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Abstract

Let M be a representable matroid, and Q,R,S, T subsets of the ground

set such that the smallest separation that separates Q from R has order k,

and the smallest separation that separates S from T has order l. We prove

that, if M is sufficiently large, then there is an element e such that in one

of M \ e and M/e both connectivities are preserved.

For matroids representable over a finite field we prove a stronger

result: we show that we can remove e such that both a connectivity and

a minor of M are preserved.

1 Introduction

For a matroid M on ground set E we define, as usual, the connectivity

function λM by λM(X ) := rkM(X ) + rkM(E − X )− rk(M). For disjoint sets

S, T ⊆ E, the connectivity between S and T is

κM (S, T ) :=min{λM(X ) : S ⊆ X ⊆ E − T}. (1)

Geelen, in private communication, conjectured the following.

Conjecture 1.1. There exists a function c : N2 → N with the following

property. Let M be a matroid, and let Q,R,S, T ⊆ E(M) be sets of elements

such that Q ∩ R = S ∩ T = ;. Let k := κM (Q,R) and l := κM (S, T ).

If |E(M) − (Q ∪ R ∪ S ∪ T )| ≥ c(k, l), then there exists an element e ∈
E(M)− (Q ∪ R∪ S ∪ T ) such that one of the following holds:

(i) κM\e(Q,R) = k and κM\e(S, T ) = l;

(ii) κM/e(Q,R) = k and κM/e(S, T ) = l.
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In other words, for fixed Q,R,S, T , there is a finite number of minor-

minimal matroids with the prescribed connectivities. This formulation is

reminiscent of the definition of an intertwine, which is a minor-minimal

matroid containing two prescribed minors. For that reason we speak of

the intertwining of connectivities.

For graphs the result follows readily from Robertson and Seymour’s

Graph Minors Theorem [11]. In this paper we prove the conjecture for all

representable matroids.

For matroids representable over a finite field we prove a stronger

result:

Theorem 1.2. There exists a function c : N3 → N with the following

property. Let q be a prime power, let M be a GF(q)-representable matroid,

let N be a minor of M, let S, T ⊆ E(M) be disjoint, and let k := κM (S, T ).

If |E(M) − (S ∪ T ∪ E(N))| > c(q, |E(N)|, k), then there exists an element

e ∈ E(M)− (S ∪ T ∪ E(N)) such that at least one of the following holds:

(i) κM\e(S, T ) = k and N is a minor of M \ e;

(ii) κM/e(S, T ) = k and N is a minor of M/e.

By repeated use of this theorem, it is possible to bound the size of

an intertwine of any fixed number of connectivities. This gives a (highly

unsatisfying) answer to the following problem:

Problem 1.3. Let M = (S,I ) be a matroid that is a gammoid. Give an

upper bound, in terms of |S|, on the size of the graph needed to represent

M as a gammoid.

Good upper bounds can potentially be useful in the study of

parametrized complexity (c.f. [8]).

Our proof technique for Theorem 1.2 has been used previously in,

for instance, [4, 6, 7]. For graphs it dates back at least to the work of

Robertson and Seymour on graph minors (cf. [12]). In fact, Theorem 1.2

is a generalization of [6, Theorem 1.1] and [13, Theorem 13.3].

Theorem 1.2 becomes false when the dependence on q is removed.

A counterexample is readily obtained from a construction of arbitrarily

long blocking sequences in [6, Proposition 6.1]. It follows that different

techniques are needed to prove Conjecture 1.1.

Our proof of Conjecture 1.1 for representable matroids uses a different

approach, based on a suggestion by Geelen (private communication).

Unfortunately, the proof uses a property of representable matroids that

does not hold for general matroids.

The paper is organized as follows. In Section 2 we fix some

terminology and state some easy lemmas. Section 3 contains results

related to Tutte’s Linking Theorem. The main result in that section shows

that, if Conjecture 1.1 is false, there exist matroids with arbitrarily long

sequences of nested separations. In Section 4 we prove Theorem 1.2, and

in Section 5 we prove Conjecture 1.1 for all representable matroids.

2 Preliminaries

We will use the following elementary observation (cf. [10, 3]):
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Lemma 2.1. Let M be a matroid and let (A, {e}, B) be a partition of E(M).

Then e ∈ clM (A) if and only if e 6∈ cl∗
M
(B).

It is well-known that the connectivity function is submodular:

Lemma 2.2. Let M be a matroid, and let X , Y ⊆ E(M). Then

λM(X ) +λM(Y ) ≥ λM(X ∩ Y ) +λM(X ∪ Y ).

The following lemmas are easily verified:

Lemma 2.3. Let M be a matroid, let X ⊆ E(M), and let N be a minor of M

with X ⊆ E(N). Then λN (X ) ≤ λM(X ).

Lemma 2.4. Let M be a matroid, let S, T be disjoint subsets of E(M), and

let N be a minor of M with S ∪ T ⊆ E(N). Then κN (S, T ) ≤ κM (S, T ).

We introduce some terminology.

Definition 2.5. Let M be a matroid and let S, T be disjoint subsets of

E(M). A partition (A, B) of E(M) is S−T-separating of order k+1 if S ⊆ A,

T ⊆ B, and λM (A) = k. If B is implicit, we also say that A is S−T-separating

of order k+ 1.

If, moreover, |A|, |B| ≥ k+1 then (A, B) is an (exact) (k+1)-separation

of M . Sometimes we will be sloppy and say that (A, B) is S− T separating

if S ⊆ B and T ⊆ A.

Lemma 2.6. Let M be a matroid, let S, T ⊆ E(M) be disjoint subsets,

and let k := κM (S, T ). If (A1, B1) and (A2, B2) are S − T-separating with

λM (A1) = λM(A2) = k, then (A1 ∩ A2, B1 ∪ B2) is S − T-separating of order

k+ 1.

Proof. Clearly, (A1∩A2, B1∪B2) and (A1∪A2, B1∩B2) are S−T -separating.

Since κM (S, T ) = k, we must have λM(A1 ∩A2) ≥ k and λM (A1 ∪A2) ≥ k.

It follows from Lemma 2.2 that equality must hold.

Finally, we will frequently use the following well-known result and its

dual.

Lemma 2.7. Let M be a matroid, let S, T ⊆ E(M) be disjoint subsets, let

k := κM (S, T ), and let e ∈ E(M)− (S∪ T ). A partition (A, B) of E(M)− e is

S−T-separating of order k in M/e if and only if (A∪e, B) is S−T-separating

of order k+ 1 in M with e ∈ clM (A)∩ clM(B).

3 Tutte’s Linking Theorem

In [14], Tutte proved the following result, which can be seen to be a

generalization of Menger’s theorem to matroids (see [9, Section 8.5]):

Theorem 3.1. Let M be a matroid and let S, T be disjoint subsets of E(M).

Then

κM (S, T ) =max{λN (S) : N minor of M such that E(N) = S ∪ T}. (2)

Equivalently,
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Theorem 3.2. Let M be a matroid and let S, T be disjoint subsets of E(M).

For each e ∈ E(M)− (S ∪ T ), at least one of the following holds:

(i) κM\e(S, T ) = κM (S, T ), or

(ii) κM/e(S, T ) = κM (S, T ).

Definition 3.3. Let M be a matroid, let S, T be disjoint subsets of E(M),

and let e ∈ E(M)− (S ∪ T ).

(i) If κM\e(S, T ) = κM (S, T ) then we say e is deletable with respect to

(S, T ).

(ii) If κM/e(S, T ) = κM (S, T ) then we say e is contractible with respect to

(S, T ).

(iii) If e is both deletable and contractible then we say e is flexible with

respect to (S, T ).

We may omit the phrase “with respect to (S, T )” if it can be deduced

from the context. We will mainly be concerned with non-flexible elements.

The following theorem is the main result of this section:

Theorem 3.4. Let M be a matroid, let S, T be disjoint subsets of E(M), let

k := κM (S, T ), and let F ⊆ E(M)− (S∪ T ) be a set of non-flexible elements.

There exist an ordering ( f1, f2, . . . , ft ) of F and a sequence (A1,A2, . . . ,At )

of subsets of E(M), such that

(i) Ai is S − T-separating of order k+ 1 for each i ∈ {1, . . . , t};

(ii) Ai ⊆ Ai+1 for each i ∈ {1, . . . , t − 1};

(iii) Ai ∩ F = { f1, . . . , fi} for each i ∈ {1, . . . , t};

(iv) fi ∈ clM(Ai− fi)∩clM(E(M)−Ai) or fi ∈ cl∗
M
(Ai− fi)∩cl∗

M
(E(M)−Ai).

We will need two lemmas to prove this theorem.

Lemma 3.5. Let M be a matroid, let S, T be disjoint subsets of E(M), let

k := κM (S, T ), and let e ∈ E(M) − (S ∪ T ) be non-contractible. If (A, B)

is an S − T-separating partition of order k + 1 such that e ∈ A and |A| is
minimum, then e ∈ clM (A− e)∩ clM(B).

Proof. Suppose not. By Lemma 2.7, there is an S− T -separating partition

(A′, B′) of order k + 1 such that e ∈ A′ and e ∈ clM(A
′ − e) ∩ clM (B

′).

By Lemma 2.6, A∩ A′ is S − T -separating of order k + 1. By minimality

of A, it then follows that A ⊆ A′, and therefore B ⊇ B′. But then

e ∈ clM(B). By Lemma 2.1, then, e 6∈ cl∗
M
(A− e). If also e 6∈ clM (A− e) then

λM (A− e) = k− 1, contradicting κM (S, T ) = k. The result follows.

Lemma 3.6. Let M be a matroid, let S, T be disjoint subsets of E(M), let

k := κM (S, T ), and let U be an S − T-separating set of order k + 1. If

e ∈ E(M) − (T ∪ U) is non-contractible with respect to (S, T ), then e is

non-contractible with respect to (U , T ).

Proof. First, observe that κM (U , T ) = k. If the lemma is false, then there is

an S− T -separating partition (A, B) of order k in M/e, yet κM/e(U , T ) = k.

In particular, λM/e(U) = k. By submodularity,

2k− 1= λM/e(A) +λM/e(U) ≥ λM/e(U ∩A) +λM/e(U ∪ A). (3)
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Since U ∪ A is U − T -separating, we have λM/e(U ∪ A) ≥ k. Hence

λM/e(U ∩ A) ≤ k − 1. But λM(U ∩ A) = k since U ∩ A is S − T -separating.

It follows that e ∈ clM(U ∩ A), and in particular e ∈ clM(U). By Lemma

2.7, we cannot have e ∈ clM (E(M)− (U ∪ e)). But then λM (U ∪ e) = k−1,

contradicting the fact that κM (U , T ) = k.

Proof of Theorem 3.4. We prove the result by induction on |F |, the case

|F |= 0 being trivial. Suppose the result fails for a matroid M with subsets

S, T, F as in the theorem. Let k := κM (S, T ) and t := |F |. For each e ∈ F ,

let (Ae , Be) be S− T -separating of order k+1 with e ∈ Ae and |Ae| as small

as possible. Let f be such that |A f | ≤ |Ae | for all e ∈ F .

Claim 3.6.1. A f ∩ F = { f }.

Proof. Suppose g ∈ A f ∩ F with g 6= f . By our choice of f , we must

have that Ag = A f (using Lemma 2.6). Since g is not flexible, Lemma

3.5 implies that (A f − g, B f ∪ g) is S − T -separating of order k + 1,

contradicting minimality of |A f |.

By Lemma 3.6 we can apply the theorem inductively, replacing S by A f and

F by F− f , thus finding a sequence (A2, . . . ,At ) of nested A f −T -separating

sets of order k + 1. But now the sequence (A f ,A2, . . . ,At ) satisfies all

conditions of the theorem.

We will use the following two facts:

Lemma 3.7. Let M be a matroid, let S, T be disjoint subsets of E(M), let

k := κM (S, T ), and let (A1, . . . ,At ) be a sequence of nested S− T-separating

sets of order k+ 1. Let (C , D) be a partition of E(M)− (S ∪ T ) such that C

is independent, D is coindependent, and λM/C\D(S) = k. Let i, j ∈ {1, . . . , t}
with i < j. Let C ′ := C ∩ (A j − Ai), let D′ := D ∩ (A j − Ai), and let

M ′ := M/C ′\ D′. Then (Ai , B j) is S − T-separating of order k + 1 in M ′.

Moreover, M ′|Ai = M |Ai and M ′|B j = M |B j .

Proof. Let M ′ := M/C ′\ D′. By definition of C and D, κM ′(S, T ) = k. By

monotonicity of λ, λM ′(Ai) = k. It follows from Lemma 2.7 that for all

e ∈ C ′, e /∈ clM (Ai ∪ (C
′ − {e}) and e /∈ clM (B j ∪ (C

′ − {e}). From this the

second claim follows.

Lemma 3.8 (Geelen, Gerards, and Whittle [5, Lemma 4.7]). Let M be a

matroid, let S, T be disjoint subsets of E(M), and let k := κM (S, T ). There

exist sets S1 ⊆ S and T1 ⊆ T such that |S1|= |T1|= κM (S1, T1) = k.

4 Proof of the result for finite fields

Let M be a rank-r matroid on ground set E. Write M = M[D] if the

r × E matrix D (over field F) represents M . For S ⊆ E, denote by D[S]

the submatrix of D induced by the columns labeled by S, and denote by

〈D[S]〉 the vector space spanned by the columns of D[S]. To clean up

notation we will write 〈S〉 for 〈D[S]〉 if D is clear from the context.

Recall that, if (A, B) is such that λM[D](A) = k, then 〈A〉 ∩ 〈B〉 is a

k-dimensional subspace of Fr . Assume F = GF(q). Denote by M+
(A,B)
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the matroid obtained from M by adding a copy of PG(k − 1,q) to M ,

such that in the representation it is contained in 〈A〉 ∩ 〈B〉. Furthermore,

M+
A

:= M+
(A,B)
\B and M+

B
:= M+

(A,B)
\A. Now we can carry out row operations

to get M+
(A,B)
= M[D′], with

D′ =











A X B

0 0

D1

P

D2

0 0











,

where P is a k×X matrix representing PG(k−1,q) (with elements labeled

by X ). We remark that M+
(A,B)

is the generalized parallel connection of M+
A

and M+
B

along X (cf. [9, Section 11.4]). The following lemma follows

easily from Lemma 3.7.

Lemma 4.1. Let M be a GF(q)-representable matroid, let S and T be disjoint

subsets of E(M) with κM (S, T ) = k, and let (A, B) be S − T-separating

of order k + 1. Let (C , D) be a partition of E(M) − (S ∪ T ) such that

λM/C\D(S) = k. Then (M+
(A,B)
/C\ D)|X = M+

(A,B)
|X .

We repeat the main result, filling in an explicit value for the constant:

Theorem 4.2. Let q be a prime power, let M be a GF(q)-representable

matroid on ground set E, let N be a minor of M on n elements, let S, T ⊆ E,

and let k := κM (S, T ). If |E − (S ∪ T )| > n+ 2(n+ 1)qn2

, then there exists

an element e ∈ E such that at least one of the following holds:

(i) κM\e(S, T ) = k and N is a minor of M \ e;

(ii) κM/e(S, T ) = k and N is a minor of M/e.

The proof is not hard, but unfortunately we could not avoid using

rather involved notation. For that reason we give a rough sketch of the

idea. Let M be a counterexample. First we construct a long sequence

(A1, B1), . . . , (At , Bt ) of nested S − T -separating partitions of order k + 1.

For each i we define the matroid Mi , obtained from M+
Bi

by deleting or

contracting the elements of Bi − E(N) so that the minor N is preserved.

Since each Mi will have the same number of elements, only a finite number

of distinct represented matroids can arise. Since our matroid is sufficiently

large it follows that, after suitably relabeling the new elements, Mi = M j

for some i < j. This shows that the elements in A j −Ai can be removed in

such a way that both N and the S − T -connectivity are preserved, which

contradicts our choice of M .

Proof. Let q, M , N , n,S, T , and k be as stated, and assume |E − (S ∪ T )|>
n+ 2(n+ 1)qn2

, yet no element can be removed keeping both the S − T -

connectivity and the minor N . Let (C , D) be a partition of E − (S ∪ T )

such that λM/C\D(S) = κM (S, T ) and such that C is independent and

D coindependent. Let (CN , DN ) be a partition of E − E(N) such that

N = M/CN \ DN and such that CN is independent and DN coindependent.

By our assumption, C ∩ CN = ; and D ∩ DN = ;.
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Let F := C ∪ D − E(N), and let t ′′ := |F |. Then t ′′ > 2(n + 1)qn2

. By

Theorem 3.4, there is a nested sequence (A′′
1
, . . . ,A′′

t ′′
) of S − T -separating

sets of order k + 1 such that A′′
i
( A′′

i+1
for i ∈ {1, . . . , t ′′ − 1}. Let

( f ′′
1

, . . . , f ′′
t ′′
) be the corresponding ordering of F .Consider the sequence

(A′′
1
∩E(N), . . . ,A′′

t ′′
∩E(N)). This sequence contains at most n+1 different

elements. It follows that (A′′
1
, . . . ,A′′

t ′′
) has a subsequence (A′

1
, . . . ,A′

t ′
)

such that A′
i
∩ E(N) = A′

j
∩ E(N) for all i, j ∈ {1, . . . , t ′}, and such that

t ′ ≥ t ′′/(n+ 1) > 2qn2

.

Let ( f ′
1
, . . . , f ′

t ′
) be the corresponding subsequence of F . Using duality

if necessary we may assume that |{ f ′
1
, . . . , f ′

t ′
}∩C | ≥ |{ f ′

1
, . . . , f ′

t ′
}∩D|. Let

(A1, . . . ,At ) be a subsequence of (A′
1
, . . . ,A′

t ′
) such that Ai+1 − Ai contains

an element of C for all i ∈ {1, . . . , t−1}, and such that t ≥ t ′/2 > qn2

. For

each i ∈ {1, . . . , t}, define Bi := E − Ai .

Let H be an r × E matrix over GF(q) representing M . Let s := (qk −
1)/(q−1). For each i, let Wi := 〈Ai〉 ∩ 〈Bi〉, and let X i := {x i

1
, . . . , x i

s
} be a

set of labels disjoint from E and disjoint from X j for all j ∈ {1, . . . , t}−{i}.
Let the k × X1 matrix P1 be an arbitrary representation of PG(k − 1,q)

having ground set X1.

For each i ∈ {1, . . . , t}, let M+
i

be the matroid M+
(Ai ,Bi )

with the set X

relabeled by X i . Moreover, we assume this labeling was chosen such that,

in (M+
1
)+

i
/C\ D, x i

j
is parallel to x1

j
for all j ∈ {1, . . . , s} (where (M+

1
)+

i
is

defined in the obvious way). This can be done because of Lemma 4.1.

Now we define, for each i, a matroid Ni as follows: first set N ′
i

:=

(M+
i
\Ai)/(CN ∩Bi)\(DN ∩Bi). Now Ni is obtained from N ′

i
by relabeling x i

j

by x1
j
. Let Hi be the corresponding representation matrix. Note that, for

i, j ∈ {1, . . . , t}, E(Ni) = E(N j) ⊆ E(N)∪ X1. Hence |E(Ni)| ≤ n+ s. Since

X i ⊆ 〈Bi〉, we find that rk(Ni) ≤ n. Furthermore, for all x ∈ X1, Hi[x] =

H j[x]. Hence there are at most ((qn − 1)/(q − 1) + 1)n ≤ qn2

distinct

representation matrices Hi . Since t > qn2

, there exist i, j ∈ {1, . . . , t} with

i < j such that Hi = H j . But then M/(Bi ∩ CN )\ (Bi ∩ DN ) is equal to

�

M/((A j − Ai)∩ C)\ ((A j − Ai)∩ D)
�

/(B j ∩ CN )\ (B j ∩ DN ),

using Lemmas 3.7 and 4.1. In particular, since (A j − Ai) ∩ C 6= ;, there

exists an e ∈ C such that κM/e(S, T ) = k and M/e has N as minor, a

contradiction.

For completeness we show that Conjecture 1.1 follows from Theorem

4.2 when M is GF(q)-representable.

Proof of Conjecture 1.1 for GF(q)-representable matroids. Let n := |Q ∪ R|
and set c := n+ 2(n+ 1)qn2

. Let (C , D) be a partition of E − (Q ∪ R) such

that λM/C\D(Q) = k. By Theorem 3.1, C and D exist. Now apply Theorem

4.2 with N = M/C\ D, S, and T . The result follows.

5 Intertwining two connectivities

In this section we prove Conjecture 1.1 for all representable matroids.

The key property we need for our proof is that we can add a point to the
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intersection of two non-skew flats. Formally:

Definition 5.1. A matroid M has the intersection property if for all flats

S, T ∈ E(M) such that ⊓(S, T ) > 0, there exist a matroid N and a non-loop

element e ∈ E(N) such that N \ e = M , and e ∈ clN (S) ∩ clN (T ). In this

case, we say that N is a good extension of M (with respect to S, T). A class

of matroidsM is intersection-closed if every M ∈M has the intersection

property, andM is closed under minors, duality, and good extensions.

Note that the class of representable matroids is evidently intersection-

closed. The Vámos matroid shows that not all matroids have the

intersection property. See [1] for more on matroids with the intersection

property.

The restriction we use is reminiscent of the double-circuit property

from the min-max theorem for matroid matching (see [2]). However,

whereas the min-max theorem is false even for affine spaces, in our case

the condition appears to be just an artifact of our proof. We remain hopeful

that Conjecture 1.1 can be proven without this condition. We will now

state and prove the main result.

Theorem 5.2. There exists a function c : N2 → N with the following

property. Let M be a matroid in an intersection-closed family, and let

Q,R,S, T, F ⊆ E(M) be sets of elements such that Q ∩ R = S ∩ T = ; and

F ⊆ E(M) − (Q ∪ R ∪ S ∪ T ). Let k := κM (Q,R) and l := κM (S, T ). If

|F | ≥ c(k, l), then there exists an element e ∈ F such that one of the following

holds:

(i) κM\e(Q,R) = k and κM\e(S, T ) = l;

(ii) κM/e(Q,R) = k and κM/e(S, T ) = l.

Proof. We prove that the result holds for c(k, l) := 4k+l . We proceed by

induction on k + l, noting that the base case where k = 0 or l = 0 is

straightforward. Assume that the result holds for all k′, l ′ with k′ + l ′ <

k + l, but that M ,Q,R,S, T, F form a counterexample. Possibly after

relabeling we may assume k ≤ l. By Lemma 3.8 we can assume that

|S| = |T | = l, and that S and T are independent sets. Furthermore, we

can assume that for each e ∈ F either κM\e(Q,R) < k or κM/e(Q,R) < k.

Claim 5.2.1. There exists a Q−R separating partition (A, B) with λ(A) = k,

such that A∩ S 6= ;, A∩ T 6= ;, |A∩ (S ∪ T )| ≥ l, and |B ∩ F | ≥ ⌊ 1
2
c(k, l)⌋.

Proof. Let (A1, . . . ,At ) be the nested sequence of Q − R separating

sets from Theorem 3.4, let (B1, . . . , Bt ) be their complements, and let

( f1, . . . , ft ) be the corresponding ordering of F . Let i := ⌊t/2⌋. First we

show that one of Ai and Bi meets both of S and T . Indeed: otherwise

we have (possibly after swapping S and T) that S ⊆ Ai and T ⊆ Bi .

In that case (Ai , Bi) is S − T separating with λM (Ai) = k. It follows

that k = l. Assume fi is non-contractible with respect to (Q,R). Then

λM/ fi
(Bi) = k− 1, and therefore fi is also non-contractible with respect

to (S, T ), so the theorem holds with e = fi .

Hence, possibly after exchanging the sequences (A1, . . . ,At ) and

(B1, . . . , Bt), we can assume Ai∩S 6= ; and Ai∩T 6= ;. If |Ai∩(S∪T )|< l
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then |Bi ∩ (S ∪ T )| > l, and therefore (A, B) = (Bi ,Ai) is a partition as

desired; otherwise we simply take (A, B) = (Ai , Bi).

If necessary, we relabel Q and R so that Q ⊆ A and R ⊆ B. Define

S1 := A∩ S T1 := A∩ T

S2 := B ∩ S T2 := B ∩ T.

Also define F2 := B ∩ F . We try to remove the elements from A while

preserving the S − T connectivity. Let N0 := M , and order the elements

of A− (S1 ∪ T1) arbitrarily as a1, . . . , au. For i = 1,2, . . . ,u define Ni as

follows. If κNi−1\ai
(S, T ) = l and ai 6∈ cl∗

Ni−1
(B), then Ni := Ni−1/ai . Else,

if κNi−1/ai
(S, T ) = l and ai 6∈ clNi−1

(B), then Ni := Ni−1/ai . Otherwise

Ni := Ni−1. Observe that κNu
(S, T ) = l and κNu

(A∩E(Nu),R) = λNu
(B) = k.

We distinguish two cases.

Case I:⊓Nu
(S1, T1) > 0. Since Nu is a member of an intersection-closed

family, we can find a matroid N+ in this family with a non-loop element

s such that N+\ s = Nu, and s ∈ clN+(S1) ∩ clN+(T1). We distinguish two

subcases:

Case Ia: s 6∈ clN+(B). Let N := N+/s, and define Q′ := A∩ E(N). Then

κN (S, T ) = l − 1 and κN (Q
′,R) = k. Since |F2| ≥ c(k, l − 1), by induction

we can find an element e ∈ F2 such that either κN/e(S, T ) = l − 1 and

κN/e(Q
′,R) = k, or κN\e(S, T ) = l − 1 and κN\e(Q

′,R) = k. We assume the

former, and remark that the proof for the latter case is similar.

Claim 5.2.2. κM/e(Q,R) = k and κM/e(S, T ) = l.

Proof. Suppose κM/e(Q,R) < k, that is, e is non-contractible with

respect to (Q,R). By Lemma 3.6, e is also non-contractible with respect

to (A,R) in M . But (A, B) is Q′ − R separating, so we must have

λM/e(A) = k, a contradiction.

Next, let C , D be such that C is independent in N , e ∈ C and, in

N0 := N/C \ D, we have E(N0) = S ∪ T and λN0
(S) = l − 1. Since C

is independent in N+/s, it follows that s is not a loop in N+/C . Let

N+
0

:= N+/C \ D. Since s ∈ clN+
0
(S) ∩ clN+

0
(T ), we must have that

λN+0 \s
(S) = l. It follows that κM/e(S, T ) = l as desired.

Case Ib: s ∈ clN+(B). Again we define Q′ := A∩E(N). Let (A1, . . . ,At ′)

be the nested sequence of Q′ −R separating sets in N+ from Theorem 3.4

(applied to N ,Q′,R, and F2), let (B1, . . . , Bt ′) be their complements, and

let ( f1, . . . , ft ′) be the corresponding ordering of F2. Let j := c(k−1, l−1).

If s 6∈ clN+(B j) then we apply the arguments from Case (Ia) with A j∩E(N)

replacing Q′, B j replacing B, and F ∩ B j replacing F2. Otherwise, let

N := N+/s, define R′ := B j and F ′
2

:= F2 − B j. We have κN (Q
′,R′) = k− 1

and κN (S, T ) = l − 1. Since |F ′
2
| ≥ c(k− 1, l − 1), we find by induction an

element e ∈ F ′
2

such that either κN/e(Q
′,R′) = k−1 and κN/e(S, T ) = l−1,

or κN\e(Q
′,R′) = k − 1 and κN\e(S, T ) = l − 1. We assume the latter, and

remark that the proof in the former case is similar.
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Claim 5.2.3. κM\e(Q,R) = k and κM\e(S, T ) = l.

Proof. Suppose e = f ′
i
∈ F ′

2
is non-deletable with respect to (Q,R).

Then e ∈ cl∗
Nu
(Bi′), so λNu\e

(Bi′) = k−1. But s ∈ clN+(Bi′)∩ clN+(Ai′ − e),

so we must have λN+\e(Bi′) = k − 1. But then λN+\e/s(Bi′) = k − 2,

contradicting our choice of e. Hence e is deletable with respect to (Q,R).

The proof that κM\e(S, T ) = l is the same as before and we omit it.

Case II: ⊓Nu
(S1, T1) = ⊓

∗
Nu
(S1, T1) = 0. By dualizing if necessary, we

may assume there is an element e ∈ clNu
(A)∩ clNu

(B)∩ F , i.e. an element

that is deletable with respect to (Q,R) in M . We assume e ∈ A (replacing

(A, B) by (A∪ e, B − e) otherwise).

Claim 5.2.4. e ∈ clNu
(S1 ∪ T1).

Proof. First we show that cl∗
Nu
(B)−(S1∪T1) spans S1∪T1. Suppose not,

and let X := (S1 ∪ T1) − cl∗
Nu
(B). By construction of Nu, all remaining

elements are in clNu
(B), so we have that Nu\ X has lower rank than Nu.

Hence X contains a cocircuit. But this contradicts the fact that S1 and

T1 are coskew.

Now pick B′ := cl∗
Nu
(B) − (S1 ∪ T1 ∪ e) and A′ := A − B′. Then

k′ := λNu
(A′) ≤ k. But since S1∪T1∪e ⊆ A′ and S1∪T1∪e ⊆ clNu

(B′), we

must have that rkNu
(S1∪T1∪e)≤ k′ ≤ k ≤ l. Note that |S1∪T1| ≥ l and,

since S1 and T1 are skew, rkNu
(S1 ∪ T1) ≥ l. It follows that k′ = k = l,

and therefore e ∈ clNu
(S1 ∪ T1) as desired.

Similar to before, we define Q′ := A∩ E(Nu) − {e}. Let (A1, . . . ,At ′) be

the nested sequence of Q′ − R separating sets in Nu from Theorem 3.4

(applied to Q′,R, and F2), let (B1, . . . , Bt ′) be their complements, and let

( f1, . . . , ft ′) be the corresponding ordering of F2. Let j := c(k−1, l). Again

we distinguish two cases.

Case IIa: e 6∈ clNu
(B j). Let Nv be obtained from Nu by contracting e

and removing the other elements from A j according to the same rules

used to obtain Nu. We can then apply the arguments of Case I to Nv

(with A j replacing A and B j replacing B), observing that |F ∩ B j | ≥
2(c(k − 1, l − 1) + c(k, l − 1)).

Case IIb: e ∈ clNu
(B j). Let N := Nu/e, and define R′ := B j .

By induction we find an element f ∈ { f1, . . . , f j} such that either

κN/ f (Q
′,R′) = k − 1 and κN/ f (S, T ) = l, or κN\ f (Q

′,R′) = k − 1 and

κN\ f (S, T ) = l. As before, in the former case we have κM/ f (Q,R) = k

and κM/ f (S, T ) = l and in the latter case we have κM\ f (Q,R) = k and

κM\ f (S, T ) = l. This completes the proof of the theorem.
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