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OPTIMAL PRIMAL-DUAL METHODS FOR A CLASS OF SADDLE POINT PROBLEMS

YUNMEI CHEN*, GUANGHUI LANT AND YUYUAN OUYANG!

Abstract. We present a novel accelerated primal-dual (APD) method for solving a class of deterministic and stochastic
saddle point problems (SPP). The basic idea of this algorithm is to incorporate a multi-step acceleration scheme into the primal-
dual method without smoothing the objective function. For deterministic SPP, the APD method achieves the same optimal
rate of convergence as Nesterov’s smoothing technique. Our stochastic APD method exhibits an optimal rate of convergence for
stochastic SPP not only in terms of its dependence on the number of the iteration, but also on a variety of problem parameters.
To the best of our knowledge, this is the first time that such an optimal algorithm has been developed for stochastic SPP in the
literature. Furthermore, for both deterministic and stochastic SPP, the developed APD algorithms can deal with the situation
when the feasible region is unbounded, as long as a saddle point exists. In the unbounded case, we incorporate the modified
termination criterion introduced by Monteiro and Svaiter in solving SPP problem posed as monotone inclusion, and demonstrate
that the rate of convergence of the APD method depends on the distance from the initial point to the set of optimal solutions.

Keywords: saddle point problem, optimal methods, stochastic approximation, stochastic programming, com-
plexity, large deviation

1. Introduction. Let X and ) denote the finite-dimensional vector spaces equipped with an inner
product (-,-) and norm || - ||, and X C X, Y C Y be given closed convex sets. The basic problem of interest
in this paper is the saddle-point problem (SPP) given in the form of:

min {f(w) =maxG(z) + (Kz,y) —J(y)} . (1.1)

zeX yey

Here, G(x) is a general smooth convex function such that, for some Lg > 0,
Lg
Cly) ~ Gla) — (VO(@),y —2) < “o |y — ], vy e X, (12)

K : X — Y is a linear operator with induced norm Lx = |K||, and J : Y — R is a relatively simple, proper,
convex, lower semi-continuous (l.s.c.) function (i.e., problem (2] is easy to solve). In particular, if J is the
convex conjugate of some convex function F and Y = Y, then (1) is equivalent to the primal problem:
min G(z) + F(Kx). (1.3)
reX
Problems of these types have recently found many applicaitons in data analysis, especially in imaging process-
ing and machine learning. In many of these applications, G(x) is a convex data fidelity term, while F(Kz)
is a certain regularization, e.g., total variation [41], low rank tensor [I7] [43], overlapped group lasso [14] [24],
and graph regularization [14] [42].
This paper focuses on first-order methods for solving both determinisitc SPP, where exact first-order
information on f is available, and stochastic SPP, where we only have access to inexact information about f.
Let us start by reviewing a few existing first-order methods in both cases.

1.1. Deterministic SPP. Since the objective function f defined in (II) is nonsmooth in general, tra-
ditional nonsmooth optimization methods, e.g., subgradient methods, would exhibit an O(1/v/N) rate of
convergence when applied to (LI [30], where N denotes the number of iterations. However, following the
breakthrough paper by Nesterov [35], much research effort has been devoted to the development of more
efficient methods for solving problem ([L.IJ).

(1) Smoothing techniques. In [35], Nesterov proposed to approximate the nonsmooth objective function f
in (II) by a smooth one with Lipschitz-continuous gradient. Then, the smooth approximation function is
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minimized by an accelerated gradient method in [33] [34]. Nesterov demonstrated in [35] that, if X and Y are
compact, then the rate of convergence of this smoothing scheme applied to (II]) can be bounded by:

Leg Lk

which significantly improves the previous bound O(1/v/N). Tt can be seen that the rate of convergence in
(T4 is actually optimal, based on the following observations:
a) There exists a function G with Lipschitz continuous gradients, such that for any first-order method,
the rate of convergence for solving ;nelgfl G(z) is at most O (Lg/N?) [34].

b) There exists b € Y, where Y is a convex compact set of R™ for some m > 0, and a linear bounded
operator K, such that for any first-order method, the rate of convergence for solving mi)r{l mag(K x,y)—
rTEX Y&

J(y) :== min max(Kz — b,y) is at most O (Lx/N) [31] [28].
reX yeyY

Nesterov’s smoothing technique has been extensively studied, see, e.g., [32] 2, 211 [7], [36] [44], [3], 20]). Observe
that in order to properly apply these smoothing technqgiues, we need to assume either X or Y to be bounded.

(2) Primal-dual methods. While Nesterov’s smoothing scheme or its variants rely on a smooth approximation
to the orginal problem (I), primal-dual methods work directly with the original saddle-point problem. This
type of method was first presented by Arrow et al. [I] and named as the primal-dual hybrid gradient (PDHG)
method in [45]. The results in [45] 6 [9] showed that the PDHG algorithm, if employed with well-chosen
stepsize policies, exhibit very fast convergence in practice, especially for some imaging applications. Recently
Chambolle and Pork [6] presented a unified form of primal-dual algorithms, and demonstrated that, with a
properly specified stepsize policy and averaging scheme, these algorithms can also achieve the O(1/N) rate of
convergence. They also discussed possible ways to extend primal-dual algorithms to deal with the case when
either X and Y are unbounded. In the original work of Chambolle and Pork, they assume G to be relatively
simple so that the subproblems can be solved efficiently. With little additional effort, one can show that, by
linearizing G at each step, their method can also be applied for a general smooth convex funtion G and the
rate of convergence of this modified algorithm is given by

o (%) . (1.5)

It should be noted, however, that although both bounds in (I4) and (L5 are O(1/N), the one in ([4]) has
a significantly better dependence on Lg. More specifically, Nesterov’s smoothing scheme would allow a very
large Lipschitz constant Lg (as big as O(N)) without affecting the rate of convergence (up to a constant
factor of 2). This is desirable in many data analysis applications (e.g., image processing), where L¢ is usually
significantly bigger than Lx. Note that the primal-dual methods are also related to the Douglas-Rachford
splitting method [§] and a pre-conditioned version of the alternating direction method of multipliers [10].

(3) Extragradient methods for variation inequality (VI) reformulation. Motivated by Nesterov’s work, Ne-
mirovski presented a mirror-prox method, by modifying Korpelevich’s extragradient algorithm [I8], for solving
a more general class of variational inequalities [28] (see also [I5]). Similar to the primal-dual methods men-
tioned above, the extragradient methods update iterates on both the primal space X and dual space ), and
do not require any smoothing technique. The difference is that each iteration of the extragradient methods
requires an extra gradient descent step. Nemirovski’s method, when specialized to (II]), also exhibits a rate of
convergence given by (LH]), which, in view of our previous discussion, is not optimal in terms of its dependence
on Lg. Tt can be shown that, in some special cases (e.g., G is quadratic), one can write explicitly the (strongly
concave) dual function of G(x) and obtain a result similar to (I4), e.g., by applying an improved algorithm
in [I5]. However, this approach would increase the dimension of the problem and cannot be applied for a
general smooth function G. It should be noted that, while Nemirovski’s initial work only considers the case
when both X and Y are bounded, Monteiro and Svaiter [27] recently showed that extragradient methods can
deal with unbounded sets X and Y by using a slightly modified termination criterion.
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1.2. Stochastic SPP. While determinisitc SPP has been extensively explored, the study on stochastic
first-order methods for stochastic SPP is still quite limited. In the stochastic setting, we assume that there
exists a stochastic oracle (SO) that can provide unbiased estimators to the gradient operators VG(z) and
(—Kx, KTy). More specifically, at the i-th call to SO, (z;,v;) € X x Y being the input, the oracle will output

the stochastic gradient (G(x;), Ky (), Ky(yi)) = (G(mi, &), K (i, &), Ky (vi, &) such that

K;m (:vz) —KLL'i

E[G(x;)] = VG(x;), IEK _Ky(yi) ﬂ _< KT, > (1.6)

Here {¢&; € R4} is asequence of i.i.d. random variables. In addition, we assume that, for some o, ¢, Oy, 0z K 2>
0, the following assumption holds: . R
AL E[|G(z:) — VG(:)|7] < 02 . ElllKa(wi) — KuillZ] < of  and  E[|IKy(y:) — K yill2] < 03 k-

Sometimes we simply denote o, := 4 /U;G + 0325) i for the sake of notational convenience. Stochastic SPP

often appears in machine learning applications. For example, for problems given in the form of (L3)), G(z)
(resp. F(K=x)) can be used to denote a smooth (resp. nonsmooth) expected convex loss function. It should
also be noted that deterministic SPP is a special case of the above setting with o, = o, = 0.

In view of the classic complexity theory for convex programming [30, [16], a lower bound on the rate of
convergence for solving stochastic SPP is given by

L¢g 1% Oy + O

Ol == —K Y
(#5525
where the first two terms follow from the discussion after (I.4]) and the last term follows from Section 5.3 and
6.3 of [30]. However, to the best of our knowledge, there does not exist an optimal algorithm in the literature
which exhibits exactly the same rate of convergence as in (7)), although there are a few general-purpose

stochastic optimization algorithms which possess different nearly optimal rates of convergence when applied
to above stochastic SPP.

(1.7)

(1) Mirror-descent stochastic approximation (MD-SA). The MD-SA method developed by Nemirovski et al.
in [29] originates from the classical stochastic approximation (SA) of Robbins and Monro [40]. The classical
SA mimics the simple gradient descent method by replacing exact gradients with stochastic gradients, but
can only be applied to solve strongly convex problems (see also Polyak [38] and Polyak and Juditsky [39], and
Nemirovski et al. [29] for an account for the earlier development of SA methods). By properly modifying the
classical SA, Nemirovski et al. showed in [29] that the MD-SA method can optimally solve general nonsmooth
stochastic programming problems. The rate of convergence of this algorithm, when applied to the stochastic
SPP, is given by (see Section 3 of [29])

1
@) {(LG + Ly +o0,+ oy)\/—N} )
However, the above bound is significantly worse than the lower bound in (1) in terms of its dependence on
both LG and LK.

(2) Stochastic mirror-prox (SMP). In order to improve the convergence of the MD-SA method, Juditsky et
al. [I6] developed a stochastic counterpart of Nemirovski’s mirror-prox method for solving general variational
inequalities. The stochastic mirror-prox method, when specialized to the above stochastic SPP, yields a rate
of convergence given by

Log+Lx op+4+0
@ + Y } .
U
Note however, that the above bound is still significantly worse than the lower bound in (7)) in terms of its
dependence on Lg.

(3) Accelerated stochastic approximation (AC-SA). More recently, Lan presented in [19] (see also [12, 11]) a
unified optimal method for solving smooth, nonsmooth and stochastic optimization by developing a stochas-
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tic verstion of Nesterov’s method [33 34]. The developed AC-SA algorithm in [I9], when applied to the
aforementioned stochastic SPP, possesses the rate of convergence given by

O{% + (Lk + 0 +o—y)\/%}.

However, since the nonsmooth term in f of () has certain special structure, the above bound is still
significantly worse than the lower bound in (I7) in terms of its dependence on Lg. It should be noted that
some improvement for AC-SA has been made by Lin et al. [23] by applying the smoothing technique to (LIJ).
However, such an improvement works only for the case when Y is bounded and oy = 0, x = 0. Otherwise,
the rate of convergence of the AC-SA algorithm will depend on the “variance” of the stochastic gradients
computed for the smooth approximation problem, which is usually unknown and difficult to characterize (see
Section 3 for more discussions).

Therefore, none of the stochastic optimization algorithms mentioned above could achieve the lower bound
on the rate of convergence in (7).

1.3. Contribution of this paper. Our contribution in this paper mainly consists of the following three
aspects. Firstly, we present a new primal-dual type method, namely the accelerated primal-dual (APD)
method, that can achieve the optimal rate of convergence in (4] for deterministic SPP. The basic idea of
this algorithm is to incorporate a multi-step acceleration scheme into the primal-dual method in [6]. We
demonstrate that, without requiring the application of the smoothing technique, this method can also achieve
the same optimal rate of convergence as Nesterov’s smoothing scheme when applied to (II)). We also show
that the cost per iteration for APD is comparable to that of Nesterov’s smoothing scheme. Hence our method
can efficiently solve problems with a big Lipschtiz constant L.

Secondly, in order to solve stochastic SPP, we develop a stochastic counterpart of the APD method, namely
stochastic APD and demonstrate that it can actually achieve the lower bound on the rate of convergence in
(T). Therefore, this algorithm exhibits an optimal rate of convergence for stochastic SPP not only in terms
of its dependence on IV, but also on a varity of problem parameters including, L, Lk, 0, and oy. To the best
of our knowledge, this is the first time that such an optimal algorithm has been developed for stochastic SPP
in the literature. In addition, we investigate the stochastic APD method in more details, e.g., by developing
the large-deviation results associated with the rate of convergence of the stochastic APD method.

Finally, for both deterministic and stochastic SPP, we demonstrate that the developed APD algorithms
can deal with the situation when either X or Y is unbounded, as long as a saddle point of problem (1))
exists. We incorporate into the APD method the termination criterion employed by Monteiro and Svaiter [25]
for solving variational inequalities, and generalize it for solving stochastic SPP. In both deterministic and
stochastic cases, the rate of convergence of the APD algorithms will depend on the distance from the initial
point to the set of optimal solutions.

1.4. Organization of the paper. We present the APD methods and discuss their main convergence
properties for solving deterministic and stochastic SPP problems, respectively, in Sections 2 and 3. In order
to facilitate the readers, we put the proofs of our main results in Section 4. Some brief concluding remarks
are made in Section 5.

2. Accelerated Primal-Dual Methods for Deterministic SPP. Our goal in this section is to present
an accelerated primal-dual method for deterministic SPP and discuss its main convergence properties.

The study on first-order primal-dual method for nonsmooth convex optimization has been mainly moti-
vated by solving total variation based image processing problems (e.g. [45] @] 37, [6] 4 13]). Algorithm dlshows
a primal-dual method summarized in [6] for solving a special case of problem (1.1), where Y = R™ for some
m > 0, and J(y) = F*(y) is the convex conjugate of a convex and l.s.c. function F.

The convergence of the sequence {(x¢,v:)} in Algorithm [ has been studied in [37, [9] [6] [4, [I3] for various
choices of 6;, and under different conditions on the stepsizes 7 and 7,. However, the rate of convergence for
this algorithm has only been discussed by Chambolle and Pock in [6]. More specifically, they assume that the
constant stepsizes are used, i.e., 7z = 7, n; = n and 6; = 6 for some 7,7,0 > 0 for all t > 1. If TnL% < 1, where
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Algorithm 1 Primal-dual method for solving deterministic SPP
1: Choose 1 € X, y; €Y. Set 1 = z7.
2: Fort=1,..., N, calculate

. _ 1
Ye+1 = argmin (=K, y) + J(y) + 2—||y —ell?, (2.1)
yey Tt
. 1
Tey1 = argmin G(z) + (K2, y41) + 5— ||z — 24|, (2.2)
zeX 27
Ti41 = Ot(le — l‘t) + Tig1. (23)

N N
1 1
3. Output z¥ = N E zy, yN = N E Yt.
t=1 t=1

Algorithm 2 Accelerated primal-dual method for deterministic SPP

1: Choose 1 € X,y1 €Y. Set 219 = z1,y1? = y1, T1 = 7.
2: Fort=1,2,..., N — 1, calculate

e = (1 - g7 Hal + B ay, (2.4)
. _ 1
Y41 = argmin (—KZ:,y) + J(y) + =V (y, 1), (2.5)
yey Tt
. . 1
Tip1 = argn)l{ln (VG(z} d), x) + (z, KTyt_H) + 77_VX (x,24), (2.6)
TE t

apdy = (1= B Ny + B wega,
Yty = (1= 8, i + By 'yt
Tpg1 = Opp1 (o1 — @) + Teg1.

3: Output z37, vy .

L = | K|, then the output (z,4") possesses a rate of convergence of O(1/N) for § = 1, and of O(1/V/N)
for @ = 0, in terms of partial duality gap (duality gap in a bounded domain, see (214 below).

One possible limitation of [6] is that both G and J need to be simple enough so that the two subproblems
@1) and (22) in Algorithm [Tl are easy to solve. To make Algorithm [Tl applicable to more practical problems
we consider more general cases, where J is simple, but G may not be so. In particular, we assume that G
is a general smooth convex function satisfying (LI]). In this case, we can replace G in (2Z2) by its linear
approximation G(z;) + (VG(z),z — ;). Then ([22) becomes

Pisr = argmin (VG(a0), ) + (Ko, yosa) + 5-lla — a0l (210)
reX T

In the following context, we will refer to this modified algorithm as the “linearized version” of Algorithm[l By

some extra effort we can show that, if fort =1,...,N,0<0; = 7v_1 /7 =ne—1/m: < 1, and LGTt—f—L%(’I]tTt <1,

then (¥, y") has an O((Lg + Lk )/N) rate of convergence in the sense of the partial duality gap.

As discussed in Section 1, the aforementioned rate of convergence for the linearized version of Algorithm [J
is the same as that proved in [6], and not optimal in terms of its dependence on L¢ (see (LH])). However, this
algorithm solves the problem (1.1) directly without smoothing the nonsmooth objective function. Considering
the primal-dual method as an alternative to Nestrov’s smoothing method, and inspired by his idea of using
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accelerated gradient descent algorithm to solve the smoothed problem [33, B34 [35], we propose the following
accelerated primal-dual algorithm that integrates the accelerated gradient descent algorithm into the linearized
version of Algorithm [II

Our accelerated primal-dual (APD) method is presented in Algorithm 2l Observe that in this algorithm,
the superscript “ag” stands for “aggregated”, and “md” stands for “middle”. The functions Vx(-,:) and
Vy (-, -) are Bregman divergences defined as

Vx(z,u) :=dx(x) —dx(u) — (Vdx (u),x —u),Vr,u € X, (2.11
Wy (y,v) :=dy (y) — dy (v) — (Vdy (v),y — v),Vy,v €Y, (2.12)

where dx(-) and dy () are strongly convex functions with strong convexity parameters ax and ay. For
example, under the Euclidean setting, we can simply set Vy (x, ;) := ||z —2¢?/2 and Vy (v, u¢) := |ly —v:l|?/2,
and ax = ay = 1. We assume that J(y) is a simple convex function, so that the optimization problem in
[@3) can be solved efficiently.

Note that if 8; = 1 for all t > 1, then 214 = x,, xy{, = 241, and Algorithm 2lis the same as the linearized
version of Algorithm [Il However, by specifying a different selection of 5; (e.g., 8: = O(t)), we can significantly
improve the rate of convergence of Algorithm [2]in terms of its dependence on L¢. It should be noted that the
iteration cost for the APD algorithm is about the same as that for the linearized version of Algorithm [l

In order to analyze the convergence of Algorithm [2] it is necessary to introduce a notion to characterize
the solutions of (IL]). Specifically, denoting Z = X x Y, for any zZ = (Z,9) € Z and z = (z,y) € Z, we define

Q2,2) = [G(2) + (KZ,y) = J(y)] = [G(2) + (Kz,5) = J(9)] (2.13)

It can be easily seen that Z is a solution of problem (1)), if and only if Q(Z,2) <0 for all z € Z. Therefore,
if Z is bounded, it is suggestive to use the gap function

g(2) == maxQ(z, 2) (2.14)
z2€EZ
to assess the quality of a feasible solution Z € Z. In fact, we can show that f(Z) — f* < g(2) for all Z € Z,
where f* denotes the optimal value of problem (II). However, if Z is unbounded, then g(2) is not well-defined
even for a nearly optimal solution zZ € Z. Hence, in the sequel, we will consider the bounded and unbounded
case separately, by employing a slightly different error measure for the latter situation.

The following theorem describes the convergence properties of Algorithm 2l when Z is bounded.
THEOREM 2.1. Suppose that for some Qx,Qy >0,

sup Vx(x1,22) < Qg( and sup Vy(z1,22) < ng (2.15)
r1,20€X Y1,Y2€Y

Also assume that the parameters By, 0, me, 7+ in Algorithm [2 are chosen such that for all t > 1,

B =1, Biy1 — 1= Libit, (2.16)
0 < 6§, < min{T=L Ti=ly (2.17)
e T
L L2

Then for allt > 1,

1
<03+ 0%, 2.19
= By X+5tTt Y (2.19)



There are various options for choosing the parameters §;, n;, 7+ and 6; such that (2I0)—-(2I8) hold. Below
we provide such an example.
COROLLARY 2.2. Suppose that (Z13) holds. In Algorithm[3, if the parameters are set to

41 t—1 axt ay Dy

b= 0= M= S Dy /DX T T Ty (2:20)
where Dx := Qx+/2/ax and Dy := Qy+/2/ay, then for all t > 2,
2LaD? 2L DxD
R e (2.21)

=t —1) t

Proof. It suffices to verify that the parameters in (2Z20) satisfies 2.10)-2I8) in Theorem 21l It is easy
to check that (210) and @2I7) hold. Furthermore,

a_X _ @ _ L%(Tt - 2LG+tLKDy/DX . 2LG _ LKDY >0
M B ay N t t+1 Dx 7

so [2.I8) holds. Therefore, by 219), for all t > 1 we have
1 2 4Lg+2(t—1)LKDy/DX ax

2LKD)(/DY ay

1
a9y < 0% + Q =D 4 = D2
9(=7) < Bi—im—1 © Bioam—1 axt(t—1) 2 X ayt 2 Y
o 2LgD§( 2LKDXDY
ottt —1) t '

O

Clearly, in view of (I.4]), the rate of convergence of Algorithm 2] applied to problem (1)) is optimal when
the parameters are chosen according to (Z20)). Also observe that we need to estimate Dy /Dx to use these
parameters. However, it should be pointed out that replacing the ratio Dy /Dx in [220) by any positive
constant only results an increase in the RHS of (Z21]) by a constant factor.

Now, we study the convergence properties of the APD algorithm for the case when Z = X X Y is
unbounded, by using a perterbation-based termination criterion recently employed by Monteiro and Svaiter
and applied to SPP [27, 26, 25]. This termination criterion is based on the enlargement of a maximal monotone
operator, which is first introduced in [5]. One advantage of using this criterion is that its definition does not
depend on the boundedness of the domain of the operator. More specifically, as shown in [25] 27], there always
exists a purterbation vector v such that

g(Z,v) :=maxQ(2,z) — (v, Z — 2) (2.22)
z2€Z
is well-defined, although the value of ¢(Z) in (ZI4) may be unbounded if Z is unbounded. In the following
result, we show that the APD algorithm can compute a nearly optimal solution Z with a small residue §(Z,v),
for a small purterbation vector v (i.e., ||v]| is small). In addition, our derived iteration complexity bounds are
proportional to the distance from the initial point to the solution set.

THEOREM 2.3. Let {29} = {(x}7,vy;9)} be the iterates generated by Algorithm [@ with Vx (z,z:) =

|z —2¢)|?/2 and Vy (y,y) = |ly — yel|?/2. Assume that the parameters B¢, 0y, m; and 7, satisfy [2.10),

P e (2.23)
Ui Tt
L L?

ax ke KTt >0, (224)

for allt > 1 and for some 0 < p < 1, then there exists a perturbation vector viyq1 such that

. (2-p)D?
ag < — = 2.25
Gz ven) S oy = e (2.25)

7



for any t > 1. Moreover, we have

1. 1. 1 m 2Lk
< —|ZT - — ||y — — |1 D 2.26
il < o=l + 5ol =l + |50 (14 [ =) + 2K D0 o)

where (&,9) is a pair of solutions for problem (I1l) and

~ m
D= \/||x—x1||2 + 2 - . (2.27)

Below we suggest a specific parameter setting which satisfies [2.16]), (2.23) and (224).
COROLLARY 2.4. In Algorithm[2, if N is given and the parameters are set to

t41 t—1 t41 t41
et YT nd = 2.28
o= b= M= S Ny T T aN L, (2:28)
then there exists vy that satisfies (2.25) with
10LeD?  10Lx D2 15LeD  16LgD
eN S~ t —— and Jovll £ —m—+ —5— (2.29)

where D = VIE =212+ 119 — vl
Proof. For the parameters B, v, n, 7 in (Z28), it is clear that 216), 2Z23) holds. Furthermore, let
p=1/4, for any t =1,...,N — 1, we have

| Lg _Lim _2Lc+2LxkN 2L _2L%(t+1) _ 2LkN 2Li(t+1)
o B p t+1 t+1 LxkN = t+1 N =

thus 2.24) holds. By Theorem [2.3, inequalities [2.25) and [2.26) hold. Noting that n, < 7, in [2.25) and
@226) we have D < D, ||# — 21| + ||§ — 1|l < V2D, hence

V2D N (1+/4/3)D N 2L D

[ < )
[vea ]l < B Bime 3,
2—p)D?2  7D?
€11 < Chat) = .
Bene(L—p) 3B
Also note that by (2223),
1 _ 4(Lg+LkgN) 4Lg | 4Lk
BN-1MN—1 N2 N? N

Using the above three relations and the definition of By in (2.28), we obtain (2.29) after simpliying the constants.
O

It is interesting to notice that, if the parameters in Algorithm [2] are set to (Z28]), then both residues ey
and ||y in (Z2Z9) reduce to zero with approximately the same rate of convergence (up to a factor of D). Also
observe that in Theorem and Corollary 24 we fix Vx(-,-) and V¥ (,-) to be regular distance functions
rather than more general Bregman divergences. This is due to fact that we need to apply the Triagular
inequality associated with /Vx(-,-) and /Vy (-,-), while such an inequality does not necessarily hold for
Bregman divergences in general.



Algorithm 3 Stochastic APD method for stochastic SPP
Modify 21) and [Z6) in Algorithm [2] to

. a 1
Y1 = argmin (—Ky(Z¢),y) + J(y) + =W (¥, y¢) (3.1)
yey Tt
A m . 1
Ti41 = argn)a(ln (G ), @) + (2, Ky (yes1)) + W—VX(% ) (3.2)
TE t

3. Stochastic APD Methods for Stochastic SPP. Our goal in this section is to present a stochastic
APD method for stochastic SPP (i.e., problem (LI with a stochastic oracle) and demonstrate that it can
actually achieve the lower bound in (7)) on the rate of convergence for stochastic SPP.

The stochastic APD method is a stochastic counterpart of the APD algorithm in Section 2, obtained
by simply replacing the gradient operators —Kz;, VG(x}* ) and KT yt+1, used in (Z3) and (26]), with the
stochastic gradient operators computed by the SO, i.e., —K,(Z;), G(z™%) an K, (yi1+1), respectively. This
algorithm is formally described as in Algorithm Bl

A few more remarks about the development of the above stochastic APD method are in order. Firstly,
observe that, although primal-dual methods have been extensively studied for solving deterministic saddle-
point problems, it seems that these types of methods have not yet been generalized for stochastic SPP in
the literature. Secondly, as noted in Section 1, one possible way to solve stochastic SPP is to apply the
AC-SA algorithm in [I9] to a certain smooth approximation of (1) by Nesterov [35]. However, the rate
of convergence of this approach will depend on the variance of the stochastic gradients computed for the
smooth approximation problem, which is usually unkown and difficult to characterize. On the other hand,
the stochastic APD method described above works directly with the original problem without requring the
application of the smoothing technique, and its rate of convergence Will depend on the variance of the stochastic
gradient operators computed for the original problem, i.e. am a a and o2 Kk n Al. We will show that it can
achieve exactly the lower bound in (I7) on the rate of convergence for stochasmc SPP.

Similarly to Section 2l we use the two gap functions g(-) and g§(-,-), respectively, defined in (2I4) and
[222]) as the termination criteria for the stochastic APD algorithm, depending on whether the feasible set
Z = X x Y is bounded or not. Since the algorithm is stochastic in nature, for both cases we establish its
expected rate of convergence in terms of g(-) or g(-,-), i.e., the “average” rate of convergence over many runs
of the algorithm. In addition, we show that if Z is bounded, then the convergence of the APD algorithm can
be strengthened under the following “light-tail” assumption on SO.

A2 E [exp{|VG(2) ~ 6@)]12/0% ] < exp{1}. E [exp{| Kz — Ka(@)]2/03)] < exp{1}
and E [exp{| K"y — K, (1)[2/02 x}] < exp{1}.
It is easy to see that A2 implies Al by Jensen’s inequality.

Theorem Bl below summarizes the convergence properties of Algorithm [B] when Z is bounded. Note that
the following quanity will be used in the statement of this result and the convergence analysis of the APD
algorithms (see Section 4):

1, t=1,
= { 0, 1, t>2. (3:3)

THEOREM 3.1. Suppose that (Z13) holds for some Qx,Qy > 0. Also assume that for all t > 1, the
parameters By, 0y, m and 1 in Algorithm [3 satisfy 2.10), (17), and
qaox Lg Lim

— = _8 >0 3.4
N By pay (3:4)

for some p,q € (0,1). Then,



(a). Under assumption[AT], for all t > 1,
Elg(2:¢1)] < Qo(?), (3.5)
where

Qu(t) i= g {220k + 2203 | +
o Lot { ot + Got |

(b). Under assumption[A2] for all A\ >0 and t > 1,
Prob{g(z?,) > Qo(t) + AQ1(t)} < 3exp{—A?/3} + 3exp{—A}, (3.7)

1 V20,0 ayQy /
Ql( ) Byt ( \/@X + m) 'L 171 (38)
1 t @Q=q)nivi ;2 | (2-p) Tm 2
2Bt Zi:l { (T—q)ax zt (1-p)ay UU}
We provide below a specific choice of the parameters (5, 0;, 1; and 73 for the stochastic APD method for
the case when Z is bounded.

COROLLARY 3.2. Suppose that (213) holds and let Dx and Dy be defined in Corolloary [22. In Algo-
rithm[3, if N > 1 is given and the parameters are set to

where

ﬁ_t+1 e_t—l o 20éxDxt
T T T T LDy + 3L Dy (N — 1) + 30, NVN
(3.9)
2ayDyt
T = .
"7 3LxDx(N —1)+30,NVN — 1
Then under Assumption[Adl, we have
6LgD2 GLKD)(DY 4(0’sz +o Dy)
E N < X Y =: N). 1
eA0) < s + S 4 A LA () (3.10)
If in addition, Assumption[A2] holds, then for all A > 0, we have
Prob{g(23) > Co(N) + AC1(N)} < 3exp{—A?/3} + 3exp{-A}, (3.11)
where
3(0xD D
Ci(N) = (0:Dx + 0y Dy) | (3.12)

N -1

Proof. First we check that the parameters in (39) satisfy the conditions in Theorem[3 1. The inequalities
@I6) and [ZI10) can be checked easily. Furthermore, for allt =1,...,N — 1, setting p = q = 2/3 we have
gax Lo L3 S 2LeDx + LgDy (N —1)  2Lg L2 Dyt >0
ur Be  pay Dxt t+1 LgDx(N-1) ="
thus B4) hold, and hence Theorem [31] holds.

To show BIQ) and BII), it suffices to show that Co(N) > Qo(N — 1) and C1(N) > Q1(N —1). Observe
N-1

that by B3A) and BI), we have v+ = t. Also, observe that Z i? < (N —1)N?/3, thus
i=1

Zn’}/ 204XDX Z 2 20éxDxN
1/t = 3

IN-1 1)3/2No, =~ 901\/ 9o, V/N —1'
2ayDy 20éyDyN

3 o< gD Y g 20D
"YNlil 3(N Noy, =~ ~ 90,VN -1

10



Apply the above bounds to BH) and B.8]), we get

(N - 1)
< 3 6L0Dx+3LKDy(N—1)+3N\/N—1U;E a_XD2 n 3LKDx(N—1)+3N\/N—1Uy Oé_yDQ
- N axDx (N —1) 2 X ayDy (N —1) 2 7Y
202 2axDxN 202 2ayDyN
420, SOX XD T SV ) < gy (N),
ax 9or,vVN—-1 oy 90,v/N -1
(N -1)
2 o,Dy\ [2(N—-1)N2 402 2axDxN 402  2ayDyN
< — O'xD + Y ) L. L <C N7
_N(N—1)< YT 3 axN 90,/N—1 ayN 95,yN—1 " 1)

so BI0) and BII) holds. O

Comparing the rate of convergence established in (I0) with the lower bound in (1), we can clearly
see that the stochastic APD algorithm is an optimal method for solving the stochastic saddle-point problems.
More specifically, in view of (3.10), this algorithm allows us to have very large Lipschitz constants L¢g (as big
as O(N2)) and Lg (as big as O(v/N)) without significantly affecting its rate of convergence.

We now present the convergence results for the stochastic APD method applied to stochastic saddle-point
problems with possibly unbounded feasible set Z. It appears that the solution methods of these types of
problems have not been well-studied in the literature.

THEOREM 3.3. Let {29} = {(x}7,y;9)} be the iterates generated by Algorithm [@ with Vx (z,z:) =
|z — 24]|2/2 and Vy (y,y:) = ||y — v||?/2. Assume that the parameters By, 0, m and 7y in Algorithm [3 satisfy
216), @23) and (54) for allt > 1 and some p,q € (0,1), then there exists a perturbation vector viy1 such
that

~ 1 6 —4p 5—3p
E[g(=4 < — D+ ——=0C%) = 3.13
[9(z77 s ve1)] < B ( 1—p T o ) Et41 (3.13)

for any t > 1. Moreover, we have

2|1& —aall | 29—l

2 1 1 1 2Lk
+ + 2D2+O2{—+—,/—(,/—+1>+ ] 3.14
Bing BT By Beme | 1-p Bt (8.14)

where (&,9) is a pair of solutions for problem (L)), D is defined in [2-27) and

Effvea]] <

D202~ miTiol
C .= —r . 3.15
i=1 l—q " Z 1-p ( :

i=1

Below we specialize the results in Theorem B3] by choosing a set of parameters satisfying (216]), (223)

and (34).

COROLLARY 3.4. In Algorithm[3, if N is given and the parameters are set to

t+1 t—1 3t t
ﬂt 92 y Ut ¢ y T 4775 ana T 775 ( )
where
- - 9
n=2Lg+2Lg(N —1)+ NVN —10/D for some D >0, 0 = \/ZO'% + 02, (3.17)

11



then there exists vy that satisfies (BI3) with

eEN < NNV = 1) N O , (3.18)
ElJon]] < N5(OJ€G_D1) LKD(55]\;L 3D/D) (6 —|—J\?5_D1/D)7 -~

where D is defined in (Z27).
Proof. For the parameters in [BI6), it is clear that (ZI6) and @223) hold. Furthermore, let p = 1/4,
q=3/4, then for allt =1,...,N — 1, we have

¢ Lo Lim _nm_2Le ALt 2Lc+2Lx(N-1) 2Lg 2Lkt
Nt ﬁt p o t t+1 n - t t LK(N—l) -7
thus (B4) holds. By Theorem[Z3, we get BI3) and BI4). Note that n:/7 = 3/4, and
1 1 1 1 nvo1 [4 V374D
T2 - < D, 19—l < ' ‘A 3D =777,
BN-1N -1 BN-1nN -1 BN-1TN-1 BN-1MN-1 TN-1 3 BN-1MN -1

so in (BI3) and BI4) we have

120 17
€141 < m( 3 g ) (3.20)
@+vEAD  VDTIC (34 V) au AT
Effveta|l] < : (3.21)
BN-171N -1 BN-171N-1 BN-1

By BI8) and the fact that Zi:; i? < N?(N —1)/3, we have

29022+N 1gz’2 1N2(N—1) 902 2 _oNVyN -1
2 2 4 @ V31

i=1 i=1 n 377

Applying the above bound to (3:20) and B.21)), and using the fact that v/2D? + C2 < /2D + C, we obtain
n=2Lg+2Lg(N—-1)+ NVN —10/D,

2 \72 _ 2nN2 _
en < 8n 20 12 170°N?*(N - 1) _ 8 @nDQ n 170°N*(N - 1)
AN(N—-1) \ 3 18n2 3N( 1)\ 3 187y
320L;D? 320L k(N — 1)D2 160N+/N — 10D2/b 6802N2(N -1)
T~ IN(N -1) IN(N —1) ON(N —1) 27N2(N — 1)3/2g/f)
=~ N(N-1) N N -1 ’
1 2vV2LgD  2LkC
E[|vy|] € ——— (2D +V3D +3V2D +V6D/2 +3C + \/50/2) | 2V2LiD | 2Lk
BN-1MN-1 Br-1 Br-1

4V2LxgD  4LgoNy/N —1
(\/— +1/2) + V2LiD | Alko _
3\/ N NV3Ny/N —10/D
50LgD  LxgD(55+3D/D) o(6+425D/D)
=~ N(N-1) N N-1
12




Observe that the parameter settings in (B16])-(@B.I17) are more complicated than the ones in ([228)) for the
deterministic unbounded case. In particular, for the stochastic unbounded case, we need to choose a parameter
D which is not required for the deterministic case. Clearly, the optimal selection for D minimizing the RHS of
BI8) is given by v/6D. Note however, that the value of D will be very difficult to estimate for the unbounded
case and hence one often has to resort to a suboptimal selection for D. For example, if D = 1, then the RHS
of (3I8) and BI9) will become O(LgD?/N?+ L D?/N +0D?/v/N) and O(LgD/N?+ LxgD/N+aD/V/N),
respectively.

4. Convergence analysis. Our goal in this section is to prove the main results presented in Section 2

and 3, namely, Theorems 2.1] 2.3] B.1] and

4.1. Convergence analysis for the deterministic APD algorithm. In this section, we prove Theo-
rems 2] and which, respectively, describe the convergence properties for the deterministic APD algorithm
for the bounded and unbounded SPPs.

Before proving Theorem 211 we first prove two technical results: Proposition 1] shows some important
properties for the function Q(-,-) in (2I3) and Lemma [£.2] establishes a bound on Q(z}?, 2).

PROPOSITION 4.1. Assume that 3y > 1 for all t. If 2}, = (2 ,,y},) is generated by Algorithm[3 then
for all z = (z,y) € Z,
BtQ(Zg-ﬁlv ) (ﬁt - 1)@(216 ’ )

La
< (VG(@]"),ze1 — ) + 2_ﬂt||xt+l — 2?4 [T (yes1) — J@)] + (Kxig1,y) — (K2, y41).

(4.1)
Proof. By equations Z4) and @), 2}, — 2" = B (x41—¢). Using this observation and the conveity
of G(+), we have

a m md BL m
BG(ith) < BG(@) + BuVG (), ity — o) + =5 gy — |

L
< BG(z) + B (VG(x) ), 289, — ) + 2_;

=BG + (B — 1)(VG (@), a0 — &) + (VG(a}), w1 — 2y + 2L_ﬁi

= (B = 1) [G(a"") + (VG(27"), 27 — a")] + [G(a") + (VG(2"), 21 — 2] +

lze41 — $t||2
lze41 — l‘t||2

|th+1 - $t||2

Qﬂ
= (8~ 1) [ + (VG )2y — )] + [Gla) + (VG ). — o) + (VG ) e —a)
+ gl -l
< (o= DG(t?) + G() + (VGETD, 2up1 — o) + 52 forss — .

20:

Moreover, by (28) and the convexity of J(-), we have

A

Bed (yil) — BeJ(y) < (Be = 1)J () + J(yes1) — BeJ (y)
Be = D) [J(w?) = JW)] + T (yer1) — I ().
13



By 13), @), (Z8) and the above two inequalities above, we obtain

ﬁtQ(sz,g»lv z) = (B = 1)Q(27, 2)
= b {[ ($t+1) <K$?Jgrlv y) — (y)] [ (z) + (Ka:,yffﬁ - J(yiﬂ)”
= (Be = DAG(}?) + (K, y) — J(y)] = [G(2) + (Kz,y;7) = T ()]}
= ﬁtG($t+1) (ﬁt - 1) ( ag) - ( ) + B [ (yt+1) - J(y)]
= (Be = 1) [J(g?) = J(y )] (K (Beayly — (Be — D)ay?),y) — (K, Buyify — (B — D)yi?)

< A(VG("), 441 — ) + —||11?t+1 —ay|? 4 T (Y1) — J(y) + (Kzpgr,y) — (Ko, yi41).

d

Lemma establishes a bound for Q(z/Y,,2) for all z € Z, which will be used in the proof of both
Theorems 2.1l and 2.3

LEMMA 4.2. Let 2z, = (x{,,yl],) be the iterates generated by Algorithm[2 Assume that the parameters

Bt, 0, mt, and ¢ satisfy 2I6), @I10) and @IF). Then, for any z € Z, we have
a « L
51&71&@(21&4({17 z) < By(z, Z[t]) + Ve (K (@1 — ),y — Yey1) — (2_; - 2_5;) lzt41 — $t||27 (4.3)
where 7, is defined in B3), 2y = {(z:, y:)}i1 and

t

(o200 = 30 4 2 Wil = Vel + 2 i) = Vi )]} (1)

=1

Proof. First of all, we explore the optimality conditions in iterations [20) and 28). Apply Lemma 2 in

to (23), we have

_ 1 1 1
(=KZt,ye41 —y) + J(yer1) — J(y) < T_tVY(yuyt) - T_tVY(yt-i-layt) - T_tVY(yayt—i-l)

1 N 1 (4.5)
) — s — il — L1
< v (Y, yt) o [ye+1 — el P Y (Y, Yet1),
where the last inequality follows from the fact that, by the strong convexity of dy () and (213),
!
Ve (un,y2) > <l = well?, for allyn,ys €Y. (4.6)

Similarly, from 28] we can derive that
md T 1 ax 21
(VG(2{"), 2141 — 2) + (@141 — 2, K" yry1) < n—VX(%ﬂCt) - %Hﬂ?tﬂ —z” — n—VX(%ﬂ?tH)- (4.7)
¢ ¢ t

Our next step is to establish a crucial recursion of Algorithm[2 It follows from @I, ([@3) and @X) that

BtQ(szl, z) — (ﬂt_l)Q(Zt ) 2)
(VG ), w1 — z) + 2

< oTeA 41 = 2el” + [T (Yes1) = J@)] + (Ko, y) — (Kz, yera)

1 1 ax LG 2
< -V S (=X ¢ - 4.8
< x (2, @) p” (@, xt41) (27% Qﬁt) @11 — @] (4.8)

1 1 ay 2
— VA R v _ X —
+ P Y (Y, yt) . (Y, Ye+1) 27_t||yt+1 el

— (411 — 2, K ye1) + (KT, g1 — y) + (K21, y) — (K2, yg1).
14



Also observe that by 239), we have

— (@1 — 2, K yep1) + (K2, yee1 — y) + (K21, y) — (K, yeg1)
= <K(9Ct+1 - xt)ay - yt+1> - 9t<K($t - CCt—l), Yy — yt+1>
= <K(9Ct+1 - xt)ay - yt+1> - 9t<K(fct - xt—l)u Yy— yt> - 9t<K($t - xt—l)ayt - yt+1>-

Multiplying both sides of [{-8) by i, using the above identity and the fact that v,0, = v—1 due to (33), we
obtain

By Q2 1, 2) — (B — 1) Q(27, 2)

< &VX(fE,fEt) — &VX(I,@EJA) + &VY(yayt) - &VY(y,yHl)
e Ui3 Tt Tt
+ Ve (K (1 — 24),y — Y1) — Ve—1 (K (@ — T4-1), Y — Ye)

ax Lg ay
- Mt (2_m - 2_515> [e41 — $t||2 N 2Tjt lyer1 — yt||2 — Y1 (K (2t — 2e—1), Yt — Yet1)-

Now, applying Cauchy-Schwartz inequality to the last term in ([£9)), using the notation Lx = | K || and noticing
that vi—1/v: = 0y < min{ni_1/ne, -1/} from (2I1), we have

— 1 (K (2 — 2i=1), ye — Y1) < V1| K (@ — ze—1) ||« |yt — yita ||

L3 ’72 Tt ay Yt
<L _ — . _ < ZK =17t — e 12 _ 2
< Lrvi-illze — 21l llye — yesa || < 20y e [z — el + o e = e+l (4.10)
L2~ 17 o
< I gy — g |2 4 2y — g |2
205y 27}

Noting that 0;41 = v¢/Yi4+1, so by BI0) we have (Bir1 — 1)yir1 = Biye. Combining the above two relations
with inequality [@EI), we get the following recursion for Algorithm[2.

(Be+1 = Dye1Q(2f1,2) — (Be — DmQ(2(7,2) = BimnQ(2i1.2) — (Be — D1 Q(2/7, 2)
< Lyy(a,2) = LV (@ mg) + 2V (y,m) — 2V (3, 5141)

Mt U T Tt

+ (K (1 — 26), ¥ — Yer1) — Ve (K (20 — 1),y — Y1)

aox Lg 5 L2y 1T 2
A <] - SRVATEL 0y |28 > 1.
Yt (277t 2[3t) |zerr — a4 |” + 20y lze — ap—1||*, YVt >

Applying the above inequality inductively and assuming that xo = x1, we conclude that

(Be+1 = Dye1Q(z1,2) — (B1 = UmQ(217, 2) < Bi(z, 21) + (K (Te41 — ), Y — Ye1)

t—1
ax Lg 2 (ax  Lg L% | 2
ol (2m 2&) [ Z}v( =55~ o) e — il

which, in view of (ZI8) and the facts that B1 = 1 and (Be11 — 1)Ve41 = By by @I0), implies [@E3). O

We are now ready to prove Theorem 2.1 which follows as an immediate consequence of Lemma
Proof of Theorem 2.1 Let B:(z) be defined in ([£4)). First note that by the definition of v in (B3]) and
relation (2.I7), we have 0; = vi—1/v < m—1/m: and hence vi—1/m—1 < 7:/n:. Using this observation and
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2I3), we conclude that

t—1
i Vi Yitl Tt
Bi(z, zip) = —Vx(x,x — — ) Vx(x,z; — —=Vx(x,x
t(2, 2p1)) " x(z,21) — ;(m 771'+1> X (7, 2i11) o X (7, 441)
t—1 5
1 141
+2 VY(y Y1) Z( T:1>VY(ZI yz+1)__VY(y Ye+1)
i=1 Z K3
gl (% 7 g (4.11)
12 i i+1 ) 2 t )
Moz N (LTt g2 Dty (g
o Z(m 77i+1> X x(@2e41)

t—1

m Vi Yitl e
+ ?19?/ - Z <_Z - ) 0F - ;VY(y,ytH)

T T
i—1 7 1+1

Yty Ytz N
= =0 ——VX Ty Tt41 +—Q ——Vy Y, Yt+1)-
paLs S (@ 2e1) + 2y = TV ( t+1)
Now applying Cauchy-Schwartz inequality to the inner product term in ([£.3]), we get

L%{’VtTt OéY%

||y yt+1||
(4.12)

YelK (o1 — 2¢), ¥ — Yer1) < Lrvelloerr — e[|y — yega || < lze+1 — l‘t||2

Using the above two relations, (21I8), (@3] and (L), we have

Yt Yt Yt Qy
BrnQit ) < 0% = LV (@win) + 208 = L (Vely i) = Solly = e )
U U Tt Tt 2

ax LG L%(Tt 2 2 Yt 2
VA (. = - Q + 0, Ve Z,
% <2nt 203 2ay lzees = zel” < *

which together with (2I4)), then clearly imply (ZI9). O

(4.13)

Our goal in the remaining part of this subsection is to prove Theorem 2.3] which summarizes the con-
vergence properties of Algorithm Bl when X or Y is unbounded. We will first prove a technical result which
specializes the results in Lemma [£2] for the case when [2I6)), (Z23) and (224 hold.

LEMMA 4.3. Let 2 = (2,9) € Z be a saddle point of (LI). If Vx(z,2:) = ||z — 2:]|*/2 and V¥ (y,y:) =
lly — v:l|?/2 in Algorithm[3, and the parameters By, 0y, m; and 7 satisfy Z106), @23) and @24), then

a). X e —p), . . Mty o
(@ I =l + 2 — g < e ol + L=l for a1 @y
b). 1
(b) g(z 1 veg1) < o, — |z, - zp||? —|— ||yt+1 y1||? =: 6e41, for all t > 1, (4.15)
where §(-,-) is defined in (Z22) and
1 1 1
Vg1 = (ﬂmt (T1 = Tt41), G —— W1 — Y1) + EK(xt-H - !Et)) : (4.16)

Proof. It is easy to check that the conditions in Lemma[{.9 are satisfied. By 223), @3) in Lemma [{.2
becomes

1 2 1 2 1 2 1 2
8Q11.2) < gl = ol = gl = a4 gl -l = -l - vl
(4.17)
1 Lg

- =G _ 2
o = 7 Mo = el

+ (K (@41 — ), Y — Yey1) — (
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To prove [@I4), observe that

2

T p
(K(x41 — @),y — Yeg1) < e 2_Tt||y_yt+1”2 (4.18)

where p is the constant in (224). By 224)) and the above two inequalities, we get
1 1 1 1-p

ag < e 12— 2l — 2, Lo 2 L1TP 2

BQU) < gelle =il = gl = el + 5l = w1l = Ly = v

Letting z = % in the above, and using the fact that Q(z/}{,,%) > 0, we obtain ([EI4).
Now we prove (A1H). Noting that

o = 21| = |z = 2o ]|* = 2(ze41 — 21, 2) + [[a1]* = [Jzesa |
=2(re41 — w1, @ — 2]y) + 2T — w1, 1) + |z~ e (4.19)

=2(x411 — 21,7 — $t+1> + ||33t+1 - 331”2 ||33t+1 - $t+1||2a

we conclude from (ZZ24) and @IT) that for any z € Z,

1 1
51&@(2?)21,2) - <K($t+1 - $t)7y?£1 - y> - a<$1 - 5Ct+1,$?il - CC> - T_t<y1 - yt+1,yf4q_1 -y)
1
<5 o (I222y = 2| = 23y = zesal®) + (Ilyt+1 nll> = vy = yea?)
1 La
+ (K (w41 — o), Y1l — Y1) — (2_77t - ﬁ) @1 — @
1
< 5 2 (th-i-l $1||2 ||xt+1 _xt+1||2) (||?Jt+1 ||2 ||yt+1 _?Jt+1||2)

P a9 2_ (L _2G6
2Tt||yt+1 yt+1|| (277t 2/8t 2p
1

< — |2 — a2+ — :

= o [ 1® + ||yt+1 ?JlH
The result in (AI0) and [@I6) immediately follows from the above inequality and (2.22).
a

We are now ready to prove Theorem 2.3

Proof of Theorem [2.3] We have established the expression of v;11 and ;41 in Lemma It suffices to
estimate the bound on ||vy1|| and §¢41. It follows from the definition of D, (223]) and ([@I4]) that for all t > 1,

1

m(l—p)

& = x| < D and [|§ = yeall < D
Now by ([&IG]), we have

1 1 Lx
lverill < m—llz1 — egrll + —=Illv1 — Yerall + —=[|we11 — 24|
ﬁtTt ﬁt

Bene

1 R R 1 . . Lk . .
< — (12 =zl + 12 = 21 l) + = (g = vall + 19 = yeal) + — (|12 = 2ea || + |12 — 2]])
Bins By Bt
1 1 1 2Lk
—(|z —x1]| + D) + — ( +D > + D
B (|# = 1]l + D) s 19—yl =7 3,

1 . . 1 m ) ZLK]
— & — a1+ =—l§ — | + D |—— (1 + + .
Btﬁt” il BtTt”y nl {Btﬁt ( 71(1 —p) B
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To estimate the bound of 0,1, consider the sequence {v;} defined in (B3]). Using the fact that (Bi+1—1)y41 =
Biy: due to (2I6) and (B3]), and applying (21) and ([Z.8) inductively, we have

t t t
1 1 1
%9 :—E T, Yol :—E i and —E i = 1. 4.20
i Beve =1 Vit Ve Bive im1 Tid Bive =1 K ( )

Thus z77, and y;, are convex combinations of sequences {z;11}i_; and {y;41}/_; . Using these relations

and ([@I4)), we have

1 1
Spp1 = —— 299, — 21 |)? + ——||y9, — v1]?
t+1 2ﬁmJIHJ 1l 2&HH%+1 yull
1 1
<— (|2 =20+ 112 — z1l|®) + =— (17— v % + 1|9 — val?
<G (I e+l %) B g = yedal* + 119 = wll®)
1 . n(l—p), . mp .
= (D24 ||lg— g 24 22 T B s e 2y Ty a9 12
o (D24l =ity P+ 22 g o 24 TRy
t
1 1 . n(l—p), . mp
<— |D*+ ) -<$—x- 2 g — g 2+ L2 — g
B @%hﬂ% [ i1l - 19 = it l nHy Yit ||
t
1 1 P Ti 5 (2 — p)D?
< — |D*+ — 7(D2+——-—————D == U7
&m[ ﬂmfz;l 7 m(l—p) Bem(1 - p)

4.2. Convergence analysis for the stochastic APD algorithm. In this subsection, we prove The-
orems [3.1] and B3] which descirbe the convergence properties of the stochastic APD algorithm presented in
Section 3.

Let Q(z?d), K. (z;) and Iﬁy (yi+1) be the output from the SO at the ¢-th iteration of Algorithm[Bl Through-
out this subsection, we denote

A;,G =G (2" — VG (™), A;,K = K:y(yi-l-l) — K"y41, AZ ==K (Zi) + KTy,

AL =AL o+ AL x and A" := (A’;,A;).

x

Moreover, for a given z = (x,y) € Z, let us denote ||z]|*> = ||z||? + ||y||* and its associate dual norm for A =
(Az, Ay) by |A]I2 = [|AL]|2 + |Ay||2. We also define the Bregman divergence V (z, 2) := Vx (2, %) + Vy (y,7)
for z = (z,y) and Z = (&, ).

Before proving Theorem B}, we first estimate a bound on Q(2;Y,, z) for all z € Z. This result is analogous
to Lemma for the deterministic APD method.
LEMMA 4.4. Let 29 = (z}9,y;?) be the iterates generated by Algorithm[3. Assume that the parameters

Bt, 0, m¢ and 7y satisfy 210), @I10) and BA). Then, for any z € Z, we have

t
o « L
By Q2 1, 2) < Bi(z, z1y) + (K (Teg1 — 2¢), Y — Yes1) — e (q%); - Tﬂi) @eg1 — o ]|* + ZAi(Z)v
i=1
(4.21)
where vy and By(z, zy)), respectively, are defined in (3.3) and (44), 21 = {(xi,y:) fii and
1 —qglaxi 1 —p)ay .
M) im =B gy e - LDy (A =) (02
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Proof. Similar to (1) and @), we conclude from the optimality conditions of BIl) and B2) that

_ N 1 N ay 1 .
(Ko@), yer1 — ) + J (1) — J(@) < =V (G, ye) — — a1 — well> = =Vo (9, yes1),
Tt 2Tt Tt

. - 1 @ 1
(G wran =) + (o = @, Ky (1)) < Vi @w) = gonllove = ol = Vi@ oesa).
t t t

Now we establish an important recursion for Algorithm[3 Observing that Proposition [{1] also holds for
Algorithm [3, and applying the above two inequalities to [@II) in Proposition [{-1], similar to @3], we have
By Q2 1, 2) — (B — 1) Q(27, 2)
< Tt Mt it
< —Vx(zow) — —Vx(@ 1) + =Wy, u) — — Vv (Y, Y1)
Nt Nt Tt Tt

T (K (241 = 20), Y — yerr) — n—1 (K (ze — 2-1), 9 — ) (4.23)
ax Lg ay i
(55— 28 e — el = D2 =0l = s B o — ), — )
2n; 28

— (AL ¢+ AL g Te1 — ) — %<Ayayt+1 -y), Vz€Z
By Cauchy-Schwartz inequality and 2I7), for all p € (0,1),

— 1 (K (2 — 2i=1), ye — Y1) < Ye—1 || K (@ — =) ||« llye — yita ||

L%{’Yt{ﬂ't 2y pa Y% 2
< Lrve-1llze — ze—1||lye — yega |l < “dpay |zt — 21" + llye — yesal] (4.24)
L3171 pOCYW
<oy — 2 P+ =y — v

2pay
By (16, @22), @23) and [E24), we can develop the following recursion for Algorithm [3:
(Be+1 = Dye1Q(2f1,2) — (Be — DmQ(2(7,2) = BimQ(2i1.2) — (B: — D1 Q(2/7, 2)
< DV (a,a0) = 2V (@, wen) + 2V (,00) = Ve (yp0)
Up Up Tt Tt
+ V(K (@1 — @),y = Yes1) — -1 (K (20 — 2-1), ¥ — ye)
o} L L2 T
— (52 = 28 Y o =l + EEI oy — a4 ), Ve Z

20 26 2pay

Applying the above inequality inductively and assuming that To = x1, we obtain

(Brr = D1 Q(=11,2) = (B = Qe 2)

gax  Lg
< B 20) + el s =) =y} = v (B — 26 s — )

t—1
« L Ti
—}h{qx——ﬁ—ff)wwrwm+§p\ ), Veez
=1

2, 28;  2pa

Relation [@2T)) then follows immediately from the above inequality, (ZI6) and (B4). O

We also need the following technical result whose proof is based on Lemma 2.1 of [29].
LEMMA 4.5. Let n;, 7 and v, © = 1,2,..., be given positive constants. For any z1 € Z, if we define

z{ =71 and
zi\ 1 = argmin {—171-<A;,x> — Ti<A;,y> +V(z, zf)} , (4.26)
z=(x,y)€Z
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then

t

% i Ti%Yi i
D yil=Ai, 2 = 2) < Bi(z, 2y +Z ||A ||2+Z ||A 1%,

i=1

where zy = {22} and By(z, Zy ) is defined in (4.4).

Proof. Noting that (£.26)) zmplzes 20 = (@Y, YY) where 1Y, = argmin {—n; (AL, z) + Vx(z,
X

r=

Y, = argmin {—Ti<AZ,y> +V(y,y?)}, from Lemma 2.1 of [29] we have
yey

: nF | A2
Vx(.’L',CL'f_,_l) SVX(‘Tv "E:)) - 77i<A§m L= xl> +
204X
W (v yitn) <V (97) = milBy,y = ) + —5——,
Qy
for alli>1. Thus
i s ; Yini || ALIIZ
—Vx(z, 2] ) <=Vx(z,z}) — v (AL, z — z;) + ————,
m X (T, 2i41) m x (7, 27) — i ) 2
Yi 7 %TlHAl ||2
—V; i —Vy i Al, — + —
" v (¥, Y1) < n (Y, ui) — 7i(Ay, ¥ — vi) Sy

Adding the above two inequalities together, and summing up them from i =1 to t we get

vl AL | Tl Al
+
2aX 2ay

0< Bt(z,zﬁ]) —yi(AY 2 — z) +

)

o (A217) holds. O

We are now ready to prove Theorem B.11
Proof of Theorem [3.7] Firstly, applying the bounds in (I1)) and (EI2) to ({2I]), we get

BimQ(zif1,2) < %ng - %VX(%%H) + &Q%/ - &VY(y,ytH)
t t

qax Lg %(Tt
gox 26 - A
Vi ( o 26, 20y > @1 — ae]* + Z

92 +%Q2 +ZA , Vz€eZ

=1
By ([E22]), we have
(1 —g)ax (1 —p)ay
Ai(z) = =L gy — a2 = 2 gy — g2 (AT, 2 = zig)
2771' 27‘1
1 —q)axi L —ployvi i
= 0 e - GO g A ) (A )
i 27'1
Ni7Yi 12 4 Ti%i 2 i
< —F||A) 7A*+iA,z—zi,
DAL+ TR AL+l 2 - 5

(4.27)

z¥)} and

(4.28)

(4.29)

where the last relation follows from Young’s inequality. For all i > 1, letting 2{ = 21, and 2}, ; as in ([£20),
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we conclude from (£29) and Lemma [AH that, Vz € Z,

t t

i i2 Ti%i 2 v
> Ai(z) <) {2(1 XIIAIH*+2(1_ JALZ + A 27 = zi) + i =A7, 2 Z>}

i=1 i=1 —q)a ploy
1 t 2 771'71 i 2 Tivi i . (430)
< Bilz 2jy) 52{ AL+ %m I+ idA" 2 = z) ¢,

U

where similar to (.11 we have By(z, z;)) < Q% ve/m + Q3:/7. Using the above inequality, 14), 2I5)
and ([{28), we obtain

2 2
Bivg(zifs) < %92 %Q2 + U;. (4.31)

Now it suffices to bound the above quantity U, both in expectation (part a)) and in probability (part b)).

We first show part a). Note that by our assumptions on SO, at iteration ¢ of Algorithm [Bl the random
noises A are independent of zi and hence E[(A’,z — x;)] = 0. In addition, Assumption [A] implies that
E[|[AL|Z] < 02 ¢ + 03 = 02 (noting that AL , and Al - are indepdent at iteration i), and E[[|A} [|7] < o7
Therefore,

(1—qlax (1 -play

t 2
1 (2 — )iy 2 —p)Tvi
Ut§§§ { Dniics p)may}. (4.32)

Taking expectation on both sides of (£31]) and using the above inequality, we obtain ([B.5]).

We now show that part b) holds. Note that by our assumptions on SO and the definition of 2z}, the
sequences { (A @ T{ —Ti)}i>1 is a martingale-difference sequence. By the well-known large-deviation theorem
for matrigale-difference sequence (e.g., Lemma 2 of [22]), and the fact that

E[exp {OCY% A vaz > /( 29)/% G)}] < E[QXP{QY”A;G”i”x — x| /(2QY% G) }]
Elexp {[|A5 glI2V (2, 2:)/ (2302 ¢) }] < Elexp {[|A glI2 /07 ¢ }] < exp{1},

we conclude that

Prob {25:1 VilAL gy af — @) > X 00,60x ) 2o Sy 712} < exp{—A?/3},V\ > 0.

By using a similar argument, we can show that, VA > 0,

Prob {2221 V(AL Y —yi) > X0y Qv [ 2T, %—2} < exp{—A?/3},
Prob {Zﬁzl %-<A;K, T — ) > A0y kSlx 4/ ﬁ 25:1 712} < exp{—\2?/3}.

Using the previous three inequalities and the fact that o, ¢ + 02,k < /20,, we have, VA > 0,
P} Ox oyS) /
PI'Ob Z’f:l ,771<A 7Zi - Zi> > )\ {% + yﬁj} 2 Z’f:l 712} S
) O, O Q g,
Prob{ S0 (AL 22 — 2;) > A [( GT/WK) X+ \/%} N *yf} < 3exp{—\?/3}.

Now let S; := (2 — ¢)nivi/[(1 — @)ax] and S := Ef.:l S;. By the convexity of exponential function, we
have

(4.33)

E[exp {4 S0 SIALGlI2/02 0 }] S E[3S0 Siexp {185 6l12/0%.6}] < exp{1}.

21



where the last inequality follows from Assumption [A2] Therefore, by Markov’s inequality, for all A > 0,
t 2 Y 2 i Y
Prob { S0, BB AL 12 > (14 N)o? o S, Gt ]
— Prob {exp {§ S SlAL) /oy} > exp{1 + )\}} < exp{—A}.
Using an similar argument, we can show that

AL ll? > (14 N)o2 4 Tiey o8} < exp{ -2},
AGIE > (1+ N2 T, B} < exp{-A).

i=1 (1-p)ay

Prob Zt_ @C=@)nivi

=1 (1-q)ax

Prob [y, ol

i=1 (1-p)ay

Combining the previous three inequalities, we obtain
t 2 i Yi 2 iYi
Prob { S21_, GEUm a2 + i, G A2 >

L+ [o2 i, G 4 o2yl B ]| < 3exp{-a},

Our result now follows directly from (£30), ({31]), (£33) and @34). O

In the remaining part of this subsection, our goal is to prove Theorem [3.3] which describes the convergence
rate of Algorithm Bl when X and Y are both unbounded. Similar as proving Theorem [2.3] first we specialize
the result of Lemma .4 under (2.10), (2.23) and (B4). The following lemma is analogous to Lemma

LEMMA 4.6. Let 2 = (£,9) € Z be a saddle point of (LI). If Vx(z,2¢) = ||v — 2¢]|%/2 and Vy (y,y:) =
lly — yell?/2 in Algorithm[3, and the parameters By, 0y, my and 7 satisfy 216), 223) and B.4), then

(a). ne(1—p)

Tt

(4.34)

N A N LD
18 = xepa||® + 112 — 2p4 |17 + 19— yesa | + T—t||y — gl

) ) (4.35)
< 2fl& —ar? + TG - ll” + ZEUL forallt 2 1,
Tt Tt
where (z§,1, Y1) and Uy are defined in [E26) and @30), respectively.
(b)- | .
G208, v01) < =—l2gly — = | + Hyt—i-l —yl?+ —Us =: 641, forallt > 1, (4.36)
Bene B
where §(-,-) is defined in 222) and
1 1 1
Vp1 = (ﬂt—m(%l — Tip1r = T), m@yl — Y41 = Yiy1) + EK(%H - :m) : (4.37)

Proof. Apply 84), (A18) and @30) to (A21) in Lemmal{.4), we get
BnQ(e{11,2) < Bz 20) + 5l = wel + Bl #) + U,

where B(-,-) is defined as

B0 =~ Yt 2 Yt 12 Yt 2 Yt 12
B = —|lz — — |z - —||ly — ——|ly — .
(2:2) = 2o =l = 2ol =31+ Zofly —al = 2y~

thanks to (2.23). Now letting z = %, and noting that Q(z/{,,2) > 0, we get ([L3H).
On the other hand, if we only apply B4) and @30) to @21) in Lemmal], then we get

BiviQ(2141,2) < B(z, 2t) + v (K (@41 — @),y — yes1) + B(z, 2) + Us.
Apply Z23) and @EI9) to B(z, z) and B(z, 27) in the above inequality, we get ([AE36). O

With the help of Lemma [£.6, we are ready to prove Theorem
22



Proof of Theorem Let d¢11 and vy be defined in (£36) and (3T), respectively. Also let C' and D,
respectively, be defined in (815) and [227)). It suffices to estimate E[||v¢r1]]] and E[d¢11]. First it follows from

223), BI3) and ([@32) that

E[U;] < 2—mc2 (4.38)

Using the above inequality, [2:23)), (2217) and (£38H), we have
71

E[|Z — z¢41 %] < 2D 4+ C* and E[||§ — ye4a[I”] < (2D + Cz)ma

which, by Jensen’s inequality, then imply that

E[|& — zeall] < V2D? + C? and E[||j — yu4[*] < V2D% + C? ﬁ'

Similarly, we can show that

E[|& — 274 [l] < V2D? + C? and E[||g - yin[I°] < v2D? +021/T—1-

m
Therefore, by ([@37) and the above four inequalities, we have
Efflvel]

1 1 L
< B | g (o = auall+ o = abial) + 5= (= veeal + bon = tiall) + Sl =l

1 . . A v
<E [— 22 = z1] + & = e | + & — 2744 ]])

Biny

1 . . . Lg . . .
+=— Q7 =l + 119 = yeall + 19 = g ll) + == (12 = 2o | + |2 - xtll)}
ﬁtTt ﬁt

2|2 — 2| 2||Z)—y1|| [ 2 1 /n ( 1 ) 2LK:|
< + 2D? 4 C? = 1)+ :
B BeTe Beme BT 1-p Bt
thus (BI4) holds.

Now let us estimate a bound on d;41. By (@20), (£32), (A30) and (£38)), we have

1 1 1
E[ _JE{— atfy — o+ —|lyify - 2]+—EU
[0¢-+1] By 1Tt — o™+ gyt = ol + 5 E(U]

2 2 1
<E g— 2 P+ 1E - 2?) + =— (19— yedal* + 1§ — 2]+—02
{Bmt (12 — 2§, 17 + 11?) B, (19 = wif 112 + 115 — w1 l1?) B
1 2n:(1—p), . 2mp 1
) 9D2 2|4 — 29 |2 4 2 8 24 2| + ?
i G e e R e e | R
1 n(L—p) - o1 Dy ) C?
[0 S (2« B 1] 25 )+
B o Zv (I8 = zial?] + 2B [l = i ] + B[ — v 7] ) +
1 p T1 2 1 6 —4p 5—3p
< —— |2D%? + — Z<2D2+02 ~72D2+02)+— = D? + c?).
Bene t%Z”Y Tt 771(1—1?)( ) 2 Bene \1—p 2—2p

Therefore (B.13) holds.
a
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5. Conclusion. We present in this paper the APD method by incorporating a multi-step acceleration
scheme into the primal-dual method in [6]. We show that this algorithm can achieve the optimal rate of
convergence for solving both deterministic and stochastic SPP. In particular, the stochastic APD algorithm
seems to be the first optimal algorithm for solving this important class of stochastic saddle-point problems in
the literature. For both deterministic and stochastic SPP, the developed APD algorithms can deal with either
bounded or unbounded feasible sets as long as a saddle point of SPP exists. In the unbounded case, the rate
of convergence of the APD algorithms will depend on the distance from the initial point to the set of optimal
solutions.
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