
d

dt
meas(At) for a.e. t > 0.

Letting G(t) = g′(t)p, as G′(t) ≤ 0 by assumption, we can integrate by parts in
(21) and use (15). Since meas(A0) = 0, we obtain

∫

Ω

|∇u(x)|pdx = −
∫ T

0

G′(t) meas(At) dt + G(T ) meas(AT )

≤−
∫ T

0

G′(t)H(t) dt + G(T )H(T ).

Since H(0) = 0, we can integrate by parts the other way round, thus obtaining

(22)

∫

Ω

|∇u(x)|pdx ≤
∫ T

0

g′(t)pH ′(t) dt =

∫ t

0

g′(t)pH ′(t) dt

where the last equality follows from Remark 2.3
Similarly, letting G(t) = g(t)p and observing that now G′(t) ≥ 0, recalling (15)

and (17) we can estimate from below the denominator of (19) as follows
∫

Ω

|u(x)|pdx =

∫ T

0

g(t)pP (At,Ω) dt = −
∫ T

0

G′(t) meas(At) dt + G(T ) meas(AT )

≥ −
∫ T

0

G′(t)H(t) dt + G(T )H(T ) =

∫ T

0

G(t)H ′(t) dt =

∫ t

0

g(t)pH ′(t) dt.

Now we plug the last estimate and (22) into (19): observing that

2H1(Σ ∪ ∂Ω) ≤ H ′(t) ≤ 2H1(Σ ∪ ∂Ω) + 2(κ + 1)πt, t ∈ (0, t)

and changing variable z = t/(2t) in the two integrals, from (19) we find that

(23) λp(Ω \ Σ) ≤
(

1 +
(κ + 1)πt

H1(Σ ∪ ∂Ω)

)

1
(

2t
)p

∫ 1/2

0 g′(z)p dz
∫ 1/2

0 g(z)p dz
,

now valid for every C1,1 function g increasing and concave on [0, 1/2], and such
that g(0) = 0. In fact, by a density argument, we can relax g ∈ C1,1(0, 1/2) to
g ∈ W 1,p(0, 1/2). If p > 1, the first Dirichlet eigenfunction u1(z) of the p-laplacian
on (0, 1) is symmetric with respect to y = 1/2 and, from (9) it follows that u1 is also
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increasing and concave on [0, 1/2]. This means that one can choose g(z) = u1(z)
in (23) and this gives (18), since the ratio of the two integrals then reduces to Λp.

Finally, if p = 1, it suffices to let g(z) = min{1, nz} in (23) and then let n → ∞
(recall that Λ1 = 2). �

Remark 2.5. It is clear from the proof that, in order to obtain (18), there is nothing
special with Σ∪∂Ω except that this set supports the Dirichlet condition associated
with λp(Ω \ Σ) through the function space W 1,p

0 (Ω \ Σ). Indeed, the estimate
still holds if one considers the first eigenvalue with a Dirichlet condition prescribed
along any compact set D ⊂ Ω such that 0 < H1(D) < ∞, having k connected
components. Of course, in this case, one has to replace H1(Σ ∪ ∂Ω) with H1(D)
and κ + 1 with k.

3. Proof of the Γ-convergence result

In this section we will prove Theorem 1.2, first proving the Γ-liminf and the
Γ-limsup inequalities up to a multiplicative constant θp, defined as follows:

(24) θp := inf

(

lim inf
n→∞

Lp
n

λp(Y \ Σn)

)

,

where Y = (0, 1)2 is the unit square and the infimum is over all sequences of
numbers Ln → ∞ and all sequences of sets Σn ∈ ALn such that H1(Σn) = Ln.
Then we will compute explicitly this constant, showing that it is the inverse of the
first Dirichlet eigenvalue of the p-laplacian on the unit interval (Theorem 3.7).

In the sequel we will often use the following well-known properties of the first
Dirichlet eigenvalue:
- Monotonicity: for any two bounded open sets A ⊂ B, λσ,ρ

p (A) ≥ λσ,ρ
p (B).

- Splitting over connected components : if A can be written as
⋃

Ai with pair-
wise disjoint open sets Ai 6= ∅ (e.g., its connected components), then λσ,ρ

p (A) =
mini λ

σ,ρ
p (Ai).

- Comparison with the homogeneous case: for any open set D ⊂ Ω, on comparing
(1) and (2) we have

(25)
infD σ

supD ρ
λp(D) ≤ λσ,ρ

p (D) ≤ supD σ

infD ρ
λp(D).

3.1. The Γ-liminf inequality. We start proving that the Γ-liminf functional FL

is minorized by the limit functional F defined, up to θp, by (7). We shall use some
of the ideas that were introduced in [18], see also [5].

Proposition 3.1. For every probability measure µ ∈ P(Ω) and every sequence
{µL} ⊂ P(Ω) such that µL ⇀∗ µ, it holds

(26) lim inf
L→∞

FL(µL) ≥ θp ess sup
x∈Ω

ρ(x)

σ(x)f(x)p
.

Proof. Consider an arbitrary subsequence (still denoted by {µL} for simplicity, but
L should be regarded as Ln etc.) for which the

lim
L→∞

FL(µL)
by (6)

= lim
L→∞

Lp

λσ,ρ
p (Ω \ ΣL)
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exists and is finite. By finiteness of the limit, recalling (6) we can assume that each
µL has the form (5) for some ΣL ∈ AL, so that

(27) µL(E) =
H1(ΣL ∩ E)

H1(ΣL)
for all Borel sets E ⊂ Ω.

Moreover, finiteness also entails that λp(Ω \ ΣL) (being comparable with λσ,ρ
p (Ω \

ΣL)) tends to infinity: hence, if we choose any open square Q ⊂ Ω, by monotonicity
also λp (Q \ ΣL) → ∞, and in particular the distance function d(x,Q \ ΣL) uni-
formly tends to zero (as L → ∞) over Q (otherwise Q \ ΣL would contain a ball B
of radius bounded away from zero, and λp (Q \ ΣL) would be bounded from above).
Hence, applying Lemma 2.1 with Ω := Q and Σ := ΣL, we see from (16) that t → 0
as L → ∞, and by (14) this means that

(28) lim
L→∞

H1(ΣL ∩Q) = ∞ (for every open square Q ⊂ Ω).

Now fix ε > 0, and consider an open square Q ⊂ Ω, whose role is to localize the
estimate on FL. From the monotonicity of λp and (25) it follows that,

Lp

λσ,ρ
p (Ω \ ΣL)

≥ Lp

λσ,ρ
p (Q \ ΣL)

≥ infQ ρ

supQ σ

Lp

λp(Q \ ΣL)

which, using L ≥ H1(ΣL) and (27), gives

(29)
Lp

λσ,ρ
p (Ω \ ΣL)

≥ infQ ρ

supQ σ

1

µL(Q)p
H1(ΣL ∩Q)p

λp(Q \ ΣL)
.

From µL ⇀∗ µ, we have that lim supµL(Q) ≤ µ
(

Q
)

and hence

(30) lim inf
L→∞

1

µL(Q)p
≥ 1

µ
(

Q
)p

+ εmeas(Q)p
,

where the quantity εmeas(Q)p serves to avoid vanishing denominator, for the mo-
ment. Moreover, if a is the side-length of Q and Y = a−1Q is a unit square, by
scaling

(31)
H1(ΣL ∩Q)p

λp(Q \ ΣL)
=

apH1(a−1ΣL ∩ Y )p

a−pλp(Y \ a−1ΣL)
= meas(Q)p

H1(a−1ΣL ∩ Y )p

λp(Y \ a−1ΣL)
.

Now let Σn := ∂Y ∪ (a−1ΣL ∩ Y ), and observe that Σn is connected, since by
(28) ΣL must cross the boundary of Q. Hence, using (28) again, by translation
invariance we can use (24) and, from (31), estimate

(32) lim inf
L→∞

H1(ΣL ∩Q)p

λp(Q \ ΣL)
≥ θp meas(Q)p.

Now combining (30) and (32) with (29), we obtain the estimate

lim inf
L→∞

FL(µL) = lim inf
L→∞

Lp

λσ,ρ
p (Ω \ ΣL)

≥ infQ ρ

supQ σ

θp meas(Q)p

µ
(

Q
)p

+ εmeas(Q)p
,

for every open square Q ⊂ Ω. Thus, if f ∈ L1(Ω) is the density of µ and x ∈ Ω is a
Lebesgue point for f , letting Q shrink towards x, from Radon-Nikodym Theorem
we find that

lim inf
L→∞

FL(µL) ≥ θp
ρ(x)

σ(x)(f(x)p + ε)
for a.e. x ∈ Ω.

Finally, letting ε ↓ 0 one obtains (26). �
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3.2. The Γ-limsup inequality. As in (24), we denote by Y the unit square (0, 1)2.

Lemma 3.2. Given ε > 0, there exists a compact connected set Σ ⊂ Y such that

(33)
H1(Σ)p

λp(Y \ Σ)
< (1 + ε)θp

and

(34) ∂Y ⊂ Σ.

Proof. According to how θp was defined in (24), we can take a sequence of sets
{Σn} satisfying Ln := H1(Σn) → ∞, Σn ∈ ALn(Y ) and

H1(Σn)p

λp(Y \ Σn)
< (1 + ε/2)θp ∀n ≥ 1.

If n is large enough, then clearly
(

H1(Σn) + H1(∂Y ) + 1/2
)p

λp(Y \ Σn)
< (1 + ε)θp,

and defining Σ := Σn ∪ ∂Y ∪S, where S is any segment of length at most 1/2 that
connects Σn to ∂Y , we can guarantee (33) and (34) (note that λp(Y \Σ) ≥ λp(Y \Σn)
by monotonicity). �

We start proving the Γ-limsup inequality for a particular class of measures.

Definition 3.3. For s > 0, let Qs denote the collection of all those open squares
Qi ⊂ R

2, with side-length s and corners on the lattice (sZ)2, such that Qi ∩Ω 6= ∅.
We say that a probability measure µ ∈ P(Ω) is fitted to Qs if µ is absolutely
continuous, with a density f(x) > 0 which is constant on each set of the form
Qi ∩ Ω with Qi ∈ Qs. In formulae,

(35) dµ = f(x)dx, f(x) =
∑

i

αiχΩi(x), Ωi = Ω ∩Qi, Qs = {Qi}

where the constants αi > 0 satisfy (since µ(Ω) = 1) the normalization condition

(36)
∑

i

αi meas(Ωi) = 1.

Proposition 3.4. If µ ∈ P(Ω) is fitted to Qs for some s > 0, then for every ε > 0
there exists a sequence {µL} in P(Ω) such that µL ⇀∗ µ and

(37) lim sup
L→∞

FL(µL) ≤ (1 + ε)θp ess sup
x∈Ω

ρ(x)

σ(x)f(x)p
.

Proof. Consider µ fitted to Qs, with the same notation as in (35). As ∂Ω is Lip-
schitzian, by replacing (if necessary) s with s/2k for some k > 1 (thus keeping µ
fitted to Qs), we may assume that s is so small that

(38) no connected component of ∂Ω is strictly contained in any square Qi ∈ Qs.

Given a small ε > 0, we will construct the measures µL of the form (27) for
suitable sets ΣL ∈ AL(Ω). We will call “tile” the set Σ obtained from Lemma (3.2),
satisfying (33) and (34). We define its ”effective length” Le as the number

(39) Le := H1
(

Σ ∩ [0, 1)2
)

.

Given L large enough, the set ΣL is obtained through the following construction:
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(i) fix a set Ωi in (35) and scale down the tile Σ to a factor s/ki, where the
integer ki is defined as

(40) ki = ki(L) =

⌊

sαi(L −
√
L)

Le

⌋

.

(ii) Put k2i copies of the rescaled tile inside the closed square Qi corresponding
to Ωi, as to form a ki × ki chalkboard, and intersect with Ω (the resulting
set is contained in Ωi).

(iii) Repeat for each Ωi, and take the union. Finally, add ∂Ω to the resulting
set.

Formally, if li ∈ R
2 denotes the lower-left corner of the square Qi, this construction

amounts to defining

ΣL := ∂Ω ∪





⋃

i

⋃

0≤m,n<ki

Σi,m,n ∩ Ω



 , Σi,m,n = li + s(m/ki, n/ki) + (s/ki)Σ.

The main idea is to put several microtiles Σi,m,n side by side within each square

Qi, with a density (length per unit area) therein roughly proportional to αi, in

such a way that the total length is about L (subtracting
√
L in (40) serves to save

some o(L) of length, to compensate for H1(∂Ω) and boundary effects due to cut-out
microtiles close to ∂Ω).

Building on (38) and (34), a little thought reveals that the set ΣL thus con-
structed is connected.

Each set Ωi contains a certain number Wi(L) of whole microtiles Σi,m,n and,
if Qi crosses ∂Ω, also a certain number of incomplete microtiles Σi,m,n ∩ Ω (those
that have really been cut out by intersection with Ω, in step (ii) above). As ∂Ω is
Lipschitzian, however, and diam(Σi,m,n) = O(1/L), for large L there are at most
C1L incomplete microtiles, where C1 depends on µ, H1(Σ) and ∂Ω but not on L.
Moreover, as H1(Σi,m,n) = O(1/L), the incomplete tiles contribute to H1(ΣL) by,
at most, a constant length C2 independent of L. Hence, since clearly Wi(L) ≤
meas(Ωi)k

2
i /s

2,

H1(ΣL) ≤ H1(∂Ω) + C2 +
∑

i

Wi(L)
sLe

ki
≤ C3 +

∑

i

meas(Ωi)
kiLe

s

≤ C3 + (L−
√
L)
∑

i

meas(Ωi)αi ≤ L

provided L is large enough (recall (36)). This shows that ΣL ∈ AL(Ω) for large L,
hence defining µL as in (27), from (6) we obtain

(41) lim sup
L→∞

FL(µL) = lim sup
L→∞

Lp

λσ,ρ
p (Ω \ ΣL)

.

Note that, in fact, H1(ΣL) ∼ L as L → ∞. Indeed, since Ωi contains Wi(L) whole
microtiles (each contributing an effective length sLe/ki) and Wi(L) ∼ meas(Ωi)k

2
i /s

2

as L → ∞, from (40) and (36)

H1(ΣL) ≥
∑

i

Wi(L)
sLe

ki
∼
∑

i

meas(Ωi)
kiLe

s
∼ L

∑

i

meas(Ωi)αi = L.
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Now, as the restriction of µL to each Ωi is a periodic homogenization of the same
pattern with period s/ki, it is clear that the µL converge, as L → ∞, to some
measure in P(Ω) which is fitted to Qs. More precisely, recalling (35)

µL

(

Ωi

)

=
H1
(

ΣL ∩ Ωi

)

H1(ΣL)
∼ Wi(L)sLe/ki

L
∼
(

meas(Ωi)k
2
i /s

2
)

sLe/ki

L

=
meas(Ωi)kiLe

sL
∼ meas(Ωi)αi = µ(Ωi),

and we see that in fact µL ⇀∗ µ as L → ∞.
To estimate λσ,ρ

p (Ω \ΣL) in (41), fix L and observe that Ω \ΣL consists, by con-
struction, of several small connected components (at least one for each microtile
Σi,m,n, due to (34)). Therefore, since the first Dirichlet eigenvalue splits over con-
nected components, for a suitable triplet i,m, n,

λσ,ρ
p (Ω \ ΣL) = λσ,ρ

p (D), D := Ω ∩ (Yi,m,n \ Σi,m,n)

where Yi,m,n is the open square of side s/ki, contained in Qi, that frames Σi,m,n.
Therefore, using (25),

Lp

λσ,ρ
p (Ω \ ΣL)

=
Lp

λσ,ρ
p (D)

≤ supD ρ

infD σ

Lp

λp(D)
.

Moreover, by monotonicity, scaling, (33) and (39),

λp(D) ≥ λp(Yi,m,n \ Σi,m,n) =
kpi
sp

λp(Y \ Σ) ≥
(

kiH1(Σ)
)p

sp(1 + ε)θp
≥ (kiLe)

p

sp(1 + ε)θp

which plugged into the previous estimate gives

(42)
Lp

λσ,ρ
p (Ω \ ΣL)

≤ supD ρ

infD σ

(

sL

kiLe

)p

(1 + ε)θp.

Now D ⊂ Ωi and, by (40), diam(D) = O(1/L). Hence, by positivity and uniform
continuity of ρ and σ over Ω,

supD ρ

infD σ
≤ (1 + δL) sup

Ωi

ρ/σ, and

(

sL

kiLe

)p

≤ 1 + δL
αp
i

where δL is independent of i and tends to zero as L → ∞. Therefore, (37) follows
from (41) and (42), taking the limsup there, and observing that

ess sup
x∈Ω

ρ(x)

σ(x)f(x)p
= max

j

(

1

αp
j

sup
Ωj

ρ/σ

)

,

as f(x) is piecewise constant according to (35). �

Finally, we prove the density in energy of those measures µ ∈ P(Ω) that are
fitted to Qs for some s > 0. Then, by a general result of Γ-convergence theory
[8], the Γ-limsup inequality (37) will be established for every probability measure
µ ∈ P(Ω).

Proposition 3.5. For every µ ∈ P(Ω) there exists a sequence {µn} ⊂ P(Ω) such
that every µn is fitted to Qs for some s > 0, µn ⇀∗ µ and

(43) lim sup
n→∞

F (µn) ≤ F (µ).
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Proof. Consider an arbitrary measure µ ∈ P(Ω). Keeping the notation of Defini-
tion 3.3, we construct µn ∈ P(Ω), fitted to Q1/n, as follows. By analogy with (35),
we set

dµn = fn(x)dx, fn(x) =
∑

i

α
(n)
i χ

Ω
(n)
i

(x), Ω
(n)
i = Ω∩Q

(n)
i , Q1/n = {Q(n)

i }

where the numbers α
(n)
i are chosen as to satisfy the conditions

(44)
µ
(

Ω
(n)
i

)

meas
(

Ω
(n)
i

) ≤ α
(n)
i ≤

µ
(

Ω
(n)
i

)

meas
(

Ω
(n)
i

) ,
∑

i

α
(n)
i meas

(

Ω
(n)
i

)

= 1.

Note that, for fixed n, the {Ω
(n)
i } are pairwise disjoint while their closures

{

Ω
(n)
i

}

cover Ω. Then the double inequality above means that µn is a sort of sampling of
µ, and it is easy to see that µn ⇀

∗ µ as n → ∞.
Let f ∈ L1(Ω) be the density of µ with respect to the Lebesgue measure. Re-

calling (7), passing to reciprocals we see that (43) reduces to

(45) lim inf
n→∞

(

ess inf
x∈Ω

g(x)fn(x)
)

≥ ess inf
x∈Ω

g(x)f(x), where g(x) :=
σ(x)1/p

ρ(x)1/p
.

Define the quantity τn = mini

(

inf
Ω

(n)
i

g/ sup
Ω

(n)
i

g
)

and observe that, as diam(Ω
(n)
i ) =

O(1/n), by uniform continuity and positivity of σ, ρ over Ω, τn → 1 as n → ∞.

To estimate the first ess inf in (45), as the ∂Ω
(n)
i are Lebesgue-negligible, we can

restrict ourselves to consider x ∈ Ω
(n)
i for some i. Then, using (44),

g(x)fn(x) = g(x)α
(n)
i ≥

g(x)µ
(

Ω
(n)
i

)

meas
(

Ω
(n)
i

) ≥
g(x)

∫

Ω
(n)
i

f(y) dy

meas
(

Ω
(n)
i

) ≥
τn
∫

Ω
(n)
i

g(y)f(y) dy

meas
(

Ω
(n)
i

)

and hence, from the arbitrariness of i,

ess inf
x∈Ω

g(x)fn(x) ≥ τn ess inf
x∈Ω

g(x)f(x).

Taking the liminf and using τn → 1, one obtains (45) as claimed. �

3.3. Computation of θp and optimal sequences. In this section we prove that
the constant θp, defined by (24), is the inverse of the first Dirichlet eigenvalue of
the p-laplacian on the unit interval. To this purpose, we define the following class
of admissible sets.

Definition 3.6. Let Y = [0, 1]2 be the closed unit square and let n ≥ 1 be an
integer. We define the set Cn ⊂ Y (called comb configuration) as the union of n+1
equispaced vertical segments of length one, a distance of 1/n apart, together with
the lower base of Y (the role of the latter is to make Cn connected, see Figure 1).

Theorem 3.7. Recalling (8) and (24), there holds

θp =
1

Λp
.

Moreover, the constant θp is achieved, in (24), when Σn is the comb-structure Cn

of Definition 3.6.
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Proof. Consider any sequence of sets Σn ⊂ Y such that Ln := H1(Σn) → ∞, as
described after (24). Applying Theorem 2.4 with Ω := Y , Σ := Σn (and κ = 1 as
∂Y is connected), we find the bound (18), namely

(46) λp(Y \ Σn) ≤ Λp

2pt
p
n

(

1 +
2πtn

H1(Σn ∪ ∂Y )

)

,

where tn is defined as t in (14). Note that, since H1(Σn) = Ln → ∞,

(47) tn =
1

(

H1(Σn ∪ ∂Y ) +
√

H1(Σn ∪ ∂Y )2 + 2π
) ∼ 1

2Ln
as n → ∞.

Plugging (46) into (24) and using (47), from the arbitrariness of Σn one obtains
that θp ≥ 1/Λp.

To prove the opposite inequality, let Cn be the comb structure of Definition 3.6.
Note that H1(Cn) = n + 2, hence Cn ∈ An+2(Y ). Moreover, the set Y \ Cn is the
union of n rectangles of size 1/n× 1, hence

(48) λp(Y \ Cn) = λp(Rn), Rn = (0, 1/n) × (0, 1).

Even though λp(Rn) is not known explicitly, a lower bound is obtained by relax-
ing the boundary condition, from Dirichlet on the whole ∂Rn to Dirichlet on the
two long sides of Rn (and Neumann on the short, horizontal sides). With these
boundary conditions, it is well known that the first eigenvalue coincides with the
corresponding eigenvalue in one variable, on the interval (0, 1/n). Thus, if W is the
subspace of those functions w ∈ W 1,p(Rn) with null trace at x = 0 and at x = 1/n,
recalling (8)

λp(Rn) ≥ inf
w∈W
w 6≡0

∫ 1

0

∫ 1/n

0
|∇w(x, y)|p dxdy

∫ 1

0

∫ 1/n

0
|w(x, y)|p dxdy

= inf
u∈W

1,p
0

(0,1/n)

u6≡0

∫ 1/n

0
|u′(x)|p dx

∫ 1/n

0
|u(x)|p dx

= npΛp,

that is λp(Y \ Cn) ≥ npΛp. Now, if we choose Σn = Cn (and Ln = n + 2) in (24),
we find the optimal upper bound

θp ≤ lim inf
n→∞

(n + 2)p

λp(Y \ Cn)
≤ lim inf

n→∞

(n + 2)p

npΛp
=

1

Λp
. �

Remark 3.8. If p = 2 or p = 1, λp(Rn) in (48) is known explicitly. More precisely,
when p = 2 it is well known that λ2(Rn) = π2(n2 + 1). Moreover, when p = 1 the
first Dirichlet eigenvalue λ1(Rn) is just the Cheeger constant of Rn, namely

h(Rn) =
4 − π

1 + 1/n−
√

(1 − 1/n)2 + π/n
=
(

1 + 1/n +
√

(1 − 1/n)2 + π/n
)

n

(see [13, 14] for more details).

Remark 3.9. We may call “asymptotically optimal” (for the unit square Y ) those
sequences of admissible configurations Σn (such as the comb configurations Cn)
that achieve the infimum θp in (24). Other examples of asymptotically optimal
configurations are provided by oblique comb structures, that is, the intersection of
Y with a (thicker and thicker) family of equispaced parallel lines (plus ∂Y to make
the structure connected): the reason for asymptotic optimality is that (much like
the vertical combs Cn) these sets disconnect Y into the union of (approximate)
thin rectangles, and the first eigenvalue of a thin rectangle is mainly governed by



14 PAOLO TILLI AND DAVIDE ZUCCO

Figure 1. A comb-shaped configuration as opposite to a grid structure.

its short side (a detailed proof would follow the same lines as the proof concerning
Cn).

We point out, however, that for large length L a comb configurations is strictly
more performant (at least when p = 2) than a grid structure of about the same
length (see Figure 1). Indeed, while for Cn the ratio H1(Cn)2/λ2(Y \Cn) is about
1/Λ2 = 1/π2, one can easily check that, replacing Cn with a grid structure of about
the same length, the new ratio would approach 2/π2, hence a comb structure is
twice more performant than a grid structure.

Remarkably, the same comb structures are asymptotically optimal also for average-
distance problems (as proved in [18]) and for the compliance optimization (this was
conjectured by Buttazzo and Santambrogio in [5] and later proved in [21]).

4. The asymptotics as p → ∞ and maximum distance problems

In this section we investigate problem (4) as p tends to ∞ (with fixed L), showing
that it converges to the problem

(49) max
{ 1

max
x∈Ω

d(x,Σ ∪ ∂Ω)
: Σ ∈ AL(Ω)

}

.

This is not surprising, since for every bounded domain D

(50) lim
p→∞

λp(D)1/p =
1

max
x∈D

d(x, ∂D)

(and the right-hand side can be taken as the definition of λ∞(D), the principal
frequency of the ”∞-laplacian”, see [12]). In other words, problem (4) in the limiting
case p = ∞ reduces to the so-called maximum distance problem

(51) min{max
x∈Ω

d(x,Σ ∪ ∂Ω) : Σ ∈ AL(Ω)},

that is, to search for those configurations Σ ∈ AL(Ω) that minimize the radius of
the largest ball that fits in Ω \ Σ (see [19]).

In view of letting p → ∞ in (4), since now L is fixed, scaling by Lp as in (6) would
be pointless: the proper normalization, suggested by (50), is raising the eigenvalue
to the power 1/p. Moreover, it is no longer necessary to work in the space of
probability measures, as the set AL(Ω) provides the natural common domain for
the relevant functionals.

The precise Γ-convergence result is then the following.
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Theorem 4.1. Fix L > 0. As p → ∞, the functionals F
(p)
L : AL(Ω) 7→ (0,∞)

defined for p > 1 by

F
(p)
L (Σ) :=

1

λσ,ρ
p (Ω \ Σ)1/p

Γ-converge, with respect to the Hausdorff distance on AL(Ω), to the Γ-limit

F∞
L (Σ) := max

x∈Ω
d(x,Σ ∪ ∂Ω).

Proof. Since the functions ρ, σ are uniformly positive and bounded, by (25) we may
assume that ρ, σ ≡ 1, and work with λp in place of λσ,ρ

p . We start with the Γ-liminf
inequality, proving that for every Σ ∈ AL(Ω) and every sequence {Σp} ⊂ AL(Ω)
such that Σp → Σ in the Hausdorff distance, it holds

(52) lim inf
p→∞

F
(p)
L (Σp) ≥ max

x∈Ω
d(x,Σ ∪ ∂Ω).

For a fixed Σ ∈ AL(Ω) and a sequence {Σp} converging in the Hausdorff distance to
Σ, choose a number r > 0 such that r < maxx∈Ω d(x,Σ∪ ∂Ω). From the Hausdorff
convergence of {Σp} to Σ, we see that r < d(x,Σp ∪ ∂Ω), and hence there exists a
ball Br of radius r such that Br ⊂ Ω \ Σp, provided p is large enough. Therefore,
by monotonicity of λp and (50)

lim inf
p→∞

F
(p)
L (Σp) ≥ lim inf

p→∞

1

λp(Br)
= max

x∈Br

d(x, ∂Br) = r,

and letting r → maxx∈Ω d(x,Σ∪∂Ω) we obtain (52). Finally, the Γ-limsup inequal-

ity follows immediately from the pointwise convergence of F
(p)
L to F∞

L , i.e. from
(50). Indeed, given Σ ∈ AL(Ω) one can define the constant sequence Σp := Σ,
which gives

lim sup
p→∞

F
(p)
L (Σp) = lim

p→∞
F

(p)
L (Σ) = F∞

L (Σ). �

Remark 4.2. As a consequence of this Γ-convergence result and the compactness of
the space AL(Ω) with respect to the Hausdorff convergence, we get the stability of
the maximizers Σp, as p converges to ∞. If Σp is a maximizer of problem (4) and
p → ∞, then, up to subsequences, the sets Σp converge in the Hausdorff distance
to a minimizer Σ∞ of problem (51). Moreover

lim
p→∞

λσ,ρ
p (Ω \ Σp)1/p =

1

max
x∈Ω

d(x,Σ∞ ∪ ∂Ω)
.

The next Γ-convergence result is the analogue of Theorem 1.2, for the case p = ∞.

Theorem 4.3. As L → ∞ the functionals F∞
L : P(Ω) → [0,∞] defined as

(53) F∞
L (µ) =

{

Lmax
x∈Ω

d(x,Σ ∪ ∂Ω) if µ = µΣ for some Σ ∈ AL(Ω),

∞ otherwise

Γ-converge, with respect to the weak* topology of P(Ω), to the functional F∞
∞ :

P(Ω) 7→ [0,∞] defined by

(54) F∞
∞ (µ) =

1

2
ess sup
x∈Ω

1

f(x)
,

where f ∈ L1(Ω) is the density of µ with respect to the Lebesgue measure.
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Proof. One can adapt, with only minor changes and several simplifications, the
proof of Theorem 1.2, the details are omitted. The only relevant change concerns
the analogue of the constant θp and its computation (the analogue of Theorem 3.7).
For p = ∞, we adapt (24) by defining

(55) θ∞ := inf

{

lim inf
n→∞

Ln max
x∈Y

d(x,Σn ∪ ∂Y )

}

, Y = (0, 1) × (0, 1),

where, as in (24), the infimum is over all sequences Ln → ∞ and all sequences of
sets Σn ∈ ALn such that H1(Σn) = Ln. To complete the proof, we will show that
θ∞ = 1/2.

Consider two sequences Ln, Σn as described above. Applying Lemma 2.1 with
Ω = Y (hence κ = 1) and Σ = Σn, we can use (16) with t defined as in (14). Since
clearly H1(Σn ∪ ∂Y ) ≤ Ln + 4, (16) gives

Ln max
x∈Y

d(x,Σn ∪ ∂Y ) ≥ Ln

(Ln + 4) +
√

(Ln + 4)2 + 2π
.

Letting n → ∞, from the arbitrariness of Σn and Ln, we see from (55) that θ∞ ≥
1/2.

On the other hand, choosing Σn = Cn (the comb-shaped structure of Defini-
tion 3.6) and Ln = H1(Cn) = n + 2, we clearly have

Ln max
x∈Y

d(x,Σn ∪ ∂Y ) =
Ln

2n
=

n + 2

2n
,

and letting n → ∞ we see from (55) that θ∞ ≤ 1/2. Thus, θ∞ = 1/2. �

Remark 4.4. The Γ-limit functional F∞
∞ has a unique minimizer, given by normal-

ized Lebesgue measure over Ω. As a consequence (cf. Corollary 1.4), if ΣL is a
maximizer of problem (49), as L → ∞ the probability measures µΣL converge in
the weak* topology to the uniform measure dx/meas(Ω) (the minimizer of F∞

∞ ).

Finally, for completeness, we prove that the functionals defined in (7), after
renormalization, Γ-converge to the functional in (54).

Theorem 4.5. As p → ∞ the functionals F
(p)
∞ defined by

F (p)
∞ (µ) =

1

Λp
1/p

ess sup
x∈Ω

ρ(x)1/p

σ(x)1/pf(x)
, µ ∈ P(Ω)

Γ-converge, in the weak* topology on P(Ω), to the Γ-limit F∞
∞ defined by (54).

Proof. Since for all µ ∈ P(Ω) we have mpF
∞
∞ (µ) ≤ F

(p)
∞ (µ) ≤ MpF

∞
∞ (µ) where

mp =
2

Λ
1/p
p

min
x∈Ω

ρ(x)1/p

σ(x)1/p
, Mp =

2

Λ
1/p
p

max
x∈Ω

ρ(x)1/p

σ(x)1/p
,

and the constants mp,Mp → 1 as p → ∞, it suffices to prove that the sequence of
functionals {F∞

∞ }p (independent of p) Γ-converges to F∞
∞ itself. But this is true,

since F∞
∞ (already obtained as a Γ-limit in P(Ω) by Theorem 4.3) is a fortiori lower

semicontinuous (see Prop. 6.8 and Rem. 4.5 in [8]). �

An overall picture of these Γ-convergence results is given in the following commu-
tative diagram, where the first line is an equivalent formulation (see [8], Prop. 6.16)
of Theorem 1.2.
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Σ 7→ L

(λσ,ρ
p (Ω \ Σ))1/p

L → ∞−−−−−−−−−→
(Thm 1.2)

µ 7→ 1

Λp
1/p

ess sup
x∈Ω

ρ(x)1/p

σ(x)1/pf(x)

p → ∞
(Thm 4.1)









y









y

p → ∞
(Thm 4.5)

Σ 7→ Lmax
x∈Ω

d(x,Σ ∪ ∂Ω)
L → ∞−−−−−−−−−→
(Thm 4.3)

µ 7→ 1

2
ess sup
x∈Ω

1

f(x)
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