
On the convergence of the Gaver-Stehfest algorithm

A. Kuznetsov ∗

Dept. of Mathematics and Statistics
York University

4700 Keele Street
Toronto, ON

M3J 1P3, Canada

Current version: October 29, 2018

Abstract

The Gaver-Stehfest algorithm for numerical inversion of Laplace transform was developed in the
late 1960s. Due to its simplicity and good performance it is becoming increasingly more popular
in such diverse areas as Geophysics, Operations Research and Economics, Financial and Actuarial
Mathematics, Computational Physics and Chemistry. Despite the large number of applications and
numerical studies, this method has never been rigorously investigated. In particular, it is not known
whether the Gaver-Stehfest approximations converge and what is the rate of convergence. In this
paper we answer the first of these two questions: We prove that the Gaver-Stehfest approximations
converge for functions of bounded variation and functions satisfying an analogue of Dini criterion.
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1 Introduction and main results

In this paper we are concerned with the classical problem of numerical inversion of Laplace transform.
More specifically, assume that f : (0,∞) 7→ R is a locally integrable function, such that its Laplace
transform

F (z) :=

∞∫
0

e−zxf(x)dx

is finite for all z > 0. The problem consists in recovering the original function f(x) given that we know
F (z). This problem has numerous applications, and it has attracted a lot of attention from researchers
over the last fifty years (see [3] for an up-to-date exposition of this area).

More specifically, we are interested in the Gaver-Stehfest algorithm, which aims to approximate f(x)
by a sequence of functions

fn(x) := ln(2)x−1
2n∑
k=1

ak(n)F
(
k ln(2)x−1

)
, n ≥ 1, x > 0, (1)

where the coefficients are defined as follows:

ak(n) :=
(−1)n+k

n!

min(k,n)∑
j=[(k+1)/2]

jn+1

(
n

j

)(
2j

j

)(
j

k − j

)
, n ≥ 1, 1 ≤ k ≤ 2n.

In order to demonstrate the intuition behind these rather complicated formulas, let us explain where
they come from. In 1966 Gaver [8] has introduced the following sequence of approximations

f̃k(x) := ln(2)x−1
(2k)!

k!(k − 1)!

k∑
i=0

(
k

i

)
(−1)iF ((k + i) ln(2)x−1), k ≥ 1, x > 0. (2)

Applying the binomial theorem, the above expression can be rewritten in an equivalent integral form

f̃k(x) =

∞∫
0

pk(u)f

(
xu

ln(2)

)
du, (3)

where

pk(u) :=
(2k)!

k!(k − 1)!
(1− e−u)ke−ku, k ≥ 1, u ≥ 0.

The function pk(u) is positive and its integral over [0,∞) is equal to one, therefore we can think of it
as the density function of a positive random variable Uk. One can check by direct calculations that
E[Uk] = ln(2) + O(k−1) and Var(Uk) = O(k−1) as k → +∞. This shows that the random variables
{Uk}k≥1 converge in distribution to ln(2), therefore for any continuous function f(x) and any x > 0 we
have

f̃k(x) = E
[
f

(
xUk
ln(2)

)]
→ f(x), k →∞.
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Gaver [8] also proves that

f̃k(x) = f(x) +
β1(x)

k
+
β2(x)

k2
+ ...+

βm−1(x)

km−1
+O

(
k−m+ 1

2

)
, k → +∞. (4)

under the assumptions f ∈ C2m(R+) and f (j)(x) ∈ L∞(R+) for all j = 0, 1, . . . , 2m. Formula (4) shows
that f̃k(x) converge to f(x) rather slowly, but it also suggests using a convergence acceleration technique.
This is exactly what was done by Stehfest [18, 19] in 1970. He defined a new approximation

fn(x) =
n∑
k=1

ck(n)f̃k(x), (5)

where the coefficients ck(n) are chosen so that the asymptotic terms bj(x)k−j, j = 1, 2, . . . , n− 1 in (4)
are eliminated:

n∑
k=1

ck(n)k−j =

{
1, j = 0,

0, j = 1, 2, . . . , n− 1.
(6)

It turns out that the above conditions are satisfied by the sequence

ck(n) := (−1)n+k
kn

k!(n− k)!
, n ≥ 1, 1 ≤ k ≤ n.

Combining the above formula with (2) and (5) gives us the Gaver-Stehfest approximations in the form
(1).

The Gaver-Stehfest algorithm has a number of desirable properties: (i) the approximations fn(x) are
linear in values of F (z); (ii) it requires the values of F (z) for real z only does not need complex numbers
at all; (iii) the coefficients ak(n) can be easily computed; (iv) the Gaver-Stehfest approximations are
exact for constant functions, that is, if f(x) ≡ c then fn(x) ≡ c for all n ≥ 1. This algorithm was studied
in [6, 10, 15, 20], where it was demonstrated numerically that fn(x) converge very quickly to f(x) for
many examples of initial functions f(x) (provided that f(x) is non-oscillating). Another universally
accepted fact is that this algorithm requires high-precision arithmetic for its implementation (which is
rather obvious, since the coefficients ak(n) are growing very rapidly and have alternating signs).

Over the last forty years the Gaver-Stehfest algorithm has been applied to solving various problems in
Geophysics [13], Probability [1, 14], Actuarial Mathematics [2] and Mathematical Finance [17], Chemistry
[16] and Economics [11]. This is just a small sample, and a quick search on the Internet produces hundreds
of papers with references to the Gaver-Stehfest algorithm.

Despite all this popularity, there has not yet been a single rigorous investigation of this algorithm. In
particular, it is not known what are the sufficient conditions on f that will ensure convergence of fn(x),
and what would be the rate of convergence. Stehfest [18] writes that “theoretically fn(x) become the
more accurate the greater n”, and Proposition 8.2 in Abate and Whitt [1] states that for any k > 0 we
have fn(x)− f(x) = o(n−k) as n→ +∞, however both of these statements are not very precise and lack
rigorous proof. The authors seem to assume that the derivation of the Gaver-Stehfest approximations
via formulas (2), (4), (5) and (6) automatically gives the proof of convergence. This is not the case. First
of all, validity of the asymptotic expansion (4) for all m ≥ 1 would require a very restrictive assumption
on the function f (it has to be an infinitely differentiable function plus some additional assumptions).
The second issue is that even if the asymptotic expansion (4) is valid for all m ≥ 1, it is still not clear
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that fn(x)→ f(x), since the coefficients ck(n) grow very rapidly and have alternating signs. Therefore,
it is not at all obvious that fn(x) will converge to f(x), given (5), (6) and the fact that f̃n(x)→ f(x).

In this paper we present the first rigorous investigation of the Gaver-Stehfest algorithm. We derive
two sufficient conditions on the function f , which ensure convergence of fn(x). Our main results are
presented in the next theorem.

Theorem 1. Assume that f : (0,∞) 7→ R is a locally integrable function, such that the Laplace transform
F (z) =

∫∞
0
e−zxf(x)dx exists for all z > 0, and that fn(x) are defined by (1).

(i) The convergence of fn(x) depends only on the values of the function f in the neighborhood of x.

(ii) Assume that for some c ∈ R and some ε ∈ (0, 1/4)

ε∫
0

∣∣f(−x log2(
1
2

+ v)) + f(−x log2(
1
2
− v))− 2c

∣∣v−1dv <∞. (7)

Then fn(x)→ c as n→ +∞.

(iii) Assume that the function f has bounded variation in the neighborhood of x. Then
fn(x)→ (f(x+ 0) + f(x− 0))/2 as n→ +∞.

Our sufficient conditions are very similar to the corresponding results from the theory of convergence
of Fourier series. Item (i) has its counterpart in [12, Theorem 4.1.1], item (ii) should be compared with
Dini criterion [12, Theorem 4.1.3(i)]

ε∫
0

∣∣f(x+ v) + f(x− v)− 2c
∣∣v−1dv <∞, (8)

and item (iii) is exactly the same as Jordan criterion [12, Theorem 4.1.3(ii)]. Theorem (1)(ii) also provides
the following useful corollary:

Corollary 1. Under the assumptions of Theorem 1, if

f(x+ v)− f(x) = O(|v|α)

for some α > 0 and all v in some neighborhood of x, then fn(x)→ f(x) as n→ +∞.

We do not address the second important problem related to the rate of convergence of fn(x). We
hope that the methods developed in this paper can be useful for solving this problem, and we leave it
for future work.

2 Proof of Theorem 1

Let us review some properties of the Lambert W-function (see [5]), which will be used in the proof of The-
orem 1. We will be interested in the principal branch of the Lambert W-function, which will be denoted
by W (z)): It is an analytic function in the neighborhood of z = 0 and it satisfies W (z) exp(W (z)) = z.
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Figure 1: Domain (b) and range (a) of the principal branch of the Lambert W-function.

Let us investigate the range and domain of W (z) in more detail. The function w = x + iy 7→ wew

takes real values only if y = 0 or x = −y cot(y) (see Section 4 in [5]). In particular, the open set

A := {w = x+ iy, x > −y cot(y), −π < y < π}

is mapped by z = wew onto the cut complex plane C\ (−∞,−1/e], see Figure 1. The function w 7→ wew

is one-to-one on the set A, and W (z) is defined as the inverse of this function. Therefore, W (z) is
analytic in C \ (−∞,−1/e] and maps this set onto A. It is known that W (z) has the following explicit
Taylor series at z = 0 (see formula (3.1) in [5])

W (z) =
∑
n≥1

(−n)n−1
zn

n!
, |z| < 1/e, (9)

and has a branching singularity at z = −1/e

W (z) =
∑
n≥0

µnp
n = −1 + p− p2

3
+

11

72
p3 − 43

540
p4 +

769

17280
p5 + ..., (10)

where p = p(z) :=
√

2(1 + ez) and the series converges for |p| <
√

2 (see formula (4.22) in [5]).
We will extend function W (z) to the interval {z ∈ R, z < −1/e} so that W (z) is continuous in

the upper half-plane Im(z) ≥ 0. Thus W (z) maps the interval {z ∈ R, z < −1/e} onto the curve
x = −y cot(y), y ∈ (0, π) (which is the upper half of the black curve on Figure 1(a)). The function W (z)
is smooth on {z ∈ R, z < −1/e}, and it is clear that |W (z)| and Im(W (z)) are decreasing function of
z. Assuming that z is real and z < −1/e, the equation wew = z has infinitely many solutions, which
correspond to different branches of Lambert W-function. However, only two of these solutions (given by
w = W (z) and w = W (z)) satisfy |Im(w)| < π. These solutions necessarily lie on the black curve on
Figure 1(a), and they will play a very important role in our investigation.

Our main tool used in the proof Theorem 1 is the following sequence of polynomials

qn(v) :=
n∑
k=1

kn+1(1
2
)k

(n− k)!(k!)2
(−1)n+kvk, n ≥ 1. (11)

5



Recall that (a)k := a(a + 1) . . . (a + k − 1) denotes Pochhammer symbol. Combining equations (3) and
(5) we obtain an integral representation

fn(x) =

∞∫
0

qn
(
4e−u(1− e−u)

)
f

(
xu

ln(2)

)
du, (12)

which explains why these polynomials are important for Gaver-Stehfest approximations. Our plan for
proving Theorem 1 is to establish uniform asymptotics for qn(v), 0 ≤ v ≤ 1, as n → ∞ and then use
(12) to study convergence of fn(x).

Let us also define

G(z) :=
∑
n≥1

(1
2
)n

(n!)2
(−1)nnn+1zn. (13)

Using Stirling’s asymptotic formula for the Gamma function one can check that the above series converges
for |z| < 1/e.

Proposition 1. For 0 ≤ v ≤ 1 and |t| < 1/(2e)

G
(
vtet

)
=
∑
n≥1

qn(v)(−1)ntn. (14)

Proof. Using (11), the trivial estimates (1
2
)k < (1)k = k! and kn+1 < nn+1 and the binomial theorem, we

obtain an upper bound

|qn(v)| ≤ nn+1

n∑
k=1

1

(n− k)!(k!)
<
nn+12n

n!
, for all 0 ≤ v ≤ 1,

which implies that the series in the left-hand side of (14) converges absolutely for |t| < 1/(2e). We
combine (11) and (14), interchange the order of summation and obtain∑

n≥1

qn(v)(−1)ntn =
∑
n≥1

n∑
k=1

kn+1(1
2
)k

(n− k)!(k!)2
(−1)kvktn =

∑
k≥1

(1
2
)k

(k!)2
(−1)kkk+1(vt)k

∑
n≥k

kn−ktn−k

(n− k)!

=
∑
k≥1

(1
2
)k

(k!)2
(−1)kkk+1(vtet)k = G(vtet).

ut

It is well known that the asymptotic behavior of the coefficients of the power series is closely related
with the asymptotic behavior of the generating function at its dominant singularities. Our next goal
is to obtain analytic continuation of the function G(z) and to study its asymptotic expansion at the
dominant singularity.

Proposition 2. There exists a function g(z), which is analytic in C\ (−∞,−1/e] and continuous in the
half-plane Im(z) ≥ 0, such that

G(z) =
1√
2π

[
(1 + ez)−1 +

5

24
ln(1 + ez)

]
+ g(z). (15)
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Proof. Let us denote H(z) := −
(
z d
dz

)2
W (z). From (9) we find that

H(z) =
∑
n≥1

nn+1

n!
(−1)nzn, |z| < 1/e.

Using the following identity (see formula 3.621.3 in [9])

2

π

π
2∫

0

(sin(t))2ndt =
(1
2
)n

n!

and formula (13) we obtain the integral representation

G(z) =
2

π

π
2∫

0

H(z sin(t)2)dt, |z| < 1/e. (16)

The function W (z) is analytic in the cut plane C \ (−∞,−1/e], therefore H(z) is analytic in the same
domain. Applying Leibniz rule to (16) we see that G(z) is also analytic in C \ (−∞,−1/e].

From (10) and the above definition of H(z) we obtain

H(z) =
∑
n≥−3

cnp(z)n = p(z)−3 − 11

24
p(z)−1 − 4

135
− p(z)

1152
+ ..., (17)

where p(z) :=
√

2(1 + ez) and the above series converges for |p(z)| <
√

2. We subtract the dominant
asymptotic terms from H(z) and define the two functions

h(z) := H(z)− p(z)−3 +
11

24
p(z)−1 =

∑
n≥0

cnp(z)n, g1(z) :=
2

π

π
2∫

0

h(z sin(t)2)dt. (18)

It is clear that h(z) is analytic in C \ (−∞,−1/e] and continuous in the upper half-plane Im(z) ≥ 0,
therefore g1(z) satisfies the same properties.

Next, we use formula 3.681.1 in [9] and formula (14) on page 110 in [7] and conclude that for all
z ∈ C \ (−∞,−1/e]

2

π

π
2∫

0

(1 + ez sin(t)2)−
3
2 dt = 2F1(

3
2
, 1
2
; 1;−ez) =

2

π(1 + ez)
− 1

2π
ln(1 + ez) + g2(z), (19)

2

π

π
2∫

0

(1 + ez sin(t)2)−
1
2 dt = 2F1(

1
2
, 1
2
; 1;−ez) = − 1

π
ln(1 + ez) + g3(z), (20)

where 2F1(a, b; c; z) denotes the hypergeometric function and both functions g2(z) and g3(z) are analytic
in C \ (−∞,−1/e] and continuous in the half-plane Im(z) ≥ 0. Combining (16), (18), (19) and (20) we
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see that

G(z) =
2

π

π
2∫

0

H(z sin(t)2)dt =
2

π

π
2∫

0

p(z sin(t)2)−3dt− 11

24
× 2

π

π
2∫

0

p(z sin(t)2)−1dt+
2

π

π
2∫

0

h(z sin(t)2)dt

=
1√

2π(1 + ez)
+

5

24
√

2π
ln(1 + ez) + [g1(z) + g2(z) + g3(z)] ,

which is equivalent to (15). ut

Lemma 1. For any ε ∈ (0, 1) there exist constants b = b(ε) > 1 and C = C(ε) > 0 such that
|qn(v)| < Cb−nv for all v ∈ [0, 1− ε].

Proof. The function tet maps the unit circle |t| < 1 into some open domain which is a subset of C \
(−∞,−1/e] (see Figure 1). Using this fact combined with the results of Proposition 2, we see that the
function t 7→ G(tet) is analytic for |t| < 1, therefore there exists R > 1 such that t 7→ G((1 − ε)tet) is
analytic for |t| < R. It is clear that for all v ∈ [0, 1− ε] the function t 7→ G′(vtet)tet is also analytic for
|t| < R.

We differentiate both sides of (14) with respect to v and find

q′n(v) =
(−1)n

n!

[
dn

dtn
(
G′(vtet)tet

) ∣∣∣∣
t=0

]
.

We set b = (1 +R)/2 and use Cauchy estimates (see [4, Theorem 2.14])∣∣∣∣∣ dn

dtn
(
G′(vtet)tet

) ∣∣∣∣
t=0

∣∣∣∣∣ ≤ n!b−nMv

where Mv := max{|G′(vtet)tet| : |t| = b}. Applying the maximum modulus principle shows that for all
v ∈ [0, 1− ε]

Mv ≤ max{|G′(vtet)| : |t| = b, 0 ≤ v ≤ 1− ε} ×max{|tet| : |t| = b}
= max{|G′((1− ε)tet)| : |t| = b} × beb = C.

So far we have established that there exist b > 1 and C > 0 such that |q′n(v)| < Cb−n for all v ∈ [0, 1− ε].
Since qn(0) = 0, we conclude that |qn(v)| ≤

∫ v
0
|q′n(v)|dv < Cb−nv for all v ∈ [0, 1− ε]. ut

From now on, we will use the notation w = w(v) := W (−1/(ev)) where v ∈ (0, 1] and W is principal
branch of the Lambert W-function. In other words, z = w is the unique solution of the equation
1 + vze1+z = 0 in the strip 0 ≤ Im(z) < π (see the discussion on page 5, preceding formula (11)). Note
that w(1) = −1 and both Im(w(v)) and |w(v)| are decreasing functions of v ∈ (0, 1] (see Figure 1).

Proposition 3. As n→ +∞ we have uniformly for all v ∈ [1/2, 1)

qn(v) = (−1)n
√

2

π
Re

[
w−n

(1 + w)

]
+O(w−n). (21)
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Proof. As was noted in the proof of Lemma 1, for any v ∈ [0, 1] the function z 7→ G(vzez) is analytic in
the circle |z| < 1. Therefore, using Cauchy integral formula and (14) we find that for all v ∈ [1/2, 1)

qn(v) =
(−1)n

2πi

∫
U1/2

G(vzez)z−n−1dz (22)

where the contour of integration Ur denotes the circle of radius r and center at z = 0, winding counter-
clockwise around the origin.

Let g(z) be the function defined by (15). From (15) and (22) we find

qn(v) = (−1)n
[

1√
2π
qn,1(v) +

5

24
√

2π
qn,2(v) + qn,3(v)

]
(23)

where we have defined

qn,1(v) :=
1

2πi

∫
U1/2

z−n−1

1 + vze1+z
dz,

qn,2(v) :=
1

2πi

∫
U1/2

ln(1 + vze1+z)z−n−1dz,

qn,3(v) :=
1

2πi

∫
U1/2

g(vzez)z−n−1dz.

Our first goal is to prove that for all v ∈ [1/2, 1) we have

qn,1(v) = 2Re

[
w−n

(1 + w)

]
+O(w−n), n→ +∞, (24)

and that the implied constant in O(w−n) does not depend on v. One can check numerically that
|w(1/2)| = |W (−2/e)| ≈ 1.2508 < 2. In particular, for all v ∈ [1/2, 1) we have 1 < |w(v)| < 2 and
the equation 1 + vze1+z = 0 has exactly two solutions in the circle U2, given by z = w and z = w̄,
and no other solutions in the circle Uπ. This shows that for v ∈ [1/2, 1) the meromorphic function
z 7→ z−n−1/(1 + vze1+z) has two simple poles at z = w and z = w̄ and no other singularities in the circle
Uπ, while if v = 1 we have a double pole at z = w = w̄ = −1. We assume that v ∈ [1/2, 1), compute the
residues of z−n−1/(1 + vze1+z) at z = w and z = w̄ and applying Cauchy’s residue theorem we obtain

1

2πi

∫
U1/2

z−n−1

1 + vze1+z
dz = 2Re

[
w−n

(1 + w)

]
+

1

2πi

∫
U3

z−n−1

1 + vze1+z
dz

The integral in the right-hand side of the above formula is estimated as follows∣∣∣∣ 1

2πi

∫
Uπ

z−n−1

1 + vze1+z
dz

∣∣∣∣ ≤ 3−n

C1

= O(w−n),

where C1 := min{|1 + vze1+z| : 1/2 ≤ v < 1, |z| = 3}. Note that C1 is strictly positive, since we have
shown above that for v ∈ [1/2, 1] the function z 7→ 1 + vze1+z has no roots in the domain 2 ≤ |z| ≤ π.
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Our second goal is to prove that for all v ∈ [1/2, 1) we have

qn,2(v) = O(w−n), n→ +∞. (25)

We isolate the dominant singularities at z = w and z = w̄ and obtain

q(2)n (v) =
1

2πi

∫
U1/2

z−n−1 ln(1− z/w)dz +
1

2πi

∫
U1/2

z−n−1 ln(1− z/w̄)dz

+
1

2πi

∫
U1/2

z−n−1 ln

[
1 + vze1+z

(1− z/w)(1− z/w̄)

]
dz.

The first and the second integrals can be evaluated explicitly to (−n−1w−n) and (−n−1w̄−n) respectively,
thus they contribute O(w−n). The integrand in the third integral is analytic in the circle |z| ≤ π, and
using the same technique as was used above for estimating qn,1(v), we find that for all v ∈ [1/2, 1) the
third integral is bounded from above by O(3−n) = O(w−n).

Finally, for any v ∈ [1/2, 1] the function z 7→ g(vzez) is analytic in the circle U|w| and continuous on
the boundary of this circle (note that g(z) is continuous at z = −1/e (see Proposition 2). Therefore

qn,3(v) =
1

2πi

∫
U1/2

g(vzez)z−n−1dz =
1

2πi

∫
U|w|

g(vzez)z−n−1dz

and we obtain the estimate

|qn,3(v)| =
∣∣∣∣ 1

2πi

∫
U|w|

g(vzez)z−n−1dz

∣∣∣∣ ≤ |w|−nC2

where C2 := max{|g(vzez)| : 1/2 ≤ v ≤ 1, z = |w|e2πit, 0 ≤ t ≤ π}. Since w(v) is continuous for
v ∈ [1/2, 1] and g(z) is continuous in the upper half-plane Im(z) ≥ 0, we see that C2 is finite and we
obtain

qn,3(v) = O(w−n), n→ +∞. (26)

for all v ∈ [1/2, 1).
Combining (23), (24), (25) and (26) gives us (21). ut

Remark 1. With some extra work one can improve the results of Propositions 2 and 3 in the following
way:

(i) The function G(z) admits an asymptotic expansion at z = −1/e of the form

G(z) ≈ 1√
2π

[
(1 + ez)−1 +

∑
n≥0

(1 + ez)n(an ln(1 + ez) + bn)

]
,

where a0 = 5/24, a1 = 25/1152 and {an}n≥2 are computable rational numbers.
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(ii) As n→ +∞ we have uniformly in v ∈ [1/2, 1)

qn(v) = (−1)n
√

2

π
Re

[
w−n

(1 + w)
− 5

24n
w−n +

25

1152n2
(1 + w)w−n

]
+O(n−3w−n)

where w = W (−1/(ev)). The above formula remains valid as v → 1−, in which case we obtain

qn(1) =

√
2

π

[
n+

1

3
− 5

24n

]
+O(n−3).

For v ∈ [0, 1/2) we define

ξ(v) = w(1− 4v2) = W (−1/(e(1− 4v2))), α(v) = Im [ξ(v)] .

These two function will play an important role in the proof of Theorem 1. We summarize some of their
properties in the next lemma.

Lemma 2.

(ii) The function |ξ(v)| is smooth and strictly increasing for v ∈ [0, 1/2). It is analytic in the neighborhood
of v = 0 and satisfies

ξ(v) = −1 + 2
√

2iv +
8

3
v2 +

14
√

2

9
iv3 +O(v4), v → 0+. (27)

(ii) The function α(v) is smooth and strictly increasing for v ∈ [0, 1/2). It is analytic in the neighborhood
of v = 0 and satisfies

α(v) = 2
√

2v +
14
√

2

9
v3 +O(v5), v → 0+. (28)

(iii) For any function h ∈ L1(0, 1/2) we have

lim
n→+∞

1
2∫

0

h(v)ξ(v)−ndv = 0.

Proof. Items (i) and (ii) follow easily from properties of Lambert W-function. In particular the series
expansion (27) follows from (10), while (28) is a simple corollary of (27). Item (iii) is obvious, given that
|ξ(0)| = 1 and |ξ(v)| is a strictly increasing function. ut

Proposition 4. Under the assumptions of Theorem 1, fn(x) → c as n → ∞ if and only if for any
ε ∈ (0, 1/4)

lim
n→∞

ε∫
0

|ξ(v)|−n sin(nα(v))

α(v)

[
f
(
−x log2

(
1
2

+ v
))

+ f
(
−x log2

(
1
2
− v
))
− 2c

]
dv = 0. (29)

11



Proof. Assume that ε ∈ (0, 1/4) and define u0 := − ln(1
2

+ ε) and u1 := − ln(1
2
− ε). Note that 0 < u0 <

ln(2) < u1 < ∞. The function u 7→ 4e−u(1 − e−u) is strictly increasing for 0 < u < ln(2) and strictly
decreasing for ln(2) < u, and its value at u = ln(2) is one. We conclude that there exists δ = δ(ε) > 0,
such that for all u ∈ [0, u0] ∪ [u1,∞) we have 0 < 4e−u(1 − e−u) < 1 − δ. Using Lemma 1 we find that
there exist b > 1 and C > 0 such that

|qn
(
4e−u(1− e−u)

)
| < 4Cb−ne−u(1− e−u) < 4Cb−ne−u

for all u ∈ [0, u0] ∪ [u1,∞). This fact and our assumptions on the function f guarantee that

lim
n→+∞

∫
[0,u0]∪[u1,∞)

qn
(
4e−u(1− e−u)

)
f

(
xu

ln(2)

)
du = 0.

Thus we have established the following result:

fn(x) =

u1∫
u0

qn
(
4e−u(1− e−u)

)
f

(
xu

ln(2)

)
du+ o(1), n→ +∞.

As we have pointed out in the introduction, Gaver-Stehfest approximations are exact for constant func-
tions: if f(x) ≡ C then fn(x) ≡ C for all n ≥ 1. This result and the above formula imply

fn(x)− c =

u1∫
u0

qn
(
4e−u(1− e−u)

) [
f

(
xu

ln(2)

)
− c
]

du+ o(1), n→ +∞. (30)

Our next goal is to simplify the integral in (30). We separate this integral into two parts: the integral
over [u0, ln(2)] and the integral over [ln(2), u1]. For the first {resp. second} integral we change the
variable of integration u = − ln(1

2
+ v) {resp. u = − ln(1

2
− v)} and after combining the two parts we

obtain

fn(x)− c =

ε∫
0

qn(1− 4v2)

[
f(−x log2(

1
2

+ v))− c
1
2

+ v
+
f(−x log2(

1
2
− v))− c

1
2
− v

]
dv + o(1), n→ +∞ (31)

For our next step, we will need the following result:

qn(1− 4v2) =

√
2

π
|ξ(v)|−n sin(nα(v))

α(v)
+O(ξ(v)−n), (32)

uniformly for all v ∈ (0, 1/4]. Note that the Lambert W-function satisfies W (z) = z exp(−W (z)), thus
for z < −1/e we have arg(W (z)) = π − Im[W (z)], which implies arg(ξ(v)) = π − α(v) This gives us

ξ(v)−n = |ξ(v)|−ne−in(π−α(v)) = (−1)n|ξ(v)|−n (cos(nα(v)) + i× sin(nα(v))) .

Combining the above formula with the identity

1

1 + ξ
=

1 + ξ̄

|1 + ξ|2
=

1 + Re(ξ)

|1 + ξ|2
− i

Im(ξ)

|1 + ξ|2

12



we obtain

Re

[
ξ(v)−n

1 + ξ(v)

]
= |ξ(v)|−n

[
cos(nα(v))

1 + Re(ξ(v))

|1 + ξ(v)|2
+ sin(nα(v))

α(v)

|1 + ξ(v)|2

]
.

Formulas (27) and (28) show that uniformly for all v ∈ (0, 1/4]

1 + Re(ξ(v))

|1 + ξ(v)|2
= O(1),

α(v)

|1 + ξ(v)|2
=

1

α(v)
+O(1)

thus

Re

[
ξ(v)−n

1 + ξ(v)

]
= (−1)n|ξ(v)|−n sin(nα(v))

α(v)
+O(ξ(v)−n)

which together with (21) implies (32).
Next, we define

g(x, v, c) := f
(
−x log2

(
1
2

+ v
))

+ f
(
−x log2

(
1
2
− v
))
− 2c, (33)

g̃(x, v, c) := −
f
(
−x log2

(
1
2

+ v
))
− c

1
2

+ v
+
f
(
−x log2

(
1
2
− v
))
− c

1
2
− v

.

It is easy to check that[
f(−x log2(

1
2

+ v))− c
1
2

+ v
+
f(−x log2(

1
2
− v))− c

1
2
− v

]
≡ 2g(x, v, c) + 2vg̃(x, v, c),

therefore

fn(x)− c = 2

ε∫
0

qn(1− 4v2)g(x, v, c)dv + 2

ε∫
0

qn(1− 4v2)vg̃(x, v, c)dv + o(1), n→ +∞. (34)

We use (32) and find that

ε∫
0

qn(1− 4v2)vg̃(x, v, c)dv =

√
2

π

ε∫
0

[
|ξ(v)|−n sin(nα(v))

v

α(v)
+ vO(ξ(v)−n)

]
g̃(x, v, c)dv → 0,

as n → +∞, due to Lemma 2(iii) (note that the function v 7→ g̃(x, v, c) is integrable and the function
v/α(v) is bounded). This fact combined with formula (34) give us (29). ut

Proof of Theorem 1, (i) and (ii): Theorem 1, (i) follows directly from Proposition 4. Let us prove
Theorem 1, (ii). Formulas (29) and (33) give us

fn(x)− c = 2

ε∫
0

|ξ(v)|−n sin(nα(v))

α(v)
g(x, v, c)dv + o(1)

= 2

ε∫
0

|ξ(v)|−n
[
sin(nα(v))× v

α(v)
× g(x, v, c)

v

]
dv + o(1).

13



The functions sin(nα(v)) and v/α(v) are bounded and the function v 7→ g(x, v, c)/v is integrable over
[0, ε), thus applying Lemma 2(iii) we see that the integral in the right-hand side of the above formula
converges to zero as n→ +∞, therefore fn(x)→ c as n→ +∞. ut

Proof of Theorem 1,(iii): Assume that for some δ > 0 the function f has bounded variation on the
interval [x− δ, x+ δ]. We will need the following simple property of functions of bounded variation:

If f(y) has bounded variation for y ∈ [a, b] and g(x) is monotone for x ∈ [c, d] and satisfies g([c, d]) ⊆
[a, b], then f(g(x)) has bounded variation for x ∈ [c, d].

Using the above property we see that there exists ε1 ∈ (0, 1/4) such that both functions v 7→ f(−x log2(
1
2
−

v)) and v 7→ f(−x log2(
1
2

+ v)) have bounded variation in the interval v ∈ [0, ε1].
Formula (28) shows that there exists ε2 ∈ (0, 1/4), such that α′′(v) > 0 for all v ∈ (0, ε2). We set

ε3 = min(ε1, ε2) and take ε < ε3 to be a small positive number (to be specified later). We rewrite formula
(29) where ε is chosen in the above way and c = 1

2
(f(x+ 0) + f(x− 0)):

fn(x)− c =

ε∫
0

|ξ(v)|−n sin(nα(v))

α(v)

[
f(−x log2(

1
2
− v))− f(x+ 0)

]
dv (35)

+

ε∫
0

|ξ(v)|−n sin(nα(v))

α(v)

[
f(−x log2(

1
2

+ v))− f(x− 0)
]

dv + o(1), n→ +∞.

Since the two functions v 7→ f(−x log2(
1
2
− v)) and v 7→ f(−x log2(

1
2

+ v)) have bounded variation
for v ∈ [0, ε3], there exist four increasing functions hi(v), 1 ≤ i ≤ 4, satisfying hi(0+) = 0, such that
f(−x log2(

1
2
− v)) − f(x + 0) = h1(v) − h2(v) and f(−x log2(

1
2

+ v)) − f(x − 0) = h3(v) − h4(v) for all
v ∈ [0, ε3]. We rewrite (35) in the form

fn(x)− c = Jn,1 − Jn,2 + Jn,3 − Jn,4 + o(1), n→ +∞, (36)

where

Jn,i :=

ε∫
0

|ξ(v)|−n sin(nα(v))

α(v)
hi(v)dv. (37)

Since h1 is positive and increasing, we apply the mean value theorem and conclude that there exists
θ1 ∈ (0, ε) such that

Jn,1 =

ε∫
0

|ξ(v)|−n sin(nα(v))

α(v)
h1(v)dv = h1(ε)

ε∫
θ1

|ξ(v)|−n sin(nα(v))

α(v)
dv. (38)

Recall that α′′(0) > 0 for v ∈ [0, ε3] and α′(0) = 2
√

2 (see (28)), which shows that α′(v) is positive and
increasing for v ∈ [0, ε3], which in turn implies that the function |ξ(v)|−n/α′(v) is positive and decreasing
for v ∈ [0, ε3]. Applying the mean-value theorem again, we find that there exists some θ2 ∈ (θ1, ε) such
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that

ε∫
θ1

|ξ(v)|−n sin(nα(v))

α(v)
dv =

ε∫
θ1

[
|ξ(v)|−n

α′(v)

]
×
[

sin(nα(v))

α(v)
α′(v)

]
dv =

|ξ(θ1)|−n

α′(θ1)

θ2∫
θ1

sin(nα(v))

α(v)
α′(v)dv

=
|ξ(θ1)|−n

α′(θ1)

nα(θ2)∫
nα(θ1)

sin(u)

u
du =

|ξ(θ1)|−n

α′(θ1)
[Si(nα(θ1))− Si(nα(θ2))] (39)

where Si(y) :=
∫ y
0

sin(u)u−1du is the sine-integral function. Since |ξ(θ1)| > 1 and α′(θ1) > 2
√

2 and
|Si(x)| < π for all x ≥ 0, we conclude from (37), (38) and (39) that

|Jn,1| <
π√
2
h1(ε).

In the same way we can obtain corresponding estimates for Jn,i, i = 2, 3, 4, therefore (36) gives us

lim sup
n→+∞

|fn(x)− c| < π√
2

(h1(ε) + h2(ε) + h3(ε) + h4(ε)).

Sine hi(0+) = 0, the right-hand side can be made arbitrarily small provided that ε is small enough. This
shows that fn(x)→ c as n→ +∞. ut
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