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Abstract. Incomplete Cholesky factorizations have long been important as preconditioners
for use in solving large-scale symmetric positive-definite linear systems. In this paper, we focus
on the relationship between two important positive semidefinite modification schemes that were
introduced to avoid factorization breakdown, namely, the approach of Jennings and Malik and that
of Tismenetsky. We present a novel view of the relationship between the two schemes and implement
them in combination with a limited memory approach. We explore their effectiveness using extensive
numerical experiments involving a large set of test problems arising from a wide range of practical
applications.
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1. Introduction. Iterative methods are widely used for the solution of large
sparse symmetric linear systems of equationsAx = b. To increase their robustness, the
system matrix A generally needs to be transformed by preconditioning. For positive-
definite systems, an important class of preconditioners is represented by incomplete
Cholesky (IC) factorizations, that is, factorizations of the form LLT in which some of
the fill entries (entries that were zero in A) that would occur in a complete factorization
are ignored. Over the last 50 years or so, many different algorithms for computing
incomplete factorizations have been proposed and used to solve problems from a wide
range of application areas. A brief historical overview of some of the key developments
may be found in [44].

An important step in the practical use of algebraic preconditioning based on
incomplete factorizations came with the 1977 paper of Meijerink and van der Vorst
[35]. They proved the existence of the IC factorization, for arbitrary choices of the
sparsity pattern, for the class of symmetric M -matrices; this property was later also
proved for H-matrices with positive diagonal entries [34, 49]. However, for a general
symmetric positive-definite A (including many examples that arise from practical
applications) the incomplete factorization can break down because of the occurrence
of zero or negative pivots.

The problem of breakdown is well known and various approaches have been em-
ployed to circumvent it. Indeed, shortly after the work of Meijerink and van der
Vorst, Kershaw [29] showed that the IC factorization of a general symmetric positive-
definite matrix from a laser fusion code can suffer seriously from breakdowns. To

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section April 18,
2013; accepted for publication (in revised form) December 13, 2013; published electronically April 8,
2014.

http://www.siam.org/journals/sisc/36-2/91758.html
†Scientific Computing Department, Rutherford Appleton Laboratory, Harwell Oxford, Oxford-

shire, OX11 0QX, UK (jennifer.scott@stfc.ac.uk). This author’s work was supported by EPSRC
grant EP/I013067/1.

‡Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodarenskou
Vezi 2, Czech Republic (tuma@cs.cas.cz). This author’s work was partially supported by Grant
Agency of the Czech Republic project 13-06684 S.

A609

D
ow

nl
oa

de
d 

04
/2

5/
14

 to
 1

30
.2

46
.1

32
.1

78
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/sisc/36-2/91758.html
mailto:jennifer.scott@stfc.ac.uk
mailto:tuma@cs.cas.cz


A610 JENNIFER SCOTT AND MIROSLAV TŮMA

complete the factorization, Kershaw locally replaced nonpositive diagonal entries by
a small positive number. The hope was that if only a few of the diagonal entries had
to be replaced, the resulting factorization would still yield a useful preconditioner.
The use of perturbations helped popularize incomplete factorizations, although local
perturbations with no relation to the overall matrix can lead to large growth in the
entries and the subsequent Schur complements and hence to unstable preconditioners.
Heuristics have been proposed for how to choose the perturbations, and a discussion
of the possible effects on more general incomplete factorizations (and that can occur
even in the symmetric positive-definite case) can be found in [9].

Manteuffel [34] introduced an alternative strategy that involved the notion of a
shifted factorization. He proposed factorizing the diagonally shifted matrix A+αI for
some positive α. (Note that provided α is large enough, the incomplete factorization
always exists.) Diagonal shifts were used in some implementations even before Man-
teuffel (see [36, 37]) and, although currently the only way to find a suitable global shift
is by trial and error, provided an α can be found that is not too large, the approach
is surprisingly effective and remains well used. One of the best implementations of
IC factorization is the ICFS code of Lin and Moré [30]. It uses an efficient loop for
changing the shift within a prescribed memory approach. The use of prescribed mem-
ory builds on the work of Jones and Plassman [25, 26] and of Saad [41]. Given p ≥ 0,
the ICFS code retains the nj +p largest entries in the lower triangular part of the jth
column of L (where nj is the number of entries in the lower triangular part of column
j of A) and it uses only memory as the criterion for dropping entries. Reported results
for large-scale trust region subproblems indicate that allowing additional memory can
substantially improve performance on difficult problems.

A very different technique to avoid factorization breakdown is that of using a
semidefinite modification scheme. As in any incomplete factorization, entries are dis-
carded as the factorization progresses but the idea here is to use the discarded entries
to guarantee preservation of positive definiteness of the reduced matrices so that the
method is breakdown free. In this paper we consider two such schemes. The first is
that of Jennings and Malik [23, 24], who, in the mid 1970s, introduced a modification
strategy to prevent factorization breakdown for symmetric positive-definite matrices
arising from structural engineering. Jennings and Malik were motivated only by the
need to compute a preconditioner without breakdown and not by any consideration
of the conditioning of the preconditioned system. Their work was extended by Ajiz
and Jennings [1], who discussed dropping (rejection) strategies as well as implemen-
tation details. Variations of the Jennings–Malik scheme were adopted by engineering
communities and it is recommended in, for example, [39] and used in experiments
in [6] to solve some hard problems, including the analysis of structures and shape
optimization.

The second scheme we consider is that proposed in the early 1990s by Tis-
menetsky [48], with significant later improvements by Suarjana and Law [47] and
Kaporin [27]. The Tismenetsky approach has been used to provide robust precon-
ditioners for some real-world problems; see, for example, [2, 3, 31, 32]. However,
despite the fact that the computed preconditioners frequently outperform those from
other known incomplete factorization techniques, as Benzi remarks in his authorita-
tive survey paper [4], Tismenetsky’s idea “has unfortunately attracted surprisingly
little attention.” Benzi also highlights a serious drawback of the scheme, which is
that its memory requirements can be prohibitively large. (In some cases, more than
70 percent of the storage required for a complete Cholesky factorization is needed; see
also [7].)
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POSITIVE SEMIDEFINITE MODIFICATION SCHEMES FOR IC A611

In this paper, we seek to gain a better understanding of the Jennings–Malik
and Tismenetsky semidefinite modifications schemes and to explore the relationship
between them. In section 2, we introduce the schemes and then, in section 3, we
present new theoretical results that compare the 2-norms of the modifications to A
that each approach makes. In section 4, we propose a memory-efficient variant of
the Tismenetsky approach, optionally combined with the use of drop tolerances and
the Jennings–Malik modifications to reduce factorization breakdowns. In section 5,
we report on extensive numerical experiments in which we aim to isolate the effects
of the modifications so as to assess their usefulness in the development of robust
algebraic incomplete factorization preconditioners. Finally, we draw some conclusions
in section 6.

2. Positive semidefinite modification schemes.

2.1. The Jennings–Malik scheme. The scheme proposed by Jennings and
Malik [23, 24] can be interpreted as modifying the factorization dynamically by adding
to A simple symmetric positive semidefinite matrices, each having just four nonzero
entries. At each stage, we compute a column of the factorization and then modify
the subsequent Schur complement. For j = 1, we consider the matrix A and, for
1 < j < n, we obtain the jth Schur complement by applying the previous j − 1
updates and possible additional modifications. Throughout our discussions, we denote
the Schur complement of order n − j + 1 that is computed on the jth step by Â
and let Âj be the first column of Â (corresponding to column j of A). The jth

column of the incomplete factor L is obtained from Âj by dropping some of its entries
(for example, using a drop tolerance or the sparsity pattern). The Jennings–Malik
scheme modifies the corresponding diagonal entries every time an off-diagonal entry is
discarded. Specifically, if the nonzero entry âij of Âj is to be discarded, the Jennings–
Malik scheme adds to A a modification (or cancellation) matrix of the form

(2.1) Eij = eie
T
i γ|âij |+ eje

T
j γ

−1|âij | − eie
T
j âij − eje

T
i âij .

Here the indices i, j are global indices (that is, they relate to the original matrix
A). Eij has nonzero entries γ|âij | and γ−1|âij | in the ith and jth diagonal positions,
respectively, and entry −âij in the (i, j) and (j, i) positions. The scalar γ may be
chosen to keep the same percentage change to the diagonal entries âii and âjj that
are being modified (see [1]). Alternatively, γ may be set to 1 (see [19]) and this is
what we employ in our numerical experiments (but see also the weighted strategy in
[14]). A so-called relaxed version of the form

(2.2) E′
ij = ωeie

T
i γ|âij |+ ωeje

T
j γ

−1|âij | − eie
T
j âij − eje

T
i âij ,

with 0 ≤ ω ≤ 1, was proposed by Hlad ı́k, Reed, and Swoboda [19].
It is easy to see that the modification matrix Eij is symmetric positive semidefinite

(while for 0 ≤ ω < 1, E′
ij is indefinite). We use ω = 1. The sequence of these dynamic

changes leads to a breakdown-free factorization that can be expressed in the form

A = LLT − E,

where L is the computed incomplete factor and E is a sum of positive semidefinite
matrices with nonpositive off-diagonal entries and is thus positive semidefinite.

2.2. Tismenetsky scheme. The second modification scheme we wish to con-
sider is that of Tismenetsky [48]. A matrix-based formulation with significant improve-
ments and theoretical foundations was later supplied by Kaporin [27] (see also [28]).
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A612 JENNIFER SCOTT AND MIROSLAV TŮMA

The Tismenetsky scheme is a matrix decomposition of the form

(2.3) A = (L +R)(L+R)T − E,

where L is a lower triangular matrix with positive diagonal entries that is used for
preconditioning, R is a strictly lower triangular matrix with small entries that is used
to stabilize the factorization process, and the error matrix E has the structure

(2.4) E = RRT .

Consider the decomposition locally. At the jth step, the first column of the
computed Schur complement Âj can be decomposed into a sum of two vectors each
of length n− j + 1,

lj + rj ,

such that lTj rj = 0 (with the first entry in lj nonzero), where lj (respectively, rj)
contains the entries that are retained (respectively, not retained) in the incomplete
factorization. At step j + 1 of the standard factorization, the Schur complement of
order n− j is updated by subtracting the outer product of the pivot row and column.
That is, by subtracting

(lj + rj)(lj + rj)
T .

The Tismenetsky incomplete factorization does not compute the full update as it does
not subtract

(2.5) Ej = rjr
T
j .

Thus, the positive semidefinite modification Ej is implicitly added to A. Note that
we can also regard LRT and RLT as error matrices because R is not part of the
computed preconditioner and such an approach led to a successful condition number
analysis of the decomposition process in [27]. However, we feel that to get an insight
into the updates it is better to consider the error locally in the form (2.3), and so we
denote the error matrix at the jth step as Ej .

The obvious choice for rj (which was proposed in the original paper [48]) is the
vector of the smallest off-diagonal entries in the column (those that are smaller in
magnitude than a chosen drop tolerance). Then in a right-looking formulation,1 at
each stage implicitly adding Ej is combined with the standard steps of the Cholesky
factorization, with entries dropped from the incomplete factor after the updates have
been applied to the Schur complement. The approach is naturally breakdown free
because the only modification of the Schur complement that is used in the later steps
of the factorization is the addition of the positive semidefinite matrices Ej .

The fill in L can be controlled by choosing the drop tolerance to limit the size
of |lj |. However, it is important to note that this does not limit the memory re-
quired to compute L. A right-looking implementation of a sparse factorization is
generally very demanding from the point of view of memory as it is necessary to
store all the fill-in for column j until the modification is applied in the step j, as

1A right-looking formulation directly updates the approximate Schur complement, while a left-
looking column-oriented approach computes the same decomposition but the operations are per-
formed in a different order. Full details may be found, for example, in [38].
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POSITIVE SEMIDEFINITE MODIFICATION SCHEMES FOR IC A613

follows from (2.5). Hence, a left-looking implementation (or, as in [27], an upward-
looking implementation) might be thought preferable. But to compute column Âj in
a left-looking implementation and to apply the modification (2.5) correctly, all the
vectors lk and rk for k = 1, . . . , j − 1 have to be available. Therefore, the dropped
entries have to be stored throughout the left-looking factorization and the rk may
be discarded only once the factorization is finished (and similarly for an upward-
looking implementation). These vectors thus represent intermediate memory. Note
the need for intermediate memory is caused not just by the fill in the factorization:
it is required because of the structure of the positive semidefinite modification that
forces the use of the rk. Sparsity may allow some of the rk to be discarded be-
fore the factorization is complete. For example, if A can be preordered to have a
narrow bandwidth, the updates to a column involve only a limited number of the
immediately preceding columns. The columns rk can then be successively discarded
with a delay determined by the matrix bandwidth. However, in general, the to-
tal memory is as for a complete factorization, without the other tools that direct
methods offer. This memory problem was discussed by Kaporin [27], who proposed
using two drop tolerances droptol1 > droptol2. Only entries of magnitude at least
droptol1 are kept in L and entries smaller than droptol2 are dropped from R; the
larger droptol2 is, the closer the method becomes to that of Jennings and Malik. The
local error matrix E then has the structure

E = RRT + F + FT ,

where F is a strictly lower triangular matrix that is not computed, while R is used in
the computation of L but is then discarded.

When drop tolerances are used, the factorization is no longer guaranteed to
be breakdown free. To avoid breakdown, modifications (as in the Jennings–Malik
scheme) for the entries that are dropped from R may be used. Kaporin coined the
term second order incomplete Cholesky factorization to denote this combined strat-
egy (but note an earlier proposal of virtually the same strategy by Suarjana and
Law [47]).

Finally, consider again the left-looking implementation of the Jennings–Malik
scheme where the column Âj that is computed at stage j is based on the columns
computed at the previous j−1 stages. Standard implementations perform the updates
using the previous columns of L (without the dropped entries). But the dropped
entries may also be used in the computation and, if we do this, the only difference
between the Jennings–Malik and Tismenetsky schemes lies in the way in which the
factorization is modified to safeguard against breakdown.

2.3. Related research. A discussion of the Tismenetsky approach and a mod-
ification with results for finite-element modeling of linear elasticity problems is given
in [28]. In [54], Yamazaki et al. use the Kaporin approach combined with the global
diagonal shift strategy of Manteuffel [34]. In contrast to Kaporin [27], who uses the
upward-looking factorization motivated by Saad [41], Yamazaki et al. employ a left-
looking implementation based on the pointer strategy from Eisenstat et al. [15, 16];
moreover, they do not compensate the diagonal entries fully as in the Jennings–Malik
diagonal modification strategy. There is an independent derivation of the Tismenet-
sky approach for IC factorizations in [53], which emphasizes the relation with the
special case of incomplete QR factorization (see also [50]). In fact, this variant of the
incomplete QR factorization of A in which there is no dropping in Q is equivalent
to the Tismenetsky approach applied to ATA. For completeness, note that a related
incomplete QR factorization was introduced earlier by Jennings and Ajiz [22]. From
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A614 JENNIFER SCOTT AND MIROSLAV TŮMA

a theoretical point of view, the authors of [51, 52] show some additional structural
properties of this type of IC factorization.

An interesting application of both the Jennings–Malik and Tismenetsky ideas
to multilevel Schur complement evaluations was proposed by Janna, Ferronato, and
Gambolati [21]. A block incomplete factorization preconditioner with automatic se-
lection and tuning of the factorization parameters was recently presented by Gupta
and George [18]. Rather than using a modification scheme or a global shift, Gupta
and George propose switching from an IC factorization to an LDLT factorization if
a pivot becomes negative. This removes the requirement that the preconditioner is
positive definite. Another recent paper of interest here is that of Maclachlan, Osei-
Kuffuor, and Saad [33]. Although devoted to nonsymmetric incomplete factorizations,
the authors point out that a quantification of the norms of the updates could be fur-
ther developed theoretically. Note that [33] discusses modifications and errors from
the local point of view, as we do.

The Tismenetsky approach has been used to provide a robust preconditioner for
some real-world problems; see, for example, the comparison for tasks in linear elastic-
ity in [2], emphasizing reduced parametrization in the upward-looking implementation
of Kaporin [27], diffusion equations in [31, 32], and the Stokes problem in [3]. We
note, however, that there are no reported comparisons with other approaches that
take into account not only iteration counts but also the size of the preconditioner.

3. Theoretical results. The importance of the size of the modifications to the
matrix was emphasized by Duff and Meurant in [13]. In particular, the modifications
should not be large in terms of the norm of the matrix. In this section, we consider
the Jennings–Malik and Tismenetsky modifications from this point of view. We have
the following simple lemma for the size of the Jennings–Malik modification.

Lemma 3.1. The 2-norm of the modification in the Jennings–Malik approach
based on the fill-in entry âij and the update formula (2.1) is equal to

γ|âij |+ γ−1|âij |.
Proof. The modification (2.1) can be written as the outer product matrix

Eij = vvT ,

where v ∈ Rn has entries

vk =

⎧⎨
⎩

(|âij |γ)1/2 if k = i,

−sgn(âij)(|âij |/γ)1/2 if k = j,
0 otherwise.

The result follows from the fact that the 2-norm of vvT is equal to vT v.
In the following, we assume in the Jennings–Malik modification the parameter

γ = 1. For the Tismenetsky approach, we introduce some further notation. Here
and elsewhere we denote the reduced vector of nonzero entries in lj by l̄j with |l̄j | =
nj + lsize = lsize′ (where nj is the number of entries in the lower triangular part
of column j of A) and, similarly, we denote the reduced vector of nonzero entries in
rj by r̄j with |r̄j | = rsize; in the remainder of our discussion, we use bars for the
quantities corresponding to these reduced vectors. Further, let us assume that the
entries in both these reduced vectors are in descending order of their magnitudes and
that the magnitude of each entry in l̄j is at least as large as the magnitude of the
largest entry in r̄j . We have the following result.
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POSITIVE SEMIDEFINITE MODIFICATION SCHEMES FOR IC A615

Lemma 3.2. The 2-norm of the jth modification in the Tismenetsky approach
(2.5) is equal to

(3.1) (r̄1,j , . . . , r̄rsize,j)(r̄1,j , . . . , r̄rsize,j)
T =

rsize∑
k=1

r̄2k,j ,

where r̄k,j is the kth entry of the vector r̄j.
It is natural to ask how these modifications are related. To compare them, we

assume that the Jennings–Malik modification is applied only to the Schur complement
that corresponds to the truncated update, that is, to the submatrix

(r̄1,j , . . . , r̄rsize,j)
T (r̄1,j , . . . , r̄rsize,j).

Setting γ = 1 in (2.1), the two previous simple lemmas imply the following result that
explains why the Tismenetsky modification should often be considered preferable
in practice. A comparison of norms in Theorem 3.3 indicates that the Jennings–
Malik modification may give better results, particularly if the decomposition does not
generate too much fill-in.

Theorem 3.3. Assume Âj has been computed and all but the lsize′ entries
of largest magnitude are dropped from column j of L. Denote the 2-norm of the
Jennings–Malik modification (2.1) that compensates for all the dropped entries in rjr

T
j

by |JM | and denote the 2-norm of the Tismenetsky modification (2.5) related to the
remaining |Âj | − lsize ≡ rsize > 1 entries by |T |. Then |JM | ≤ (rsize− 1)|T |.

Proof. From Lemma 3.2, the 2-norm of the Tismenetsky modification in (3.1) is
given by the squared diagonal entries of the matrix rjr

T
j . Each of the modifications

in the Jennings–Malik approach is of the form of a submatrix (2.1) with the off-
diagonal entry r̄k,j r̄l,j for some 1 ≤ k, l ≤ rsize, k �= l. Note that the off-diagonal
entry corresponds to moving the fill-in from a product of entries of the vector rj to
the diagonal of rjr

T
j . The sum of the 2-norms of these modifications is equal to the

overall 2-norm of the modifications and is, by Lemma 3.1 (with γ = 1), equal to

|JM | = 2×
∑

(k,l)∈Zj ,k<l

|r̄k,j r̄l,j |,

where Zj denotes the set of pairs (i, j) of off-diagonal positions in Âj corresponding
to the dropped entries for which the Jennings–Malik modification was used. Note
that Zj does not include the positions that are present in the final decomposition.
Further, we have

|T | =
rsize∑
k=1

r̄2k,j .

Using the fact that n
∑n

i=1 a
2
i ≥ (

∑n
i=1 ai)

2
for any real numbers a1, . . . , an, we obtain

the result

|T |+ |JM | =
rsize∑
k=1

r̄2k,j + 2×
∑

(k,l)∈Zj ,k<l

|r̄k,j r̄l,j |(3.2)

≤
rsize∑
k=1

r̄2k,j + 2×
∑

1≤k<l≤rsize

|r̄k,j r̄l,j |(3.3)

=

(
rsize∑
k=1

|r̄k,j |
)2

≤ rsize× |T |,
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A616 JENNIFER SCOTT AND MIROSLAV TŮMA

and |JM | ≤ (rsize− 1)|T | follows.
The key to understanding the relationship between the two updates is the last

part of the proof. If the gap between (3.2) and (3.3) is large, the Jennings–Malik
modification can be better than the Tismenetsky one. A simple example is a dense
submatrix rTj rj that does need to be updated in the Jennings–Malik scheme but the

original Tismenetsky strategy still comes with the error rjr
T
j . Similarly, the Jennings–

Malik modification can be beneficial for sparse matrices for which the factorization
generates only a small amount of fill-in [5]. As soon as the amount of fill-in grows,
the Jennings–Malik approach becomes less attractive. Note that if at stage j, we use
the Jennings–Malik scheme for all the entries of rjr

T
j , the number of modifications is

equal to |Zj | ≤ (|Âj |− lsize′)(|Âj |− lsize′− 1)/2. Such a potentially large number of
modifications may result in the preconditioner being far from the original matrix (and
hence of poor quality). Theorem 3.3 also shows how the two modification schemes
are in some sense complementary and that their norms can be far apart once rsize is
large. A natural consequence of the result is that we can possibly make the Cholesky
decomposition with the Tismenetsky update more precise by also updating the entries
that are nonzero in the actual Schur complement. These are the entries that may
provide potential advantage for the Jennings–Malik modifications since they do not
need to induce a diagonal modification and, similarly, they do not need to be a part of
the error matrix Ej in the Tismenetsky scheme. This offers the potential for additional
improvements inside this submatrix based on its structural pattern, as we will discuss
in the numerical experiments section.

While we discuss here dropping in the Schur complement, our implementation
of the Jennings–Malik modifications differs since we use a left-looking implementa-
tion (see section 4), whereas Theorem 3.3 describes and compares both modification
approaches cumulatively for a major step j of the decomposition and suggests other
possible ways of improving both approaches. A natural idea is to incorporate the
Jennings–Malik approach on top of the Tismenetsky update. This may appear to
be an obvious idea because it can make the Tismenetsky update sparser. However,
it follows from the Courant–Fischer theorem (e.g., in [17]; see also a nice overview
of properties of the sums of positive semidefinite matrices in [8]) that if a 2 × 2
Jennings–Malik modification of the form (2.1) is added on top of a symmetric posi-
tive semidefinite submatrix that may represent the Tismenetsky update (3.1), then
both eigenvalues of the resulting matrix can only increase.

Thus using the Tismenetsky approach and then the Jennings–Malik modification
to nullify some off-diagonal entries does not appear helpful. However, as Theorem
3.3 points out, the two schemes can be combined differently. Indeed, the new uni-
fied explanation of the Tismenetsky and Jennings–Malik modifications indicates two
ideas that we will report on in section 5: (1) the norm of the matrix modification
during the Tismenetsky update can be decreased by including some entries of RRT

and (2) the remaining off-diagonal entries of RRT can be compensated for using the
Jennings–Malik scheme. As we will see, the strategy that is the best theoretically with
unlimited memory may not be the best when solving practical problems using limited
memory.

An important consideration for any practical strategy for computing incomplete
factorizations is limiting the number of parameters that must be set by the user while
still getting an acceptably robust preconditioner. As we shall see in section 5, we
have observed in our numerical experiments that the intermediate memory can, to
some extent, replace the memory used for the preconditioner and this experimentally
based fact motivates the following discussion. Our experiments show that if the sum

D
ow

nl
oa

de
d 

04
/2

5/
14

 to
 1

30
.2

46
.1

32
.1

78
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



POSITIVE SEMIDEFINITE MODIFICATION SCHEMES FOR IC A617

lsize+ rsize = tsize is kept constant (and lsize is not too small in relation to rsize),
the performance of the preconditioner is maintained. Therefore, we could require a
single input parameter tsize and choose lsize and rsize internally. Consider stage j
of the factorization and the Tismenetsky update restricted to the reduced submatrix
determined by the first nj + tsize components of the reduced column Āj (with the
nonzero entries āk,j , j ≤ k ≤ nj+tsize, of Āj in descending order of their magnitudes).
The modification restricted to this submatrix is the “error” block

(ānj+lsize+1,j , . . . , ānj+tsize,j)
T (ānj+lsize+1,j , . . . , ānj+tsize,j),

where lsize is to be determined. Consequently, we have to find a splitting of tsize
into lsize and rsize such that the off-diagonal block that is used in the updates,

(ānj+lsize+1,j , . . . , ānj+tsize,j)
T (ānj+1,j, . . . , ānj+lsize,j),

is not small with respect to the error block measured in a suitable norm. Recall that
this diagonal error block is excluded from the actual updates. Assuming lsize, rsize ≥
1, a possible strategy is to choose lsize such that

1/lsize

nj+lsize∑
k=nj

|ākj | ≥ β/(tsize− lsize)

nj+tsize∑
k=nj+lsize+1

|ākj |

for some modest choice of β ≥ 1. (That is, the average magnitude of the entries nj

to nj + lsize in Āj is compared to β times the average magnitude of the remaining
entries.) If there is no such lsize (which occurs if there is insufficient “block diagonal
dominance” in the considered part of the column), lsize is set to tsize; if there is
reasonable diagonal dominance in L, lsize should be smaller than tsize. Such a
strategy provides a dynamic splitting of tsize since it is determined separately for
each column of L. Using the following result, lsize can be found by a simple search
through part of the reduced column Āj .

Lemma 3.4. The function f(s) defined as

1/s

nj+s∑
k=nj

|ākj | − β/(tsize− s)

nj+tsize∑
k=nj+s+1

|ākj |

is nondecreasing for s = 0, . . . , tsize− 1.
The proof follows from the fact that the nonzero entries in Āj are ordered in

descending order of their magnitudes.

4. Algorithm outline. For an algebraic preconditioner to be practical it needs
to have predictable and reasonable memory demands. All implementations of the
Tismenetsky–Kaporin approach known to us drop entries based only on their mag-
nitude but this does not provide practical predictable memory demands. As in the
ICFS code of Lin and Moré [30], the memory predictability in our IC implementa-
tion depends on specifying a parameter lsize that limits the maximum number of
nonzero off-diagonal fill entries in each column of L. In addition, we retain at most
rsize entries in each column of R. At each step j of the factorization, the candidate
entries for inclusion in the jth column of L are sorted and the largest nj + lsize
off-diagonal entries plus the diagonal are retained; the next rsize largest entries
form the jth column of R and all other entries are discarded. Following Kaporin,
the use of drop tolerances can be included. In this case, entries in L are retained
only if they are at least droptol1 in magnitude, while those in R must be at least
droptol2.
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A618 JENNIFER SCOTT AND MIROSLAV TŮMA

Algorithm 4.1. Memory-limited IC decomposition.
Absolute dropping, left-looking column formulation, limited memory, Tismenetsky ap-1

proach combined with Jennings–Malik modifications2

Input: Symmetric and positive definite A ∈ Rn×n; lsize, rsize, droptol1, droptol23

Initialize: L,R ∈ Rn×n, L = I, R = 0, w ∈ Rn, w = 04

for j=1:n5

w = A:,j ! Store original sparsity pattern of column j6

for k < j and Lj,k �= 0 do7

Aj:n,j ⇐ Aj:n,j − Lj:n,k ∗ Lj,k ! LLT updates8

Aj:n,j ⇐ Aj:n,j −Rj:n,k ∗ Lj,k ! RLT updates9

end10

for k < j and Rj,k �= 0 do11

Aj:n,j ⇐ Aj:n,j − Lj:n,k ∗Rj,k ! LRT updates12

end13

while k < j and Rj,k �= 0 do14

while i >= j and Ri,k �= 0 do15

if Ai,j �= 0 ! Handle RRT entries by allowing those that cause no fill.16

Ai,j ⇐ Ai,j −Ri,k ∗Rj,k17

else ! JM modification for all other off-diagonal entries.18

Aj,j ⇐ Aj,j + |Ri,k ∗Rj,k|19

Ai,i ⇐ Ai,i + |Ri,k ∗Rj,k|20

end21

end22

end23

Put into L:,j the min{lsize+ nj , n− j} entries of A:,j of largest magnitude,24

provided they are at least droptol125

26

Put into R:,j the min{rsize, n− j} entries of A:,j that are next largest in27

magnitude, provided they are at least droptol228

29

Denote the entries As1,j , . . . , Asj ,j that are not in L:,j or R:,j by Sj30

Perfom JM modification on these entries31

for each Ask,j ∈ Sj with wsk = 0 do32

Aj,j ⇐ Aj,j + |Lsk,j |33

Ak,k ⇐ Ak,k + |Lsk,j |34

end35

36

Scale Lj+1:n,j ⇐ Lj+1:n,j/
√
Aj,j, Rj+1:n,j ⇐ Rj+1:n,j/

√
Aj,j37

Set Lj,j =
√
Aj,j and reset w = 038

39

end40

Algorithm 4.1 presents an outline of our memory-limited IC factorization. It
shows the basic steps but, for simplicity, omits details of our sparse implementation.
Because the limited memory approach is not guaranteed to be breakdown free, in
practice we combine it with using a global diagonal shift using a strategy similar to
that of [30] (see [43] for details). For clarity, we omit this from the outline. The user is
required to provide the memory parameters lsize and rsize plus the drop tolerances
droptol1 and droptol2.
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POSITIVE SEMIDEFINITE MODIFICATION SCHEMES FOR IC A619

In our experiments (section 5.6), we will consider applying Jennings–Malik mod-
ifications in a number of different ways. They can be applied to all the entries of L
and R that are smaller than the drop tolerances droptol1 and droptol2, respectively;
this corresponds to lines 30–35 in the algorithm. They can also be used for the entries
that correspond to the off-diagonal entries of RRT . This use corresponds to lines
18–21. The (limited memory) Tismenetsky approach discards all entries of RRT and
corresponds to deleting lines 14–23.

5. Numerical experiments.

5.1. Test environment. All the numerical results reported on in this paper are
performed (in serial) on our test machine that has two Intel Xeon E5620 processors
with 24 GB of memory. Our software is written in Fortran and the ifort Fortran com-
piler (version 12.0.0) with option -O3 is used. The implementation of the conjugate
gradient algorithm offered by the HSL routine MI22 is employed, with starting vector
x0 = 0, the right-hand side vector b computed so that the exact solution is x = 1,
and stopping criteria

(5.1) ‖Ax̂− b‖2 ≤ 10−10‖b‖2,
where x̂ is the computed solution. In addition, for each test we impose a limit of 2000
iterations. In all the tests, we order and scale the matrix A prior to computing the
incomplete factorization. Based on numerical experiments (see [43]), we use a profile
reduction ordering based on a variant of the Sloan algorithm [40, 45, 46]. We also
use l2 scaling, in which the entries in column j of A are normalized by the 2-norm
of column j; this scaling is chosen as it is used by Lin and Moré [30] in their ICFS
incomplete factorization code and it is inexpensive and simple to apply. Note that
it is important to ensure the matrix A is prescaled before the factorization process
commences; other scalings are available and yield comparable results, but if no scaling
is used, the effectiveness of the incomplete factorization algorithms used in this paper
can be significantly affected (see [43] for some results).

We define the iteration count for an incomplete factorization preconditioner for a
given problem to be the number of iterations required by the iterative method using
the preconditioner to achieve the requested accuracy and we define the preconditioner
size to be the number of entries nz(L) in the incomplete factor L.

While we are well aware that the number of entries in the preconditioner may
increase but its effectiveness decreases, in many practical situations, the mutual rela-
tion between the iteration count and preconditioner size provides an important insight
into the usefulness of an incomplete factorization preconditioner if we assume that the
following two important conditions are fulfilled:

1. the preconditioner is sufficiently robust with respect to changes to the param-
eters of the decomposition, such as the limit on the number of entries in a
column of L and of R;

2. the time required to compute the preconditioner grows slowly with the prob-
lem dimension n.

We define the efficiency of the preconditioner P to be

(5.2) iter × nz(L),

where iter is the iteration count for P = (LLT )−1 (see [42]). Assuming the IC
preconditioners Pq = (LqL

T
q )

−1 (q = 1, . . . , r) each satisfy the above conditions, we
say that for solving a given problem, Pi is the most efficient of the r preconditioners if
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A620 JENNIFER SCOTT AND MIROSLAV TŮMA

(5.3) iteri × nz(Li) ≤ min
q �=i

(iterq × nz(Lq)).

We use this measure of efficiency in our numerical experiments.
A weakness of this measure is that it does not taken into account the number of

entries in R. We anticipate that with the number of entries in each column of L fixed,
increasing the permitted number of entries in each column of R will lead to a more
efficient preconditioner. However, this improvement will be at the cost of additional
work in the construction of the preconditioner. Thus we record the time to compute
the preconditioner together with the time for convergence of the iterative method: the
sum of these will be referred to as the total time and will also be used to assess
the quality of the preconditioner. Note that the efficiency (5.2) is independent of
nz(A). During the application of the iterative solver, the operations with A can be
implemented by the user in various ways. (MI22 is a reverse communication code so
that it is the user’s responsibility to decide how to implement matrix-vector products.)
In this study, a simple matrix-vector product routine is used with the lower triangular
part of A held in compressed sparse column format: we have not attempted to perform
either the matrix-vector products or the application of the preconditioner in parallel
and all times are serial times.

Our test problems are real positive-definite matrices of order at least 1000 taken
from the University of Florida Sparse Matrix Collection [10]. Many papers on pre-
conditioning techniques and iterative solvers select a small set of test problems that
are somehow felt to be representative of the applications of interest. However, our
interest is more general and we want to test the different ideas and approaches on
as wide a range of problems as we can. Thus we took all such problems and then
discarded any that were diagonal matrices and, where there was more than one prob-
lem with the same sparsity pattern, we chose only one representative problem. This
resulted in a test set of 153 problems of order up to 1.5 million. Following initial
experiments, 8 problems were removed from this set as we were unable to achieve
convergence to the required accuracy within our limit of 2000 iterations without al-
lowing a large amount of fill. The same set of tests problems is used in each of the
experiments reported on in this paper. To assess performance on our test set, we use
performance profiles [12]. A performance profile measures the relative performance
of two or more preconditioners on a set S of problems. Let ek,P be the efficiency of
using preconditioner P to solve problem k and define the efficiency performance ratio
to be ratiok,P = ek,P /min{ek,Pi : for all Pi}. If the number of problems in S is N ,
the efficiency performance profile for P

ρP (τ) = (1/N) | {k ∈ S : ratiok,P ≤ τ}|
is the probability that an efficiency performance ratio ratiok,P is within a factor τ of
the best possible ratio. For instance, ρP (1) gives the fraction of the test problems for
which P is the most efficient preconditioner and ρP (2) gives how often P can get re-
sults with an efficiency that is within twice that of the best preconditioner. The closer
ρP is to 1, the greater the probability that preconditioner P can solve all problems
from S. By plotting the curves ρPi(τ) on a single plot we can easily compare them and
deduce information about the relative performance of the respective preconditioners.

5.2. No intermediate memory, without Jennings–Malik modifications.
We first present results for lsize varying and rsize = 0, without Jennings–Malik
modifications for the discarded entries. We set the drop tolerance droptol1 to zero.
This is very similar to the ICFS code of Lin and Moré [30]. The efficiency and
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POSITIVE SEMIDEFINITE MODIFICATION SCHEMES FOR IC A621

iteration performance profiles are given in Figure 1. Note that the asymptotes of the
performance profile provide a statistic on reliability and as the curve for lsize = 5
lies below the others on the right-hand axis of the profiles in Figure 1, this indicates
poorer reliability for small lsize. We see that increasing lsize improves reliability and
reduces the number of iterations for convergence but the efficiency is not very sensitive
to the choice of lsize (although, of course, the time to compute the factorization and
the storage for L increase with lsize). This suggests that when performing numerical
experiments it is not necessarily appropriate to consider just one of the counts used
in (5.2) without also checking its relation to the other. If the preconditioner is to be
used in solving a sequence of problems (so that the time to compute the incomplete
factorization becomes an insignificant part of the total time compared to the case of a
single problem), the user may want to choose the parameter settings to reduce either
the iteration count or the preconditioner size, depending on which they consider to
be the most important.
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Fig. 1. Efficiency (top) and iteration (bottom) performance profiles for lsize varying and
rsize = 0.
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5.3. No intermediate memory, with Jennings–Malik modifications. We
now explore the effects of Jennings–Malik modifications (still with rsize = 0). We
first consider the structure-based approach originally proposed by Jennings and Malik
that compensates for all the entries that are not retained in the factor. (Only lsize fill
entries are retained, with no tolerance-based dropping.) Our findings are presented
in Figure 2. We see that the best results are without using standard Jennings–Malik
modifications (SJM = F) and that if it is used (SJM = T), increasing lsize has
little effect on the efficiency (but improves the reliability). The advantage of using
the modifications is that for the majority of the test problems, the factorization is
breakdown free. However, a closer look at the results shows that the penalty for
this breakdown-free property can be a poor quality preconditioner. Whereas using
a diagonal shift led to convergence failure for just two of our test problems, with
Jennings–Malik modifications there were 11 convergence failures (lsize = 10). In
Table 1, we present detailed results for some of our test problems that used a nonzero
diagonal shift. We report the number of shifts used, the number of iterations of CG
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Fig. 2. Efficiency (top) and iteration (bottom) performance profiles with (SJM = T) and
without (SJM = F) Jennings–Malik modifications for rsize = 0.
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Table 1

A comparison of using a global diagonal shift (SJM = F) with the Jennings–Malik strategy
(SJM = T) (rsize = 0, lsize = 10). The figures in parentheses are the number of diagonal shifts
used and the final shift; times are in seconds.

Problem Iterations Factor time Total time
F T F T F T

HB/bcsstk28 232 (2, 2.0× 10−3) 468 0.025 0.026 0.120 0.221
Cylshell/s3rmq4m1 648 (2, 2.0× 10−3) 838 0.027 0.026 0.381 0.459
Rothberg/cfd2 550 (4, 3.2× 10−2) 791 0.541 0.442 5.85 6.42
GHS psdef/ldoor 434 (3, 8.0× 10−3) 643 6.63 4.04 66.4 91.5
GHS psdef/audikw 1 708 (2, 2.0× 10−3) 1442 11.3 8.66 157 303

required for convergence, the time to compute the preconditioner, and the total time.
(The reported times includes the time taken to restart the factorization following
breakdown.) In each case, using a diagonal shift leads to a reduction in the iteration
count, and this can be by more than a factor of two. This, in turn, reduces the
time for the conjugate gradient algorithm and this reduction generally more than
offsets the additional time taken for the factorization as a result of restarting. We
remark, however, that Benzi [5] reports that for some highly sparse matrices (where
few modifications are necessary) Jennings–Malik modifications can work well (see
also [6]) and this is fully consistent with Theorem 3.3 and the comments following its
proof.

We now consider a dropping-based Jennings–Malik strategy in which off-diagonal
entries that are less than a chosen tolerance droptol1 in absolute value are dropped
from L and added to the corresponding diagonal entries. The largest (in absolute
value) entries in each column j (up to lsize + nj entries) are retained in the com-
puted factor. Figure 3 presents an efficiency performance profile for a range of values
of droptol1. We include droptol1= 0 (no dropping and no modifications). Although
not given here, the total time performance profile is very similar. For these experi-
ments, we use lsize = 10. We see that as droptol1 increases, the efficiency steadily
deteriorates and the robustness of the preconditioner decreases. In Figure 4, we com-
pare dropping small entries without modifications (denoted by JM = F) with using
Jennings–Malik modifications (JM = T). It is clear that in terms of efficiency, it is
better not to use the Jennings–Malik modifications. However, an advantage of the
latter is that taken over the complete test set, it reduces the number of breakdowns
and subsequent restarts. Furthermore, the computed incomplete factor is generally
sparser when Jennings–Malik modifications are used, potentially reducing its appli-
cation time.

5.4. Results for rsize varying, without Jennings–Malik modifications.
We have seen that increasing lsize with rsize = 0 does little to improve the efficiency
of the preconditioner. We now consider fixing the incomplete factor size (lsize = 5)
and varying the amount of intermediate memory (controlled by rsize). We run with no
intermediate memory, rsize = 2, 5, and 10, and with unlimited intermediate memory.
(All entries in R are retained, which we denote by rsize = −1.) Note that the latter
is the original Tismenetsky approach with the memory limit lsize used to determine
L. Figure 5 presents the efficiency (top left), time to compute the preconditioner
(top right), and total time (bottom left) performance profiles. Since lsize is the same
for all runs, the fill in L is essentially the same in each case and thus comparing the
efficiency here is equivalent to comparing the iteration counts. For many of our test
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Fig. 3. Efficiency performance profile for the Jennings–Malik strategy based on a drop tolerance
for rsize = 0 and a range values of the drop tolerance droptol1.
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Fig. 4. Efficiency performance profile with (JM = T) and without (JM = F) the Jennings–
Malik strategy based on a drop tolerance. Here rsize = 0.

problems, we see that the Tismenetsky approach (rsize = −1) gives the most efficient
preconditioner but it is also expensive to compute and we were not able to factorize
a number of our largest problems in this case because of insufficient memory, that is,
a memory allocation error was returned before the factorization was complete; this
is reflected by poor reliability and, as anticipated, makes the original Tismenetsky
approach impractical for large problems.

We see that, as rsize is increased from 0 to 10, the efficiency and robustness
of the preconditioner steadily increases (along with the time to compute it), but
without significantly increasing the total time. Since a larger value of rsize reduces
the number of iterations required, if more than one problem is to be solved with the
same preconditioner, it may be worthwhile to increase rsize in this case (but the
precise choice of rsize is not important).
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Fig. 5. Efficiency (top), time to compute the preconditioner (middle), and total time (bottom)
performance profiles for rsize varying.
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Fig. 6. Efficiency performance profile for different pairs (lsize, rsize) with lsize+ rsize = 10.

5.5. Results for lsize+rsize constant, without Jennings–Malik modifi-
cations. We present the efficiency performance profile for tsize = lsize+ rsize = 10
in Figure 6. We see that increasing rsize at the expense of lsize can improve effi-
ciency. This is because the computed L is sparser for smaller lsize, while the use of
R helps maintains the quality of the preconditioner.

It is of interest to compare Figure 6 with Figure 1 (in the latter, lsize varies but
rsize = 0); this clearly highlights the effects of using R. In terms of time, increasing
rsize while decreasing lsize keeps the time for computing the incomplete factorization
essentially the same, while the cost of each application of the preconditioner reduces,
but as the number of iterations increases, we found in our tests that the total time
(in our serial implementation) for tsize constant was not very sensitive to the split
between lsize and rsize.

5.6. Results for rsize > 0, with Jennings–Malik modifications. We now
consider Jennings–Malik diagonal modifications used with rsize > 0. In our dis-
cussion, we refer to line numbers within Algorithm 4.1. We present results for three
strategies for dealing with the entries of RRT , denoted by jm = 0, 1, and 2. These
strategies can be also considered as a new development motivated by Theorem 3.3.
When computing column j, we gather updates to column j of L and column j of
R from the previous j − 1 columns of L and from the previous j − 1 columns of R
according to the formula LLT + RLT + LRT . We then consider gathering updates
to column j of R from the previous j − 1 columns of R (RRT ). We will distinguish
three different cases. With jm = 0, we allow entries of RRT that cause no further
fill in LLT + RLT + LRT and discard all other entries of RRT . In this case, we do
not use the Jennings–Malik modification on the lines 19–20 (that is, we delete the
lines Aj,j = Aj,j + |Ri,k ∗ Rj,k| and Ai,i = Ai,i + |Ri,k ∗ Rj,k|). This decreases the
norm of the modification. With jm = 1, we use Jennings–Malik modification for these
discarded entries (that is, lines 19–20 are used). Finally, with jm = 2, we discard
all entries of RRT ; this is our limited memory variant of the Tismenetsky approach
(it deletes lines 14–22). An efficiency performance profile is presented in Figure 7
for lsize = rsize = 5 and 10. Note that here we do not apply Jennings–Malik
modifications to the entries that are discarded from column j of R before it is stored
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Fig. 7. Efficiency performance profile for lsize = rsize = 5 and 10 with jm = 0, 1, 2.

and used in computing the remaining columns of L and R. (Only the rsize largest
entries are retained in each column of R.) This corresponds to deleting lines 30–35.
We see that, considering the whole test set, there is generally little to choose between
the three approaches. We also note the very high level of reliability when allowing
only a modest number of entries in L. (For lsize = 10, the only problem that was
not solved with jm = 0 and jm = 2 was Oberwolfach/boneS10.)

We also want to determine whether Jennings–Malik modifications for the entries
that are discarded from R is beneficial. In Figure 8, we compare running with and
without Jennings–Malik modifications (that is, with and without lines 30–35). We
can clearly see that in terms of efficiency, time, and reliability, using modifications for
the dropped entries is not, in general, beneficial.

In Table 2, we present some more detailed results with and without Jennings–
Malik modification for the discarded entries. If Jennings–Malik modification is not
used, the problems in the top part of the table require diagonal shifts to prevent
breakdown. With Jennings–Malik modification, there is no guarantee that a shift will
not be required (examples are Cylshell/s3rmt3m3 and DNVS/shipsec8) but fewer
problems require a shift. (In our test set, with and without the use of Jennings–Malik
modification the number of problems that require a shift with the chosen parame-
ter settings is 16 and 59, respectively.) From our tests, we see that using diagonal
shifts generally results in a higher-quality preconditioner than using Jennings–Malik
modification and, even allowing for the extra time needed when the factorization is
restarted, the former generally leads to a smaller total time. Note that for problem
Janna/Serena, using a diagonal shift leads to a higher-quality preconditioner but, as
four shifts are used, the factorization time dominates and leads to the total time being
greater than for Jennings–Malik modifications. In this case, the initial nonzero shift
α1 = 0.001 leads to a breakdown-free factorization and, as we want to use as small a
shift as possible, we decrease the shift (see [43] for full details). However, if we do not
try to minimize the shift, the total time is reduced from 69.6 to 38.9 seconds. Clearly,
how sensitive the results are to the choice of α is problem dependent.

For the problems that are breakdown free, the preconditioner is of better quality
if Jennings–Malik modifications are not used: this is true for all our breakdown-free
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Fig. 8. Efficiency (top) and total time (bottom) performance profiles with (T) and without (F)
Jennings–Malik modifications for the discarded entries (lsize = rsize = 10).

Table 2

A comparison of using (T) and not using (F) Jennings–Malik modifications for the discarded
entries (jm = 2, lsize = rsize = 10). The figures in parentheses are the number of diagonal shifts
used and the final shift; times are in seconds.

Problem Iterations Factor time Total time
T F T F T F

FIDAP/ex15 503 (0, 0.0) 322 (3, 1.60× 10−2) 0.022 0.033 0.184 0.135
Cylshell/s3rmt3m3 1005 (3, 2.50× 10−4) 615 (2, 2.00× 10−3) 0.066 0.034 0.495 0.299
Janna/Fault 639 300 (0, 0.0) 122 (3, 2.50× 10−4) 6.03 8.74 31.6 18.5
ND/nd24k 407 (0, 0.0) 173 (3, 2.50× 10−4) 2.56 3.71 14.2 8.59
DNVS/shipsec8 956 (4, 9.76× 10−7) 648 (3, 2.50× 10−4) 3.53 1.43 17.2 10.3
GHS psdef/audikw 1 1447 (0, 0.0) 517 (2, 2.00× 10−3) 14.1 21.1 335 106
Janna/Serena 165 (0, 0.0) 122 (4, 9.76× 10−7) 12.7 44.9 44.9 69.6
HB/bcsstk24 133 (4, 9.76× 10−7) 344 (3, 1.00× 10−3) 0.093 0.037 0.133 0.142

GHS psdef/crankseg 2 251 (0, 0.0) 49 (0, 0.0) 2.46 2.17 10.1 3.64
Schenk/AF-shell7 389 (0, 0.0) 325 (0, 0.0) 2.21 1.98 23.5 20.1
Oberwolfach/bone010 1912 (0, 0.0) 1481 (0, 0.0) 12.6 10.1 382 281
Janna/Emilia 923 147 (0, 0.0) 101 (0, 0.0) 7.09 5.45 24.3 16.7
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Fig. 9. Efficiency (top), iteration (middle), and total time (bottom) performance profiles for
L+R and L with jm = 0 and 2.
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test problems. Our experiments demonstrate that using modifications can lead to a
substantial increase in the iteration count (see, for example, GHS psdef/crankseg 2).
Moreover, when no restarts are required, the use of modifications increases the fac-
torization time.

5.7. The use of L + R. So far, we have used R in the computation of L,
but once the incomplete factorization has finished, we have discarded R and used
L as the preconditioner. We now consider using L + R as the preconditioner. In
Figure 9, we present performance profiles for L+ R and L with jm = 0 and 2. Here
lsize = rsize = 10, droptol1= 0.001, droptol2= 0.0. We see that in terms of efficiency,
using L is better than using L + R. This is because the number of entries in L is
much less than in L+R. However, L+R is a higher-quality preconditioner, requiring
fewer iterations for convergence (with jm = 0 giving the best results). In terms of
total time, there is little to choose between using L+R and L.

6. Conclusions. In this paper, we have focused on the use of positive semidef-
inite modification schemes for computing IC factorization preconditioners. We have
studied in particular the methods proposed originally by Jennings and Malik and
by Tismenetsky and we have presented new theoretical results that aim to achieve
a better understanding of the relationship between them. To make the robust but
memory-expensive approach of Tismenetsky into a practical algorithm for large-scale
problems, we have incorporated the use of limited memory.

A major contribution of this paper is the inclusion of extensive numerical exper-
iments. We are persuaded that using a large test set drawn from a range of practical
applications allows us to make general and authoritative conclusions. The experi-
ments emphasize the concept of the efficiency of a preconditioner (defined by (5.2)) as
a measure that can be employed to help capture preconditioner usefulness, although
we recognize that it can also be necessary to consider other statistics (such as the
time and the number of iterations).

Without the use of intermediate memory (rsize = 0), our results have shown that
increasing the amount of fill allowed within a column of L (that is, increasing lsize)
does not generally improve the efficiency of the preconditioner. The real improvement
comes through following Tismenetsky and introducing intermediate memory. In our
version, we prescribe the maximum number of entries in each column of both L and
R; we also optionally allow small entries to be dropped to help further sparsify the
preconditioner without significant loss of efficiency. Our results show that this leads to
a highly robust yet sparse IC preconditioner. An interesting finding is that increasing
rsize at the expense of lsize can result in a sparser preconditioner without lose of
efficiency.

Our experiments have shown that using Jennings–Malik modifications to make the
Tismenetsky approach breakdown free is less effective than employing global diagonal
shifts. We obtained the same conclusion for a number of variations of the Jennings–
Malik strategy. Provided we can catch zero or negative pivots and then restart the
factorization process using a global diagonal shift, we can handle breakdowns. In our
tests, this well-established approach was found to be the more efficient overall, that
is, it produced a higher-quality preconditioner than using a Jennings–Malik scheme to
modify diagonal entries. However, we must emphasize that this conclusion relies on
having appropriately prescaled the matrix; if not, a large number of restarts can be
required (adding to the computation time) and the diagonal shift needed to guarantee
a breakdown-free factorization can be so large as to make the resulting IC precondi-
tioner ineffective. Of course, the Jennings–Malik strategy can suffer from the same
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type of drawback, namely, although the factorization is breakdown free, the resulting
preconditioner may not be efficient (see [11]). Indeed, if many fill entries are dropped
from the factorization, large diagonal modifications may be performed, reducing the
accuracy of the preconditioner.

Finally, we note that we have developed a library-quality code HSL MI28 based
on the findings of this paper. (See [43] for details and for numerical comparisons with
other approaches.) This is a general-purpose IC factorization code and is available as
part of the HSL mathematical software library [20]. The user specifies the maximum
column counts for L and R (and thus the amount of memory to be used for the
factorization) but, importantly for nonexperts, it is not necessary to perform a lot
of tuning since although the default settings of the control parameters will clearly
not always be the best choices for a given class of problems, they have been chosen
to give good results for a wide range of problems. Of course, a more experienced
user may choose to perform experiments and then to reset the controls. This “black-
box” approach is in contrast to the Tismenetsky–Kaporin-related work reported, for
example, by Yamazaki et al. [54], where by restricting attention to a specific class of
problems, it is possible to determine an interval of useful drop tolerances that limit
the size of the computed factor.
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