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Abstract. Models for piezoelectric beams and structures with piezoelectric patches generally
ignore magnetic effects. This is because the magnetic energy has a relatively small effect on the
overall dynamics. Piezoelectric beam models are known to be exactly observable, and can be expo-
nentially stabilized in the energy space by using a mechanical feedback controller. In this paper, a
variational approach is used to derive a model for a piezoelectric beam that includes magnetic effects.
It is proven that the partial differential equation model is well-posed. Magnetic effects have a strong
effect on the stabilizability of the control system. For almost all system parameters the piezoelectric
beam can be strongly stabilized, but is not exponentially stabilizable in the energy space. Strong
stabilization is achieved using only electrical feedback. Furthermore, using the same electrical feed-
back, an exponentially stable closed-loop system can be obtained for a set of system parameters of
zero Lebesgue measure. These results are compared to those of a beam without magnetic effects.

Key words. Voltage-controlled piezoelectric beam, strongly coupled wave system, exact ob-
servability, stabilizability, current feedback.

1. Introduction. Piezoelectric actuators have a unique characteristic of con-
verting mechanical energy to electrical and magnetic energy, and vice versa. Therefore
they could be used as actuators or sensors. Piezoelectric actuators are generally scal-
able, smaller, less expensive and more efficient than traditional actuators, and hence,
a competitive choice for many tasks in industry, particularly those involving control
of structures. Piezoelectric materials been employed in civil, industrial, automotive,
aeronautic, and space structures.

Fig. 1.1: For a voltage-actuated beam/plate, when voltage V (t) is supplied to the electrodes, an

electric field is created between the electrodes, and therefore the beam/plate either shrinks or extends.

In modeling of piezoelectric systems, three major effects and their interrelations
need to be considered: mechanical, electrical, and magnetic. Mechanical effects are
generally modeled through Kirchhoff, Euler-Bernoulli, or Mindlin-Timoshenko small
displacement assumptions; see, for instance, [3], [12], [28], [39]. To include electrical
and magnetic effects, there are mainly three approaches: electrostatic, quasi-static,
and fully dynamic [29]. Electrostatic and quasi-static approaches are widely used -
see, for instance, [9], [12], [14], [17], [25], [28], [29], [35]. These models completely
exclude magnetic effects and their coupling with electrical and mechanical effects. In
a electrostatic approach, electrical effects are stationary, even though the mechanical
equations are dynamic. In the case of quasi-static approach, magnetic effects are still
ignored but electric charges have time dependence. The electromechanical coupling
is not dynamic.
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A piezoelectric beam is an elastic beam with electrodes at its top and bottom
surfaces, insulated at the edges (to prevent fringing effects), and connected to an ex-
ternal electric circuit. (See Figure 1.1). These are the simplest structures on which to
study the interaction between the electrical and mechanical energy in these systems.
It is experimentally observed that the magnetic effects are minor in the overall dy-
namics for polarized ceramics (see the review article [40]), and therefore these effects
are ignored in piezoelectric beam models. A single piezoelectric beam either shrinks
or extends when the electrodes are subjected to a voltage source. For a beam of
length L and thickness h, models derived by electrostatic and quasi-static approaches
with the Euler-Bernoulli small displacement assumptions (no damping) describe the
stretching motion as

ρvtt − α1vxx = 0, (x, t) ∈ (0, L)× R+

v(0, t) = 0, α1vx(L, t) = −γV (t)

h
, t ∈ R+

(v, v̇)(x, 0) = (v0, v1), x ∈ [0, L]

(1.1a)

(1.1b)

(1.1c)

where ρ, α1, γ denote mass density, elastic stiffness, and piezoelectric coefficients of
the beam, respectively, V (t) denotes the voltage applied at the electrodes, and v
denotes the longitudinal displacement of the beam. In these models an elliptic-type
differential equation for the electrical component is obtained due to Gauss’ law 2.14.
Solving this equation and then substituting into the mechanical equations leads to
the wave equation (1.1). (See (2.20) with µp̈ ≡ 0. ) The system (1.1) is a well-
posed boundary control problem on an appropriate Sobolev space. As a side note,
both Kirchhoff and Mindlin-Timoshenko small displacement assumptions yield the
same stretching equations (1.1). From the control theory point of view, it is well-
known that a single wave equation (1.1) can be exactly controlled in the energy space
(therefore the uncontrolled system, i.e. V (t) ≡ 0, is exactly observable). With a
mechanical feedback controller in the form of boundary damping V (t) = vt(L, t), the
solutions of the closed-loop system are exponentially stable in the energy space (i.e.
[15] and references therein).

Exact observability and exponential stabilizability if magnetic effects are included
in the mathematical models is investigated in this paper. In the fully dynamic ap-
proach, magnetic effects are included, and hence the wave behavior of the electromag-
netic fields. We obtain a strongly coupled system of wave equations, one for stretching
and one for magnetic effects. Voltage control comes into the play through only one
boundary condition at one end. The problem of exponentially stabilizability is essen-
tially one of simultaneous stabilizability since a single control needs to stabilize two
coupled wave equations. Simultaneous control problems for wave and beam systems
have been studied by a number of researchers, including [6], [15], [19], [26], [32]. In
[32] conditions for simultaneous exact controllability are obtained for decoupled sys-
tems with the same input function. In [15] the controllability of coupled strings of
different lengths connected at one end point is considered. It is shown that controlla-
bility in finite time, in a smaller space than the natural energy space, is determined
by the ratios of the string lengths. Simultaneous controllability for general networks
are considered in [6].

It is proven here that for almost all choices of system parameters a simple electrical
feedback controller (current flowing through the electrodes) yields strong stability.
However, for almost all system parameters, the uncontrolled system is not exactly
observable in the energy space, and therefore there is no feedback V (t) that makes
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the system exponentially stabilizable in the energy space. Finally, it is shown that the
system can be exponentially stabilized only for a set of system parameters of Lebesque
measure zero. This behavior is qualitatively very different from the electrostatic or
quasi-static models.

This paper is organized as follows. In Section 2, a variational approach is used
to derive the model; a system of partial differential equations that include magnetic
effects. In section 3, well-posedness of the model is shown and also and strong stabi-
lizability for a class of parameters. Strong stabilizability is achieved with a feedback
operator that is dual to the control operator. This feedback is purely electrical. Fi-
nally in Section 4 observability and exponential stabilizability is shown to depend on
system parameters. If the system is exponentially stabilizable, exponential stability
is achieved with the same electrical feedback.

Throughout this paper, dots (ẇ) indicates differentiation with respect to time,
d
dx1

= d
dx and ∂Ω indicates the boundary of the beam Ω.

A Magnetic potential vector ib Volume current density

B Magnetic flux density vector n Surface unit outward normal vector

β Impermittivity coefficients σs Surface charge density

c, α Elastic stiffness coefficients σb Volume charge density

γ Piezoelectric coefficients S Strain tensor

D Electric displacement vector T Stress tensor

E Electric field intensity vector v Longitudinal displacement

ε Permittivity coefficients h Thickness of the beam

f1 Lateral force resultant in x1 direction H Magnetic field intensity vector

f̃1 Lateral force in x1 direction V Voltage (constant in space)

f3 Transverse force resultant in x3 direction w Transverse displacement

f̃3 Transverse force in x3 direction µ Magnetic permeability of beam

U1 x1 component of the displacement field ρ Mass density per unit volume

U3 x3 component of the displacement field φ Electric potential

is Surface current density

Table 1.1: Notation

2. Piezoelectric beam model with magnetic effects. Let x1, x3 be the lon-
gitudinal and transverse directions, respectively. Let the piezoelectric beam occupy
the region Ω = [0, L]× [−h2 ,

h
2 ] where h << L. A very widely-used linear constitutive

relationship [29] for piezoelectric beams is(
T
D

)
=

[
c −γT

γ ε

](
S
E

)
(2.1)

where T = (T11, T22, T33, T23, T13, T12)T is the stress vector,
S = (S11, S22, S33, S23, S13, S12)T is the strain vector, D = (D1, D2, D3)T and E =
(E1, E2, E3)T are the electric displacement and the electric field vectors, respectively,
and moreover, the matrices [c], [γ], [ε] are the matrices with elastic, electro-mechanic
and dielectric constant entries (for more details the reader can refer to [29]). A list of
all notation used for the piezoelectric beam model is in Table 1. Under the assumption
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of transverse isotropy and polarization in x3−direction, these matrices reduce to

c =


c11 c12 c13 0 0 0
c21 c22 c23 0 0 0
c31 c32 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

 , γ =

 0 0 0 0 γ15 0
0 0 0 −γ15 0 0
γ31 γ31 γ33 0 0 0



ε =

 ε11 0 0
0 ε22 0
0 0 ε33

 .
Since h << L, assume that all forces acting in the x2 direction are zero. Moreover,

T33 is also assumed to be zero. Therefore

T = (T11, T13)T, S = (S11, S13)T, D = (D1, D3)T, E = (E1, E3)T

and (2.1) reduces to
T11

T13

D1

D3

 =


c11 0 0 −γ31

0 c55 −γ15 0
0 γ15 ε11 0
γ31 0 0 ε33




S11

S13

E1

E3

 .

Finally, for an Euler-Bernoulli beam, the shear stress S13 = 0. (See 2.12. ) The linear
constitutive equations for an Euler-Bernoulli piezoelectric beam are thus

T11 = c11S11 − γ31E3

T13 = −γ15E1

D1 = ε11E1

D3 = γ31S11 + ε33E3.

(2.2a)

(2.2b)

(2.2c)

(2.2d)

Lagrangian. Let K,P,E and B denote kinetic, potential, electrical, magnetic
energies of the beam, respectively, and W is the work done by the external forces.
Moreover, P−E + B is often called electrical enthalpy.

To model charge or current-controlled piezoelectric beams, that is, charge density
or current density are prescribed at the electrodes, the pair (S,E) are taken to be the
independent variables. The Lagrangian [18, 21]

L =

∫ T

0

[K− (P−E + B) + W] dt (2.3)

with constitutive equations (2.2) is appropriate. For the Lagrangian L, the work done
by the external forces is

W =

∫
Ω

(
f̃1U1 + f̃3U3

)
dX +

∫
∂Ω

σ̄sφ dΓ

where f̃1, f̃3 are external lateral and transverse forces respectively, σ̄s is the surface
charge prescribed at the electrodes, and (U1, U3) is the displacement field (see (2.11));
the external forces are as defined in [16]. Therefore

δW =

∫
Ω

(
f̃1δU1 + f̃3δU3

)
dX +

∫
∂Ω

σ̄sδφ dΓ.
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For voltage-driven electrodes, voltage is prescribed at the boundaries, and a dif-
ferent Lagrangian is needed so that the applied voltage appears in the work term.
Applying a Legendre transformation to L yields

L̃ =

∫ T

0

[K− (P + E) + B + W] dt (2.4)

where P+E is the total stored energy of the beam. The new Lagrangian L̃ is a function
of independent variables (S,D). The constitutive relationship (2.2) transforms to the
following relationship for (T,E)

T11 = αS11 − γβD3

T13 = −γ1β1D1

E1 = β1D1

E3 = −γβS11 + βD3

(2.5a)

(2.5b)

(2.5c)

(2.5d)

where

γ = γ31, γ1 = γ15 α = α1 + γ2β, α1 = c11, β =
1

ε33
, β1 =

1

ε11
. (2.6)

Calling δ(·) the variation of the corresponding quantity, L̃ in (2.4) is obtained by
applying the Legendre transformation to L :

δL =

∫ T

0

(
δK− δ

(
H +

∫
Ω

DiEi dX

)
+ δ

(
W +

∫
∂Ω

σsφ dΓ

))
dt = 0, (2.7)

where φ is the electric potential, H is the enthalpy [18] and

δH =

∫
Ω

(TijδSij −DkδEk +M · δB) dX

where M = 1
µB is the magnetic flux vector and µ is the permeability of the beam.

The new Lagrangian L̃ essentially remains the same since∫
Ω

δ(DiEi) dX = −
∫
∂Ω

δ(φDini) dΓ +

∫
Ω

δ(φ∇ ·D)−
∫

Ω

δ(M ·B) dX (2.8)

However, for the Lagrangian L̃, the work done by the external forces is given by

W =

∫
Ω

(
f̃1U1 + f̃3U3

)
dX +

∫
∂Ω

σsφ̄ dΓ (2.9)

where φ̄ (namely voltage) is the electric potential prescribed at the electrodes, and
therefore, using (2.15a),

δW =

∫
Ω

(
f̃1δU1 + f̃3δU3

)
dX +

∫
∂Ω

φ̄ δσs dΓ

=

∫
Ω

(
f̃1δU1 + f̃3δU3

)
dX −

∫
∂Ω

φ̄ (δDi)ni dΓ . (2.10)

Therefore, depending on the prescribed quantity at the electrodes, Lagrangian can be
chosen either L or L̃. In this paper, the voltage at the electrodes is controlled.
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Returning to the linear theory of Euler-Bernoulli beam small-displacement as-
sumptions, the displacement field is

U1 = v − x3
∂w

∂x1
, U3 = w (2.11)

where v = v(x1) and w = w(x1) denote the longitudinal displacement of the center
line, and transverse displacement of the beam, respectively. Since

S13 =
1

2

(
∂U1

∂x3
+
∂U3

∂x1

)
= 0, (2.12)

then the only strain component is given by

S11 =
∂U1

∂x1
=

∂v

∂x1
− x3

∂2w

∂x2
1

. (2.13)

Magnetic effects. The magnetic energy is added to the Lagrangian L̃ through
Maxwell’s equations. Let B denote magnetic field vector, and σb, ib, σs, is, V, µ, n
denote body charge density, body current density, surface charge density, surface
current density, voltage, magnetic permeability, and unit normal vector respectively.
Maxwell’s equations are

∇ ·D = σb in Ω× R+ (Electric Gauss’s law)

∇ · B = 0 in Ω× R+ (Gauss’s law of magnetism)

∇× E = − Ḃ in Ω× R+ (Faraday’s law)

1

µ
(∇× B) = ib + Ḋ in Ω× R+ (Ampére-Maxwell law)

(2.14a)

(2.14b)

(2.14c)

(2.14d)

with one of the essential electric boundary conditions prescribed on the electrodes
−D · n = σs on ∂Ω× R+ (Charge )

1

µ
(B× n) = is on ∂Ω× R+ (Current)

φ = V on ∂Ω× R+ (Voltage)

(2.15a)

(2.15b)

(2.15c)

and with a chosen mechanical boundary condition at the edges of the beam (the
beam is clamped, hinged, free, etc.). Since the electrodes are voltage-driven, (2.15c)
is appropriate.

In modeling piezoelectric beams, there are mainly three approaches to include
electric and magnetic effects [29]:
1) Electrostatic electric field: An electrostatic electric field is the most widely-used

approach. It completely ignores magnetic effects: B = Ḋ = ib = σb = 0.
Maxwell’s equations (2.14) reduce to ∇ · D = 0 and ∇ × E = 0. Therefore,
by Poincaré’s theorem [8] there exist a scalar electric potential such that
E = −∇φ and φ is determined up to a constant.

2) Quasi-static electric field: approach ignores some of the magnetic effects (polar-
izable but non-magnetizable materials) [29]: it is allowed that Ḋ and B are
non-zero, however σb = ib = 0. Therefore, (2.14) reduces to

∇ ·D = 0, ∇ · B = 0, Ḃ = −∇× E, Ḋ =
1

µ
(∇× B).
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The equation ∇ · B = 0 implies that there exists a magnetic potential vector
A such that B = ∇×A, by Poincáre’s theorem. It follows from substituting
B to Ḃ = −∇ × E that there exists a scalar electric potential φ such that
E = −∇φ− Ȧ. One simplification in this approach is to set A = 0 and Ȧ = 0
since A, Ȧ� φ. Note that Ḋ non-zero.

3) Fully dynamic electric field: Unlike the quasi-static assumption, A and Ȧ are left
in the model. Depending on the type of material, body charge density σb
and body current density ib can also be non-zero. Note that even though the
displacement current Ḋ is assumed to be non-zero in both quasi-static and
fully dynamic approaches, the term D̈ is zero in quasi-static approach since
Ȧ = 0.

In this paper, the third, dynamic, approach is used for the modeling of a piezo-
electric beam. Assume that there is neither external body charges nor body currents,
i.e., σb = ib ≡ 0. The magnetic field B is perpendicular to the x1 − x3 plane due
to (2.15b), and therefore B has only the y−component B2, and it is only a function
of x1 = x. This is simply because the surface current is at the electrodes have only
x−component (tangential) and B is perpendicular to both the outward normal vector
(n = (0, 0, 1) or n = (0, 0,−1)) at the electrodes and is. Also assume that E1 = 0,
and thus D1 = 0 by (2.5c). Therefore, Maxwell’s equations including the effects of B
become

∇ · B = 0, Ḃ = −∇× E, Ḋ =
1

µ
(∇× B).

It follows from the last equation that dB2

dx = −µḊ3, and so

B2 = −µ
∫ x

0

Ḋ3(ξ, x3, t) dξ.

The magnetic energy, which can be regarded as the “electric kinetic energy”, is

B =
1

2µ

∫
Ω

‖B‖2 dX =
1

2µ

∫
Ω

(B2)2 dX =
µ

2

∫
Ω

[∫ x

0

Ḋ3(ξ, x3, t)dξ

]2

dX.

The next assumption is that D3 does not vary in the thickness direction

D3(x, x3, t) = D3(x, t).

This assumption lines up with choice of electrical potential ϕ(x, z, t) defined above to
be linear in the thickness direction [25], i.e. ϕ(x, z, t) = ϕ0(x, t) + zϕ1(x, t). Therefore
the electric field component in the thickness direction satisfies

E3 =
∂ϕ

∂z
= βD3(x, t).

Now define

p =

∫ x

0

D3(ξ, t) dξ (2.16)

to be the total electric charge at point x. Therefore px = D3.
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Hamilton’s Principle. Using (2.5) (with D1 = 0), (2.2), (2.13), and the defi-
nition (2.16) of p, the stored energy (potential+ electric) P + E, magnetic energy B
and kinetic energy K of the beam are

P + E =
1

2

∫
Ω

(T11S11 +D3E3) dX

=
h

2

∫ L

0

[
α

(
v2
x +

h2

12
w2
xx

)
− 2γβvxpx + βp2

x

]
dx, (2.17)

B =
1

2µ

∫
Ω

‖B‖2 dX =
µh

2

∫ L

0

ṗ2 dx, (2.18)

K =
ρ

2

∫
Ω

(
U̇2

1 + U̇2
3

)
dX =

ρh

2

∫ L

0

[
v̇2 +

h2

12
ẇ2
x + ẇ2

]
dx. (2.19)

Defining

f1(x, t) =

∫ h/2

−h/2
f̃1(x, z, t) dz, f3(x, t) =

∫ h/2

−h/2
f̃3(x, z, t) dz

to be the external force resultants defined as in [16], and V (t) the voltage applied at
the electrodes, the work done by the external forces is

W =

∫
Ω

(
f̃1U1 + f̃3U3

)
dX −

∫
∂Ω

D3 φ̄ dΓ

=

∫ L

0

(f1v + f3w − pxV (t)) dx

=

∫ L

0

−pxV (t) dx

since there is no applied external force f̃1 or lateral force f̃2.
Application of Hamilton’s principle, setting the variation of admissible displace-

ments {v, w, p} of L̃ to zero, yields two sets of equations one for stretching and one
for bending with associated boundary conditions

Stretching:

{
ρv̈ − αvxx + γβpxx = 0

µp̈− βpxx + γβvxx = 0,

(2.20a)

(2.20b)

v(0) = p(0) = αvx(L)− γβpx(L) = 0, βpx(L)− γβvx(L) = −V (t)

h

(v, p, v̇, ṗ)(x, 0) = (v0, p0, v1, p1).

(2.20c)

(2.20d)

Bending:

{
ρhẅ +

ρh3

12
ẅxx +

αh3

12
wxxxx = 0, (2.21a)

{
w(0) = wx(0) = wxx(L) = wxxx(L) = 0

(w, ẇ)(x, 0) = (w0, w1).

(2.21b)

(2.21c)
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Equation (2.21) is the Rayleigh beam equation for bending. Neglecting the moment

of inertia term ρh3

12 ẅxx in (2.21), leads to the familiar Euler-Bernoulli beam equa-
tion. Use of Mindlin-Timoshenko small displacement assumptions instead of Euler-
Bernoulli leads to the same stretching equation (2.20) [24]. However, the equations
for the bending and rotation of the beam are different:

ρhẅ − ςh(ψ + wx)x = 0,

ρh3

12
ψ̈ − αh3

12
ψxx + ςh(ψ + wx) = 0,

(2.22a)

(2.22b)

{
ψ(0) = ψx(L) = w(0) = (ψ + wx)(L) = 0

(w,ψ, ẇ, ψ̇)(x, 0) = (w0, ψ0, w1, ψ1)

(2.22c)

(2.22d)

where ψ and ς denote the angle of rotation of the beam and shear stiffness coefficient,
respectively.

Note that the bending equation (2.21) in the Euler-Bernoulli beam case, and the
bending and rotation equations (2.22) in the Mindlin-Timoshenko case are completely
decoupled from the stretching equations (2.20). The applied voltage V (t) affects only
the stretching motion. Therefore throughout the rest of the paper only the stretching
equations (2.20) are considered.

Note that in the case of static magnetic effects, then µp̈ = 0 in (2.20b) and
(2.20b) can be solved for pxx. Elimination of pxx in (2.20a) yields the system (1.1).
This is the stretching equation obtained for a single piezoelectric beam in all of the
classical models, i.e. [3], [28], [29]. This model is known to be exactly observable and
stabilizable, i.e. see [15]. Similarly, the case of no electro-mechanical coupling, γ = 0,
the voltage V only affects p. We will assume throughout this paper that γ > 0 and
µ > 0 so that the stretching equations (2.20) are coupled.

3. Well-posedness. Define

H1
L(0, L) = {v ∈ H1(0, L) : v(0) = 0}, X = (L2(0, L))2,

and the complex linear space

H =
(
H1
L(0, L)

)2 × X.

Since we are neglecting the bending terms, the energy associated with (2.20) is, re-
calling from (2.6) that α = α1 + γ2β,

E =
1

2

∫ L

0

{
ρ|v̇|2 + µ|ṗ|2 + α1|vx|2 + β |γvx − px|2

}
dx. (3.1)

This motivates definition of the inner product on H

〈
u1

u2

u3

u4

 ,


v1
v2
v3
v4


〉

H

=

〈(
u3

u4

)
,

(
v3
v4

)〉
(L2(0,L)2

+

〈(
u1

u2

)
,

(
v1
v2

)〉
(H1

L
(0,L))2

=

∫ L

0

{ρu3v̄3 + µu4v̄4} dx+

∫ L

0

{α1(u1)x(v̄1)x

+β (γ(u1)x − (u2)x) (γ(v̄1)x − (v̄2)x)} dx

=

∫ L

0

{
ρu3v̄3 + µu4v̄4 +

〈(
α1 + γ2β −γβ
−γβ β

)(
u1x

u2x

)
,

(
v1x
v2x

)〉
C2

}
dx (3.2)
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where 〈·, ·〉C2 is the inner product on C2.
Rewriting the last term,

〈
v1
v2
v3
v4

 ,


v1
v2
v3
v4


〉

H

=

∫ L

0

{
ρ|v3|2 + µ|v4|2 + α1|v1x|2 + β |γv1x − v2x|2

}
dx,

and so 〈 , 〉 does indeed define an inner product, with induced norm∥∥∥∥∥∥∥∥


v
p
v̇
ṗ


∥∥∥∥∥∥∥∥

2

=
2

h
E.

Define the operator

A : Dom(A) ⊂ X→ X A =

(
−αρD

2
x

γβ
ρ D

2
x

γβ
µ D

2
x −βµD

2
x

)
, (3.3)

where

Dom(A) = {(w1, w2)T ∈ (H2(0, L) ∩ H1
L(0, L))2 ; w1x(L) = w2x(L) = 0}. (3.4)

The operator A can be easily shown to be a positive and self-adjoint operator.
For θ ≥ 0 define Xθ = Dom(Aθ) with the norm ‖ · ‖θ = ‖Aθ · ‖X The space X−θ is

the dual of Xθ pivoted with respect to X. For example, the inner product on X−1/2 is

〈z1, z2〉X−1/2
:=
〈
A−1/2z1, A

−1/2z2

〉
X
.

Using the definition of inner product 〈·, ·〉(H1
L(0,L))2 in (3.2) yields

〈z1, z2〉X1/2
=
〈
A1/2z1, A

1/2z2

〉
X

= 〈Az1, z2〉X = 〈z1, z2〉(H1
L(0,L))2 ,

and therefore

X0 = X, X1/2 = (H1
L(0, L))2, X−1/2 = ((H1

L(0, L))∗)2 (3.5)

where (H1
L(0, L))∗ is the dual space of H1

L(0, L) pivoted with respect to L2(0, L).
Moreover, X1 = Dom(A).

Let ψ = (ψ1, ψ2, ψ3, ψ4)T. Note that H = X1/2 × X and define A : Dom(A) ⊂
H→ H by

A =

(
0 I2×2

−A 0

)
,

Dom(A) = X1 ×X1/2

= {ψ ∈ H ∩ ((H2(0, L))2 × (H1
L(0, L))2); ψ1x(L) = ψ2x(L) = 0} (3.6)

which is densely defined in H. Also define the control operator B

B0 ∈ L(C,X−1/2), with B0 =

(
0

− 1
hδ(x− L)

)
,

B ∈ L(C,H−1), with B =

(
0
B0

)
(3.7)
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where H−1 is the dual of the space Dom(A) = X1 × X1/2 pivoted with respect to
H = X1/2 × X. By (3.5). We have H−1 = X0 × X−1/2. The dual operators of B0 and
B are

B∗0 ∈ L(X1/2,C), B∗0ψ = − 1

h
ψ4(L), with B∗ψ = (02×2 B∗0)Tψ = − 1

h
ψ4(L).

Writing ϕ = (v, p, v̇, ṗ)T and defining the output

y(t) =
1

h
ṗ(L, t),

the control system (2.20) with this output can be put into the state-space form
ϕ̇ =

(
0 I2×2

−A 0

)
︸ ︷︷ ︸

A

ϕ+

(
0
B0

)
︸ ︷︷ ︸

B

V (t),

ϕ(x, 0) = ϕ0,

y(t) = −B∗ϕ(t).

(3.8a)

(3.8b)

(3.8c)

Lemma 3.1. The operator A satisfies A∗ = −A on H, and

Re 〈Aψ,ψ〉H = Re 〈A∗ψ,ψ〉H = 0. (3.9)

Also, A has a compact resolvent.

Proof: Choose any u = [u1, u2, u3, u4]T, v = [v1, v2, v3, v4]T ∈ Dom(A). A simple
calculation using integration by parts and the boundary conditions (3.6) shows

〈Au, v〉H =

∫ L

0

{(−α(v̄1)xx + γβ(v̄2)xx)u3 + (β(v̄2)xx − γβ(v̄1)xx)u4

−α(v̄3)x(u1)x + γβ(v̄4)x(u1)x + γβ(u2)x(v̄3)x − β(u2)x(v̄4)x} dx
= 〈u,−Av〉H . (3.10)

(3.11)

This shows that A is skew-symmetric. To prove that A is skew-adjoint on H, i.e.
A∗ = −A on H, with the same domains it is required to show that for any v ∈ H
there is u ∈ Dom(A) so that Au = v. This is equivalent to solving the system of
equations for u ∈ Dom(A). Using (2.6) to simplify the equations leads to

u3 = v1

u4 = v2

−(u1)xx =
ρ

α1
v3 +

µγ

α1
v4

−(u2)xx = − (α+ α1)ρ

α1γβ
v3 −

αµ

βα1
v4 . (3.12)

Since the Greens function corresponding to the operator − d2

dx2 with the boundary
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conditions (·)(0) = d(·)
dx (L) = 0 is K(x, r) =

{
r, x > r
x, x < r,

the solution of (3.12) is

u1 =
1

α1

∫ L

0

K(x, r) (ρv3(r) + µγv4(r)) dr

u2 = − 1

α1

∫ L

0

K(x, r)

(
(α+ α1)ρ

γβ
v3(r) +

αµ

β
v4(r)

)
dr

u3 = v1, u4 = v2. (3.13)

Using v ∈ H, i.e. v1, v2 ∈ H1
L(0, L) and v3, v4 ∈ L2(0, L), implies that u3, u4 ∈

H1
L(0, L) and u1, u2 ∈ H2(0, L) ∩H1

L(0, L) with (u1)x(L) = (u2)x(L) = 0. Therefore,
u ∈ Dom(A) is uniquely defined. Using Proposition 3.7.3 in [33] leads to the conclusion
that A∗ = −A on H. Since then for u ∈ Dom(A), with a similar expression for A∗,
(3.9) follows.

Moreover, Dom(A) is densely defined and compact in H by Sobolev’s embedding
theorem. Therefore, for any λ ∈ ρ(A), (λI −A)−1 is a compact operator. �

The transfer function corresponding to the control system (3.8) is (see [37] for the
calculation for a similar system)

G(s) = sB∗0(s2I +A)−1B0 (3.14)

for s, Re s > 0.

Lemma 3.2. Define the set Cs1 = {s ∈ C : s = s1 + is2, s1 > 0}. We have

sup
s∈Cs1

‖G(s)‖L(C) <∞. (3.15)

Proof: See Appendix A.

Definition 3.3. The operator B ∈ L(C,H−1) is an admissible control operator
for {eAt}t≥0 if there exists a positive constant c(T ) such that for all u ∈ H1(0, T ),∥∥∥∥∥

∫ T

0

eA(T−t)Bu(t)dt

∥∥∥∥∥
H

≤ c(T )‖u‖L2(0,T ).

Definition 3.4. The operator B∗ ∈ L(Dom(A),C) is an admissible observation
operator for {eA∗

t}t≥0 if there exists a positive constant c(T ) such that for all ϕ0 ∈
Dom(A) ∫ T

0

‖B∗eA
∗tϕ0‖2 dt ≤ c(T )‖ϕ0‖2H.

The operator B∗ is an admissible observation operator for {eA∗t}t≥0, if and only
if B is an admissible control operator for {eAt}t≥0 [33, pg. 127]).

Consider the uncontrolled system

ϕ̇(t) = Aϕ(t),
ϕ(x, 0) = ϕ0,
y(t) = −B∗ϕ.

(3.16)
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The following theorem on well-posedness of (3.8) and (3.16) is now immediate. It
proves that for any T > 0, the map from the input V (t) ∈ L2(0, T ) to the solution
ψ ∈ H, and the map from the input V (t) to the output y(t) of (3.8) are bounded.

Theorem 3.5. Let T > 0, and V (t) ∈ L2(0, T ). For any ϕ0 ∈ H, there exists
positive constants c1(T ), c2(T ) such that

‖ϕ(T )‖2H ≤ c1(T )
{
‖ϕ0‖2H + ‖V ‖2L2(0,T )

}
, (3.17)

‖y‖2L2(0,T ) ≤ c2(T )
{
‖ϕ0‖2H + ‖V ‖2L2(0,T )

}
. (3.18)

Proof: The operator B∗ defined above is an admissible observation operator for
the system (3.16) by Lemma 3.2 (see Proposition 3.2 and 3.3 in [1]). Therefore B
is an admissible control operator for the semigroup {eAt}t≥0 corresponding to (3.8).
Lemma 3.2 and the Paley-Wiener Theorem implies that the map from the input V
to the output y is bounded from L2(0, T ) to L2(0, T ) [5, Thm. 5.1]. The conclusions
(3.17) and (3.18) follow. �

Alternatively, the state could be defined as

(
√
ρvt,
√
α1vx,

√
µpt,

√
β(px − γvx)).

With this choice of state, the control system is well-posed on [L2(0, L)]4 and is a
port-Hamiltonian system [20].

Damped system. Setting the control signal in (3.8) to be V (t) = − 1
2B
∗z+u(t)

where u(t) is a new controlled input and modifying the output slightly leads to the
system

ż(t) = Adz(t) +Bu(t) =

(
0 I2×2

−A − 1
2B0B

∗
0

)
z +

(
02×2

B0

)
u(t),

z(x, 0) = z0,

y(t) = −B∗z(t) + u(t)

(3.19a)

(3.19b)

(3.19c)

where Ad : Dom(Ad) ⊂ H→ H and Dom(Ad) is defined by

Dom(Ad) =
{
z ∈ (H2(0, L))2 × (H1

L(0, L))2 : z1(0) = z2(0) = 0,

αz1x(L)− γβz2x(L) = 0, βz2x(L)− γβz1x(L) = −z4(L)

2h2

}
. (3.20)

This system can also be written in second-order form as

(
v̈
p̈

)
+A

(
v
p

)
+

1

2
B0B

∗
0

(
v̇
ṗ

)
= B0u(t),(

v
p

)
(x, 0) =

(
v0

p0

)
,

(
v̇
ṗ

)
(x, 0) =

(
v1

p1

)
y(t) = −B∗0

(
v̇
ṗ

)
+ u(t).

(3.21a)

(3.21b)

(3.21c)

This system is a member of the class studied in [37].
Let Hd

−1 is the dual of the space Dom(Ad) pivoted with respect to H = X1/2×X.
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Theorem 3.6. Let T > 0. The system (3.19) defines a well-posed and conser-
vative linear system with the input u(t) ∈ L2(0, T ), the output y(t) ∈ L2(0, T ), the
state space H, the semigroup {eAdt}t≥0, and the transfer function Gd. Then Ad is the
generator of a contraction semigroup on H, B ∈ L(C,Hd

−1) and B∗ ∈ L(Dom(Ad),C)
are admissible control and observation operators, respectively, and ‖Gd(s)‖ ≤ 1 for
all s ∈ Cs = {s ∈ C : s = s1 + is2, s1 > 0}.

Proof: Since E(t) = 1
2‖z(t)‖

2
H by (3.1), a direct calculation by using (3.19) reads

E(T )− E(0) =

∫ T

0

(
−1

2
〈B∗z,B∗z〉C2 +

1

2
〈u(t), B∗z〉C2 +

1

2
〈B∗z, u(t)〉C2

)
dx

=
1

2

(∫ T

0

|u(t)|2 dt−
∫ T

0

|y(t)|2 dt

)
,

and therefore

‖z(t)‖2H +

∫ T

0

|y(t)|2 = ‖z0‖2H +

∫ T

0

|u(t)|2. (3.22)

By Proposition 4.5 in [37], the conclusion of the theorem follows. �

We now show that the semigroup {eAdt}t≥0 is strongly stable for almost all choices
of system parameters.

Theorem 3.7. The spectrum σ(Ad) of Ad has all isolated eigenvalues, and
0 ∈ σ(Ad).

Proof: First show that 0 ∈ ρ(Ad). Let G = (g1, g2, g3, g4) ∈ H and find U =
(u1, u2, u3, u4) such that U ∈ Dom(Ad) and AdU = G. Similar to (3.13), the solution
of AdU = G is

u3 = g1

u4 = g2

u1 =
1

α1

∫ L

0

(ρg3(r) + γµg4(r))K(x, r) dr − γ

2h2α1
g2(L)x

u2 = − 1

α1

∫ L

0

(
(α+ α1)ρ

γβ
g3(r) +

µα

β
g4(r)

)
K(x, r) dr − 1

2h2

(
γ2

α1
+

1

β

)
g2(L)x

where K(x, r) =

{
x, x ≤ r
r, x ≥ r. Since G ∈ H, g1, g2 ∈ H1

L(0, L) and g3, g4 ∈ L2(0, L),

and by the Trace theorem g2(L) ∈ L2(0, L). Note that u1 and u2 satisfy the boundary
conditions in (3.20). Therefore U ∈ Dom(Ad). Also, there is a unique solution U.
Thus 0 ∈ ρ(Ad).

Moreover, Dom(Ad) is densely defined and compact in H by Sobolev’s embedding
theorem. This together with 0 ∈ ρ(Ad) implies that (λI − Ad)−1 is compact at
λ = 0, thus compact for all λ ∈ ρ(Ad). Hence the spectrum of Ad contains all isolated
eigenvalues. �

Theorem 3.8. {eAdt}t≥0 is strongly stable in H if and only if ζ1
ζ2
6= 2n−1

2m−1 , for
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some n,m ∈ N where

ζ1 =
1√
2

√√√√γ2µ

α1
+
µ

β
+

ρ

α1
+

√(
γ2µ

α1
+
µ

β
+

ρ

α1

)2

− 4ρµ

βα1
(3.23)

ζ2 =
1√
2

√√√√γ2µ

α1
+
µ

β
+

ρ

α1
−

√(
γ2µ

α1
+
µ

β
+

ρ

α1

)2

− 4ρµ

βα1
. (3.24)

Proof: By Theorems 3.6 and 3.7, the spectrum consists of only eigenvalues, and
Reλ ≤ 0. The eigenvalue problem

Adz = λz

with z = (v, p, ṽ, p̃) can be written
αvxx − γβpxx = ρλ2v

βpxx − γβvxx = µλ2p,

ṽ = λv,

p̃ = λp

(3.25a)

(3.25b)

(3.25c)

(3.25d)

with the boundary conditions

v(0) = p(0) = 0
αvx(L)− γβpx(L) = 0
βpx(L)− γβvx(L) = − 1

2h2λp(L).
(3.26)

Since 0 ∈ ρ(Ad), if we can show that there are no eigenvalues on the imaginary
axis, or in other words, the set{

Y ∈ H | Re 〈AdY, Y 〉H = − 1

2h2
|p̃(L)|2 = 0

}
(3.27)

has only the trivial Y = 0 solution, then by Arendt-Batty’s stability theorem [2],
eAd(t) is a strongly stable semigroup. Since p̃ = λp where λ 6= 0 by Theorem 3.7,
(3.27) implies that p(L) = 0.

Let λ = iτ where τ ∈ R\{0}. The eigenvalue problem (3.25)-(3.26) can be written


vxx =

−τ2

α1
(ρv + γµp)

pxx = −τ2

(
γρ

α1
v +

(
γ2µ

α1
+
µ

β

)
p

) (3.28a)

(3.28b)

with the over-determined boundary conditions

v(0) = p(0) = px(L) = vx(L) = p(L) = 0. (3.29)

Proving strong stability reduces to showing that (3.28,3.29) has only the trivial solu-
tion. Let Z = [v, vx, p, px]. We write the system (3.28) in the form

dZ

dx
= DZ =


0 1 0 0
−ρτ2

α1
0 −γµτ2

α1
0

0 0 0 1
−γρτ2

α1
0 −

(
γ2µ
α1

+ µ
β

)
τ2 0

Z. (3.30)
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The solution to (3.30) is

Z = eDxK (3.31)

where K = [k1, k2, k3, k4] is the vector with arbitrary coefficients. The characteristic
equation, Det(DZ − λ̃Z) = 0, is

λ̃4 + λ̃2

(
γ2µ

α1
+
µ

β
+

ρ

α1

)
τ2 +

ρµ

βα1
τ4 = 0.

This can be regarded as a quadratic equation of λ̃2. Since
(
γ2µ
α1

+ µ
β + ρ

α1

)2

− 4ρµ
βα1

=(
γ2µ
α1

+ µ
β −

ρ
α1

)2

+ 4ργ2µ
α2

1
> 0, there are four roots {λ̃+

1 ,−λ̃
+
1 , λ̃

−
2 ,−λ̃

−
2 }, where defin-

ing

a1 = τζ1, a2 = τζ2, λ̃+
1 = ia1, λ̃−2 = ia2. (3.32)

The solution of (3.30) is written Z = PeJxP−1K where

P =


1 1 1 1
ia1 −ia1 ia2 −ia2

b1 b1 b2 b2
ia1b1 −ia1b1 ia2b2 −ia2b2

 (3.33)

and eJx = diag(eia1x, e−ia1x, eia2x, e−ia2x),

b1 =
1

γµ
(α1ζ

2
1 − ρ), b2 =

1

γµ
(α1ζ

2
2 − ρ), (3.34)

or explicitly,

b1 =
1

2

γ +
α1

γβ
− ρ

γµ
+

√(
γ +

α1

γβ
− ρ

γµ

)2

+
4ρ

µ


b2 =

1

2

γ +
α1

γβ
− ρ

γµ
−

√(
γ +

α1

γβ
− ρ

γµ

)2

+
4ρ

µ

 . (3.35)

Note that b1, b2 6= 0, b1 6= b2, and b1b2 = − ρ
µ . The solution of (3.30) can be

written Z = PeJxP−1K where

PeJxP−1 =


b1 cos a2x−b2 cos a1x

b1−b2
a1b1 sin a2x−a2b2 sin a1x

a1a2(b1−b2)
−a2b1 sin a2x+a1b2 sin a1x

b1−b2
b1 cos a2x−b2 cos a1x

(b1−b2)
(− cos a1x+cos a2x)b1b2

b1−b2
(a1 sin a2x−a2 sin a1x)b1b2

a1a2(b1−b2)
(a1 sin a1x−a2 sin a2x)b1b2

b1−b2
(− cos a1x+cos a2x)b1b2

(b1−b2)

. . .

cos a1x−cos a2x
b1−b2

−a1 sin a2x+a2 sin a1x
a1a2(b1−b2)

−a1 sin a1x+a2 sin a2x
b1−b2

− cos a2x+cos a1x
(b1−b2)

b1 cos a1x−b2 cos a2x
b1−b2

a2b1 sin a1x−a1b2 sin a2x
a1a2(b1−b2)

−a1b1 sin a1x+a2b2 sin a2x
b1−b2

b1 cos a1x−b2 cos a2x
(b1−b2)

 ,
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and K is the vector of arbitrary coefficients defined in (3.31). Note that
Det(PeJxP−1) = 4a1a2(b1−b2)2 6= 0 since a1, a2 6= 0 and b1 6= b2. Using the boundary
conditions v(0) = p(0) implies b1 6= b2 and so k1 = k3 = 0. Thus the solution of the
eigenvalue problem (3.28) is

v(x) = k2
a1b1 sin a2x− a2b2 sin a1x

a1a2(b1 − b2)
+ k4

−a1 sin a2x+ a2 sin a1x

a1a2(b1 − b2)

p(x) = k2
(a1 sin a2x− a2 sin a1x)b1b2

a1a2(b1 − b2)
+ k4

a2b1 sin a1x− a1b2 sin a2x

a1a2(b1 − b2)
. (3.36)

Using the other two boundary conditions vx(L) = px(L) = 0 leads to

K̃

(
k2

k4

)
=

(
b1 cos a2L−b2 cos a1L

(b1−b2)
− cos a2L+cos a1L

(b1−b2)
(− cos a1L+cos a2L)b1b2

(b1−b2)
b1 cos a1L−b2 cos a2L

(b1−b2)

)(
k2

k4

)
= 0. (3.37)

Observe that DetK̃ = cos a1L cos a2L = 0 if and only if cos a1L = 0 or cos a2L = 0. If
for some integers n,m, a1 = (2n+ 1) π

2L and a2 = (2m+ 1) π
2L then vx(L) = px(L) =

0 for all choices of k2, k4. We can choose k4 so that p(L) = 0. Hence the controlled
system has an imaginary eigenvalue and is not strongly stable. On the other hand, if
a1 6= (2n+ 1) π

2L and a2 6= (2m+ 1) π
2L , then there is only the trivial solution Z = 0.

It follows from the Arendt-Batty’s Theorem that the controlled system is strongly
stable. Suppose now that a1 = (2n+ 1) π

2L and a2 6= (2m+ 1) π
2L . Then DetK̃ = 0

and k4 = b1k2. The solution with a parameter k2 is

v(x) = k2
sin a1x

a1
, p(x) = k2

b1 sin a1x

a1
.

However, since p(L) = 0, the only way to obtain p(L) = 0 is to choose k2 = 0 and so
Z = 0. The argument is identical if a1 6= (2n+ 1) π

2L and a2 = (2m+ 1) π
2L . Thus,

if a1 6= (2n+ 1) π
2L or a2 6= (2m+ 1) π

2L , the system is strongly stable. Thus, the
system is strongly stable if and only if there are not integers n,m so that a1

a2
= 2n+1

2m+1 .
This proves the theorem. �

The following theorem about the original control system (3.8) is immediate.
Theorem 3.9. For any k > 0, the control system (3.8) with feedback control

V (t) = kṗ(L, t), is strongly stable if and only if ζ1
ζ2
6= 2n−1

2m−1 , for some n,m ∈ N.
The feedback signal V (t) = kṗ(L) = k

∫ L
0
Ḋ3(ξ, t) dξ is physical since ṗ(L) denotes

the current flowing through the electrodes of the beam (2.16). The limiting case of
static magnetic effects corresponds to µ = 0. In this case the boundary value problem
(3.28) with over-determined boundary conditions has only the trivial solution and
the controlled system is strongly stable, as is well-known. However, in this case
B∗ϕ(x, t) = γ

h v̇(L) where v̇(L) represents the velocity of the beam at x = L.
Note that strong stability is achieved with the feedback V (t) = kṗ(L, t) except

for a set of coefficients ζ1
ζ2

with Lebesgue measure zero.

4. Exact observability and exponential stabilizability. The stabilizability
of the controlled piezoelectric beam will be shown to be determined by the observ-
ability of the same system. We start with standard definitions of exact observability,
exponential stability and stabilizability, and optimizability.

Definition 4.1. The pair (A,B∗) is exactly observable in time T > 0 if there
exists a positive constant C(T) such that for all ϕ0 ∈ H∫ T

0

‖B∗eAtϕ0‖2 dt ≥ C(T )‖ϕ0‖2H.
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Definition 4.2. The semigroup {eAt}t≥0 with the generator A is exponentially
stable on H if there exists constants M,µ > 0 such that ‖eAt‖H ≤ Me−µt for all
t ≥ 0.

Definition 4.3. We say that the scalar k is an admissible feedback for transfer
function G(s) = C(sI − A)B if I − G(s)k has an inverse that is uniformly bounded
on some right-half-plane.

Definition 4.4. The pair (A, B) is exponentially stabilizable on H if there ex-
ists F ∈ L(Dom(A),C) such that (A, B, F ) is a regular triple (the transfer func-
tion FΛ(sI − A)−1B is well-defined), 1 is an admissible feedback for the transfer
function FΛ(sI − A)−1B, and A + BFΛ with the domain Dom(A + BFΛ) = {z ∈
Dom(FΛ) : Az+BFΛz ∈ H} generates an exponentially stable semigroup {e(A+BFΛ)t}t≥0

on H. In the above, the operator FΛ is the Λ−extension of F :

FΛz = lim
λ→∞

Fλ(λI −A)−1z

for all z ∈ H for which the limit makes sense.
Definition 4.5. The pair (A, B) is optimizable if for any z0 ∈ H there exists a

control u(t) ∈ L2(0, T ) such that z(t) ∈ L2(0, T ; H) where

z(t) = eAtz0 +

∫ t

0

eA(t−τ)Bu(τ) dτ. (4.1)

It is clear from the definitions that if (A, B) is stabilizable, then it is optimizable.
The converse of this statement is in general false for unbounded B[36].

A result in [1] implies that exact observability of the pair (A, B∗) in finite time
on H is equivalent to exponential stability of the semigroup {eAdt}t≥0 on H.

Theorem 4.6. The semigroup {eAdt}t≥0 is exponentially stable on H if and only
if the pair (A, B∗) (defined in (3.16)) is exactly observable in finite time on H.

Proof: Recall that the operator A (3.3) is self-adjoint and positive definite and
also B0 ∈ L(C,X− 1

2
) where X1 is DomA with the norm ‖A · ‖ and the state-space

H = X 1
2
× X. (3.5).Furthermore, the transfer function G(s) is uniformly bounded in

any right-hand plane with Re s ≥ s1 > 0. Thus, the assumptions of [1, Thm. 2.2] are
satisfied and the conclusion follows. �

Theorem 4.7. The semigroup {eAdt}t≥0 is exponentially stable on H if and only
if the pair (Ad, B) is optimizable, i.e. for any z0 ∈ H there exists u(t) ∈ L2(0, T ) such
that z(t) ∈ L2(0, T ; H) where z(t) is defined by (4.1).

Proof: Since (3.19) defines a well-posed and conservative system by Theorem
3.6, and it is of the class studied in [34], the conclusion of the theorem follows from
[34, Thm. 1.3]. �

The following result is an immediate consequence of the two preceding results.
Theorem 4.8. The control system (A, B) is optimizable if and only if (A, B) is

exactly observable.
Proof: Theorems 4.6 and 4.7 imply that (Ad, B) is optimizable if and only if

(A, B) is exactly observable. Optimizability of a well-posed system is invariant under
an admissible feedback [36, Thm. 6.3]. Since (A, B,B∗) is well-posed (Thm. 3.5),
the pair (A, B) is optimizable if and only if (A, B) is exactly observable. �

Since stabilizability implies optimizability, if (A, B) is not exactly observable there
is no feedback controller V (t) ∈ L2(0, T ) that makes the system (3.8) exponentially
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stable on H. We now turn our attention to the observability in the energy space H of
the pair (A, B∗). The following result on the eigenvalues and eigenvectors of A will
be needed.

Theorem 4.9. Let σj = (2j−1)π
2L , j ∈ N. The operator A has eigenvalues

λ∓1j =
∓iσj
ζ1

, λ∓2j =
∓iσj
ζ2

, j ∈ N. (4.2)

The corresponding eigenfunctions are, using λ−1j = −λ+
1j , λ−2j = −λ+

2j ,

Ψ1j =


1
λ+

1j
b1
λ+

1j

1
b1

 sinσjx, Ψ−1j =


1
λ+

1j
b1
λ+

1j

−1
−b1

 sinσjx,

Ψ2j =


1
λ+

2j
b2
λ+

2j

1
b2

 sinσjx, Ψ−2j =


1
λ+

2j
b2
λ+

2j

−1
−b2

 sinσjx, j ∈ N (4.3)

where ζ1, ζ2, b1, b2 are defined by (3.23), (3.24) and (3.34), respectively.
The eigenfunctions form an orthogonal basis for H and so every ϕ0 ∈ H can be

written, for some choice of constants {ckj , dkj ∈ C, k = 1, 2, j ∈ N},

ϕ0 =
∑
j∈N

[c1jΨ1j + d1jΨ−1j + c2jΨ2j + d2jΨ−2j ]

=
∑
j∈N


1
λ+

1j

(c1j + d1j) + 1
λ+

2j

(c2j + d2j)

b1
λ+

1j

(c1j + d1j) + b2
λ+

2j

(c2j + d2j)

(c1j − d1j) + (c2j − d2j)
b1(c1j − d1j) + b2(c2j − d2j)

 sinσjx. (4.4)

Also, there are positive constants C̃1, C̃2 independent of the choice of Ψ0 ∈ H so
that

C̃1 ‖ϕ0‖2H ≤
∑
j∈N

(
|c1j |2 + |d1j |2 + |c2j |2 + |d2j |2

)
≤ C̃2 ‖ϕ0‖2H . (4.5)

The function

ϕ =
∑
j∈N

[
c1jΨ1je

λ+
1jt + d1jΨ−1je

−λ+
1jt + c2jΨ2je

λ+
2jt + d2jΨ−2je

−λ+
2jt
]

(4.6)

solves (3.16) for the initial data (4.4).
Proof: See Appendix A.
We now prove that the pair (A, B∗) corresponding to (3.16) is not exactly observ-

able for almost all choices of parameters. The following lemma from [27] is needed to
prove this result.

Lemma 4.10. For every irrational number ζ there exists increasing sequences
of coprime odd integers {p̃m}, {q̃m} and a constant Cζ ≥ 1 satisfying the asymptotic
relation ∣∣∣∣ ζ − p̃m

q̃m

∣∣∣∣ ≤ Cζ
q̃2
m

, m→∞. (4.7)
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Theorem 4.11. Assume that ζ2
ζ1
∈ R − Q. Then the pair (A, B∗) corresponding

to (3.16) is not exactly observable on H.

Proof: Let the sequences {p̃m} and {q̃m} be chosen as in Lemma 4.10 with ζ = ζ2
ζ1

and ∣∣∣∣ ζ2ζ1 − p̃m
q̃m

∣∣∣∣ ≤ Cζ
q̃2
m

. (4.8)

Define

κ1m =

{
−1, if q̃m + 1 ≡ 0 (mod 4)

1, otherwise
, κ2m =

{
−1, if p̃m + 1 ≡ 0 (mod 4)

1, otherwise
(4.9)

so that κ1m sin
(
q̃mπ

2

)
= κ2m sin

(
p̃mπ

2

)
= 1, and

λ1m = i

(
q̃mπ

2Lζ1

)
, λ2m = i

(
p̃mπ

2Lζ2

)
. (4.10)

Defining

Φ0
1m =

κ1m

b1


1

λ1m
b1
λ1m

1
b1

 sin

(
q̃mπx

2L

)
, Φ0

2m =
κ2m

b2


1

λ2m
b2
λ2m

1
b2

 sin

(
p̃mπx

2L

)
(4.11)

where b1 and b2 are defined by (3.34),

Φ1m = =
κ1m

b1


1

λ1m
b1
λ1m

1
b1

 sin

(
q̃mπx

2L

)
eλ1jt,

Φ2m =
κ2m

b2


1

λ2m
b2
λ2m

1
b2

 sin

(
p̃mπx

2L

)
eλ2jt (4.12)

are the solutions of (3.16) with the initial conditions Φ1m(x, 0) = Φ0
1m and Φ2m(x, 0) =

Φ0
2m, respectively. (This follows easily from (4.4) with the choices of c2j = d2j =

d1j ≡ 0 for all j ∈ N, c1j ≡ 0 for j 6= m, and c1m = κ1m

b1
for the first solution, and

c1j = d1j = d2j ≡ 0 for all j ∈ N, c2j ≡ 0 for j 6= m, and c2m = κ2m

b2
for the second

solution.) By linearity, Φm = Φ1m − Φ2m is the solution of (3.16) corresponding to
the initial condition Φm(x, 0) = Φ1m(x, 0)−Φ2m(x, 0) = Φ0

1m−Φ0
2m. Using (3.2) and

(4.11)

‖Φm(x, 0)‖2H = ‖Φ0
1m‖2H + ‖Φ0

2m‖2H

=
L

2

[
ρ

b21
+
ρ

b22
+ 2µ+ ζ2

1

(
α1

b21
+
β

b21
(γ − b21)

)
+ ζ2

2

(
α1

b22
+
β

b22
(γ − b22)

)]
= constant. (4.13)
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Recalling the definition of the operator B (3.7), (4.8), and (4.9), leads to

|B∗Φm| =
1

h

∣∣∣∣ κ1m sin

(
q̃mπ

2

)
e
i
(
q̃mπt
2Lζ1

)
− κ2m sin

(
p̃mπ

2

)
e
i
(
p̃mπt
2Lζ2

) ∣∣∣∣
=

1

h

∣∣∣∣ ei( q̃mπt2Lζ1

)
− ei

(
p̃mπt
2Lζ2

) ∣∣∣∣
≤ πt

2hL

∣∣∣∣ q̃mζ1 − p̃m
ζ2

∣∣∣∣
≤ πtCζ

2Lhζ2q̃m
(4.14)

where the Mean Value Theorem was used to obtain the third line from the second

line. Therefore, defining M =
π2T 3C2

ζ

12L2h2ζ2
2
,

∫ T

0

|B∗Φm|2 dt ≤
M

q̃2
m

.

Now ‖Φm(x, 0)‖2H is constant while
∫ T

0
|B∗Φm|2 dt = O(q̃−2

m ). Therefore the pair

(A, B∗) is not exactly observable on H if ζ2
ζ1
∈ R−Q. �

Corollary 4.12. If ζ2
ζ1
∈ R−Q then (A,B) is not exponentially stabilizable on

H.
Proof: Since the pair (A, B∗) is not exactly observable on H by Theorem 4.11,

Theorem 4.8 implies that (A, B) is not optimizable. Finally, since stabilizability
implies optimizability, there is no admissible feedback operator that makes the system
exponentially stable on H. �

Corollary 4.13. Let ζ2
ζ1
∈ Q such that ζ2

ζ1
= p̃

q̃ where gcd(p̃, q̃) = 1 and p̃, q̃

are both odd integers. Then the pair (A, B∗) corresponding to (3.16) is not exactly
observable on H. Therefore the system is not exponentially stabilizable on H.

Proof: We can choose m ∈ N such that q̃m = q̃ and p̃m = p̃. For this particular
choice of p̃m and q̃m,

|λ1m − λ2m| =
π

2L

∣∣∣∣ iq̃ζ1 − ip̃

ζ2

∣∣∣∣ ≡ 0. (4.15)

This implies that some eigenvalues coincide, and therefore there is no gap between
the eigenvalues. With the identical choice of Φ0

m (4.11) with q̃m = q̃ and p̃m = p̃ , as
in the proof of Thm. 4.11, |B∗Φm| ≡ 0 by (4.14) and (4.15) while ‖Φ0

m‖H = constant
by (4.13). Thus (A, B∗) is not exactly observable on H. The conclusion then follows
from Theorem 4.8 �

Note that if ζ2
ζ1

can be written as a ratio of odd integers, the system is not even
approximately observable.

The only remaining case to consider is when ζ2
ζ1

can be written as a ratio of

coprime integers where one is odd and one is even. In this case eigenvalues (4.2)
have a uniform gap and the system is exactly observable. We will use the following
theorem.

Theorem 4.14. (Ingham’s Theorem) [38, page 162] If the strictly increasing
sequence {sn}n∈N of real numbers satisfies the gap condition

sn+1 − sn ≥ γ (4.16)
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for all n ∈ N, for some γ > 0, then there exists positive constants c̃3(T ) and c̃4(T )
such that for all T > 2π

γ

c̃3(T )
∑
n∈N
|gn|2 ≤

∫ T

0

∣∣∣∣∣∑
n∈N

gne
isnt

∣∣∣∣∣
2

dt ≤ c̃4(T )
∑
n∈N
|gn|2 (4.17)

for all functions
∑
n∈N

gne
isnt :

∑
n∈N
|gn|2 <∞.

Theorem 4.15. Let ζ2
ζ1
∈ Q such that ζ2

ζ1
= p̃

q̃ where gcd(p̃, q̃) = 1 and p̃, q̃ are
even and odd integers, respectively; or the other way around. Choose

T > 2L min (ζ1, ζ2, 2q̃ζ2).

Then the pair (A, B∗) is exactly observable on H, i.e. there exists a constant C(T ) > 0
such that solutions ϕ of the system (3.16) satisfy the following observability estimate:∫ T

0

|B∗ϕ|2 dt ≥ C(T )‖ϕ0‖2H. (4.18)

Proof: Let s1j =
σj
ζ1

= (2j−1)π
2Lζ1

and s2j =
σj
ζ2

= (2j−1)π
2Lζ2

for j ∈ N. The set of

eigenvalues (4.2) can be rewritten as

λ∓kj = ∓iskj , k = 1, 2, j ∈ N. (4.19)

Letting ϕ be any solution to (3.16), with initial condition expanded as in (3.7). By
(4.2)-(4.5)

|B∗ϕ| =

∣∣∣∣∣∣ 1h
∑
j∈N

[
b1
(
c1je

is1jt − d1je
−is1jt

)
+ b2

(
c2je

is2jt − d2je
−is2jt

)]
(−1)j

∣∣∣∣∣∣ .
Showing (4.18) is equivalent to finding a constant C(T ), independent of the initial
condition, so that

1

h2

∫ T

0

∣∣∣∣∣∣
∑
j∈N

[
b1
(
c1je

is1jt − d1je
−is1jt

)
+ b2

(
c2je

is2jt − d2je
−is2jt

)]
(−1)j

∣∣∣∣∣∣
2

dt

≥ C(T )‖ϕ0‖2H. (4.20)

We first show that the gap condition (4.16) in Theorem 4.14 holds. If k = n,

|skj − snm| ≥
{ π

Lζ1
, k = n = 1;

π
Lζ2

, k = n = 2.
, j,m ∈ N (4.21)

by (4.19). Now let k 6= n. Without loss of generality, assume that p̃ is even and q̃ is
odd. By (4.19)

|s1j − s2m| =
π

2L

∣∣∣∣2j − 1

ζ1
− 2m− 1

ζ2

∣∣∣∣
=

π

2L

1

ζ2q̃
|(2j − 1)p̃− (2m− 1)q̃|

≥ π

2L

1

ζ2q̃
(4.22)
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using |(2j − 1)p̃− (2m− 1)q̃| ≥ 1 since (2j − 1)p̃ is an even number and (2m− 1)q̃ is
an odd number. Similarly |s2j − s1m| ≥ π

2L
1
ζ2q̃
.

Let’s rearrange the set {∓skj : k = 1, 2, j ∈ N} into an increasing sequence of
{sn, n ∈ N}, and denote the coefficients {(−1)jbkckj , (−1)j+1bkdkj : k = 1, 2, j ∈ N}
by {gn, n ∈ N}. Then (4.21) and (4.22) yields

sn+1 − sn ≥ γ :=
π

L
min

(
1

ζ1
,

1

ζ2
,

1

2ζ2q̃

)
,

and therefore the gap condition (4.16) holds. By Theorem 4.14, for T > 2π
γ =

2L min (ζ1, ζ2, 2ζ2q̃)

∫ T

0

|B∗ϕ|2 dt =
1

h2

∫ T

0

∣∣∣∣∣∣
∑
j∈N

[
b1
(
c1je

is1jt − d1je
−is1jt

)
+ b2

(
c2je

is2jt − d2je
−is2jt

)]
(−1)j

∣∣2 dt
=

1

h2

∫ T

0

∣∣∣∣∣∣
∑
j∈N

gne
isnt

∣∣∣∣∣∣
2

dt

≥ c̃3(T )
∑
n∈N
|gn|2

= c̃3(T )
∑
j∈N

(
b21

(
|c1j |2 + |d1j |2

)
+ b22

(
|c2j |2 + |d2j |2

))
≥ c̃3(T ) min(b21, b

2
2)
∑
j∈N

(
|c1j |2 + |d1j |2 + |c2j |2 + |d2j |2

)
≥ C(T )‖ϕ0‖2H (4.23)

where C(T ) =
c̃3(T ) min(b21,b

2
2)

C̃1
. The constants C̃1 and c̃3(T ) are due to (4.5) and (4.17),

respectively. Hence (4.20) holds and the system is exactly observable. �
Corollary 4.16. Let ζ2

ζ1
∈ Q such that ζ2

ζ1
= p̃

q̃ where gcd(p̃, q̃) = 1 and p̃, q̃
are even and odd integers, respectively; or the other way around. The semigroup
{eAdt}t≥0 is exponentially stable on H, and so (A, B) is exponentially stabilizable on
H.

Proof: The pair (A, B∗) is exactly observable on H by Theorem 4.15. Therefore
the semigroup {eAdt}t≥0 is exponentially stable on H by Theorem 4.6. �

5. Conclusions. The main result of this paper is to show that magnetic effects
in piezoelectric beams, even though small, have a dramatic effect on observability
and stabilizability. The piezoelectric beam model, without magnetic effects is exactly
observable and exponentially stabilizable, by −B∗. However, when magnetic effects
are included, the beam is only observable and stabilizable when the parameter ζ2

ζ1
is

coprime ratio of odd and even integers. In this case, the beam can be stabilized by the
feedback −B∗. If this parameter is an irrational number, the beam can be strongly
stabilized by the −B∗ feedback, but not exponentially stabilized. Explicit polynomial
estimates for this situation have been obtained [23] .

Another difference between the model with magnetic effects and without is the
physical nature of the −B∗ feedback. In models without magnetic effects (1.1) this
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observation corresponds to the measurement of velocity of the beam at the end. How-
ever, in the model with magnetic effects (2.20) B∗ corresponds to the total current
at the electrodes. It is typically easy to measure the current at the electrodes, much
easier than to measure velocity.

However, voltage-controlled systems exhibit hysteresis when they are actuated
at high-frequencies [7, e.g.]. Experimental evidence shows that current and charge
actuation leads to much less hysteresis than voltage actuation, for instance see [10,
11, 22]. A model for piezo-electric beams with magnetic effects and current control
has been derived [21]. The model for current control is quite different and the control
operator is bounded.

No damping was considered in this paper. Including damping would of course
make the system stable. However, the electrical nature, as opposed to mechanical, of
B∗ would still remain, as would the basic conclusions of the restricted effectiveness
of control. As noted at the end of Section 2, modifying the Euler-Bernoulli beam to
a Mindlin-Timoshenko beam makes no fundamental difference to the model since the
bending and rotation parts of the model are decoupled from the stretching.

The extension to including magnetic effects in structures with piezoelectric patches
is studied in [24] for both Euler-Bernoulli and Mindlin-Timoshenko beam models. For
patches, bending and rotation equations are coupled to the stretching equation. Pre-
vious research on control of structures with piezo-electric patches, without magnetic
effects, [13, 30, 31] showed that the location of the patch(es) on the beam/plate
strongly determines the controllability/stabilizability. The recent research discussed
in [24] and [13, 30, 31] suggest that controllability/stabilizability depends on not only
the location of the patches but also the system parameters. This is currently being
studied.

Parameter ζ2
ζ1

Strongly Stabzble Exactly Obs. Exp. Stabzble

irrational 3 X X
p̃
q̃ , p̃, q̃ odd X X X
p̃
q̃ , p̃ odd , q̃ even 3 3 3
p̃
q̃ , p̃ odd , q̃ even 3 3 3

Table 5.1: Summary of results. In the first column, (p̃, q̃) are coprime integers, except
for the first line where ζ2

ζ1
is irrational.

6. Acknowledgement. This research was supported by a Discovery Grant from
the Natural Sciences and Engineering Research Council of Canada (NSERC).

Appendix A. Proof of Lemma 3.2. Our goal is to prove that for any real
s̃ > 0, there is a constant M > 0 such that for all Re s ≥ s̃,

|G(s)| = |sB∗0(s2I +A)−1B0| ≤M. (A.1)

The transfer function G(s) can be found as the solution to the elliptic problem
corresponding to the boundary control problem (2.20); see, for instance, [4]. Define
for any scalar V (

Y
Z

)
= (s2I +A)−1B0V
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where Y and Z satisfy{
αYxx − γβZxx = ρs2Y

βZxx − γβYxx = µs2Z,

(A.2a)

(A.2b)

with the boundary conditions

Y (0) = Z(0) = αYx(L)− γβZx(L) = βZx(L)− γβYx(L) +
V

h
= 0. (A.3)

The system (A.2)-(A.3) is similar to the system (3.25)-(3.26) with a slight change in
the boundary conditions (3.26). We follow the same approach used in the proof of
Theorem 3.8 to solve the system (A.2). By (3.36), the first two boundary conditions
in (A.3) yield the general solution

Y = k1
ζ1b1 sinh (ζ2sx)− ζ2b2 sinh (ζ1sx)

ζ1ζ2(b1 − b2)
+ k2

−ζ1 sinh (ζ2sx) + ζ2 sinh (ζ1sx)

ζ1ζ2(b1 − b2)

Z = k1
(ζ1 sinh (ζ2sx)− ζ2 sinh (ζ1sx))b1b2

ζ1ζ2(b1 − b2)
+ k2

ζ2b1 sinh (ζ1sx)− ζ1b2 sinh (ζ2sx)

ζ1ζ2(b1 − b2)

with two arbitrary constants k1 and k2. In the above ζ1, ζ2, b1, and b2 are the same
nonzero constants defined by (3.23), (3.24), and (3.34), respectively. k1 and k2 are
determined by applying the last two boundary conditions in (A.3)

k1 =
V
α1s

cosh ζ1L cosh ζ2L

γ (b2 cosh(ζ2L)− b1 cosh(ζ1L)) + α
β (cosh(ζ1L)− cosh(ζ2L))

b1 − b2

k2 =
V
α1s

cosh ζ1L cosh ζ2L

α
β (b2 cosh(ζ1L)− b1 cosh(ζ2L)) + γ (cosh(ζ2L)− cosh(ζ1L))

b1 − b2
.

After simplifications,

Z(x) =
V

α1h(b1 − b2)s

[
b2(αβ − b1γ)

ζ2

sinh (ζ2sx)

cosh (ζ2sL)
+
b1(b2γ − α

β )

ζ1

sinh (ζ1sL)

cosh (ζ1sx)

]
and therefore

G(s) =
s

V
B∗0Z

= − s

V h
Z(L)

=
1

α1h2(b1 − b2)

[
b2(b1γ − α

β )

ζ2
tanh (ζ2sL)−

b1(b2γ − α
β )

ζ1
tanh (ζ1sL)

]
. (A.4)

Now bounds for the functions |tanh sζ1L| and |tanh sζ2L| are calculated. Writing
s = s1 + is2 where s1 ≥ s̃ for some real s̃ > 0,

|tanh(ζ1sL)| =
∣∣∣∣esζ1L − esζ1Lesζ1L + esζ1L

∣∣∣∣ =

∣∣1− e−2sζ1L
∣∣

|1 + e−2sζ1L|
≤ 2

1− e−2s1ζ1L
≤ 2

1− e−2s̃ζ1L
.

A similar bound holds for |tanh(ζ2sL)| . Finally, since
b2(b1γ−αβ )

α1h2ζ2(b1−b2) and
b1(b2γ−αβ )

α1h2ζ1(b1−b2)

in (A.4) are all nonzero constants, there exists a positive constant M(s̃) < ∞ such
that (A.1) holds.
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Multiplying both numerator and denominator in G(s) by γ and noting that in

the case of γ = 0, i.e. the system (A.2)-(A.3) is completely decoupled, ζ1 =
√

ρ
α1
,

ζ2 =
√

µ
β , b1γ = 0, b2γ = α

β −
ρ
µ where α1 = α. Then the transfer function (A.4) of

the decoupled system is G(s) = 1
h2
√
βµ

tanh
(√

µ
βLs

)
, the same transfer function as

obtained from (A.2)-(A.3) with γ = 0. �

Proof of Theorem 4.9: Let Ψ = [ z1, z2, z3, z4 ]T. Solving the eigenvalue prob-
lem AΨ = λΨ corresponding to (3.16) is equivalent to solving(

z3

z4

)
= λ

(
z1

z2

)
, −A

(
z1

z2

)
= −λ

(
z3

z4

)
= −λ2

(
z1

z2

)
.

By using α = α1 + γ2β, (2.6) and (3.4), the eigenvalue problem can be rewritten

z3 = λz1, z4 = λz2

z1xx =
λ2

α1
(ρz1 + γµz2)

z2xx = λ2

(
γρ

α1
z1 +

(
γ2µ

α1
+
µ

β

)
z2

)
(A.5a)

(A.5b)

(A.5c)

with the boundary conditions

z1(0) = z2(0) = z1x(L) = z2x(L) = 0. (A.6)

First, find the eigenvalues. Since the solution of (A.5) with λ = 0 is z1 = z2 = z3 =
z4 ≡ 0; λ = 0 is not an eigenvalue.

Define

z1j = fj sinσjx, z2j = gj sinσjx, σj =
(2j − 1)π

2L
, j ∈ N. (A.7)

Solutions of this form satisfy all the homogeneous boundary conditions (A.6). We
seek fj , gj and λj so that the system (A.5) is satisfied. Upon substitution of (A.7)
into (A.5) we obtain

− σ2
j fj =

λ2

α1
(ρfj + γµgj)

− σ2
j gj = λ2

(
γρ

α1
fj +

(
γ2µ

α1
+
µ

β

)
gj

)
.

Letting yj =
σ2
j

λ2 , this linear system has nontrivial solutions if and only if the following
characteristic equation is satisfied:

y2
j +

(
γ2µ

α1
+
µ

β
+

ρ

α1

)
yj +

ρµ

βα1
= 0.

Since
(
γ2µ
α1

+ µ
β + ρ

α1

)2

− 4ρµ
βα1

=
(
γ2µ
α1

+ µ
β −

ρ
α1

)2

+ 4ργ2µ
α2

1
> 0, the roots are y1j =

−ζ2
1 , y2j = −ζ2

2 where ζ1, ζ2 ∈ R are defined by (3.23) and (3.24), respectively.

Therefore λ∓1j = ∓ iσjζ1 and λ∓2j = ∓ iσjζ2 for j ∈ N, and (4.2) follows. Observe that

λ−1j = −λ+
1j , λ−2j = −λ+

2j . j ∈ N. (A.9)
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Setting fj = 1
λ+

1j

yields gj = b1
λ+

1j

. By (A.5a) and (A.9), the first two sets of

eigenvectors Ψ1j ,Ψ−1j are, using the fact that λ−1j = −λ+
1j

Ψ1j =


1
λ+

1j

sinσjx

b1
λ+

1j

sinσjx

sinσjx
b1 sinσjx

 , Ψ−1j =


1
λ+

1j

sinσj
b1
λ+

1j

sinσjx

− sinσjx
−b1 sinσjx

 , j ∈ N.

Similarly, setting fj = 1
λ∓

2j

yields gj = b2
λ∓

2j

. By (A.5a) and (A.9), the last two eigen-

vectors Ψ2j ,Ψ−2j in (4.3)are

Ψ2j =


1
λ+

2j

sinσjx

b2
λ+

2j

sinσjx

sinσjx
b2 sinσjx

 , Ψ−2j =


1
λ+

2j

sinσjx

b2
λ+

2j

sinσjx

− sinσjx
−b2 sinσjx

 , j ∈ N.

The fact that the eigenfunctions {Ψ−1j ,Ψ1j ,Ψ−2j ,Ψ2j}j∈N are mutually orthog-
onal and form a basis of H follows from the fact that A is skew-symmetric and has a
compact resolvent (Lemma 3.1).

Finally, prove (4.5). Since

ρ+ b21µ = ζ2
1

(
α1 + β(γ − b21)

)
, ρ+ b22µ = ζ2

2

(
α1 + β(γ − b22)

)
, (A.10)

by (3.2) and (3.35), a direct calculation leads to

‖Ψ0‖2H =
L

2

∑
j∈N

(ρ+ b21µ+ α1ζ
2
1 + β(γ − b1)2ζ2

1 )
(
|c1j |2 + |d1j |2

)
+(ρ+ b22µ+ α1ζ

2
2 + β(γ − b2)2ζ2

2 )
(
|c2j |2 + |d2j |2

))
= L

∑
j∈N

(ρ+ b21µ)
(
|c1j |2 + |d1j |2

)
+ (ρ+ b22µ)

(
|c2j |2 + |d2j |2

) .

Setting C̃1 = Lmin
(
ρ+ b21µ, ρ+ b22µ

)
, C̃2 = Lmax

(
ρ+ b21µ

2, ρ+ b22µ
)

results in
(4.5). �
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