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Abstract

In this paper, we study the rate of convergence of the cyclic projection algorithm

applied to finitely many basic semi-algebraic convex sets. We establish an explicit

convergence rate estimate which relies on the maximum degree of the polynomials

that generate the basic semi-algebraic convex sets and the dimension of the underlying

space. We achieve our results by exploiting the algebraic structure of the basic semi-

algebraic convex sets.
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1 Introduction

A very common problem in diverse areas of mathematics and engineering consists of trying

to find a point in the intersection of closed convex sets Ci, i = 1, . . . ,m. This problem is

often referred to as the convex feasibility problem. One popular method for solving the

convex feasibility problem is the so-called cyclic projection algorithm. Mathematically, the
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cyclic projection algorithm is formulated as follows. Given finitely many closed convex sets

C1, C2, · · · , Cm in Rn with
⋂m
i=1Ci 6= ∅, let x0 ∈ Rn and Pi := PCi , i = 1, 2, · · · ,m, where

PCi denotes the Euclidean projection to the set Ci. The sequence of cyclic projections,

(xk)k∈N, is defined by

x1 := P1x0, x2 := P2x1, · · · , xm := Pmxm−1, xm+1 := P1xm . . .(1.1)

When m = 2, the cyclic projection method reduces to the well known von Neumann

alternating projection method (APM) (see [41] and also [8, 12, 13, 27] for some recent

developments). The cyclic projection method has attracted much recent interest due to

its simplicity and to numerous applications to diverse areas such as engineering and the

physical sciences, see [7, 6, 10, 20, 21] and the references therein.

The convergence properties of cyclic projection methods have been examined by many

researchers. In particular, Bregman [19] showed that the sequence (xk)k∈N generated

by the cyclic projection algorithm, always converges to a point in C. Moreover, linear

convergence of cyclic projection algorithm onto convex sets with regular intersections was

shown in [23]. On the other hand, for convex sets with irregular intersections (for example,

when the intersection is a singleton), the cyclic projection algorithm may not exhibit linear

convergence even for simple two dimensional cases as observed by [9, Example 5.3] (see

Section 5 for more examples). This then raises the following basic question:

Can we estimate the convergence rate of the cyclic projection algorithm for

convex sets with possibly irregular intersections?

In this paper, we provide an answer for the above question by focusing on the case

where each set Ci is a basic semi-algebraic convex set in Rn in the sense that there exist

γi ∈ N and convex polynomial functions, gi j , j = 1, . . . , γi such that

Ci = {x ∈ Rn | gi j(x) ≤ 0, j = 1, · · · , γi}.

The main motivation for examining basic semi-algebraic convex sets lies with the follow-

ing two facts. First, as recently established in [2, 3], optimization problems involving

semi-algebraic structure have a number of remarkable properties (such as the celebrated

Kurdyka- Lojasiewicz inequality) which enables us to obtain useful qualitative information

of the problem. Second, the class of basic semi-algebraic convex sets is a broad class of con-

vex sets which covers polyhedra and convex sets described by convex quadratic functions.

Additionally, the structure can often be relatively easily identified [24].

By exploiting the precise algebraic structure, we are able to provide an explicit rate for

the cyclic projection algorithm applied to finitely many basic semi-algebraic convex sets

without any regularity conditions. More precisely, let Ci be basic semi-algebraic convex sets

generated by polynomials in Rn with degree at most d ∈ N. We show that the sequence of

cyclic projections (xk)k∈N (1.1) converges (at least) at the rate of 1
kρ when d > 1, where
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ρ := 1

min
{

(2d−1)n−1, 2β(n−1)dn−2
} and β(s) denotes the central binomial coefficient with

respect to s—which is given by
(

s
[s/2]

)
. 1 When d = 1, the sequence of cyclic projections

converges linearly.

The remainder of this paper is organized as follows. In Section 2, we collect notation

and auxiliary results for future use and for the reader’s convenience. In Section 3, we give

a Hölderian regularity result for finitely many basic semi-algebraic convex sets. The proof

of our main result (Theorem 4.2) forms the bulk of Section 4. In Section 5, we explore

various concrete examples. Finally, we end the paper with some conclusions and open

questions.

2 Preliminaries and auxiliary results

We assume throughout that Rn is a Euclidean space with the norm ‖ ·‖ and inner product

〈·, ·〉, where n ∈ N := {1, 2, 3, · · · }. We reserve d ∈ N. We denote by B(x, ε) := {y ∈ Rn |
‖y − x‖ < ε}. We adopt standard notation used in these books [12, 18, 37, 39, 42].

Given a subset C of Rn, intC is the interior of C, bdC is the boundary of C, aff C is

the affine hull of C and C is the norm closure of C. The orthogonal set is C⊥ := {x∗ ∈
Rn | (∀c ∈ C) 〈x∗, c〉 = 0}. The distance function to the set C, written dist(·, C), is defined

by x 7→ infc∈C ‖x− c‖. The projector operator to the set C, denoted by PC , is defined by

PC(x) := {c ∈ C | ‖y − c‖ = dist(x,C)}, ∀x ∈ Rn.

Let D ⊆ Rn. The distance of two sets: C and D, is dist(C,D) := infc∈C,d∈D ‖c − d‖.
Given f : X → ]−∞,+∞], we set dom f := f−1(R). We say f is proper if dom f 6= ∅.

Let f be a proper function on Rn. Its associated recession function f∞ is defined, for any

v ∈ Rn, by

f∞(v) := lim inf
t→∞, v′→v

f(tv′)

t
.

If f is further assumed to be lower semicontinuous and convex, one has (see [4, Proposition

2.5.2])

(2.1) f∞(v) = lim
t→∞

f(x+ tv)− f(x)

t
= sup

t>0

f(x+ tv)− f(x)

t
for all x ∈ domf.

2.1 Notation and facts on polynomials

Recall that f : Rn → R is a polynomial if there exists a number r ∈ N such that

f(x) :=
∑

0≤|α|≤r

λαx
α,

1Here, [a] denotes the integer part of a
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where λα ∈ R, x = (x1, · · · , xn), xα := xα1
1 · · ·xαnn , αi ∈ N∪{0}, and |α| :=

∑n
j=1 αj . The

corresponding constant r is called the degree of f .

Next let us recall a useful property of polynomial functions.

Fact 2.1 (See [5, Remark 4]) Let f : Rn → R be polynomial, and {x1, x2} ⊆ Rn. If f is

constant on D := [x1, x2], then f is constant on affD.

We now summarize some basic properties of convex polynomials that will be used later.

The first property is a Frank-Wolfe type result for convex polynomial optimization prob-

lems while the second one is a directional-constancy property for a convex polynomial.

Fact 2.2 (Belousov) (See [15, Theorem 13, Section 4, Chapter II] or [16, Theorem 3]

and [35].) Let f be a convex polynomial on Rn. Consider a set D := {x | gi(x) ≤ 0, i =

1, · · · ,m}, where each gi, i = 1, · · · ,m, is a convex polynomial on Rn. Suppose that

infx∈D f(x) > −∞. Then f attains its minimum on D.

Fact 2.3 (See [4, Proposition 3.2.1].) Let f be a convex polynomial on Rn and v ∈ Rn.

Assume that f∞(v) = 0. Then f(x+ tv) = f(x) for all t ∈ R and for all x ∈ Rn.

2.2 Notation and facts on semialgebraic sets/functions

Following [17], a set D ⊆ Rn is said to be semi-algebraic if

D :=
l⋃

i=1

s⋂
j=1

{x ∈ Rn | fij(x) = 0, hij(x) ≤ 0}

for some integers l, s and some polynomial functions fij , hij on Rn (1 ≤ i ≤ l, 1 ≤
j ≤ s). Moreover, a function f : Rn → R is said to be semi-algebraic if its graph

gphf := {(x, f(x)) | x ∈ Rn} is semi-algebraic.

We now summarize below some basic properties of semi-algebraic sets and semi-algebraic

functions. These properties will be useful for our later work.

Fact 2.4 The following statements hold (the properties (P1) and (P4) are direct from the

definitions).

(P1) Any polynomial is a semi-algebraic function.

(P2) (See [17, Proposition 2.2.8].) Let D be a semi-algebraic set. Then dist(·, D) is a

semi-algebraic function.

(P3) (See [17, Proposition 2.2.6].) If f, g are semi-algebraic functions on Rn and λ ∈ R
then f + g, λf , max{f, g}, fg are semi-algebraic.
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(P4) If fi are polynomials, i = 1, . . . ,m, and λ ∈ R, then the sets {x | fi(x) = λ, i =

1, . . . ,m}, {x | fi(x) ≤ λ, i = 1, . . . ,m} are semi-algebraic sets.

(P5) ( Lojasiewicz’s inequality)(See [17, Corollary 2.6.7].) If φ, ψ are two continuous semi-

algebraic functions on compact semi-algebraic set K ⊆ Rn such that ∅ 6= φ−1(0) ⊆
ψ−1(0) then there exist constants c > 0 and τ ∈ (0, 1] such that

|ψ(x)| ≤ c|φ(x)|τ for all x ∈ K.

Remark 2.5 As pointed out by [34], the corresponding exponent τ in  Lojasiewicz’s in-

equality (P5) is hard to determine and is typically not known. ♦

Remark 2.6 Let gi, i = 1, . . . ,m be polynomials on Rn and set S := {x ∈ Rn | gi(x) ≤ 0}.
Let x̄ ∈ S. Then, (P2) and (P4) imply that φ = max1≤i≤m[gi]+ while [gi]+ := max{gi(·), 0}
and ψ = dist(·, S) are semi-algebraic functions. Applying (P5) it follows that there exist

c, ε > 0 and τ ∈ (0, 1] such that

(2.2) dist(x, S) ≤ c max
1≤i≤m

[gi(x)]τ+ for all x ∈ B(x̄, ε).

♦

As explained in Remark 2.5, the exponent τ in (2.2) is hard to determine and is typically

unknown. However, there are some special cases where we can provide some effective esti-

mates on the exponent τ : To formulate these results, we introduce the following notation.

Define

(2.3) κ(n, d) := (d− 1)n + 1.

We now present various results which show that the exponent τ in (2.2) can be effectively

estimated when gi has some appropriate extra structure.

Fact 2.7 (Gwoździewicz) (See [22, Theorem 3].) Let g be a polynomial on Rn with

degree no larger than d. Suppose that g(0) = 0 and there exists ε0 > 0 such that g(x) > 0

for all x ∈ B(0, ε0)\{0}. Then there exist constants c, ε > 0 such that

(2.4) ‖x‖ ≤ c g(x)
1

κ(n,d) , ∀x ∈ B(0, ε).

We denote by β(s) the central binomial coefficient with respect to an integer s:
(

s
[s/2]

)
(with

(
0
0

)
= 1)[26].

Fact 2.8 (Kollár) (See [26, Theorem 3(i)].) Let gi be polynomials on Rn with degree ≤ d
for every i = 1, · · · ,m. Let g(x) := max1≤i≤m gi(x). Suppose that there exists ε0 > 0 such

that g(x) > 0 for all x ∈ B(0, ε0)\{0}. Then there exist constants c, ε > 0 such that

‖x‖ ≤ c g(x)
1

β(n−1)dn , ∀x ∈ B(0, ε).
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Fact 2.9 (See [29, Theorem 4.2].) Let g be a convex polynomial on Rn with degree at most

d. Let S := {x | g(x) ≤ 0} and x̄ ∈ S. Then, g has a Hölder type local error bound with

exponent κ(n, d)−1, i.e., there exist constants c, ε > 0 such that

dist(x, S) ≤ c [g(x)]
1

κ(n,d)

+ for all x ∈ B(x̄, ε).

Fact 2.10 (See [29, Theorem 4.1].) Let g be a convex polynomial on Rn. Let S := {x |
g(x) ≤ 0}. Suppose that there exists x0 ∈ Rn such that g(x0) < 0. Then, g has a Lipschitz

type global error bound, i.e., there exists a constant c > 0 such that

dist(x, S) ≤ c [g(x)]+ for all x ∈ Rn.

Fact 2.11 (See [38, Theorem 2] Let g be a continuous convex function Rn. Let S := {x ∈
Rn | g(x) ≤ 0}. Suppose that there exists x0 ∈ Rn such that g(x0) < 0. Then, for every

compact subset K of Rn, there exists c > 0 such that

dist(x, S) ≤ c [g(x)]+ for all x ∈ K.

The following example show us that the conclusion of Fact 2.11 can fail if we allow K

to be noncompact.

Example 2.12 (Shironin) ( See [29, Example 4.1] or [40].) Let g1, g2 : R4 → R be

defined by

g1(x1, x2, x3, x4) := x1,

g2(x1, x2, x3, x4) := x16
1 + x8

2 + x6
3 + x1x

3
2x

3
3 + x2

1x
4
2x

2
3 + x2

2x
4
3 + x4

1x
4
3

+ x4
1x

6
2 + x2

1x
6
2 + x2

1 + x2
2 + x2

3 − x4.

Then g1,g2 are convex polynomials and

g1(−k, 0, 0, k16 + k2 + k) = g2(−k, 0, 0, k16 + k2 + k) = −k < 0, ∀k ∈ N.

Let g(x) := max{g1(x), g2(x)} for all x ∈ R4. Then, g is a continuous convex function

and g(−k, 0, 0, k16 + k2 + k) < 0 for all k ∈ N. On the other hand, as shown in [40], there

exists a sequence (xk)k∈N in R4 such that

[g(xk)]+ ≤ 1, ∀k but dist(xk, S) −→ +∞,

where S := {x ∈ R4 | g1(x) ≤ 0, g2(x) ≤ 0}. Let K be a noncompact set such that

{xk} ⊆ K. Then, the conclusion of Fact 2.11 “dist(x, S) ≤ c [g(x)]+ for all x ∈ K”

must fail in this case. ♦

Recall that a set C ⊆ Rn is a basic semi-algebraic convex set if there exist γ ∈ N
and convex polynomial functions, gj , j = 1, . . . , γ such that C = {x ∈ Rn | gj(x) ≤
0, j = 1, · · · , γ}. Clearly, any basic semi-algebraic convex set is convex and semi-algebraic.

However, the following example shows that a convex and semi-algebraic set need not to

be a basic semi-algebraic convex set.
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Example 2.13 Consider the set A := {(x1, x2) ∈ R2 | 1 − x1x2 ≤ 0,−x1 ≤ 0,−x2 ≤ 0}.
Clearly, A is convex and semi-algebraic while the polynomial (x1, x2) 7→ 1 − x1x2 is not

convex. We now show that A is not a basic semi-algebraic convex set, i.e., it cannot be

written as {x : gi(x) ≤ 0, i = 1, · · · , l} for some convex polynomials gi, i = 1, · · · , l, l ∈ N.

To see this, we proceed by the method of contradiction. Let f : R2 → R be defined by

f(x1, x2) := x1. Clearly inf
x=(x1,x2)∈A

f(x) = 0. Then, then by Fact 2.2, f should attain its

minimum on A. This leads to a contradiction, and so, justifies the claim. ♦

2.3 Notation and facts for projection methods

From now on, we assume that

m ∈ N, γi ∈ N, i = 1, . . . ,m

gi,1, gi,2, · · · , gi,γi are convex polynomials onRn, i = 1, . . . ,m

Ci :=
{
x ∈ Rn | gi,1(x) ≤ 0, gi,2(x) ≤ 0, · · · , gi,γi(x) ≤ 0

}
, i = 1, . . . ,m

Pi := PCi , ∀i = 1, 2, · · · ,m

C :=

m⋂
i=1

Ci 6= ∅.

Fact 2.14 (Bregman) (See [19].) Let x0 ∈ Rn. The sequence of cyclic projections,

(xk)k∈N, defined by

x1 := P1x0, x2 := P2x1, · · · , xm := Pmxm−1, xm+1 := P1xm . . .(2.5)

converges to a point in C.

Fact 2.15 (Bauschke and Borwein) (See [9, Lemma 2.2 and Theorem 4.8], or [8,

Fact 1.1(iii) and Fact 1.2(ii)].) Let A,B be nonempty convex subsets of Rn such that

A−B is closed. Let b0 ∈ X and (ak)k∈N, (bk)k∈N be defined as below:{
ak+1 := PAbk

bk+1 := PBak+1.

Let v := PA−B0. Then, we have

(i) ‖v‖ = dist(A,B) and ak −→ a, bk −→ a+ v.

(ii) PBx = PB∩(A+v)x = x+v, ∀x ∈ A∩(B−v) and PAy = PA∩(B−v)y = y−v, ∀y ∈
B ∩ (A+ v)

7



Definition 2.16 Let A be a nonempty convex subset of Rn. We say the sequence (xk)k∈N
in Rn is Fejér monotone with respect to A if

‖xk+1 − a‖ ≤ ‖xk − a‖, ∀k ∈ N, a ∈ A.

Fact 2.17 (Bauschke and Borwein) (See [8, Theorem 3.3(iv)].) Let A be a nonempty

closed convex subset of Rn and let (xk)k∈N be Fejér monotone with respect to A, and

xk −→ x ∈ A. Then ‖xn − x‖ ≤ 2 dist(xn, A).

3 Hölderian regularity for basic semi-algebraic convex sets

In this section, we will establish Hölderian regularity for basic semi-algebraic convex sets

and shall provide an effective estimate of the exponent in the regularity results. This

result plays an important role in our following estimation of the convergence speed of the

cyclic projection methods.

To do this, we first establish an error bound result which estimates the distance of a

point to a basic semi-algebraic convex set S in terms of the polynomials which define S.

More explicitly, we obtain an explicit exponent τ > 0 such that there exist c, ε > 0,

dist(x, S) ≤ c
(

max
1≤i≤m

[gi(x)]+

)τ
whenever ‖x− x‖ ≤ ε,

where S := {x ∈ Rn | gi(x) ≤ 0, i = 1, · · · ,m}.

We note that this error bound property plays an important role in convergence analysis

of many algorithms for optimization problems [36] as well as for the variational inequality

problem [30], and that the exponent τ in the error bound property has a close relationship

with the convergence rate of the algorithm. However, existing results such as the power-

ful  Lojasiewicz’s inequality do not provide any insight on how to explicitly estimate the

exponent τ .

Before we proceed, let us use a simple example to illustrate that the exponent τ can be

related to the maximum degree of the polynomials defined the basic semi-algebraic convex

set and the dimension of the underlying space. This example is partially inspired by [26,

Example 1].

Example 3.1 Let d be an even number. Consider convex polynomials gi, i = 1, . . . , n on

Rn given by g1(x) := xd1 and gi, i = 2, · · · , n given by gi(x) := xdi − xi−1, i = 2, · · · , n.

Then, direct verification gives us that S := {x ∈ Rn | gi(x) ≤ 0, i = 1, · · · , n} = {0}, and

so, dist(x, S) = ‖x‖. In this case, consider x(t) = (td
n−1

, td
n−2

, · · · , t) ∈ Rn, t ∈ (0, 1).

Then dist(x(t), S) = O(t) and max1≤i≤m[gi(x(t))]+ = td
n
. Therefore, we see that if there

exist c, ε > 0 and τ > 0 such that

dist(x, S) ≤ c
(

max
1≤i≤m

[gi(x)]+

)τ
whenever ‖x‖ ≤ ε,
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then, τ ≤ 1
dn . Thus, we see that the exponent τ is related to the maximum degree of

the polynomials defined the basic semi-algebraic convex set and the dimension of the

underlying space. ♦

We now introduce a decomposition of the index set.

Definition 3.2 For convex polynomials g1, . . . , gm on Rn with S = {x ∈ Rn | gi(x) ≤
0, i = 1, . . . ,m}, the index set {1, . . . ,m} can be decomposed as J0 ∪ J1 with J0 ∩ J1 = ∅
where

(3.1) J0 :=
{
i ∈ {1, . . . ,m} | gi(S) ≡ 0

}
and J1 := {1, . . . ,m}\J0.

Now we come to our key technical result which provides a local error bound for convex

polynomial systems. The main idea of the proof is to use the extreme rigidity of convex

polynomial functions (see Fact 2.1 and 2.3) to reduce the problem to the one of comparing

a (power of a) nonnegative convex polynomial vanishing only at 0 with the norm so that

the estimate of the Lojasiewicz inequality that we introduced in Fact 2.7 and Fact 2.8 can

be applied.

Theorem 3.3 (Local error bounds for convex polynomial systems) Let gi be con-

vex polynomials on Rn with degree at most d for every i = 1, · · · ,m. Let S := {x ∈ Rn |
gi(x) ≤ 0, i = 1, · · · ,m} and x̄ ∈ S. Then there exist c, ε > 0 such that

dist(x, S) ≤ c
(

max
i∈J1

[gi(x)]+ +
(

max
i∈J0

[gi(x)]+
)τ)

whenever ‖x− x‖ ≤ ε,

where [a]+ := max{a, 0}, τ := max
{

2
κ(n,2d) ,

1
β(n−1)dn

}
, κ(n, 2d) := (2d− 1)n + 1, β(n− 1)

is the central binomial coefficient with respect to n − 1 which is given by
(

n−1
[(n−1)/2]

)
, and

J0, J1 are defined as in (3.1).

Proof. We prove the desired conclusion by induction on the number of the polynomials m.

[Trivial Case] Suppose that m = 1. Then J0 = {1} or J0 = ∅. If J0 = {1}, then the

conclusion follows by Fact 2.9 since max
{

2
κ(n,2d) ,

1
β(n−1)dn

}
≤ 1

κ(n,d) . If J0 = ∅, then there

exists x0 such that g1(x0) < 0. In this case, the conclusion follows by Fact 2.10.

[Reduction to the active cases] Let us suppose that the conclusion is true for m ≤
p− 1, p ∈ N, and look at the case for m = p. If J0 6= {1, . . . ,m}, then {1, . . . ,m}\J0 6= ∅.
Let i0 /∈ J0. Then there exists x0 ∈ S such that gi0(x0) < 0. Set J :=

{
i ∈ {1, 2, . . . ,m} |

gi(x0) < 0
}

. Then i0 ∈ J ⊆ J1 and J ∩ J0 = ∅. Let A,B be defined by

A :=
{
x ∈ Rn | gi(x) ≤ 0, ∀i ∈ J

}
B :=

{
x ∈ Rn | gi(x) ≤ 0, ∀i ∈ J̃

}
,

9



where J̃ := {1, 2, . . . ,m}\J . Thus, J0 ⊆ J̃ . Then we have x0 ∈ intA ∩B and S = A ∩B.

Since S ⊆ B, we have

J̃0 :=
{
i ∈ {1, 2, . . . ,m}\J | gi(B) ≡ 0

}
⊆ J0.(3.2)

Since intA ∩ B 6= ∅, [8, Corollary 4.5] implies that for every compact set K there exist

γ, δ > 0 such that

dist(x, S) = dist(x,A ∩B) ≤ γmax{dist(x,A),dist(x,B)} for all x ∈ K.(3.3)

Now applying Fact 2.11 with f(x) = maxi∈J [gi(x)]+, there exists c1 > 0 such that

dist(x,A) ≤ c1 max
i∈J

[gi(x)]+, ∀x ∈ K.(3.4)

From the induction hypothesis and (3.2), we see that there exist ε > 0 and c2 > 0 such

that for every ‖x− x̄‖ ≤ ε, max1≤i≤m[gi(x)]+ ≤ 1 such that

dist(x,B)

≤ c2

(
max
i∈J̃\J̃0

[gi(x)]+ +
(

max
i∈J̃0

[gi(x)]+
)τ)

= c2

(
max

{
max
i∈J̃\J0

[gi(x)]+, max
i∈J0\J̃0

[gi(x)]+
}

+
(

max
i∈J̃0

[gi(x)]+
)τ)

(since J̃0 ⊆ J0 ⊆ J̃)

≤ c2

(
max
i∈J̃\J0

[gi(x)]+ + max
i∈J0\J̃0

[gi(x)]+ +
(

max
i∈J̃0

[gi(x)]+
)τ)

≤ c2

(
max
i∈J̃\J0

[gi(x)]+ +
(

max
i∈J0\J̃0

[gi(x)]+
)τ

+
(

max
i∈J̃0

[gi(x)]+
)τ)

≤ c2

(
max
i∈J̃\J0

[gi(x)]+ + 2
(

max
i∈J0

[gi(x)]+
)τ)

≤ 2c2

(
max
i∈J̃\J0

[gi(x)]+ +
(

max
i∈J0

[gi(x)]+
)τ)

.

Thus, the conclusion follows in this case by combining (3.3) and (3.4), and noting that

(J̃\J0) ∪ J ⊆ J1.

From now on, we may assume that J0 = {1, . . . ,m}. That is,{
x | gi(x) ≤ 0, i = 1, · · · ,m

}
=
{
x | gi(x) = 0, i = 1, · · · ,m

}
.

This implies that infx∈Rn max1≤i≤m{gi(x)} = 0. Then,

0Rm /∈
{

(g1(x), · · · , gm(x)) | x ∈ Rn
}

+ intRm+ .

Hence the convex separation theorem ensures that there exist αi ≥ 0 with
∑m

i=1 αi = 1

such that
∑m

i=1 αigi(x) ≥ 0 for all x ∈ Rn. Denote I := {i | αi > 0} 6= ∅. Then, we have∑
i∈I αi = 1 and

(3.5)
∑
i∈I

αigi(x) ≥ 0 for all x ∈ Rn.
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[Decompose the underlying space into sum of two subspaces M and M⊥] Con-

sider D := {x ∈ Rn | gi(x) ≤ 0, i ∈ I}. Clearly, D is a convex set and x̄ ∈ D. Moreover,

for any v ∈ D, (3.5) implies that

gi(v) = 0, ∀i ∈ I.(3.6)

In other words, gi takes constant value 0 on D. Then, Fact 2.1 implies that D is either a

singleton or an affine set with dimension larger than one.

Let M := D − x̄. Then M is a subspace. We may decompose Rn = M +M⊥. Denote

dimM = k (k ≤ n).

We now see that

(3.7)
∑
i∈I

g2
i (x) > 0 for all x− x̄ ∈M⊥\{0}.

Otherwise, there exists x0 ∈ Rn such that x0 − x̄ ∈ M⊥\{0} and gi(x0) = 0 for all i ∈ I.

This shows that x0 ∈ D. Thus x0− x̄ ∈M and hence x0− x̄ ∈M ∩M⊥. This contradicts

the fact that x0 − x̄ 6= 0.

Similarly, we have

(3.8) max
i∈I

gi(x) > 0 for all x− x̄ ∈M⊥\{0}.

[Distance estimation on M⊥] We first show that there exist ε0, γ0 > 0 such that

(3.9) ‖x− x̄‖ ≤ γ0

(∑
i∈I

g2
i (x)

) 1
κ(n−k,2d)

, ∀x− x̄ ∈M⊥ ∩ B(0, ε0).

Since dimM⊥ = n − k, there exists an n × (n − k) matrix Q0 with the rank n − k such

that Q0(Rn−k) = M⊥. Then Q0 is a bijective operator from Rn−k to M⊥. Then (3.7)

shows that ∑
i∈I

g2
i (x̄+Q0b) > 0, ∀b ∈ Rn−k\{0}.(3.10)

Define h : Rn−k → R by h(b) :=
∑

i∈I g
2
i (x̄+Q0b). Then h(0) =

∑
i∈I g

2
i (x̄) = 0 by (3.6).

Thus by (3.10) and Fact 2.7, there exist ε1, γ1 > 0 such that for all

‖b‖ ≤ γ1h(b)
1

κ(n−k,2d) = γ1

(∑
i∈I

g2
i (x̄+Q0b)

) 1
κ(n−k,2d)

, ∀‖b‖ ≤ ε1.

Setting x := x̄+Q0b, it follows that

‖x− x̄‖ = ‖Q0

(
Q−1

0 (x− x̄)
)
‖ ≤ ‖Q0‖ · ‖Q−1

0 (x− x̄)‖

≤ ‖Q0‖γ1

(∑
i∈I

g2
i (x)

) 1
κ(n−k,2d)

, ∀‖Q−1
0 (x− x̄)‖ ≤ ε1.
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Hence, there exist ε1, γ1 > 0 such that

‖x− x̄‖ ≤ γ0

(∑
i∈I

g2
i (x)

) 1
κ(n−k,2d)

, ∀x− x̄ ∈M⊥ ∩ B(0, ε0).

Thence (3.9) holds.

By Fact 2.8 and (3.8), there exist ε̃0, γ̃0 > 0 such that ε̃0 ≤ ε0 and, for all x with

x− x̄ ∈M⊥ ∩ B(0, ε̃0),

max
i∈I

gi(x) ≤ 1

and

‖x− x̄‖ ≤ γ̃0

(
max
i∈I

gi(x)

) 1

β(n−k−1)dn−k

= γ̃0

(
max
i∈I

[gi(x)]+

) 1

β(n−k−1)dn−k
.(3.11)

[Distance estimation on M ] Set r :=

max{
∑
j∈I\{i} αj
αi

| i ∈ I} > 0, if |I| ≥ 2;

1, otherwise.
.

Thus r ≥ 1. Note that
∑

i∈I αigi(x) ≥ 0, we have for each i ∈ I

max
i∈I

[gi(x)]+ ≥ gi(x) ≥ −
∑

j∈I\{i} αjgj(x)

αi
≥ −rmax

i∈I
[gi(x)]+ .

Hence we have |gi(x)| ≤ rmaxi∈I [gi(x)]+. This together with (3.9) implies that

‖x− x̄‖ ≤ γ0r
2|I|
(

max
i∈I

[gi(x)]+

) 2
κ(n−k,2d)

, ∀x− x̄ ∈M⊥ ∩ B(0, ε0).

Combining this with (3.11), we see that, for every x− x̄ ∈M⊥ ∩ B(0, ε̃0),

(3.12) ‖x− x̄‖ ≤
(
γ0r

2|I|+ γ̃0

)(
max
i∈I

[gi(x)]+

)max{ 2
κ(n−k,2d) ,

1

β(n−k−1)dn−k
}
.

We now consider two cases.

Case 1 : dimM = {0}.

We have D = S = {x̄}. Thus M = 0 and M⊥ = Rn. We can assume that

maxi∈I [gi(x)]+ ≤ 1 for all x− x̄ ∈ B(0, ε̃0). Then by (3.12), we have

dist(x, S) = ‖x− x̄‖ ≤
(
γ0r

2|I|+ γ̃0

)(
max
i∈I

[gi(x)]+

)max
{

2
κ(n,2d)

, 1
β(n−1)dn

}
, ∀‖x− x‖ ≤ ε̃0.

Case 2 : k = dimM ≥ 1.
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Since dimM = k, there exists a full rank matrix Q ∈ Rn×k such that Q(Rk) = M . For

each u ∈M and i ∈ I, (3.6) implies that

g∞i (u) = lim
t→∞

gi(x̄+ tu)− gi(x̄)

t
= 0.

Then, Fact 2.3 implies that

(3.13) gi(x+ u) = gi(x) for all x ∈ Rn, u ∈M, i ∈ I.

Since S ⊆ D = x̄+M , it follows that

S = {x ∈ x̄+M ∈ Rn | gi(x) ≤ 0, i /∈ I} = x̄+Q(Ŝ),

where Ŝ := {a ∈ Rk | gi(x̄+Qa) ≤ 0, i /∈ I}.

Note that 0 ∈ Ŝ. The induction hypothesis implies that there exist ε̃1, γ̃1 > 0 such that

maxi/∈I [gi(x̄+Qa)]+ ≤ 1 and

dist(a, Ŝ) ≤ γ̃1

(
max
i/∈I

[gi(x̄+Qa)]+

)max
{

2
κ(k,2d)

, 1

β(k−1)dk

}
for all ‖a‖ ≤ ε̃1.

This implies that there exist ε2, γ2 > 0 such that

(3.14) dist(x, S) ≤ γ2

(
max
i/∈I

[gi(x)]+

)max
{

2
κ(k,2d)

, 1

β(k−1)dk

}
for all x− x̄ ∈M ∩ B(0, ε2).

[Combining the estimation and simplification] Now let ε ≤ min{ε̃0,ε2} be such

that max1≤i≤m[gi(x)]+ ≤ 1 for all x ∈ B(x̄, ε). Let K be a compact set containing

B(x̄, ε)∪B(0, ε). Denote the Lipschitz constant of gi over K by Li, i.e., |gi(x1)− gi(x2)| ≤
Li‖x1 − x2‖ for all x1, x2 ∈ K. Set L := max1≤i≤m Li and γ := max{γ0r

2|I|+ γ̃0, γ2}.

To arrive at the conclusion, we only need to show that for any x ∈ B(x̄, ε),

dist(x, S) ≤ c
(

max
1≤i≤m

[gi(x)]+

)max
{

2
κ(n,2d)

, 1
β(n−1)dn

}
,

where c := 2γ + Lγ2. To see this, let us fix an arbitrary x ∈ B(x̄, ε). Note that Rn =

M + M⊥. Then, one can decompose x − x̄ = u + v for some u ∈ M ∩ B(0, ε) and

v ∈M⊥ ∩ B(0, ε). This together with (3.14) and (3.12) implies that

dist(u+ x̄, S) ≤ γ
(

max
i/∈I

[gi(u+ x̄)]+

)max
{

2
κ(k,2d)

, 1

β(k−1)dk

}
(3.15)

‖v‖ ≤ γ
(

max
i∈I

[gi(v + x̄)]+

)max
{

2
κ(n−k,2d) ,

1

β(n−k−1)dn−k

}
.(3.16)

Therefore,

dist(x, S) ≤ dist(u+ x̄, S) + ‖x− (u+ x̄)‖
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= dist(u+ x̄, S) + ‖v‖

≤ γ
(

max
i/∈I

[gi(u+ x̄)]+

)max
{

2
κ(k,2d)

, 1

β(k−1)dk

}
+ γ

(
max
i∈I

[gi(v + x̄)]+

)max
{

2
κ(n−k,2d) ,

1

β(n−k−1)dn−k

}

= γ

(
max
i/∈I

[gi(u+ x̄)]+

)max
{

2
κ(k,2d)

, 1

β(k−1)dk

}
+ γ

(
max
i∈I

[gi(x)]+

)max
{

2
κ(n,2d)

, 1
β(n−1)dn

}

≤ γ
(

max
1≤i≤m

[gi(u+ x̄)]+

)max
{

2
κ(k,2d)

, 1

β(k−1)dk

}
+ γ

(
max

1≤i≤m
[gi(x)]+

)max
{

2
κ(n,2d)

, 1
β(n−1)dn

}
,

where the second equality follows by (3.13) and v + x̄+ u = x. Note that∣∣ max
1≤i≤m

[gi(u+ x̄)]+ − max
1≤i≤m

[gi(x)]+
∣∣ ≤ max

1≤i≤m
|gi(u+ x̄)− gi(x)|

≤ L‖u+ x̄− x‖ = L‖v‖

≤ Lγ
(

max
i∈I

[gi(v + x̄)]+

)max
{

2
κ(n−k,2d) ,

1

β(n−k−1)dn−k

}
(by (3.16))

= Lγ
(

max
i∈I

[gi(x)]+

)max
{

2
κ(n−k,2d) ,

1

β(n−k−1)dn−k
}

(by 3.13) and v + x̄+ u = x).(3.17)

As max1≤i≤m[gi(x)]+ ≤ 1 for all x ∈ B(x̄, ε), it follows that

dist(x, S) ≤ γ
(

max
1≤i≤m

[gi(u+ x̄)]+

) 2
κ(k,2d)

+ γ

(
max

1≤i≤m
[gi(x)]+

)max
{

2
κ(n,2d)

, 1
β(n−1)dn

}

≤ γ
(

max
1≤i≤m

[gi(x)]+ + Lγ(max
i∈I

[gi(x)]
2

κ(n−k,2d)
+ )

) 2
κ(k,2d)

(by (3.17))

+ γ

(
max

1≤i≤m
[gi(x)]+

)max
{

2
κ(n,2d)

, 1
β(n−1)dn

}

≤ γ
(

max
1≤i≤m

[gi(x)]
2

κ(n−k,2d)
+ + Lγ(max

i∈I
[gi(x)]

2
κ(n−k,2d)
+ )

) 2
κ(k,2d)

+ γ

(
max

1≤i≤m
[gi(x)]+

)max
{

2
κ(n,2d)

, 1
β(n−1)dn

}

≤ (γ + Lγ2) max
1≤i≤m

[gi(x)]
4

κ(n−k,2d)·κ(k,2d)
+ + γ

(
max

1≤i≤m
[gi(x)]+

)max
{

2
κ(n,2d)

, 1
β(n−1)dn

}

= (γ + Lγ2) max
1≤i≤m

[gi(x)]

4(
(2d−1)n−k+1

)
·
(
(2d−1)k+1

)
+ + γ

(
max

1≤i≤m
[gi(x)]+

)max
{

2
κ(n,2d)

, 1
β(n−1)dn

}

≤ (γ + Lγ2) max
1≤i≤m

[gi(x)]
2

(2d−1)n+1

+ + γ

(
max

1≤i≤m
[gi(x)]+

)max
{

2
κ(n,2d)

, 1
β(n−1)dn

}
.

(3.18)

Similarly, we also have

dist(x, S) ≤ γ
(

max
1≤i≤m

[gi(u+ x̄)]+

) 1

β(k−1)dk

+ γ

(
max

1≤i≤m
[gi(x)]+

)max
{

2
κ(n,2d)

, 1
β(n−1)dn

}
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≤ γ
(

max
1≤i≤m

[gi(x)]+ + Lγ(max
i∈I

[gi(x)]
1

β(n−k−1)dn−k

+ )

) 1

β(k−1)dk

(by (3.17))

+ γ

(
max

1≤i≤m
[gi(x)]+

)max
{

2
κ(n,2d)

, 1
β(n−1)dn

}

≤ γ
(

max
1≤i≤m

[gi(x)]
1

β(n−k−1)dn−k

+ + Lγ(max
i∈I

[gi(x)]
1

β(n−k−1)dn−k

+ )

) 1

β(k−1)dk

+ γ

(
max

1≤i≤m
[gi(x)]+

)max
{

2
κ(n,2d)

, 1
β(n−1)dn

}

= (γ + Lγ2) max
1≤i≤m

[gi(x)]

1(
β(n−k−1)dn−k

)
·
(
β(k−1)dk

)
+ + γ

(
max

1≤i≤m
[gi(x)]+

)max
{

2
κ(n,2d)

, 1
β(n−1)dn

}

≤ (γ + Lγ2) max
1≤i≤m

[gi(x)]
1

β(n−1)dn

+ + γ

(
max

1≤i≤m
[gi(x)]+

)max
{

2
κ(n,2d)

, 1
β(n−1)dn

}
,

where the last inequality was obtained by the Chu-Vandermonde identity.

In combination with (3.18) we obtain

dist(x, S) ≤ (γ + Lγ2) max
1≤i≤m

[gi(x)]
max

{
2

(2d−1)n+1
, 1
β(n−1)dn

}
+ + γ

(
max

1≤i≤m
[gi(x)]+

)max
{

2
κ(n,2d)

, 1
β(n−1)dn

}

= (2γ + Lγ2) max
1≤i≤m

[gi(x)]
max

{
2

(2d−1)n+1
, 1
β(n−1)dn

}
+ .

This completes the proof. �

As a corollary, we obtain a local error bound result which is independent of the partition

of the index set.

Corollary 3.4 Let gi be convex polynomials on Rn with degree at most d for every i =

1, · · · ,m. Let S := {x ∈ Rn | gi(x) ≤ 0, i = 1, · · · ,m} and x̄ ∈ S. Then there exist

c, ε > 0 such that

dist(x, S) ≤ c
(

max
1≤i≤m

[gi(x)]+

)τ
whenever ‖x− x‖ ≤ ε,

where [a]+ := max{a, 0}, τ := max
{

2
κ(n,2d) ,

1
β(n−1)dn

}
= 1

min
{

(2d−1)n+1
2

, β(n−1)dn
} and

β(n− 1) is the central binomial coefficient with respect to n− 1.

Proof. Choose ε small enough so that max1≤i≤m[gi(x)]+ ≤ 1. Then, the conclu-

sion follows immediately from the preceding Theorem 3.3 by noting that [gi(x)]+ ≤(
max1≤i≤m[gi(x)]+

) 2
κ(n,2d) for each i = 1, . . . ,m. �

Remark 3.5 (Discussion of the exponent) Let gi be convex polynomials on Rn with

degree at most d for every i = 1, · · · ,m. Let S := {x ∈ Rn | gi(x) ≤ 0, i = 1, · · · ,m} and

x̄ ∈ S. We now make some discussion on the exponent in our local error bound results.
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(1) Theorem 3.3 shows that in the case when d = 1 or if there exists x0 ∈ Rn such that

gi(x0) < 0, i = 1, . . . ,m, we indeed obtain a Lipschitz type local error bound. That

is to say, in these cases, there exist c, ε > 0 such that

dist(x, S) ≤ c max
1≤i≤m

[gi(x)]+ whenever ‖x− x‖ ≤ ε,

where [a]+ := max{a, 0}. To see this, if d = 1, then 2
κ(n,2d) = 1 and 1

β(n−1)dn ≥ 1.

So, τ = max
{

2
κ(n,2d) ,

1
β(n−1)dn

}
= 1 and the conclusion follows immediately from

Theorem 3.3. On the other hand, if there exists x0 ∈ Rn such that gi(x0) < 0,

i = 1, . . . ,m, then, J0 = ∅. So, the conclusion follows immediately from the same

theorem.

(2) In the case when n = 1, we see that 2
κ(n,2d) = 1

β(n−1)dn = 1
d . So, when each gi is a

univariate convex polynomial, then there exist c, ε > 0 such that

dist(x, S) ≤ c
(

max
1≤i≤m

[gi(x)]+
) 1
d whenever ‖x− x‖ ≤ ε.

Note that, for the naive simple example g1(x) := xd, local error bound holds at 0

with exponent 1
d . This suggests that our result matches what one might expect in

the univariate case.

(3) On the other hand, in general, our estimation on the exponent will not be optimal.

For example, if the inequality system consists of one single convex polynomial, Fact

2.9 shows that the exponent can be set as 1
(d−1)n+1 while our results produce a

weaker exponent max
{

2
(2d−1)n+1 ,

1
β(n−1)dn

}
. An interesting feature of the exponent

1
(d−1)n+1 in Fact 2.9 is that, in the convex quadratic case, it collapses to 1

2 which

is independent of the dimension of the underlying space and which agrees with the

known result presented in [32]. By contrast, our estimate max
{

2
3n+1 ,

1
β(n−1)2n

}
depends heavily on the dimension n.

Moreover, as indicated in Example 3.1, the best possible exponent might be 1
dn (see

[26] for some relevant discussion regarding the best possible exponent for general

nonconvex polynomial system). It would be interesting to find how to could improve

our estimate here.

Making better sense of these estimates will be one of our future research topics. ♦

Given D ⊆ Rn, we set distr(·, D) :=
(

dist(·, D)
)r

for every r ∈ R.

Theorem 3.6 (Hölderian regularity) Let γi ∈ N, i = 1, . . . ,m, and gi,j be are convex

polynomials on Rn with degree d ∈ N, j = 1, . . . , γi, i = 1, . . . ,m. Recall that

Ci =
{
x ∈ Rn | gi,j(x) ≤ 0, j = 1, . . . , γi

}
and C =

m⋂
i=1

Ci.
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Let θ > 0 and K ⊆ Rn be a compact set. Then there exists c > 0 such that

distθ(x,C) ≤ c
( m∑
i=1

distθ(x,Ci)

)τ
, ∀x ∈ K,

where τ := 1

min
{

(2d−1)n+1
2

, β(n−1)dn
} and β(n − 1) is the central binomial coefficient with

respect to n− 1 which is given by
(

n−1
[(n−1)/2]

)
.

Proof. To see the conclusion, we only need to show that for each x̄ ∈ Rn, there exist

c, ε > 0 such that

(3.19) distθ(x,C) ≤ c
( m∑
i=1

distθ(x,Ci)

)τ
, for all ‖x− x̄‖ ≤ ε.

Indeed, granting this and fixing a compact set K, then for any x̄ ∈ K there exist cx̄, εx̄ > 0

such that

distθ(x,C) ≤ cx
( m∑
i=1

distθ(x,Ci)

)τ
, for all ‖x− x̄‖ ≤ εx.

As K is compact and
⋃
x̄∈K B(x̄; εx̄) ⊇ K, we can find finitely many points x̄1, · · · , x̄s ∈ K,

s ∈ N, such that
⋃s
i=1 B(x̄i; εx̄i) ⊇ K. Let c := max{cx̄1 , · · · , cx̄s}. Then, for any x ∈ K,

there exists i0 ∈ {1, · · · , s} such that x ∈ B(x̄i0 ; εx̄i0 ), and hence

distθ(x,C) ≤ cx̄i0

( m∑
i=1

distθ(x,Ci)

)τ
≤ c

( m∑
i=1

distθ(x,Ci)

)τ
.

We now show (3.19) holds. Fix x̄ ∈ Rn. We consider two cases.

Case 1 : x̄ /∈ C.

Then there exist ε1, η,M > 0 such that

m∑
i=1

distθ(x,Ci) ≥ η and distθ(x,C) ≤M for all ‖x− x̄‖ ≤ ε1.

Therefore, distθ(x,C) ≤ M = M
ητ η

τ ≤ M
ητ

(∑m
i=1 distθ(x,Ci)

)τ
for all ‖x − x̄‖ ≤ ε1 and

hence, (3.19) holds.

Case 2 : x̄ ∈ C.

We have

C =
{
x ∈ Rn | gi,1(x) ≤ 0, gi,2(x) ≤ 0, · · · , gi,γi(x) ≤ 0, i = 1, · · · ,m

}
.

By Corollary 3.4, there exist positive constants c0 and δ such that

dist(x,C) ≤ c
1
θ
0

(
max

1≤i≤m

{
[gi,1(x)]+, · · · , [gi,γi(x)]+

})τ
, ∀‖x− x̄‖ ≤ δ.
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Hence

distθ(x,C) ≤ c0

(
max

1≤i≤m

{
[gi,1(x)]+, · · · , [gi,γi(x)]+

})θτ
, ∀‖x− x̄‖ ≤ δ.(3.20)

Now we claim that there exists β > 0 such that(
max

1≤i≤m

{
gi,1(x)]+, · · · , [gi,γi(x)]+

})θ
≤ β

m∑
i=1

distθ(x,Ci), ∀‖x− x̄‖ ≤ δ.(3.21)

Suppose to the contrary that there exists a sequence (xk)k∈N in B(x̄, δ) such that(
max

1≤i≤m

{
[gi,1(xk)]+, · · · , [gi,γi(xk)]+

})θ
> k

m∑
i=1

distθ(xk, Ci), ∀k ∈ N.(3.22)

Without loss of generality, we can assume that gi,1, gi,2, · · · gi,γi have the Lipschitz constant

L > 0 on B(x̄, δ) for every i = 1, 2, · · · ,m. Then, there exists a subsequence (xkl)l∈N of

(xk)k∈N, 1 ≤ i0 ≤ m and 1 ≤ j0 ≤ γi0 such that

max
1≤i≤m

{
[gi,1(xkl)]+, · · · , [gi,γi(xkl)]+

}
= [gi0,j0(xkl)]+, ∀l ∈ N.

It follows from (3.22) that

(
[gi0,j0(xkl)]+

)θ
> kl

m∑
i=1

distθ(xkl , Ci), ∀l ∈ N.(3.23)

Then [gi0,j0(xkl)]+ = gi0,j0(xkl) and hence for every l ∈ N,

(
gi0,j0(xkl)

)θ
> kl

m∑
i=1

distθ(xkl , Ci) = kl

m∑
i=1

∥∥xkl − Pi(xkl)∥∥θ ≥ kl∥∥xkl − Pi0(xkl)
∥∥θ.

(3.24)

Since Pi0(xkl) ∈ Ci0 , we have gi0,j0
(
Pi0(xkl)

)
≤ 0 and ‖xkl − Pi0(xkl)‖ ≤ ‖xkl − x̄‖ < δ by

x̄ ∈ Ci0 . Combining this with (3.24), we have

Lθ
∥∥xkl − Pi0(xkl)

∥∥θ ≥ (gi0,j0(xkl)− gi0,j0
(
Pi0(xkl)

))θ
> kl

∥∥xkl − Pi0(xkl)
∥∥θ, ∀l ∈ N.

Hence we have Lθ > kl for every l ∈ N, this contradicts the fact that kl −→ +∞. Thus,

(3.21) holds.

Combining (3.21) and (3.20), we see that

distθ(x,C) ≤ c0β
τ
( m∑
i=1

distθ(x,Ci)
)τ
, ∀‖x− x̄‖ ≤ δ,

and so the conclusion follows. �
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4 Convergence rate for the cyclic projection algorithm

In this section, we derive explicit convergence rate of the cyclic projection algorithm

applied to finite intersections of basic semi-algebraic convex sets.

Before we come to our main result, we need the following useful lemma, Lemma 4.1,

which is a special case of Alber and Reich’s result in [1] . For the reader’s convenience,

we provide a direct and self-contained proof.

Lemma 4.1 (Recurrence relationships) Let p > 0, and let {δk}∞k=0 and {βk}∞k=0 be

two sequences of nonnegative numbers satisfying the conditions

βk+1 ≤ βk(1− δkβpk) as k = 0, 1, . . . .

Then, we have

(4.1) βk ≤
(
β−p0 + p

k−1∑
i=0

δi

)− 1
p

for all k ∈ N.

We use the convention that 1
0 = +∞. In particular, we have lim

k→∞
βk = 0 whenever

∞∑
k=0

δk =∞.

Proof. It follows from our assumption that

0 ≤ βi+1 ≤ βi ≤ · · · ≤ β0 and δiβ
p+1
i ≤ βi − βi+1 as i ∈ N.

Fix k ∈ N. We consider two cases.

Case 1 : βk = 0.

Clearly, (4.1) holds.

Case 1 : βk 6= 0.

Thus βk > 0 and hence βi > 0 for every i ≤ k. Define the nonincreasing function

h : R++ → ]−∞,+∞] by h(x) := x−(p+1). As δi h(βi)
−1 = δiβ

p+1
i ≤ βi − βi+1, then we

get

δi ≤ (βi − βi+1)h(βi) ≤
∫ βi

βi+1

h(x)dx =
β−pi+1 − β

−p
i

p
.

This implies that

(4.2) β−pi+1 − β
−p
i ≥ pδi for all i ∈ N ∪ {0}.
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Now fix any k ∈ N and, summing (4.2) from i = 0 to i = k − 1, we get

β−pk − β
−p
0 ≥ p

k−1∑
i=0

δi.

which implies the conclusion in (4.1). �

We also need the following technical result. The proof of it follows in part that of [23,

Lemmas 3&4], one may also consult [10].

Proposition 4.2 (Cyclic convergence rate) Let Di ⊆ Rn be a closed convex set, ∀i =

1, . . . ,m, and D :=
⋂m
i=1Di 6= ∅. Let x0 ∈ Rn and the sequence of cyclic projections,

(xk)k∈N, be defined by

x1 := P1x0, x2 := P2x1, · · · , xm := Pmxm−1, xm+1 := P1xm . . . ,

where we set Pi := PDi for the convenience. Suppose that Hölderian regularity with expo-

nent τ (0 < τ ≤ 1) holds: for any compact set K ⊆ Rn and θ > 0, there exists c0 > 0 such

that

distθ(x,D) ≤ c0

( m∑
i=1

distθ(x,Di)

)τ
, ∀x ∈ K.

Then xk converges to x∞ ∈ D. Moreover, there exist M > 0 and r0 ∈ ]0, 1[ such that

‖xk − x∞‖ ≤

 M k
−

1

2τ−1 − 2 if τ ∈ ]0, 1[ ,

M rk0 if τ = 1,

∀k ∈ N,

Proof. We denoted by αi := (i mod m) + 1, ∀i ∈ N. Thus xk+1 = PDαkxk. By Fact 2.14,

there exists x∞ ∈ D such that xk −→ x∞.

We first follow closely the proofs of [23, Lemmas 3&4] to get that

dist2(xk, D)− dist2(xk+1, D) ≥ dist2(xk, Dαk), ∀k ∈ N.(4.3)

Indeed, using the definition of projection operator, we have

dist2(xk, D)− dist2(xk+1, D) ≥ ‖xk − PDxk‖2 − ‖xk+1 − PDxk‖2

= ‖xk − PDxk‖2 − ‖Pαkxk − PDxk‖
2 = ‖xk − PDxk‖2 −

∥∥Pαkxk − xk + xk − PDxk
∥∥2

= ‖xk − PDxk‖2 − ‖Pαkxk − xk‖
2 − ‖xk − PDxk‖2 + 2

〈
xk − Pαkxk, xk − PDxk

〉
≥ −‖xk − Pαkxk‖

2 + 2
〈
xk − Pαkxk, xk − Pαkxk + Pαkxk − PDxk

〉
= −‖xk − Pαkxk‖

2 + 2‖xk − Pαkxk‖
2 + 2

〈
xk − Pαkxk, Pαkxk − PDxk

〉
≥ ‖xk − Pαkxk‖

2 = dist2(xk, Dαk), ∀k ∈ N.

Hence (4.3) holds.

20



Next we claim that for every i ∈ N

dist(xk, Dαi) ≤ dist(xk, Dαk) + dist(xk+1, Dαk+1
) + . . .+ dist(xk+m−1, Dαk+m−1

).(4.4)

To see this, note that there exists i0 ≤ m− 1 such that αi0+k = αi. Then, we have

dist(xk, Dαi) = dist(xk, Dαi0+k
) ≤ ‖xk − xi0+k‖+

∥∥xi0+k − Pαi0+kxi0+k

∥∥
≤ ‖xk − xk+1‖+ · · ·+ ‖xi0+k−1 − xi0+k‖+

∥∥xi0+k − Pαi0+kxi0+k

∥∥
= ‖xk − Pαkxk‖+ · · ·+ ‖xi0+k−1 − Pαi0+k−1

xi0+k−1‖+
∥∥xi0+k − Pαi0+kxi0+k

∥∥
= dist(xk, Dαk) + dist(xk+1, Dαk+1

) + · · ·+ dist(xi0+k, Dαi0+k
)

≤ dist(xk, Dαk) + dist(xk+1, Dαk+1
) + · · ·+ dist(xk+m−1, Dαk+m−1

) (by i0 ≤ m− 1).

Hence (4.4) holds.

Thus by (4.4),

dist2(xk, Dαi) ≤
(
m max

k≤i≤k+m−1
dist(xi, Dαi)

)2

≤ m2
(

dist2(xk, Dαk) + dist2(xk+1, Dαk+1
) + . . .+ dist2(xk+m−1, Dαk+m−1

)
)
.(4.5)

By the assumption, there exists c0 > 0 such that

dist2(xk, D) ≤ c0

( m∑
i=1

dist2(xk, Di)
)τ
, ∀k ∈ N.

By enlarging c0 if necessary, we may assume that c0 > 1.

Let r := τ−1. Then by (4.5), for every k ∈ N,

1

cr0
dist2r(xk, D)

≤
m∑
i=1

dist2(xk, Di) ≤ m max
1≤i≤m

dist2(xk, Di)

≤ m3
(

dist2(xk, Dαk) + dist2(xk+1, Dαk+1
) + . . .+ dist2(xk+m−1, Dαk+m−1

)
)

≤ m3
k+m−1∑
i=k

dist2(xi, D)− dist2(xi+1, D) (by (4.3))

= m3
(

dist2(xk, D)− dist2(xk+m, D)
)
.(4.6)

Thus we have

dist2(xk+m, D) ≤ dist2(xk, D)− 1

m3cr0
dist2r(xk, D).(4.7)

Now we consider two cases.
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Case 1 : τ ∈ ]0, 1[.

Thus r > 1. Fix k0 ∈ N. Let βi := dist2(xk0+im, D), ∀i ∈ N ∪ {0}. Then (4.7) shows

that

βi+1 ≤ βi −
1

m3cr0
βri = βi(1−

1

m3cr0
βr−1
i ).(4.8)

By Lemma 4.1,

dist2(xk0+im, D) = βi ≤
(
β1−r

0 + (r − 1)i
1

m3cr0

)− 1
r−1

, ∀i ∈ N.

Thus, there exists M0 > 0 such that

dist(xk0+im, D) ≤M0
1

2(r−1)
√
i
, ∀i ∈ N.

Hence there exists M1 > 0 such that

dist(xk, D) ≤M1
1

2(r−1)
√
k

= M1k
−

1

2τ−1 − 2 , ∀k ∈ N.(4.9)

So, we have

‖xk − x∞‖ ≤ ‖xk − PD(xk)‖+ ‖PD(xk)− x∞‖ = dist(xk, D) + ‖PD(xk)− x∞‖.(4.10)

By [23, Lemma 3],

‖xk+l − PD(xk)‖ ≤ ‖xk − PD(xk)‖ = dist(xk, D), ∀l ∈ N.

Letting l −→∞ in the above inequality, we obtain that

‖x∞ − PD(xk)‖ ≤ dist(xk, D).(4.11)

Combining (4.10), (4.11) and (4.9),

‖xk − x∞‖ ≤ 2 dist(xk, D) ≤ 2M1k
−

1

2τ−1 − 2 , ∀k ∈ N.(4.12)

Thus, the conclusion follows by letting M := 2M1.

Case 2 : τ = 1.

Then we have r = τ−1 = 1, and so, (4.7) implies that for all k ∈ N

dist(xk+m, D) ≤

√
1− 1

m3cr0
dist(xk, D).

Hence there exist M ′1 > 0 and r0 ∈ ]0, 1[ such that dist(xk, D) ≤ M ′1r
k
0 , ∀k ∈ N. Then,

using a similar method of proof as in Case 1, we obtain that

‖xk − x∞‖ ≤ 2 dist(xk, D) ≤ 2M ′1r
k
0 , ∀k ∈ N.(4.13)

Thus, the conclusion follows by letting M := 2M ′1. �
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Remark 4.3 (Connection to the existing result on linear convergence) In the

case where there exists i0 ∈ {1, . . . ,m} such that Di0 ∩ int
(⋂

i 6=i0 Di

)
6= ∅ (in this case, we

say the intersection is regular), then the Hölderian regularity result holds with exponent

τ = 1. So, the preceding proposition implies that the cyclic projection algorithm converges

linearly in the regular intersection case. Thus, this recovers the linear convergence result

for cyclic projection algorithm established in [23]. ♦

We are now ready for one of our main results.

Theorem 4.4 (Estimate of the cyclic convergence rate) Let x0 ∈ Rn and the se-

quence of cyclic projections, (xk)k∈N, be defined by

x1 := P1x0, x2 := P2x1, · · · , xm := Pmxm−1, xm+1 := P1xm . . . .

Then xk converges to x∞ ∈ C, and there exist M > 0 and r0 ∈ ]0, 1[ such that

‖xk − x∞‖ ≤

{
M 1

kρ , if d > 1;

Mrk0 , if d = 1
, ∀k ∈ N,

where ρ := 1

min
{

(2d−1)n−1, 2β(n−1)dn−2
} and β(n−1) is the central binomial coefficient with

respect to n− 1 which is given by
(

n−1
[(n−1)/2]

)
.

Proof. Combining Theorem 3.6 and Proposition 4.2, we directly obtain τ :=
1

min
{

(2d−1)n+1
2

, β(n−1)dn
} . Note that 2τ−1 − 2 = min

{
(2d − 1)n − 1, 2β(n − 1)dn − 2

}
.

Thus the conclusion follows from the preceding proposition. �

Remark 4.5 (Discussion on our estimation of the convergence rate) Although

our estimate of the convergence rate works for cyclic projection algorithm with finitely

many basic semialgebraic convex sets without any regularity condition, the estimated

convergence rate is quite poor when the dimension n of the underlying space and the

maximal degree d are large. This is mainly due to the fact that the estimated convergence

rate is derived by using the local error bound result for general convex polynomial systems.

It would be interesting to see how one could improve the estimation of the convergence rate

by either adopting other approaches or by further exploiting the structure of the underlying

convex sets. For example, one possibility would be to examine problems involving some

suitable additional curvature or uniform convexity assumptions. This will be another of

our future research topics.
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4.1 Alternating projection algorithm

In this subsection, we discuss the convergence rate of the alternating projection algorithm.

We assume throughout this subsection that

gi, hj are convex polynomials with degree at most d, ∀i = 1, 2, · · · ,m, j = 1, 2, · · · , l
A := {x ∈ Rn | gi(x) ≤ 0, i = 1, · · · ,m}
B := {x ∈ Rn | hj(x) ≤ 0, j = 1, · · · , l}
b0 ∈ Rn, ak+1 := PAbk, bk+1 := PBak+1.

As an immediate corollary of Theorem 4.4, we first obtain the following estimate on the

convergence rate of the alternating projection algorithm in the case where the two sets

have nonempty intersection.

The case of two sets with nonempty intersection

Corollary 4.6 (Alternating convergence rate) Suppose that A ∩ B 6= ∅. Let the se-

quence {(ak, bk)} be generated by the alternating projection algorithm. Then, ak, bk −→
c ∈ A ∩B. Moreover, there exist M > 0 and r0 ∈ ]0, 1[ such that for every k ∈ N

‖ak − c‖ ≤

{
M 1

kρ , if d > 1;

Mrk0 , if d = 1
, and ‖bk − c‖ ≤

{
M 1

kρ , if d > 1;

Mrk0 , if d = 1
,

where ρ := 1

min
{

(2d−1)n−1, 2β(n−1)dn−2
} and β(n−1) is the central binomial coefficient with

respect to n− 1 which is given by
(

n−1
[(n−1)/2]

)
.

Recently, [2] established a local convergence rate analysis for proximal alternating pro-

jection methods for very general nonconvex problems, and where the corresponding con-

vergence rate involves the exponent of the Kurdyka- Lojasiewicz inequality. The proximal

alternating projection method is a variant of the alternating projection algorithm we dis-

cussed here. On the other hand, as we discussed before, in general, the actual exponent of

the Kurdyka- Lojasiewicz inequality is typically unknown and hard to estimate. Corollary

4.6 above complements the result of [2] in the case of basic convex semialgebraic cases by

providing an explicit estimate of the convergence rate.

The case of two sets with empty intersection

In this part, we consider the general case where the intersection of these two sets is

(possibly) empty. We first need the following lemma.
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Lemma 4.7 The difference B −A of two basic semi-algebraic sets A,B is closed.

Proof. Let bk ∈ B and ak ∈ A be such that bk − ak −→ c. We now show that c ∈ B − A.

Consider the following convex polynomial optimization problem

(P ) minx∈Rn,y∈Rn ‖(y − x)− c‖2

s.t. gi(x) ≤ 0, i = 1, · · · ,m,
hj(y) ≤ 0, j = 1, · · · , l.

Note that (ak, bk) are feasible for (P). Hence we see that inf(P ) = 0. By Fact 2.2, the

optimal solution of (P) exists. Thus there exists x ∈ A and y ∈ B such that c = y − x ∈
B −A. Hence the conclusion follows. �

Remark 4.8 With A and B defined as above, Fact 2.2 implies that B − A is closed

convex. Hence PB−A0 6= ∅. Let v := PB−A0. Then, there exist a ∈ A and b ∈ B such

that v = b− a and hence dist(A,B) = ‖v‖. ♦

Remark 4.9 In general, the distance between two convex and semi-algebraic sets need

not be attained. For instance, consider D := {(x1, x2) ∈ R2 | x1x2 ≥ 1, x1 ≥ 0, x2 ≥ 0}
and E := {(x1, x2) ∈ R2 | x1 = 0}. It is clear that D,E are both convex and semialgebraic;

while D is not a basic semi-algebraic convex set (as explained in Example 2.13). Clearly,

dist(D,E) = 0 but D ∩ E = ∅. Thus, the distance is not attained in this case. ♦

The proof of Theorem 4.10 partially follows that of [8, Theorem 3.12].

Theorem 4.10 (Convergence rate in the infeasible case) Let the sequence {(ak, bk)}
be generated by the alternating projection algorithm. Then ak −→ ã ∈ A and bk −→ b̃ ∈ B
with b̃ − ã = v where v := PB−A0. Moreover, there exist M > 0 and r0 ∈ ]0, 1[ such that

for every k ∈ N

‖ak − ã‖ ≤

{
M 1

kρ , if d > 1;

Mrk0 , if d = 1
and ‖bk,−b‖ ≤

{
M 1

kρ , if d > 1;

Mrk0 , if d = 1
,(4.14)

where ρ := 1

min
{

(2d−1)n−1, 2β(n−1)dn−2
} and β(n−1) is the central binomial coefficient with

respect to n− 1 which is given by
(

n−1
[(n−1)/2]

)
.

Proof. Lemma 4.7 implies that B − A is closed. Then by Fact 2.15(i), there exist ã ∈
A, b̃ ∈ B such that ak −→ ã ∈ A and bk −→ b̃ ∈ B with b̃− ã = v. By Theorem 3.6, there

exists c0 > 1 such that

dist(ak, A ∩ (B − v)) ≤ c0

(
dist(ak, A) + dist(ak, B − v)

) 1
r = c0 dist

1
r (ak, B − v),(4.15)
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where r := min
{ (2d−1)n+1

2 , β(n − 1)dn
}

. Fix x ∈ A ∩ (B − v). Note that v = PB−A0 we

have PB(x) = x+ v by Fact 2.15(ii). This implies that

dist2(ak, B − v) ≤ ‖ak − (bk − v)‖2 = ‖(ak − x)−
(
bk − (v + x)

)
‖2

= ‖(ak − x)− (PBak − PBx)‖2

≤ ‖ak − x‖2 − ‖PBak − PBx‖2 (by [12, Proposition 4.8])

= ‖ak − x‖2 − ‖bk − (x+ v)‖2

≤ ‖ak − x‖2 − ‖PAbk − PA(x+ v)‖2

= ‖ak − x‖2 − ‖ak+1 − x‖2 (by Fact 2.15(ii)).

In particular, choose x = PA∩(B−v)ak. Then, we have

dist2(ak, B − v) ≤ dist2(ak, A ∩ (B − v))− ‖ak+1 − PA∩(B−v)ak‖2

≤ dist2(ak, A ∩ (B − v))− dist2(ak+1, A ∩ (B − v)).

Combining with (4.15), we have

1

c2r
0

dist2r(ak, A ∩ (B − v)) ≤ dist2(ak, (B − v))

≤ dist2(ak, A ∩ (B − v))− dist2(ak+1, A ∩ (B − v)).(4.16)

Thus

dist(ak+1, A ∩ (B − v))2 ≤ dist(ak, A ∩ (B − v))2 − 1

c2r
0

dist(ak, A ∩ (B − v))2r.

Now, let βk := dist(ak, A ∩ (B − v))2, k ∈ N. Then, we have

βk+1 ≤ βk(1−
1

c2r
0

βr−1
k ).(4.17)

Now we consider two cases.

Case 1 : d > 1.

In this case, we have r > 1. Applying the preceding Lemma 4.1 with δk := 1
c2r0

and

p := r − 1, by (4.17), we see that

dist2(ak, A ∩ (B − v)) = βk ≤
(
β1−r

0 +
(r − 1)

c2r
0

k

)− 1
r−1

for all k ∈ N.

Thence there exists M0 > 0 such that

dist(ak, A ∩ (B − v)) ≤M0
1

kρ
, ∀k ∈ N

where ρ := 1

min
{

(2d−1)n−1, 2β(n−1)dn−2
} . Then, [8, Example 3.2] shows that (ak)k∈N is Fejér

monotone with respect to A ∩ (B − v). Thus, by Fact 2.17,

‖ak − ã‖ ≤ 2 dist(ak, A ∩ (B − v)) ≤ 2M0
1

kρ
, ∀k ∈ N.
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Case 2 : d = 1.

Thus r = 1. Then by (4.17), dist(ak+1, A ∩ (B − v)) ≤ θ dist(ak, A ∩ (B − v)), where

θ :=
√

1− 1
c20

. Then θ < 1 since c0 > 1. Hence there exists M1 > 0 such that

dist(ak, A ∩ (B − v)) ≤M1θ
k.

From [8, Example 3.2], we see that (ak)k∈N is Fejér monotone with respect to A∩ (B− v).

Thus, by Fact 2.17,

‖ak − ã‖ ≤ 2 dist(ak, A ∩ (B − v)) ≤ 2M1θ
k.

Set M2 := max{2M0, 2M1}. Combining the above two cases, we have

‖ak − ã‖ ≤

{
M2

1
kρ , if d > 1;

M2θ
k, if d = 1

, ∀k ∈ N.

Similarly, we can show that there exist L > 0 and η ∈ ]0, 1[ such that

‖bk − b̃‖ ≤

{
L 1
kρ , if d > 1;

Lηk, if d = 1
, ∀k ∈ N.

Therefore, the conclusion follows by taking M := max{M2, L} and r0 := max{θ, η}. �

5 Examples and remarks

In this section, we will provide several examples of the rates of convergence of the cyclic

projection algorithm and the von Neumann alternating projection algorithm. We first

start with some examples where the basic semialgebraic convex sets are described by

convex quadratic functions. Subsequently, we will examine examples where the basic

semialgebraic convex sets are described by higher degree convex polynomials.

Basic semialgebraic convex sets described by convex quadratic functions

Example 5.1 Let

C1 := {(x, y) ∈ R2 | (x+ 1)2 + y2 − 1 ≤ 0}
C2 := {(x, y) ∈ R2 | x+ y − 1 ≤ 0}
C3 := {(x, y) ∈ R2 | (x− 1)2 + y2 − 1 ≤ 0}
C4 := {(x, y) ∈ R2 | x+ (y + 2)2 − 4 ≤ 0}.
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Take x0 ∈ R2. Let (xk)k∈N be defined by

x1 := P1x0, x2 := P2x1, x3 := P3x2, x4 := P4x3, x5 := P1x4 . . .

Then ‖xk‖ = O( 1

k
1
6

). ♦

Proof. Clearly,
⋂4
i=1Ci = {0}. Then apply n = 2 and d = 2 to Theorem 4.2. �

Example 5.2 Let α ≥ 0 and

A :=
{

(x, y) ∈ R2 | (x+ 1)2 + y2 − 1 ≤ 0
}

= (−1, 0) + B(0, 1)

B :=
{

(x, y) ∈ R2 | −x+ α ≤ 0
}
.

Let (ak)k∈N := (uk, vk)k∈N and (bk)k∈N := (sk, tk)k∈N be defined by

b0 ∈ R2, ak+1 := PAbk, bk+1 := PBak+1.

Then for every k ≥ 2

bk =
(
α,

t1√
(1 + α)2(k−1) + t21

∑k−2
i=0 ((1 + α)2i

)
ak+1 =

(
− 1 +

α+ 1√
(α+ 1)2 +

t21
(1+α)2(k−1)+t21

∑k−2
i=0 ((1+α)2i

,
t1√

(1 + α)2k + t21
∑k−1

i=0 ((1 + α)2i

)
.

Consequently, ak −→ 0 and bk −→ (α, 0) at the rate of k−
1
2 when α = 0. When α 6= 0(then

A ∩B = ∅), ak −→ 0 and bk −→ (α, 0) at the rate of (1 + α)−k. ♦

Proof. We first claim that

bk+1 =
(
α, tk+1

)
=
(
α,

tk√
(1 + α)2 + t2k

)
, ∀k ≥ 1.(5.1)

By [12, Examples 3.17&3.21 and Proposition 3.17], we have

PA(x, y) = (−1, 0) +
(x+ 1, y)

max
{

1, ‖(x+ 1, y)‖
} , ∀(x, y) ∈ R2(5.2)

PB(x, y) = (α, y), ∀(x, y) /∈ intB.

Let k ≥ 1. Since A ∩B = {0} or A ∩B = ∅, ak /∈ intB. Then by (5.2), bk = (α, vk) and

then

ak+1 = PAbk = (−1, 0) +
(1 + α, vk)

max
{

1, ‖(1 + α, vk)‖
} = (−1, 0) +

(1 + α, vk)√
(1 + α)2 + v2

k

bk+1 = PB(ak+1) = (α,
vk√

(1 + α)2 + v2
k

) = (α,
tk√

(1 + α)2 + t2k

).
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Hence (5.1) holds. Next we show that

bk =
(
α,

t1√
(1 + α)2(k−1) + t21

∑k−2
i=0 ((1 + α)2i

)
, ∀k ≥ 2.(5.3)

We prove (5.3) by the induction on k.

By (5.1), (5.3) holds when k = 2. Now assume that (5.3) holds when k = p, where

p ≥ 2. Now we consider the case of k = p+ 1. By the assumption, we have

bp =
(
α,

t1√
(1 + α)2(p−1) + t21

∑p−2
i=0 ((1 + α)2i

)
.(5.4)

Then by (5.1), we have

bp+1 =
(
α,

tp√
(1 + α)2 + t2p

)

=
(
α,

t1√
(1 + α)2(p−1) + t21

∑p−2
i=0 ((1 + α)2i√

(1 + α)2 +
t21

(1 + α)2(p−1) + t21
∑p−2

i=0 (1 + α)2i

)

=
(
α,

t1√
(1 + α)2p + t21

∑p−1
i=0 ((1 + α)2i

)
.

Hence (5.3) holds.

Combining(5.2) and (5.3), we have for every k ≥ 2

ak+1 = PAbk

=
(
− 1 +

α+ 1√
(α+ 1)2 +

t21
(1+α)2(k−1)+t21

∑k−2
i=0 ((1+α)2i

,
t1√

(1 + α)2k + t21
∑k−1

i=0 ((1 + α)2i

)
.

Hence ak −→ 0 and bk −→ (α, 0) at the rate of k−
1
2 when α = 0. When α 6= 0, ak −→ 0

and bk −→ (α, 0) at the rate of (1 + α)−k. �

Remark 5.3 According to Theorem 4.10,we can only deduce that (ak)k∈N in Example 5.2

converges to (0, 0) and (bk)k∈N converge to (α, 0) at the rate of at least of k−
1
6 . ♦

Example 5.4 Let

A :=
{

(x, y) ∈ R2 | (x+ 1)2 + y2 − 1 ≤ 0
}

B :=
{

(x, y) ∈ R2 | (x− 1)2 + y2 − 1 ≤ 0
}
.
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Figure 1: The iteration commencing at (0, 2).

Let (xk, yk)k∈N be defined by

(x0, y0) ∈ R2, (x1, y1) := PA(x0, y0), (x2, y2) := PB(x1, y1), (x3, y3) := PA(x2, y2), · · · .

Note that

PA(x, y) =

(
−1 +

x− 1√
(x+ 1)2 + y2

,
y√

(x+ 1)2 + y2

)
, ∀(x, y) ∈ R+ × R++

PB(x, y) =

(
1 +

x+ 1√
(x− 1)2 + y2

,
y√

(x− 1)2 + y2

)
, ∀(x, y) ∈ R− × R++.

Figure 1 depicts the algorithm’s trajectory with starting point (0, 2).

Suppose, without loss of generality, that one starts on a point on one the half-circles

nearest the other circle. Then the distance from zero (for every k ∈ N), rk :=
√
x2
k + y2

k

satisfies r2
k = 2αk where αk := |xk| since (xk, yk) ∈ bdA ∪ bdB. Hence

1− αk+1 =
1 + αk√
1 + 4αk

.

Linearizing, we obtain that wk := 4αk approximately satisfies the logistics equation

wk+1 ≈ wk(1− wk)

This can be explicitly solved by writing

1

wk+1
− 1

wk
=

1

1− wk
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When summing and dividing by N , leads to

lim
N→∞

1

NwN
= lim

N→∞

(
1

NwN
− 1

Nw0

)
(5.5)

= lim
N→∞

1

N

N−1∑
k=0

1

1− wk

= lim
N→∞

1

1− wN
= 1,

since Césaro summability is conservative and wN → 0. Hence αk ∼ 1/(4k) and so√
x2
k + y2

k = rk ∼
1√
2k
.

For instance, with α0 = 1, N = 106, we obtain αN ≈ 0.0000002499992442. A similar

analysis can be performed in the previous example. ♦

Remark 5.5 According to Theorem 4.10, we can only deduce that (ak)k∈N and (bk)k∈N
in Example 5.4 converge to (0, 0) at the rate of at least of k−

1
6 . ♦

Basic semialgebraic convex sets described by convex polynomials

In general, identifying the exact convergence rate of the cyclic projection method in a direct

way can be quite arduous when applied to finitely many basic semialgebraic convex sets.

Below, we provide two simple examples to illustrate how the convergence rate depends

on the maximum degree of the polynomials that described the basic semialgebraic convex

sets and on the dimension of the underlying space.

Example 5.6 Let A,B be defined by

A :=
{

(x, y) ∈ R2 | x ≤ 0
}

B :=
{

(x, y) ∈ R2 | yd − x ≤ 0
}
,

where d is an even number. Let (ak)k∈N, (bk)k∈N := (xk, yk)k∈N be defined by

b0 := (x0, y0) ∈ R× R++ with ‖b0‖ ≤ 1, ak+1 := PAbk, bk+1 := PBak+1.

Then for every k ∈ N

ak+1 = (0, yk), bk = (ydk, yk), and d y2d−1
k+1 + yk+1 = yk.

Consequently, (ak)k∈N and (bk)k∈N converge to 0 at the rate of at least of k−
1

2d−2 .
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Proof. Let k ∈ N. Since A∩B = {0}, bk /∈ intA. Since bk ∈ bdB and then xk = ydk. Thus

ak+1 = PAbk = PA(xk, yk) = (0, yk). Then we have yk −→ 0,

bk+1 = (xk+1, yk+1) = (ydk+1, yk+1) = PBak+1 = PB(0, yk).

Thus yk+1 is a minimizer of the function

y 7→ ‖(yd, y)− (0, yk)‖2 = ‖(yd, y − yk)‖2 = y2d + y2 − 2yyk + y2
k.

Thus (d y2d−2
k+1 + 1)yk+1 − yk = d y2d−1

k+1 + yk+1 − yk = 0. Then we have

1

(d y2d−2
k+1 + 1)2d−2

1

y2d−2
k+1

=
1

y2d−2
k

Now, for the function h(x) := 1
(x+1)2d−2 , we have

h′(x) = −(2d− 2)
1

(x+ 1)2d−1
for all x ∈ R.

Note that yk −→ 0. So, for all large k,

1

(d y2d−2
k+1 + 1)2d−2

= h(d y2d−2
k+1 ) ≈ h(0) + h′(0)d y2d−2

k+1 = 1− d(2d− 2)y2d−2
k+1 .

This gives us that for all large k,

1

y2d−2
k

≈
(
1− d(2d− 2)y2d−2

k+1

) 1

y2d−2
k+1

=
1

y2d−2
k+1

− d(2d− 2).

In other words, there exists l0 ∈ N such that for all l ≥ l0

(5.6)
1

y2d−2
l+1

− 1

y2d−2
l

≈ d(2d− 2).

Let k > l0 . Summing the above relation from l = l0 to k, we have

1

y2d−2
k

− 1

y2d−2
l0

≈ d(2d− 2)(k − l0 + 1)

and so,

yk ≈
(

1

y2d−2
l0

+ d(2d− 2)(k − l0 + 1)

)− 1
2d−2

= O(k−
1

2d−2 ).

Thence (ak)k∈N and (bk)k∈N converge to 0 at that rate. �

Remark 5.7 Similarly, according to Theorem 4.10, we can only deduce that (ak)k∈N and

(bk)k∈N in Example 5.6 converge to (0, 0) at the rate of at least of k
− 1

2d2−2 .
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Example 5.8 Let

A :=
{

(x1, . . . , xn) ∈ Rn | (x1 + 1)4 +
n∑
i=2

x4
i − 1 ≤ 0

}
B :=

{
(x1, . . . , xn) ∈ Rn | (x1 − 2)4 +

n∑
i=2

x4
i − 1 ≤ 0

}
.

Let (ak)k∈N, (bk)k∈N be defined by

b0 ∈ R2, ak+1 := PAbk, bk+1 := PBak+1.

Then ‖ak‖ = O( 1
kρn ), ‖bk − (1, 0, . . . , 0))‖ = O( 1

kρn ) with ρn = 1

min
{

7n−1, 2β(n−1)4n−2
} . ♦

Proof. By the assumption, there exist unique points a0 ∈ bdA, b0 ∈ bdB such that

1 = dist(A,B) = ‖a0 − b0‖. Clearly, a0 = (0, 0, . . . , 0) and b0 = (1, 0, . . . , 0). Then, the

conclusion follows by applying Theorem 4.10 with d = 4. �

6 Conclusion and Open Questions

In this paper, we studied the rate of convergence of the cyclic projection algorithm applied

to finitely many basic semi-algebraic convex sets. We established an explicit convergence

rate estimate which relies on the maximum degree of the polynomials that generate the

basic semi-algebraic convex sets and the dimension of the underlying space. We also

examined some concrete examples and compared the actual convergence rate with our

estimate.

Although our estimate of the convergence rate works for cyclic projection algorithm

with finitely many basic semialgebraic convex sets without any regularity condition, the

limitation of our approach is that the estimated convergence rate behaves quite badly

when the dimension n of the underlying space and the maximal degree d are large. Our

results have suggested the following future research topics and open questions:

• The explicit examples (Examples 5.2, 5.4 and 5.6) show that, in general, our estimate

of the convergence rate of the cyclic projection algorithm will not be tight. It would

be interesting to see how one can sharpen the estimate obtained in this paper and

get a tight estimate for the cyclic projection algorithm. In particular, finding the

right exponent when each set is defined by convex quadratic functions would be a

good starting point.

• Can we extend the approach here to analyze the convergence rate of the Douglas-

Rachford algorithm? Almost nothing is known except for affine sets.

These will be our future research topics and will be examined later on.

33



Acknowledgments

The authors are grateful to Dr. Simeon Reich and the two anonymous referees and the

editor for their pertinent and constructive comments. Jonathan Borwein, Guoyin Li and

Liangjin Yao were partially supported by various Australian Research Council grants.

References

[1] Y. Alber and S. Reich, An iterative method for solving a class of nonlinear operator equations in

Banach spaces, Panamerican Mathematical Journal, vol. 4, pp. 39–54, 1994.

[2] H. Attouch, J. Bolte, P. Redont and A. Soubeyran, Proximal alternating minimization and projection

methods for nonconvex problems: an approach based on the Kurdyka- Lojasiewicz inequality, Mathe-

matics of Operation Research, Vol. 35, no. 2,pp. 438-457, 2010.

[3] H. Attouch, J. Bolte and B. Svaiter, Convergence of descent methods for semi-algebraic and tame

problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods.

Mathematical Programming Vol. 137 , no. 1-2, Ser. A, pp. 91-129, 2013.

[4] A. Auslender and M. Teboulle, Asymptotic cones and functions in optimization and variational in-

equalities. Springer Monographs in Mathematics. Springer-Verlag, New York, 2003.

[5] A. Auslender, Existence of optimal solutions and duality results under weak conditions, Mathematical

Programming Vol. 88, pp 45-59, 2000.

[6] J.-B. Baillon, P. L. Combettes, and R. Cominetti, There is no variational characterization of the cycles

in the method of periodic projections, Journal of Functional Analysis, vol. 262, pp. 400–408, 2012.

[7] H.H. Bauschke, Projection algorithms: results and open problems, Inherently parallel algorithms in

feasibility and optimization and their applications, pp. 11-22, 2001.

[8] H.H. Bauschke and J.M. Borwein, On the convergence of von Neumanns alternating projection algo-

rithm for two sets, Set-Valued Analysis, vol. 1, pp. 185–212, 1993.

[9] H.H. Bauschke and J.M. Borwein, Dykstra’s alternating projection algorithm for two sets, Journal of

Approximation Theory , vol. 79, pp. 418–443, 1994.

[10] H.H. Bauschke and J.M. Borwein: On projection algorithms for solving convex feasibility problems,

SIAM Review, vol. 38, pp. 367-426, 1996.

[11] H.H. Bauschke, J.M. Borwein, and A.S. Lewis, The method of cyclic projections for closed convex sets

in Hilbert space, Recent developments in optimization theory and nonlinear analysis, Contemporary

Mathematic, pp. 1–38, 1997

[12] H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert

Spaces, Springer, 2011.

[13] H.H. Bauschke, D.R. Luke, H. M. Phan, and X. Wang, Restricted normal cones and the method of

alternating projections, Set-Valued and Variational Analysis, in press, http://arxiv.org/abs/1205.

0318v1.

[14] E.G. Belousov, Introduction to convex analysis and integer programming, Izdat. Moskov. Univ.,

Moscow, 1977

[15] E.G. Belousov, On types of Hausdorff discontinuity from above for convex closed mappings, Opti-

mization, vol. 49, pp. 303–325, 2001.

[16] E. G. Belousov and D. Klatte, A Frank-Wolfe type theorem for convex polynomial programs, Com-

putational Optimization and Applications, vol. 22, pp. 37-48, 2002.

[17] J. Bochnak, M. Coste and M.F. Roy, Real algebraic geometry, Springer-Verlag, Berlin, 1998.

34

http://arxiv.org/abs/1205.0318v1
http://arxiv.org/abs/1205.0318v1


[18] J.M. Borwein and J.D. Vanderwerff, Convex Functions, Cambridge University Press, 2010.
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