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A filter method with unified step

computation for nonlinear optimization

Nicholas I. M. Gould,1,2 Yueling Loh3 and Daniel P. Robinson3,4

ABSTRACT

We present a filter linesearch method for solving general nonlinear and nonconvex optimization

problems. The method is of the filter variety, but uses a robust (always feasible) subproblem

based on an exact penalty function to compute a search direction. This contrasts traditional

filter methods that use a (separate) restoration phase designed to reduce infeasibility until a

feasible subproblem is obtained. Therefore, an advantage of our approach is that every trial step

is computed from subproblems that value reducing both the constraint violation and the objec-

tive function. Moreover, our step computation involves subproblems that are computationally

tractable and utilize second derivative information when it is available.

The formulation of each subproblem and the choice of weighting parameter is crucial for obtaining

an efficient, robust, and practical method. Our strategy is based on steering methods designed for

exact penalty functions, but fortified with a trial step convexification scheme that ensures that a

single quadratic optimization problem is solved per iteration. Moreover, we use local feasibility

estimates that emerge during the steering process to define a new and improved margin (envelope)

of the filter. Under common assumptions, we show that the iterates converge to a local first-order

solution of the optimization problem from an arbitrary starting point.
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1 Introduction

This paper considers the general nonlinear optimization problem

minimize
x∈Rn

f(x) subject to c(x) ≥ 0, (1.1)

where both the objective function f : Rn → R and the constraint function c : Rn → R
m are

assumed to be twice continuously differentiable. We seek a first-order KKT point (x, y) that

satisfies

FKKT(x, y) :=

(

g(x) − J(x)Ty

min
[

c(x), y
]

)

=

(

0

0

)

, (1.2)

where g(x) := ∇f(x) ∈ R
n is the gradient of the objective function, J(x) := ∇c(x) ∈ R

m×n is

the Jacobian of the constraint function, y is the Lagrange multiplier vector, and the minimum

is taken component-wise. Our algorithm may easily handle constraints with general lower/upper

bounds, and handle equality constraints directly, i.e., do not replace them with pairs of inequality

constraints. Problems of this type arise naturally in many areas including optimal control [2, 3,

5, 22, 28], resource allocation [1, 27], solution of equilibrium models [17, 33], and structural

engineering [4, 30], among others.

Popular methods for solving (1.1) can broadly be characterized as interior-point or active-set

methods. Interior-point algorithms [38, 40, 41] offer polynomial-time complexity bounds in many

cases and readily scale-up to problems involving millions of variables. Their main disadvantage

is the inability to use effectively a good initial estimate of a solution. In fact, many interior-

point methods immediately move the initial guess into the strict interior of the feasible region.

It is from this interior location that future iterates are forced to remain and justifies the name

“interior-point” methods; more modern “infeasible” interior-point methods avoid this defect to

some degree.

Active-set methods [8, 14, 23, 24, 25, 26, 32, 34] complement interior-point methods since they

naturally utilize information derived from a good estimate of a solution. In fact, if the optimal

active set (the set containing those constraints satisfied as equalities at a solution) was known in

advance, then problem (1.1) could be solved as an equality constrained problem and its combi-

natorial nature would be eliminated. It is precisely this property that makes active-set methods

widely used to solve the previously mentioned class of problems. The main weakness of active-set

algorithms is that each subproblem typically requires the solution of a linear or quadratic pro-

gram, which is often expensive when compared to interior-point methods that require a single

linear system solve per iteration.

In this paper we describe an active-set method that generates a sequence of iterates from

the solutions of subproblems defined by local models of the nonlinear problem functions. The

subproblems are always feasible since they are based on an exact penalty function. To ensure

that these models result in productive steps, we use steering techniques [9] to adaptively adjust

the weighting (penalty) parameter. In contrast to original steering methods, we use a step

convexification procedure similar to [] to avoid solving multiple quadratic programs during each

iteration.

To provide convergence guarantees, we must include a mechanism for determining when one

point is “better” than another. A merit (penalty) function or a filter is amongst the most common

tools used for this purpose. A merit function combines the objective function and a measure
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of constraint violation into a single function, whereby their individual perceived importance

is determined by a weighting parameter. The quality of competing points is then measured

by comparing their respective merit function values. A potential weakness is that the quality

of iterates depends on the value of the weighting parameter, which can make step acceptance

sensitive to its value. In part, filter methods surfaced to mitigate this parameter dependence.

In the context of nonlinear optimization, filter methods were introduced by Fletcher, Leyffer,

and Toint [19, 20] and have since been rather popular [11, 12, 13, 18, 21, 38]. A filter views

problem (1.1) as a multi-criterion optimization problem consisting of minimizing the objective

function and minimizing some measure of the constraint violation, with certain preference given

to the latter. Roughly, a trial iterate is then considered acceptable if it has a smaller value of

either the objective function or the constraint violation compared to the previously encountered

points. Consequently, it is often the case that filter methods accept more iterates and perform

better. It should be mentioned, however, that every known provably convergent filter method has

a weak dependence between these two criteria that is embedded in the step acceptance criteria.

In fact, this observation partly motivated the work on flexible penalty methods by Curtis and

Nocedal [16]. They describe how a single element filter is essentially equivalent to the union

of points acceptable to the ℓ1-penalty function defined over an interval of weighting parameter

values.

A great disadvantage of filter methods is that they (traditionally) require the use of a restora-

tion phase. A restoration phase is (typically) entered when the subproblem used to compute trial

steps is infeasible; some algorithms, e.g., [40], enter the restoration phase for additional reasons.

When this situation occurs, the restoration phase is triggered and a sequence of iterates focused

on reducing the constraint-violation is computed until the desired subproblem becomes feasible.

During this phase, the objective function is essentially ignored, which is highly undesirable from

both a practical and computational perspective.

Our active-set method is globalized by using a filter, but never needs to enter a (traditional)

restoration phase. This is accomplished by using subproblems that are always feasible and, in

certain instances, allowing for the acceptance of iterates that decrease both the exact penalty

function and the constraint violation. In essence, we replace an undesirable restoration phase

with an attractive penalty phase. Thus, we combine ideas from both filter and penalty methods to

formulate a robust and effective method; we believe this further builds upon the basic observations

in [16].

This paper contains three main contributions. First, we present a filter method that avoids a

traditional and highly undesirable restoration phase. To this end, we utilize subproblems based

on exact penalty functions that are always feasible and formed from models of both the objective

function and constraint violation. Second, our method incorporates second derivative information

without requiring global minimizers of nonconvex constrained subproblems (c.f. [18]). Our step

computation is most similar to [24, 26], which was described in the context of line-search and

trust-region penalty methods. Third, we use local feasibility estimates that emerge during the

steering step computation to define a new and improved margin (envelope) of the filter. This

allows us to define an adaptive and practical margin.

Our work is not the only method designed to resolve weaknesses in traditional filter methods.

Chen and Goldfarb [10] presented an interior point method that uses two penalty functions to

determine step acceptance: a piecewise linear penalty function whose break points are essentially
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elements in the filter, and the ℓ2-penalty function. Under this scheme, a trial step is accepted if

it provides sufficient reduction for either penalty function.

The remainder of this paper is organized as follows. In Section 2 we describe the algorithm

in detail and in Section 3 prove that it is well-posed. In Section 4 we provide convergence results

and conclude with final remarks in Section 5.

2 A filter sequential quadratic programming method

In this section we describe our new filter sequential quadratic programming method, FiSQP. The

algorithm is iterative and relies on computing trial steps from carefully constructed subproblems.

These subproblems and the resulting trial steps are explained in Sections 2.1–2.6. In Section 2.7

we introduce the filter construct and related terminology; we emphasize that acceptability to the

filter is only a necessary condition for accepting a trial iterate. A full statement and description

of the algorithm is given in Section 2.8.

Our step computation is based on the ℓ1-penalty function

φ(x;σ) := f(x) + σv(x), (2.1)

where the constraint violation at x is defined by

v(x) :=
∥

∥[c(x)]−
∥

∥

1
, with [y]− := max(−y, 0). (minimum is component-wise) (2.2)

and σ is a positive weighting parameter. Appropriate linear and quadratic models of φ are given

by

ℓφ(s;x, σ) := ℓf (s;x) + σℓv(s;x) and qφ(s;x,M, σ) := qf (s;x,M) + σℓv(s;x), (2.3)

where

ℓf (s;x) := f(x) + g(x)T s and qf (s;x,M) := ℓf (s;x) + 1
2s

TMs (2.4)

are linear and quadratic model approximations, respectively, of the objective function f for a

given symmetric matrix M ∈ R
n×n, and

ℓv(s;x) :=
∥

∥[c(x) + J(x)s]−
∥

∥

1

is a piecewise-linear approximation to the constraint violation function v. Using these models we

may predict the change in v with the function

∆ℓv(s;x) := ℓv(0;x) − ℓv(s;x) =
∥

∥[c(x)]−
∥

∥

1
−
∥

∥[c(x) + J(x)s]−
∥

∥

1
, (2.5)

the change in f with the functions

∆ℓf (s;x) := ℓf (0;x) − ℓf (s;x) = −g(x)T s and (2.6a)

∆qf (s;x,M) := qf (0;x,M) − qf (s;x,M) = ∆ℓf (s;x)− 1
2s

TMs, (2.6b)

and the change in the penalty function φ with the functions

∆ℓφ(s;x, σ) := ℓφ(0;x, σ) − ℓφ(s;x, σ) = ∆ℓf (s;x) + σ∆ℓv(s;x) and (2.7)

∆qφ(s;x,M, σ) := qφ(0;x,M, σ) − qφ(s;x,M, σ) = ∆ℓφ(s;x, σ) − 1
2s

TMs. (2.8)

For the remainder of this section, let (xk, yk) denote the current estimate of a solution to (1.1).
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2.1 The steering step s
s
k

In order to strike a proper balance between reducing the objective function and the constraint

violation, we compute a steering step ssk as a solution to the linear program

minimize
(s,r)∈Rn+m

eTr subject to ck + Jks+ r ≥ 0, r ≥ 0, ‖s‖∞ ≤ δk, (2.9)

where ck = c(xk), Jk = J(xk), δk ∈ [δmin, δmax], and 0 < δmin ≤ δmax < ∞. Problem (2.9) is

equivalent to the nonsmooth problem

minimize
s∈Rn

ℓv(s;xk) subject to ‖s‖∞ ≤ δk, (2.10)

since s solves (2.10) if and only if (s, r) solves (2.9), where r = max(−(ck + Jks), 0). Since

ℓv(0;xk) = v(xk), ℓ
v is a convex function, and s = 0 is feasible for (2.10), it follows from (2.5)

that ∆ℓv(ssk;xk) ≥ 0. The quantity ∆ℓv(ssk;xk) is the best local improvement in linearized

constraint feasibility for steps of size δk.

All methods for nonconvex optimization may converge to an infeasible point that is a local

minimizer of the constraint violation as measured by v. Points of this type are known as infeasible

stationary points, which we now define by utilizing the steering subproblem.

Definition 2.1 (Infeasible stationary point) The vector xI is an infeasible stationary point

if v(xI) > 0 and ∆ℓv(sI;xI) = 0, where sI = argmins∈Rn ℓv(s;xI) subject to ‖s‖∞ ≤ δ for some

δ > 0.

2.2 The predictor step s
p
k

The predictor step is computed as the unique solution to one of the following strictly convex

minimization problems:

spk =

{argmin
s∈Rn

fk + gTks+
1
2s

TBks subject to ck + Jks ≥ 0, if ∆ℓv(ssk;xk) = v(xk), (2.11a)

argmin
s∈Rn

qφ(s;xk, Bk, σk), otherwise, (2.11b)

where σk > 0 is the kth value of the penalty parameter, fk = f(xk), gk = ∇f(xk), ck = c(xk), Jk =

∇c(xk), Bk is a positive-definite matrix that we are free to choose such that Bk ≈ ∇2
xxL(xk, yk),

and the Lagrangian L is defined by L(x, y) = f(x)−c(x)Ty. Analogous to the steering subproblem,

the nonsmooth minimization problem (2.11b) is equivalent to the smooth problem

minimize
s∈Rn,r∈Rn

fk + gTks+
1
2s

TBks+ σke
Tr subject to ck + Jks+ r ≥ 0, r ≥ 0, (2.12)

which is the problem solved in practice. We use yP

k to denote the Lagrange multiplier vector for

the constraint ck + Jks ≥ 0 in (2.11a) and ck + Jks + r ≥ 0 in (2.12) (equivalently (2.11b)). A

trivial choice for the positive-define matrix is Bk = I, but other choices based on quasi-Newton

updates such as BFGS [35] or L-BFGS [29] are also possible.

The next result shows how convergence to KKT points may be deduced from the predictor

problem.
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Lemma 2.2 Suppose that x∗ satisfies

v(x∗) = 0 and 0 = argmin
s∈Rn

f(x∗) + g(x∗)
Ts+ 1

2s
TBs subject to c(x∗) + J(x∗)s ≥ 0 (2.13)

for some positive definite matrix B, and let y∗ denote the associated Lagrange multiplier vector.

Then, it follows that (x∗, y∗) is a KKT point for problem (1.1) as defined by (1.2).

Proof. Since B is positive definite, s = 0 is the unique solution to the optimization problem

in (2.13). It then follows from the first-order necessary optimality conditions at s = 0 that

g(x∗) = J(x∗)
Ty∗, and min

(

c(x∗), y∗
)

= 0,

where y∗ is the Lagrange multiplier for the constraint c(x∗) + J(x∗)s ≥ 0. It now follows from

Definition 1.2 that (x∗, y∗) is a KKT point for problem (1.1).

2.3 The search direction sk

The steering direction ssk provides a measure of local progress in infeasibility. Since we desire a

search direction sk that makes progress towards feasibility, we define

sk := (1− τk)s
s
k + τks

p
k (2.14)

where τk is the largest number on [0, 1] such that

∆ℓv(sk;xk) ≥ ηv∆ℓv(ssk;xk) ≥ 0 for some ηv ∈ (0, 1). (2.15)

The next lemma shows that τk > 0 when xk is not an infeasible stationary point. This is

important since the step sk then has a significant contribution from spk, which was computed from

a subproblem that modeled both the objective and constraint functions; this contrasts traditional

filter methods when restoration is entered since the subproblem formulations then focus solely

on the constraint violation.

Lemma 2.3 If xk is not an infeasible stationary point as given by Definition 2.1, then τk > 0.

Proof. If v(xk) = 0, then ∆ℓv(ssk;xk) = 0. It then follows from (2.11a) that ck + Jks
p
k ≥ 0,

which in turn implies that ∆ℓv(spk;xk) = 0. Thus, the choice τk = 1 satisfies (2.14) and (2.15).

Now suppose that v(xk) > 0 and define

s(τ) = (1− τ)ssk + τspk

so that limτ↓0 s(τ) = ssk. It then follows from continuity of ∆ℓv(· ;xk) and the fact that ∆ℓv(ssk;xk) >

0 since xk is not an infeasible stationary point by assumption, that

lim
τ↓0

∆ℓv
(

s(τ);xk
)

= ∆ℓv(ssk;xk) > 0.

Therefore, there exists τ ′ > 0 such that

∣

∣∆ℓv
(

s(τ);xk
)

−∆ℓv(ssk;xk)
∣

∣ < (1− ηv)∆ℓv(ssk;xk) for all τ ∈ [0, τ ′]



6 N. I. M. Gould, Y. Loh and D. P. Robinson

since ηv ∈ (0, 1) in (2.15) and ∆ℓv(ssk;xk) > 0. However, this implies that

∆ℓv
(

s(τ);xk
)

≥ ηv∆ℓv(ssk;xk) for all τ ∈ [0, τ ′],

which guarantees that tk ≥ τ ′ > 0.

We now proceed to show that if ∆ℓv(ssk;xk) > 0, then sk is a descent direction for v(·). We

require the definition of the directional derivative of a function.

Definition 2.4 The directional derivative of a function h(·) in the direction d and at the point

x is defined (when it exists) as

[Ddh](x) := lim
t↓0

h(x+ td)− h(x)

t
.

We now show that the directional derivative is bounded by the negative of the change in its

model.

Lemma 2.5 At any point x and for any direction d, it follows that

[Ddv](x) ≤ −∆ℓv(d;x),

where the function Ddv is the directional derivative of v in the direction d.

Proof. Since ℓv is a convex function and ℓv(0;x) is finite, it follows from [37, Theorem 23.1]

that
ℓv(td;x) − ℓv(0;x)

t

is monotonically non-decreasing with t, [Ddℓ
v](0;x) exists, and

[Ddℓ
v](0;x) = inf

t>0

ℓv(td;x)− ℓv(0;x)

t
. (2.16)

It then follows from [7, Lemma 3.1], (2.16) and the definition of ∆ℓv that

[Ddv](x) = [Ddℓ
v](0;x) ≤ ℓv(d;x) − ℓv(0;x) = −∆ℓv(d;x),

which is the desired result.

Thus the search direction sk is a descent direction for v when our infeasibility measure is

positive.

Lemma 2.6 If ∆ℓv(ssk;xk) > 0, the direction sk is a descent direction for v at the point xk, i.e.,

[Dskv](xk) ≤ −∆ℓv(sk;xk) ≤ −ηv∆ℓv(ssk;xk) < 0, where ηv is defined in (2.15).

Proof. It follows directly from Lemma 2.5, (2.15), and ∆ℓv(ssk;xk) > 0 that

[Dskv](xk) ≤ −∆ℓv(sk;xk) ≤ −ηv∆ℓv(ssk;xk) < 0,

which implies that sk is a descent direction for v at the point xk.

We now consider the case when our infeasibility measure is zero.

Lemma 2.7 Suppose ∆ℓv(ssk;xk) = 0, then one of the following must occur:
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(i) v(xk) > 0 and xk is an infeasible stationary point; or

(ii) v(xk) = 0 and ∆ℓφ(sk;xk, σ) ≥ 1
2s

p
k
T
Bks

p
k for all 0 < σ <∞.

Proof. If v(xk) > 0, then by Definition 2.1, xk is an infeasible stationary point which is part

(i). Now, suppose that v(xk) = 0. As in the proof of Lemma 2.3, it follows that

∆ℓv(spk;xk) = 0, τk = 1, and sk = spk. (2.17)

We may then use the definition of spk in (2.11a), (2.17), and (2.6b) to conclude that

0 ≤ ∆qφ(spk;xk, Bk, σk) = ∆qf (spk;xk, Bk) = ∆ℓf (spk;xk)− 1
2s

p
k
T
Bks

p
k,

which yields ∆ℓf (spk;xk) ≥ 1
2s

p
k
T
Bks

p
k. Combining this with (2.7) and (2.17), we have that

∆ℓφ(sk;xk, σ) = ∆ℓf (sk;xk) + σ∆ℓv(sk;xk)

= ∆ℓf (sk;xk) = ∆ℓf (spk;xk) ≥ 1
2s

p
k
T
Bks

p
k for all finite σ,

which completes the proof.

2.4 Updating the weighting parameter

By design, the trial step sk is a descent direction for v when local improvement in feasibility

is possible. Since the weighting parameter provides a balance between reducing the objective

function and the constraint violation, it makes sense to adjust the weighting parameter so that

sk is also a descent direction for φ. This is accomplished by defining

σk+1 =







σk if ∆ℓφ(sk;xk, σk) ≥ σkησ∆ℓv(ssk;xk)

max
{

σk + σinc,
−∆ℓf (sk ;xk)

∆ℓv(sk;xk)−ησ∆ℓv(ss
k
;xk)

}

otherwise

(2.18)

for some σinc > 0 and ησ satisfying 0 < ησ < ηv < 1, where ηv is defined in (2.15).

Lemma 2.8 If xk is not an infeasible stationary point, then the parameter update (2.18) is well

defined and ensures that

∆ℓφ(sk;xk, σk+1) ≥ σk+1ησ∆ℓv(ssk;xk) ≥ 0 for all k ≥ 0. (2.19)

Proof. If ∆ℓφ(sk;xk, σk) ≥ σkησ∆ℓv(ssk;xk), then the desired result immediately follows from

the update σk+1 = σk. Thus, for the remainder of the proof we assume that

∆ℓφ(sk;xk, σk) < σkησ∆ℓv(ssk;xk). (2.20)

Suppose, for a contradiction, that ∆ℓv(ssk;xk) = 0. Since xk is not an infeasible stationary point

by assumption, it follows that v(xk) = 0. Then, it follows from Lemma 2.7 and the fact that Bk

is positive definite by assumption that ∆ℓφ(sk;xk, σk) ≥ 1
2s

p
k
T
Bks

p
k ≥ 0, which contradicts (2.20)

since ∆ℓv(ssk;xk) = 0. Thus, we conclude that ∆ℓv(ssk;xk) > 0. Combining this with the

choice 0 < ησ < ηv < 1 in (2.18) and (2.15) we conclude that ∆ℓv(sk;xk) ≥ ηv∆ℓv(ssk;xk) >

ησ∆ℓv(ssk;xk) > 0, and thus

ησ∆ℓv(ssk;xk)−∆ℓv(sk;xk) < 0. (2.21)
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It then follows from (2.7), (2.20), (2.21), and the fact that σk > 0 that

∆ℓf (sk;xk) = ∆ℓφ(sk;xk, σk)− σk∆ℓv(sk;xk) < σk
[

ησ∆ℓv(ssk;xk)−∆ℓv(sk;xk)
]

< 0. (2.22)

Inequalities (2.21) and (2.22) imply that the penalty parameter update (2.18) is well-defined and

positive.

It now follows from (2.18) that

σk+1 ≥
−∆ℓf (sk;xk)

∆ℓv(sk;xk)− ησ∆ℓv(ssk;xk)
,

which may then be combined with (2.21) to yield

σk+1ησ∆ℓv(ssk;xk) ≤ ∆ℓf (sk;xk) + σk+1∆ℓv(sk;xk) = ∆ℓφ(sk;xk, σk+1),

which is the desired result (2.19).

The next result will allow us to show that sk is a descent direction for φ under certain

assumptions.

Lemma 2.9 For any given value of the penalty parameter σ, point x, direction d, and positive-

definite matrix B, it follows that

[Ddφ](x;σ) ≤ −∆ℓφ(d;x, σ) ≤ −∆qφ(d;x,B, σ).

Proof. Linearity of the directional derivative, (2.6a), Lemma 2.5, (2.7), (2.8), and the fact

that Bk is positive definite by choice, imply that

[Ddφ](x;σ) = [Ddf ](x) + σ[Ddv](x) = −g(x)Td+ σ[Ddv](x) ≤ −∆ℓf (d;x)− σ∆ℓv(d;x)

= −∆ℓφ(d;x, σ) = −∆qφ(d;x,B, σ) − 1
2d

TBd ≤ −∆qφ(d;x,B, σ),

which is the desired result.

In most situations, we may now show that sk is a descent direction for the penalty function.

Lemma 2.10 If xk is neither an infeasible stationary point nor a KKT point for problem (1.1),

then the direction sk is a descent direction for φ(x;σk+1) at the point xk, i.e.,

[Dskφ](xk;σk+1) ≤ −∆ℓφ(sk;xk, σk+1) < 0.

Proof. If ∆ℓv(ssk;xk) > 0, then xk cannot be an infeasible stationary point, and it follows

from Lemma 2.9, Lemma 2.8, and (2.19) that [Dskφ](xk;σk+1) ≤ −∆ℓφ(sk;xk, σk+1) < 0, which

is the desired result. Conversely, if ∆ℓv(ssk;xk) = 0, then v(xk) = 0 since xk is not an infeasible

stationary point by assumption. It now follows from Lemma 2.9, v(xk) = 0, Lemma 2.7, the

fact that Bk is positive definite, and spk 6= 0 since xk is not a KKT point for problem (1.1) by

assumption (see Lemma 2.2), that [Dskφ](xk;σk+1) ≤ −∆ℓφ(sk;xk, σk+1) ≤ −1
2s

p
k
T
Bks

p
k < 0,

which completes the proof.
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2.5 The accelerator step s
a
k

To improve performance, we compute an additional “acceleration” step; here we consider a single

(simple) possibility, but other variants may be used [24].

Under common assumptions, the predictor step spk will ultimately correctly identify those

constraints that are active at a local solution of (1.1) [36]. A prediction based on spk is formulated

by

Ak := {i : [ck + Jks
p
k]i = 0}. (2.23)

It is then natural to compute an accelerator step sak as the solution to

minimize
s∈Rn

qf (spk + s;xk,Hk) subject to [Jks]Ak
= 0, ‖s‖2 ≤ δak , (2.24)

where δak > 0 is the trust-region radius, Hk is a symmetric and uniformly bounded approximation

of ∇2
xxL(xk, yk), and yk is a suitable Lagrange multiplier vector such as those from the predictor

subproblem. We note that subproblem (2.24) may be solved, for example, with the projected

GLTR algorithm (see [15, Section 7.5.4] and the notes at the end that describe how to cope

with the affine constraints [Jks]Ak
= 0). It can be shown that if ck + Jks ≥ 0 is feasible, σk is

sufficiently large, and xk is “close enough” to a solution of (1.1) that satisfies certain second-order

sufficient optimality conditions, then spk + sak is the solution to

minimize
s∈Rn

qf (s;xk,Hk) subject to ck + Jks ≥ 0, (2.25)

which is the traditional SQP subproblem. However, our method of step computation is robust

whereas the generally nonconvex subproblem (2.25) introduces many points of contention such

as multiple solutions, unboundedness, and inconsistent constraints.

2.6 The Cauchy steps s
cf
k and s

cφ
k

Since the matrix Bk is positive definite by construction and the exact second-derivative matrix

Hk is generally an indefinite matrix, they may differ dramatically. To account for this when

assessing overall step acceptance, we define and use a Cauchy-f step scfk and Cauchy-φ step scφk
as follows.

Given the search direction sk, we define the Cauchy-f step as

scfk := αf
ksk, where αf

k := argmin
0≤α≤1

qf (αsk;xk,Hk). (2.26)

Similarly, we define the Cauchy-φ step as

scφk := αφ
ksk, where αφ

k := argmin
0≤α≤1

qφ(αsk;xk,Hk, σk+1). (2.27)

The step size αφ
k may be found efficiently by examining the piecewise quadratic function qφ(αsk;xk,

Hk, σk+1) segment-by-segment between each derivative discontinuity.

2.7 The filter

We ensure global convergence of our method by maintaining/updating a filter Fk during each

iteration. A filter is defined as follows, where R
+ denotes the positive real numbers.
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Definition 2.11 (filter) A filter is any finite set of points in R
+ × R.

The initial filter is defined to be F0 = ∅ and then sequentially updated in a manner that

guarantees that Fk ⊆ {(vj , fj) : 0 ≤ j < k}. The decision to add certain ordered pairs to the

filter depends on the concept of trial points being acceptable to the filter, which we now define.

Definition 2.12 (acceptable to Fk) We say that the point x is acceptable to Fk if its associ-

ated ordered pair
(

v(x), f(x)
)

satisfies

v(x) ≤ max
{

vi−αiηv∆ℓv(ssi ;xi), βvi
}

or f(x) ≤ fi−γmin
{

vi−αiηv∆ℓv(ssi ;xi), βvi
}

(2.28)

for all 0 ≤ i < k such that (vi, fi) ∈ Fk and some constants {ηv , β, γ} ⊂ (0, 1).

The first inequality in (2.28) ensures that the the constraint violation has been sufficiently

reduced. We note that previous filter methods have not used the first quantity in the max

on the right-hand side. Our improved condition takes advantage of the information supplied

by the steering steps ssk. Previous filter methods may easily have requested a decrease in the

constraint violation that was unreasonable. In these circumstances, the trust-region radius would

be decreased until the subproblem became infeasible and then a feasibility restoration phase would

be entered. Our modified definition provides a practical target constraint violation based on local

information derived from the steering step ssk. The second inequality in (2.28) guarantees that

the objective function is sufficiently smaller at the point x than at points xi whose ordered pair

is in the current filter Fk. These two conditions provide a so-called margin around the elements

of the filter.

Note that Definition 2.12 does not require and does not imply that the current vector xk is

in Fk when determining acceptability. During our search for an improved estimate of a solution

to (1.1), it often does not make sense to accept a new point unless it is acceptable to the current

filter and better than the current point xk. This leads to the following definition.

Definition 2.13 (acceptable to Fk augmented by xk) We say that x is acceptable to Fk

augmented by xk if x is acceptable to Fk as given by Definition 2.12 and (2.28) holds with i = k.

In the next section we present our main filter SQP method. Each iteration requires the search

for a new point that must satisfy a subset of specified conditions. We stress that the updated

point xk+1 is not necessarily acceptable to Fk. Moreover, the vector xk+1 being acceptable to Fk

(possibly augmented by xk) is a necessary, but not sufficient condition, for adding the ordered

pair (vk+1, fk+1) to the filter Fk. Details of how we update Fk are described in the next section.

2.8 The algorithm

In this section we formally state and describe our filter trust-region algorithm. Specific termina-

tion tests are not stated, but would be included in practice.

Algorithm 1 on page 13 begins by defining step acceptance parameters {ηv, ησ , σinc, γ, γv, γf , γφ} ⊂
(0, 1), steering trust region parameters 0 < δmin ≤ δmax < ∞, an initial weighting parameter σ0,

an initial trust region radius for the steering subproblem δ0 ∈ [δmin, δmax], and an initial positive

definite matrix B0. It then sets the iteration index k = 0 and flag P-mode to false, which indicates

that we begin in what we shall call filter (as opposed to penalty) mode.
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The main loop is now entered and a sequence of trial steps is computed. First, a steering step

ssk is computed as a solution of (2.10), which is then used to calculate ∆ℓv(ssk;xk). This quantity

gives us a tangible quantity that predicts the decrease in feasibility that one might expect to

acquire. In particular, the quantity allows us to determine whether xk is an infeasible stationary

point. If xk is not an infeasible stationary point, then the predictor step spk is computed as

the unique solution to the strictly convex subproblem (2.11). The search direction sk is then

defined by (2.14) to satisfy (2.15). By construction this definition ensures that sk is a descent

direction for v whenever v(xk) > 0 (see Lemma 2.6). Next, we adjust the penalty parameter

using (2.18) so that sk is also a decent direction for the penalty function φ (see Lemma 2.10).

To accelerate convergence, we compute an accelerator step sak as an (approximate) solution to

subproblem (2.24), which requires an active set prediction Ak given by (2.23). We complete the

step calculations by computing the Cauchy steps scfk and scφk defined by (2.26) and (2.27).

If P-mode has the value true, we perform a backtracking linesearch until we find a p-pair

(αk, ŝk) for some ŝk ∈ {sak, sk}. We define a p-pair as follows.

p-pair

The pair (α, s) constitutes a p-pair if

φ(xk + αs;σk+1) ≤ φ(xk;σk+1)− γφαρ
φ
k (2.29)

for some γφ ∈ (0, 1), where

ρφk := min
[

∆ℓφ(sk;xk, σk+1), ∆qφ(scφk ;xk,Hk, σk+1)
]

. (2.30)

If (αk, ŝk) is a p-pair, then φ(xk +αkŝk;σk+1) is sufficiently smaller than φ(xk;σk+1), and we say

that the kth iterate is a p-iterate. Moreover, if xk + αkŝk is acceptable to the current filter, we

signal a return to filter mode by setting P-mode to false. Otherwise, P-mode remains true and

penalty mode continues.

In contrast, if P-mode has the value false, we perform a backtracking linesearch until we find

either a pair (αk, ŝk) with ŝk ∈ {sk, sak} that is a v-pair or o-pair, or a pair (αk, sk) that is a

b-pair. A v-pair is defined as follows.

v-pair

The pair (α, s) constitutes a v-pair if xk + αs is acceptable to Fk augmented by xk and

∆ℓf (sk;xk) < γv∆ℓv(sk;xk) for some γv ∈ (0, 1). (2.31)

A v-pair (αk, ŝk) earns its name since the step xk + αkŝk is acceptable to the current filter

augmented by xk, but the step sk did not predict sufficient decrease in f ; we say that k is a

v-iterate. Note that the focus of the iteration is on reducing the violation v and that we add the

pair (vk, fk) to the filter Fk. An o-pair is characterized as follows.
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o-pair

The pair (α, s) constitutes an o-pair if xk + αs is acceptable to Fk,

∆ℓf (sk;xk) ≥ γv∆ℓv(sk;xk), and (2.32a)

f(xk + αs) ≤ f(xk)− γfαρ
f
k , (2.32b)

where γv ∈ (0, 1) is the same constant used to define a v-pair and

ρfk := min
[

∆ℓf (sk;xk), ∆qf (scfk ;xk,Hk)
]

. (2.33)

An o-pair (αk, ŝk) is so designated since xk +αkŝk is acceptable to the filter, sk predicts decrease

in the objective function, and a sufficient decrease in the objective is realized; we say that k is

an o-iterate. Finally, a b-pair is formalized as follows.

b-pair

The pair (α, s) constitutes a b-pair if (2.29) holds and

v(xk + αs) < v(xk). (2.34)

An iterate xk+αksk associated with a b-pair (αk, sk) decreases both the constraint violation and

penalty function, and thus suggests that one or more filter entries is blocking a productive step;

we say that k is a b-iterate. Our strategy is to accept the point, add (vk, fk) to the filter, and

enter penalty mode. We view this as a satisfying alternative to a traditional restoration phase.

Note that we only add (vk, fk) to the filter for v- and b-iterates. Moreover, if P-mode has the

value false at the beginning of the kth iterate, steps are always tested for acceptability based

on the filter criteria (o- and v-pairs) before checking for decrease in the constraint violation and

penalty function (b-pairs). In this manner, we give clear preference to staying in filter mode.

Finally, we increase the penalty parameter if

∆qφ(sk;xk, Bk, σk+1) < ηφ∆qφ(spk;xk, Bk, σk+1), (2.35)

since this indicates that τk is very small and the search direction sk does not adequately reflect

the decrease predicted by spk in the penalty function.

We find it useful to define the following index sets:

Sv = {k : k is a v-iterate }, So = {k : k is an o-iterate },
Sp = {k : k is a p-iterate }, Sb = {k : k is an b-iterate }.

These definitions and the construction of Algorithm 1 allow us to prove the following important

result.

Lemma 2.14 If P-mode = false at the beginning of iteration k, then xk is acceptable to Fk.

Proof. The result immediately follows from the construction of Algorithm 1 and consideration

of the possible outcomes associated with iteration k − 1.
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Algorithm 1 Filter sequential quadratic programming algorithm.

1: Input an initial primal-dual pair (x0, y0).

2: Choose parameters {ηv , ησ, ηφ, σinc, γ, γv , γf , γφ} ⊂ (0, 1) and 0 < δmin ≤ δmax <∞.

3: Set k ← 0, F0 ← ∅, P-mode ← false, and then choose σ0 > 0 and δ0 ∈ [δmin, δmax].

4: loop

5: Compute ssk as a solution of (2.9), and then calculate ∆ℓv(ssk;xk) from (2.5).

6: if ∆ℓv(ssk;xk) = 0 and v(xk) > 0, then

7: return with the infeasible stationary point xk for problem (1.1).

8: Choose Bk ≻ 0 and then compute spk as the unique solution of (2.11) with multiplier ypk.

9: if ∆qφ(spk;xk, σk) = v(xk) = 0, then

10: return with the KKT point (xk, y
p
k) for problem (1.1).

11: Compute sk from (2.14) such that (2.15) is satisfied.

12: Compute the new weight σk+1 from (2.18).

13: Choose δak > 0 and then compute sak as an (approximate) solution of (2.24).

14: Compute scφk from (2.27) and then calculate ∆qφ(scφk ;xk,Hk, σk+1) from (2.8).

15: if P-mode then

16: for j = 0, 1, 2, . . . do

17: Set αk = γj .

18: for ŝk ∈ {sak, sk} do
19: if (αk, ŝk) is a p-pair then

20: Set Fk+1 ← Fk and go to Line 21. ⊲ p-iterate

21: if xk + αkŝk is acceptable to Fk then

22: Set P-mode ← false.

23: else

24: Compute scfk from (2.26) and then calculate ∆qf (scfk ;xk,Hk) from (2.6b).

25: for j = 0, 1, 2, . . . do

26: Set αk ← γj .

27: for ŝk ∈ {sak, sk} do
28: if (αk, ŝk) is a v-pair then

29: Set Fk+1 ← Fk ∪ {(vk, fk)} and go to Line 34. ⊲ v-iterate

30: if (αk, ŝk) is an o-pair then

31: Set Fk+1 ← Fk and go to Line 34. ⊲ o-iterate

32: if (αk, sk) is a b-pair then

33: Set Fk+1 ← Fk ∪ {(vk, fk)}, P-mode ← true, and go to Line 34. ⊲ b-iterate

34: if ∆qφ(sk;xk, Bk, σk+1) < ηφ∆qφ(spk;xk, Bk, σk+1) then

35: Set σk+1 ← σk+1 + σinc.

36: Set xk+1 ← xk + αkŝk, yk+1 ← yP

k , δk+1 ∈ [δmin, δmax], and k ← k + 1.
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3 Well-posedness

In this section we verify that every step of the method is well-posed under the following assump-

tion, which we do not explicitly state for each result.

Assumption 3.1 The functions f and c are both differentiable with Lipschitz continuous deriva-

tives in the neighborhood of the point xk.

We begin by observing that the steering problem (2.10) is convex, always feasible, and the

objective function is bounded below by zero, i.e., it is well-defined. Next, we argue that the

predictor problem (2.11) is well-defined. This is obvious when ∆ℓv(ssk) 6= v(xk) since then the

strictly convex problem (2.11b) is always feasible. On the other hand, if ∆ℓv(ssk) = v(xk),

then it follows that ||[c(xk) + J(xk)s
s
k]

−||1 = 0, which implies that ck + Jks
s
k ≥ 0. Thus, s =

ssk is feasible for (2.11a), and the predictor problem is well-defined. Lemma 2.3 shows that

τk > 0 and Lemma 2.8 shows that the update to the weighting parameter is well-defined. The

accelerator problem (2.24) does not cause difficulties since by construction it is feasible, has

bounded solutions, and may be solved (approximately) as noted in Section 2.5. It is also easy to

see that both Cauchy step problems (2.26) and (2.27) are well-defined.

We now proceed to show that the linesearch terminates finitely. To this end, we first show

that feasible iterates are never added to the filter.

Lemma 3.1 Algorithm 1 ensures that if (vk, fk) is added to the filter, then vk > 0.

Proof. For a proof by contradiction, suppose that v(xk) = 0. It follows from v(xk) = 0 and

the fact that ℓv is a convex function that ∆ℓv(ssk, xk) = 0, and we may then use (2.11a), (2.14),

(2.15), and the fact that xk is not a KKT point for (1.1) (otherwise we would already have exited

on Line 10 of Algorithm 1) to show that

τk = 1, sk = spk 6= 0, and ∆ℓv(sk;xk) = ∆ℓv(spk;xk) = 0. (3.1)

It then follows from (3.1), (2.7), Lemma 2.7, v(xk) = 0, and the fact that Bk ≻ 0 that

∆ℓf (sk;xk) = ∆ℓf (spk;xk) = ∆ℓφ(spk;xk, σk+1) = ∆ℓφ(sk;xk, σk+1) ≥ 1
2s

p
k
T
Bks

p
k > 0. (3.2)

Since (vk, fk) was added to the filter, it follows from the construction of Algorithm 1 that either

(αk, ŝk) is a v-iterate or (αk, sk) is a b-pair, which implies that at least one of v(xk+αksk) < v(xk)

or ∆ℓf (sk;xk) < γv∆ℓv(sk;xk) holds, amongst other requirements. However, since v(xk+αksk) <

v(xk) = 0 is not possible, we conclude that ∆ℓf (sk;xk) < γv∆ℓv(sk;xk) = 0, where we have also

used (3.1); this contradicts (3.2) and proves the result.

The next two results show that our linesearch procedure terminates anytime P-mode has the

value false at the beginning of the kth iteration. We first consider the case when xk is feasible.

Lemma 3.2 If P-mode = false at the beginning of the kth iteration, v(xk) = 0, and xk is not a

first-order solution to problem (1.1), then the pair (α, sk) is an o-pair for all α > 0 sufficiently

small. Moreover, k ∈ So.

Proof. As in the proof of Lemma 3.1, it follows that v(xk) = ∆ℓv(ssk;xk) = 0. This may

be combined with the fact that xk is assumed to not be a first-order solution to (1.1), (2.11a),

(2.14), (2.15), Lemma 2.7, Bk ≻ 0, and the definition of ∆ℓφ to conclude that

sk = spk 6= 0, ck+Jksk ≥ 0, and ∆ℓf (sk;xk) = ∆ℓφ(sk;xk, σk+1) > 0 = γv∆ℓv(sk;xk). (3.3)
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Next, v(xk) = 0 and (3.3) imply that ck + αJksk ≥ 0 for all α ∈ [0, 1]. Combining this fact

with Taylor’s Theorem, Assumption 3.1, and (3.3) yields

v(xk + αsk) =
∥

∥[c(xk + αsk)]
−
∥

∥

1
=
∥

∥[ck + αJksk +O(α2)]−
∥

∥

1
≤ O(α2) for α ∈ [0, 1]. (3.4)

Since Lemma 3.1 implies that vi > 0 for all (vi, fi) ∈ Fk, we may conclude from (3.4) that

v(xk + αsk) ≤ min
(vi,fi)∈Fk

βvi for all α > 0 sufficiently small,

where β ∈ (0, 1) is defined in (2.28), so that

xk + αsk is acceptable to the filter for all α > 0 sufficiently small. (3.5)

Next, Taylor’s Theorem, Assumption 3.1, the definition of ∆ℓf , and (3.3) imply that

f(xk + αsk) = fk + αgTk sk +O(α2) = fk − α∆ℓf (sk;xk) +O(α2)

≤ fk − γfα∆ℓf (sk;xk) for all α > 0 sufficiently small, (3.6)

where γf ∈ (0, 1) is defined in (2.32b). It follows from (3.3), (3.5), and (3.6) that (α, sk) is an

o-pair for all α > 0 sufficiently small, which proves the first result of this lemma..

We just proved that the for loop on line 25 in Algorithm 1 always terminates. Moreover, it

can never terminate as a result of the if on line 32 since v(xk + αsk) < v(xk) = 0 is impossible

for all α. Moreover, it can not terminate on line 28 since (3.3) holds. Therefore, the linesearch

must terminate with an o-pair (αk, ŝk), which implies that k ∈ So.
We now consider the case when xk is infeasible.

Lemma 3.3 If P-mode = false at the beginning of iteration k, v(xk) > 0, and xk is not an

infeasible stationary point, then (α, sk) is a b-pair for all α > 0 sufficiently small.

Proof. It follows from the assumptions of this lemma and Lemma 2.10 that

[Dskφ](xk;σk+1) ≤ −∆ℓφ(sk;xk, σk+1) < 0 (3.7)

so that the direction sk is a strict descent direction for φ at xk with penalty parameter σk+1.

Using the definition of the directional derivative, (3.7), γφ ∈ (0, 1) defined in (2.29), and (2.30)

we conclude that

φ(xk + αsk;σk+1) ≤ φ(xk;σk+1) + αγφ[Dskφ](xk;σk+1)

≤ φ(xk;σk+1)− αγφ∆ℓφ(sk;xk, σk+1) (3.8)

≤ φ(xk;σk+1)− αγφρ
φ
k for all α > 0 sufficiently small.

Since v(xk) 6= 0 and xk is not an infeasible stationary point, we know that ∆ℓv(ssk;xk) > 0.

Lemma 2.6 then implies that

[Dskv](xk) ≤ −∆ℓv(sk;xk) ≤ −ηv∆ℓv(ssk;xk) < 0

so that sk is a descent direction for v at xk. A similar argument as the one that lead to (3.8),

yields

v(xk + αsk) < v(xk) for all α > 0 sufficiently small. (3.9)
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It follows from (3.8) and (3.9) that (α, sk) is a b-pair for all α > 0 sufficiently small.

The next lemma considers the case when P-mode is true at the beginning of the kth iteration,

and shows that successful trial iterates may be obtained through backtracking as performed in

Algorithm 1.

Lemma 3.4 If P-mode = true at the beginning of the kth iteration and xk is neither an infea-

sible stationary point nor a first-order solution to problem (1.1), then (α, sk) is a p-pair for all

α > 0 sufficiently small.

Proof. The proof follows exactly as in the first part of Lemma 3.3.

We now combine these results to prove that Algorithm 1 is well-posed.

Theorem 3.5 Algorithm 1 is well-posed.

Proof. As described in the first paragraph of Section 3, every subproblem and step computa-

tion is well defined, and Lemma 2.8 ensures that the update to the weighting parameter is well

defined.

All that remains is to prove that the linesearch terminates. First, if P-mode has the value false

at the beginning of iteration xk and v(xk) = 0, then Lemma 3.2 guarantees finite termination

and that k ∈ So. Second, if P-mode has the value false and v(xk) > 0, then Lemma 3.3 ensures

that the backtracking linesearch will terminate finitely. Finally, suppose that P-mode has the

value true at the beginning of iteration k. It then follows from Lemma 3.4 that the backtracking

terminates finitely.

4 Global Convergence

In this section we prove that limit points of the iterates generated by Algorithm 1 have desirable

properties. To this end, we use the following common assumptions.

Assumption 4.1 The iterates {xk} lie in an open, bounded, convex set X .

Assumption 4.2 The problem functions f(x) and c(x) are twice continuously differentiable on

X .

Assumption 4.3 The matrices Bk are uniformly positive definite and bounded, i.e., there exists

values 0 < λmin < λmax <∞ such that λmin ‖s‖22 ≤ sTBks ≤ λmax ‖s‖22 for all s ∈ R
n and all Bk.

Assumption 4.4 The matrices Hk are uniformly bounded, i.e., ‖Hk‖2 ≤ µmax for some µmax ≥ 1.

For clarity and motivational purposes, we immediately state our main convergence theorem

that makes use of the Mangasarian-Fromovitz constraint qualification (MFCQ) [31].

Theorem 4.1 If Assumptions 4.1–4.4 hold, then one of the following must occur.

(i) Algorithm 1 terminates finitely with either a first-order KKT point or an infeasible station-

ary point in lines 10 or 7, respectively, for problem (1.1).
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(ii) Algorithm 1 generates infinitely many iterations {xk}, σk = σ̄ < ∞ for all k sufficiently

large, and there exists a limit point x∗ of {xk} that is either a first-order KKT point or an

infeasible stationary point for problem (1.1).

(iii) Algorithm 1 generates infinitely many iterations {xk}, limk→∞ σk = ∞, and there exists

a limit point x∗ of {xk} that is either an infeasible stationary point or a feasible point at

which the MFCQ fails.

Proof. The result follows from the following analysis that considers the various cases that

can occur. In particular, it follows from Theorems 4.11, 4.14, 4.17, 4.20, and the construction of

Algorithm 1.

We now present a sequence of lemmas that will be useful in the convergence analysis. The

first result is adapted from [7, Theorem 3.6] and provides a bound on the trial step sk.

Lemma 4.2 If Assumptions 4.1–4.3 hold and xk and sk are generated by Algorithm 1, then

‖sk‖2 ≤ max

{

1,
2

λmin

[

‖gk‖2 + σkv(xk)
]

,
√
nδmax

}

. (4.1)

Furthermore, if {σk} is bounded, then there exists a constant Ms > 0 such that ‖sk‖2 ≤ Ms for

all k.

Proof. First, we claim that the predictor step spk must satisfy

∥

∥spk
∥

∥

2
≤ max

{

1,
2

λmin

[

‖gk‖2 + σkv(xk)
]

}

, (4.2)

which can be seen as follows. Suppose that (4.2) is not satisfied so that
∥

∥spk
∥

∥

2
> 1 and 1

2λmin

∥

∥spk
∥

∥

2
> ‖gk‖2 + σkv(xk). (4.3)

It then follows from the definitions of ∆qφ and ℓv, the Cauchy-Schwarz inequality, Assumption 4.3,

and (4.3) that

∆qφ(spk;xk, Bk, σk) = −gTkspk − 1
2s

p
k
T
Bks

p
k + σk

(

ℓv(0;xk)− ℓv(spk;xk)
)

≤ ‖gk‖2
∥

∥spk
∥

∥

2
− 1

2λmin

∥

∥spk
∥

∥

2

2
+ σkv(xk)

≤ ‖gk‖2
∥

∥spk
∥

∥

2
− 1

2λmin

∥

∥spk
∥

∥

2

2
+
∥

∥spk
∥

∥

2
σkv(xk)

=
∥

∥spk
∥

∥

2

(

‖gk‖2 − 1
2λmin

∥

∥spk
∥

∥

2
+ σkv(xk)

)

< 0,

which contradicts the fact that spk is the unique global minimizer to the strictly convex predictor

problem. Thus, (4.2) must hold and when combined with (2.14), the use of the triangle-inequality,

the use of the trust-region radius δk ∈ [δmin, δmax] in the steering problem, implies that

‖sk‖2 ≤ max

{

1,
2

λmin

[

‖gk‖2 + σkv(xk)
]

,
√
nδmax

}

(4.4)

which proves (4.1). Since gk and v(xk) are uniformly bounded as a result of Assumptions 4.1

and 4.2, it is clear that if {σk} is bounded, then there exists Ms < ∞ such that ‖sk‖2 ≤ Ms for

all k.

The following result provides a relationship between the predicted change in the linear model

and the change achieved in the line search process for both the objective function and the con-

straint violation.
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Lemma 4.3 (Equivalent to [39, Lemma 3]) Suppose that Assumptions 4.1 and 4.2 hold. Then,

there exist constants {Cf , Cv} > 0 such that for all k and α ∈ (0, 1], we have

f(xk + αs) ≤ f(xk)− α∆ℓf (s;xk) + α2Cf ‖s‖22 (4.5)

and

v(xk + αs) ≤ v(xk)− α∆ℓv(s;xk) + α2Cv ‖s‖22 . (4.6)

Proof. Inequality (4.5) is a direct result of Taylor’s theorem and Assumption 4.2.

For (4.6), it follows from the integral mean-value theorem, Assumptions 4.1 and 4.2 and their

the implied Lipschitz continuity of J(x), the triangle inequality, and the convexity of ℓv, that for

some constant Lipschitz constant C,

v(xk + αs) =
∥

∥[c(xk + αs)]−
∥

∥

1
=

∥

∥

∥

∥

∥

[

c(xk) + αJks+ α

∫ 1

0
[J(xk + θαs)− J(xk)]sdθ

]−
∥

∥

∥

∥

∥

1

≤
∥

∥[c(xk) + αJks]
−
∥

∥

1
+ α2√nC ‖s‖22

≤ (1− α)
∥

∥[c(xk)]
−
∥

∥

1
+ α

∥

∥[c(xk) + Jks]
−
∥

∥

1
+ α2√nC ‖s‖22

= v(xk)− α∆ℓv(s;xk) + α2√nC ‖s‖22 for all α ∈ (0, 1].

This proves (4.6) by defining Cv :=
√
nC.

The next two lemmas provide a relationship between the predicted linear decrease in the

objective function and the quantity ρfk defined by (2.33).

Lemma 4.4 If Assumption 4.4 holds and ∆ℓf (sk;xk) ≥ 0, then

∆qf (scfk ;xk,Hk) ≥ 1
2∆ℓf (sk;xk)min

{

∆ℓf (sk;xk)

µmax ‖sk‖22
, 1

}

. (4.7)

Proof. If ∆ℓf (sk;xk) = 0, then the result follows immediately from the definition of scfk
in (2.26).

Now, suppose that ∆ℓf (sk;xk) > 0. It follows from (2.26) and the definition of ∆qf that

∆qf (scfk ;xk,Hk) ≥ ∆qf (αsk;xk,Hk) = −αgTksk − 1
2α

2sTkHksk for all 0 ≤ α ≤ 1.

The right hand side of the previous equation may be written as

q(α) = aα2 + bα, where a = −1
2s

T
kHksk and b = ∆ℓf (sk;xk) = −gTksk > 0.

We wish to maximize q on the interval [0, 1] so we differentiate q(α) with respect to α and set

the result to zero to obtain a stationary point at − b
2a . Now, consider three cases.

Case 1: (a < 0 and − b
2a ≤ 1) The maximum of q(α) on the interval [0, 1] is achieved at

α = − b
2a . Note that α > 0, since b = ∆ℓf (sk;xk) > 0 by assumption. Then, we have

q

(

− b

2a

)

= a
b2

4a2
− b

b

2a
= − b2

4a
.

It follows from the definition of a and b, the Cauchy-Schwarz inequality, and Assumption 4.4 that

q

(

− b

2a

)

=
∆ℓf (sk;xk)

2

2sTkHksk
≥ ∆ℓf (sk;xk)

2

2 ‖Hk‖2 ‖sk‖22
≥ ∆ℓf (sk;xk)

2

2µmax ‖sk‖22
.
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Case 2: (a < 0 and − b
2a > 1) The maximum of q(α) on the interval [0, 1] is achieved at α = 1,

where

q(1) = a+ b > −1
2b+ b = 1

2b =
1
2∆ℓf (sk;xk).

Case 3: (a ≥ 0) The maximum of q(α) on the interval [0, 1] is achieved at α = 1 so that

q(1) = a+ b > b > 1
2b =

1
2∆ℓf (sk;xk).

Finally, combining all three cases and defining α′ = argmaxα∈[0,1] q(α), it follows that

∆qf (scfk ;xk,Hk) = q(α′) ≥ min

{

∆ℓf (sk;xk)
2

2µmax ‖sk‖22
, 1
2∆ℓf (sk;xk)

}

= 1
2∆ℓf (sk;xk)min

{

∆ℓf (sk;xk)

µmax ‖sk‖22
, 1

}

as desired.

Lemma 4.5 Suppose that the Assumptions 4.1–4.4 are satisfied and that {σk} is bounded. Then,

there exists a constant Cρ > 0 such that whenever ∆ℓf (sk;xk) ≥ 0, it follows that

ρfk ≥ min
[

Cρ∆ℓf (sk;xk)
2, 1

2∆ℓf (sk;xk)
]

. (4.8)

Proof. It follows from (2.33), Lemma 4.4, Lemma 4.2 and the assumption ∆ℓf (sk;xk) ≥ 0

that

ρfk = min
[

∆ℓf (sk;xk), ∆qf (scfk ;xk,Hk)
]

≥ min

[

∆ℓf (sk;xk), min

{

∆ℓf (sk;xk)
2

2µmax ‖sk‖22
, 1
2∆ℓf (sk;xk)

}]

≥ min

[

∆ℓf (sk;xk)
2

2µmax ‖sk‖22
, 1
2∆ℓf (sk;xk)

]

≥ min

[

∆ℓf (sk;xk)
2

2µmaxM2
s

, 1
2∆ℓf (sk;xk)

]

,

where {Ms, µmax} ⊂ (0,∞) are defined in (4.1) and Assumption 4.4, respectively. The result now

follows by defining Cρ := 1/(2µmaxM
2
s ).

The next two results provide a relationship between the predicted linear change in the penalty

function and the quantity ρφk defined by (2.30).

Lemma 4.6 If Assumption 4.4 holds and xk is not an infeasible stationary point, then

∆qφ(scφk ;xk,Hk, σk+1) ≥ 1
2∆ℓφ(sk;xk, σk+1)min

{

∆ℓφ(sk;xk, σk+1)

µmax ‖sk‖22
, 1

}

. (4.9)

Proof. Since xk is not an infeasible stationary point by assumption, it follows from Lemma 2.8

that ∆ℓφ(sk;xk, σk+1) ≥ 0. If ∆ℓφ(sk;xk, σk+1) = 0, then the result follows immediately. There-

fore, for the remainder of the proof we assume that ∆ℓφ(sk;xk, σk+1) > 0.

It follows from (2.27), the convexity of ℓv(·), and simple algebra that

∆qφ(scφk ;xk,Hk, σk+1)

≥ ∆qφ(αsk;xk,Hk, σk+1)

= −αgTksk − 1
2α

2sTkHksk + σk+1

(
∥

∥[ck]
−
∥

∥

1
−
∥

∥[ck + αJksk]
−
∥

∥

1

)

≥ −αgTksk − 1
2α

2sTkHksk + σk+1

(
∥

∥[ck]
−
∥

∥

1
− α

∥

∥[ck + Jksk]
−
∥

∥

1
− (1− α)

∥

∥[ck]
−
∥

∥

1

)

= −αgTksk − 1
2α

2sTkHksk + ασk+1

(
∥

∥[ck]
−
∥

∥

1
−
∥

∥[ck + Jksk]
−
∥

∥

1

)

= α∆ℓφ(sk;xk, σk+1)− 1
2α

2sTkHksk for all α ∈ [0, 1].
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The right hand side of the equation is a quadratic function of α:

q(α) = aα2 + bα, where a = −1
2s

T
kHksk and b = ∆ℓφ(sk;xk, σk+1) > 0.

Analysis similar to that used in the proof of Lemma 4.4 yields

∆qφ(scφk ;xk,Hk, σk+1) ≥ min

{

∆ℓφ(sk;xk, σk+1)
2

2µmax ‖sk‖22
, 1
2∆ℓφ(sk;xk, σk+1)

}

, (4.10)

where µmax is from Assumption 4.4, as desired.

Lemma 4.7 Suppose that Assumptions 4.1–4.4 are satisfied, that Algorithm 1 never encounters

an infeasible stationary point, and {σk} is bounded. Then, there exists a constant Cρ ∈ (0,∞)

such that

ρφk ≥ min
[

Cρ∆ℓφ(sk;xk, σk+1)
2, 1

2∆ℓφ(sk;xk, σk+1)
]

for all k ≥ 0.

Proof. The proof follows exactly as in Lemma 4.5.

4.1 Convergence analysis under bounded weighting parameter

In this section we study Algorithm 1 under the assumption that the weighting parameter stays

bounded. It follows from this assumption and Lemma 4.2 that there exists some k′ and σ̄ < ∞
such that

‖sk‖2 ≤Ms <∞ and σk = σ̄ <∞ for all k ≥ k′. (4.11)

In certain situations, we can ensure that the line search step length is bounded away from zero.

Lemma 4.8 If Assumptions 4.1–4.3 and (4.11) hold and ǫ > 0, then the following hold:

(i) There exists a constant αP > 0 such that αk ≥ αP > 0 for all k ∈ KP , where

KP = {k ∈ Sp : k ≥ k′ and ∆ℓφ(sk;xk, σ̄) ≥ ǫ}.

(ii) There exists a constant αF > 0 such that αk ≥ αF > 0 for all k ∈ KF , where

KF = {k ∈ Sv ∪ So ∪ Sb : k ≥ k′ and ∆ℓv(ssk;xk) ≥ ǫ}.

(iii) There exists a constant αf > 0 such that (α, s) = (α, sk) satisfies (2.32b) for all 0 < α ≤ αf

and all k ∈ Kf , where

Kf = {k ≥ k′ : ∆ℓf (sk;xk) ≥ ǫ}.

Proof. From [6, Lemma 3.4], there exists some positive constant Cφ such that

∣

∣

∣
φ(xk + αsk; σ̄)− ℓφ(αsk;xk, σ̄)

∣

∣

∣
≤ Cφ ‖αsk‖22 for all k ≥ k′ and α ∈ [0, 1]. (4.12)

We first prove part (i). Suppose that α satisfies

0 ≤ α ≤ (1− γφ)ǫ

CφM2
s

, (4.13)
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where γφ ∈ (0, 1) is set in Algorithm 1 and Ms is defined in (4.11). To simplify notation, we define

ℓφk(s) := ℓφ(s;xk, σ̄) and ∆ℓφk(s) := ∆ℓφ(s;xk, σ̄). We then use φ(xk; σ̄) = ℓφk(0), the convexity of

ℓφk(·), (4.12), ∆ℓφk(sk) ≥ ǫ for k ∈ KP , (4.11), (4.13), and (2.30) to conclude that

φ(xk; σ̄)− φ(xk + αsk; σ̄) =
[

ℓφk(0)− ℓφk(αsk)
]

−
[

φ(xk + αsk; σ̄)− ℓφk(αsk)
]

≥
[

ℓφk(0)− αℓφk(sk)− (1− α)ℓφk(0)
]

− Cφα
2 ‖sk‖22

= α
[

ℓφk(0)− ℓφk(sk)
]

− Cφα
2 ‖sk‖22

= γφα∆ℓφk(sk) + (1− γφ)α∆ℓφk(sk)− Cφα
2 ‖sk‖22

≥ γφα∆ℓφk(sk) + (1− γφ)αǫ− Cφα
2 ‖sk‖22

≥ γφα∆ℓφk(sk) ≥ γφαρ
φ
k for all k ∈ KP ,

which with (2.29) implies that (α, sk) is a p-pair. Thus, Algorithm 1 must select an αk that

satisfies

αk ≥ min

{

γ(1− γφ)ǫ

CφM2
s

, 1

}

=: αP, (4.14)

where γ ∈ (0, 1) is the backtracking parameter in Algorithm 1, which completes the proof of part

(i).

We now prove part (ii). It follows from (2.19) that

∆ℓφ(sk;xk, σ̄) ≥ σ̄ησ∆ℓv(ssk;xk) ≥ σ̄ησǫ for k ∈ KF . (4.15)

If α satisfies

α < min

[

(1− γφ)σ̄ησǫ

CφM2
s

,
ηvǫ

CvM2
s

]

, (4.16)

where Cv is defined in (4.6) and ηv is defined in (2.15), then we may use (4.15) and proceed as

in the proof of part (i) to conclude that (α, sk) is a p-pair, i.e., (2.29) holds. Moreover, we have

from Lemma 4.3, (2.15), (4.16), ∆ℓv(ssk;xk) ≥ ǫ for k ∈ KF , and (4.11) that

v(xk + αsk)− v(xk) ≤ −α∆ℓv(sk;xk) + α2Cv ‖sk‖22 < −αηv∆ℓv(ssk;xk) + α
ηvǫ

CvM2
s

Cv ‖sk‖22

≤ −αηvǫ+ αηvǫ = 0 for all k ∈ KF , (4.17)

where the strict inequality holds since sk 6= 0 as a result of (4.15). Combining (4.17) with (2.29)

implies that (α, sk) is a b-pair. Thus, we conclude from the structure of Algorithm 1 that

αk ≥ min

{

γ(1 − γφ)σ̄ησǫ

CφM2
s

,
γηvǫ

CvM2
s

, 1

}

=: αF > 0 for all k ∈ KF , (4.18)

where γ ∈ (0, 1) is the backtracking parameter used in Algorithm 1.

Part (iii) is a standard result used in continuous unconstrained optimization that follows since

∆ℓf (sk;xk) ≥ ǫ is equivalent to g(xk)
T sk ≤ −ǫ < 0 and sk is uniformly bounded by (4.11).

The next lemma justifies the three cases that we consider when analyzing Algorithm 1.

Lemma 4.9 If Algorithm 1 does not terminate finitely, then one of the following scenarios oc-

curs:

Case 1: k ∈ Sp for all k sufficiently large;

Case 2: k ∈ So for all k sufficiently large; or

Case 3: |Sv ∪ Sb| =∞.
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Proof. We proceed by contradiction and assume that none of the cases occur. In particular,

since Case 3 does not hold it follows that k ∈ Sp ∪ So for all k sufficiently large. Combining this

with the fact that Cases 1 and 2 do not hold implies that the iterates must oscillate between p-

and o-iterates. However, this is not possible since there is no mechanism in Algorithm 1 that

allows for iterate k + 1 to be a p-iterate if iterate k is an o-iterate.

We now analyze Algorithm 1 for each of the three possible scenarios stated in the previous

result.

Case 1: k ∈ Sp for all k sufficiently large

In this case, there exists k′′ such that

k ∈ Sp for all k ≥ k′′ ≥ k′, (4.19)

where k′ is defined in (4.11). We first show that our measure of feasibility converges to zero.

Lemma 4.10 If Assumptions 4.1—4.4, (4.11), and (4.19) hold, then limk→∞∆ℓv(ssk;xk) = 0.

Proof. For a proof by contradiction, suppose that there exists an infinite subsequence

S ′′ := {k ≥ k′′ : ∆ℓv(ssk;xk) ≥ ǫ′′}

for some constant ǫ′′ > 0. It follows from (4.19), (2.19), (4.11), and the definition of S ′′ that

∆ℓφ(sk;xk, σ̄) ≥ σ̄ησ∆ℓv(ssk;xk) ≥ σ̄ησǫ
′′ =: ǫ > 0 for all k ∈ S ′′, (4.20)

which implies with (4.19) that

S ′′ ⊆ KP := {k ∈ Sp : k ≥ k′ and ∆ℓφ(sk;xk, σ̄) ≥ ǫ > 0}.

Combining KP with Lemma 4.8 implies the existence of a positive αP such that αk ≥ αP > 0 for

all k ∈ S ′′, which used with the definitions of S ′′ and Sp, (4.19), Lemma 4.7, and (4.20) yield

φ(xk; σ̄)− φ(xk + αkŝk; σ̄) ≥ γφαkρ
φ
k ≥ γφαk min

[

Cρ∆ℓφ(sk;xk, σ̄)
2, 1

2∆ℓφ(sk;xk, σ̄)
]

≥ γφαP min
[

Cρǫ
2, 1

2ǫ
]

> 0 for all k ∈ S ′′. (4.21)

Now, for k′′ ≤ k ∈ Sp \ S ′′, it follows from (2.29), (2.19), and (2.27) that

φ(xk; σ̄)− φ(xk + αkŝk; σ̄) ≥ γφαk min
[

∆ℓφ(sk;xk, σ̄), ∆qφ(scφk ;xk,Hk, σ̄)
]

≥ 0. (4.22)

It is now easy to see from (4.21), (4.22), and (4.19) that φ(xk; σ̄) → −∞, which contradicts

Assumptions 4.1 and 4.2. Thus, we conclude that limk→∞∆ℓv(ssk;xk) = 0.

We now show that all limit points are infeasible stationary points for problem (1.1).

Theorem 4.11 Suppose that Assumptions 4.1—4.4, (4.11), and (4.19) hold. If x∗ is any limit

point of the sequence {xk} generated by Algorithm 1, then x∗ is an infeasible stationary point for

problem (1.1).
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Proof. Let vmin := min{vj : (vj , fj) ∈ Fk′′} ≡ min{vj : (vj , fj) ∈ Fk and k ≥ k′′}, where the

second equality holds since by assumption k ∈ Sp for all k ≥ k′′ and the filter is never expanded

when k ∈ Sp. It follows from Lemma 3.1 that vmin > 0. But then if there was a feasible limit point

x∗, there must be iterates xk, k > k′′ that are arbitrarily close to feasibility, and thus ultimately

one such that xk is acceptable to Fk. Thus line 21 of Algorithm 1 implies that there will be an

iterate k > k′′ for which k /∈ Sp which contradicts (4.19). Thus, all limit points are infeasible. It

follows from this fact, Lemma 4.10, and Lemma 2.1 that all limit points are infeasible stationary

points.

Case 2: k ∈ So for all k sufficiently large

In this case, there exists k′′ such that

k ∈ So for all k ≥ k′′ ≥ k′, (4.23)

where k′ is defined in (4.11). We begin by showing that our feasibility measure converges to zero.

Lemma 4.12 If Assumptions 4.1–4.4, (4.11), and (4.23) hold, then limk→∞∆ℓv(ssk;xk) = 0.

Proof. For a contradiction, suppose that there exists ǫ′′ > 0 and an infinite subsequence

S ′′ := {k ≥ k′′ : ∆ℓv(ssk;xk) ≥ ǫ′′} ⊆ So,

where we have used k′′ defined in (4.23). It then follows from the definition of So, the o-pair

(αk, ŝk) selected in Algorithm 1, (2.32b), (4.11), Lemma 4.5, (2.32a), (2.15), and part (ii) of

Lemma 4.8 that

f(xk)− f(xk + αkŝk) ≥ γfαkρ
f
k ≥ γfαk min

{

Cρ∆ℓf (sk;xk)
2, 1

2∆ℓf (sk;xk)
}

≥ γfαk min
{

Cρ

[

γv∆ℓv(sk;xk)
]2
, 1
2γv∆ℓv(sk;xk)

}

≥ γfαk min
{

Cρ

[

γvηv∆ℓv(ssk;xk)
]2
, 1
2γvηv∆ℓv(ssk;xk)

}

≥ γfαF min
{

Cρ

[

γvηvǫ
′′
]2
, 1
2γvηvǫ

′′
}

for all k ∈ S ′′,

for some αF > 0. Similarly, for k′′ ≤ k ∈ So \ S ′′, it follows from (2.32), (2.15), and (2.26) that

f(xk)− f(xk + αkŝk) ≥ γfαkρ
f
k ≥ γfαk min

{

γv∆ℓv(sk;xk), ∆qf (scfk ;xk,Hk)
}

≥ 0.

Combining the two previous inequalities with the definition of k′′ yields f(xk) → −∞, which

contradicts the fact that f is bounded as a consequence of Assumptions 4.1 and 4.2. This proves

the result.

We now show that feasible limit points are also first-order solutions of the penalty function.

Lemma 4.13 Suppose that Assumptions 4.1–4.4, (4.11), and (4.23) hold. If x∗ = limk∈S xk for

some subsequence S and v(x∗) = 0, then limk∈S ∆qφ(spk;xk, Bk, σ̄) = 0.

Proof. Suppose that there exists a constant ǫ′′ > 0 and an infinite subsequence

S ′′ := {k ∈ S : k ≥ k′′ : ∆qφ(spk;xk, Bk, σ̄) ≥ ǫ′′},
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where k′′ is defined in (4.23). It follows from line 34 of Algorithm 1, (4.11), and (4.23) that

∆qφ(sk;xk, Bk, σ̄) ≥ ηφ∆qφ(spk;xk, Bk, σ̄) ≥ ηφǫ
′′ for k ∈ S ′′. (4.24)

From (2.5) and (2.15), we know that v(xk) ≥ ∆ℓv(sk;xk) ≥ ηv∆ℓv(ssk;xk) ≥ 0 for all k, which

may be combined with limk∈S v(xk) = v(x∗) = 0 (holds by assumption) to conclude that

∆ℓv(sk;xk) ≤
ηφǫ

′′

σ̄ + γv
for k ∈ S sufficiently large, (4.25)

where γv ∈ (0, 1) is defined in (2.32a). It follows from (2.7), (2.8), (4.24), Bk ≻ 0, and (4.25) that

∆ℓf (sk;xk) ≥ 1
2s

T
kBksk − σ̄∆ℓv(sk;xk) + ηφǫ

′′ > ηφǫ
′′ − σ̄∆ℓv(sk;xk)

≥ ηφǫ
′′ − σ̄

ηφǫ
′′

σ̄ + γv
=

γvηφǫ
′′

σ̄ + γv
=: ǫf > 0 for k ∈ S ′′ sufficiently large. (4.26)

Combining this with part (iii) of Lemma 4.8, we know that there exists some αf > 0 such that

(α, sk) satisfies (2.32b) for all k ∈ S ′′ sufficiently large and α ∈ (0, αf ], since by assumption

So = Sv ∪ So ∪ Sb for k ≥ k′′.

Next, we define

Φk := min
(vi,fi)∈Fk

{

max
[

vi − αiηv∆ℓv(ssi ;xi), βvi
]

}

> 0, (4.27)

where Fk is the kth filter. The fact that Φk > 0 follows since vi > 0 for all (vi, fi) ∈ Fk as a

consequence of Lemma 3.1. Moreover, it follows from (4.23) that Fk ≡ Fk′′ for all k ∈ S ′′ so that

Φk ≡ Φk′′ > 0 for all k ∈ S ′′. Now, pick ǫv > 0 such that Φk′′ − CvM
2
s ≤ ǫv < Φk′′ and consider

α such that

0 < α ≤ Φk′′ − ǫv

CvM2
s

≤ 1. (4.28)

It then follows from Lemma 4.3, the fact that limx∈S v(xk) = 0, (2.15), (4.23), and (4.28), that

v(xk + αsk) ≤ v(xk)− α∆ℓv(sk;xk) + α2Cv ‖sk‖22 ≤ ǫv + α2CvM
2
s

≤ ǫv + αCvM
2
s ≤ ǫv +

Φk′′ − ǫv

CvM2
s

CvM
2
s = Φk′′ for all k ∈ S ′′ sufficiently large.

Thus, xk +αsk is acceptable to Fk ≡ Fk′′ for all α satisfying (4.28) and k ∈ S ′′ sufficiently large.

Combining the above, (4.23), and the structure of Algorithm 1, we conclude that

αk ≥ min

{

γ
Φk′′ − ǫv

CvM2
s

, γαf , 1

}

=: αmin > 0 for all k ∈ S ′′ sufficiently large, (4.29)

where γ ∈ (0, 1) is the backtracking parameter used in Algorithm 1. It then follows from (4.23),

(2.32b), (2.15), Lemma 4.5, (2.32a), (4.29), and (4.26) that

f(xk)− f(xk + αkŝk) ≥ γfαkρ
f
k ≥ γfαk min

[

Cρ∆ℓf (sk;xk)
2, 1

2∆ℓf (sk;xk)
]

≥ γfαmin min
[

Cρ

(

ǫf
)2
, 1
2ǫ

f
]

> 0 for all k ∈ S ′′ sufficiently large.

(4.30)

However, for all k ∈ So, it follows from (2.32b), (2.32a), (2.15), and (2.26) that f(xk) − f(xk +

αkŝk) ≥ 0. This observation combined with (4.30) implies that limk→∞ f(xk) = −∞, which
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contradicts the fact that f is bounded as a consequence of Assumptions 4.1 and 4.2. This

completes the proof.

We now show that limit points are either infeasible stationary points or KKT points for

problem (1.1).

Theorem 4.14 Suppose that Assumptions 4.1–4.4, (4.11), and (4.23) hold. If x∗ is a limit point

of {xk}, then either

(i) x∗ is an infeasible stationary point; or

(ii) x∗ is a KKT point for problem (1.1).

Proof. Suppose that limk∈S xk = x∗ for some subsequence S. It follows from Lemma 4.12

that limk→∞∆ℓv(ssk;xk) = 0 so that if v(x∗) > 0, then x∗ is an infeasible stationary point (see

Definition 2.1). Otherwise, we have that v(x∗) = 0. In this case, it follows from Lemma 4.13

and (4.11) that limk∈S ∆qφ(spk;xk, Bk, σ̄) = 0. It follows from this fact, v(x∗) = 0, and Lemma 2.2

that x∗ is a KKT point for problem (1.1).

Case 3: |Sv ∪ Sb| =∞

We first show that the feasibility measure converges to zero along Sv ∪ Sb.

Lemma 4.15 If Assumptions 4.1–4.3 hold and |Sv ∪ Sb| =∞, then limk∈Sv∪Sb
∆ℓv(ssk;xk) = 0.

Proof. To reach a contradiction, suppose that we have the infinite subsequence

S := {k ∈ Sv ∪ Sb : ∆ℓv(ssk;xk) ≥ ǫ}

for some constant ǫ > 0. It follows from the definition of S, Lemma 2.14 and (2.28) that

vk ≤ max
{

vj −αjηv∆ℓv(ssj;xj), βvj
}

or fk ≤ fj − γmin
{

vj −αjηv∆ℓv(ssj;xj), βvj
}

(4.31)

for k ∈ S and (vj , fj) ∈ Fk; note that by construction (vk, fk) ∈ Fk+1 for all k ∈ S. Moreover,

it follows from the definitions of ∆ℓv and S that vk ≥ ∆ℓv(ssk;xk) ≥ ǫ for k ∈ S. Using

Assumptions 4.1 and 4.2 we have a subsequence S ′ ⊆ S so that

lim
k∈S′

∆ℓv(ssk;xk) = θℓ and lim
k∈S′

vk = θv for constants θv ≥ θℓ ≥ ǫ > 0.

For any ǫℓ ∈ (0, θℓ) and ǫv ∈ (0, θv), it follows that

|∆ℓv(ssk;xk)− θℓ| < ǫℓ and |vk − θv| < ǫv for all k ∈ S ′ ⊆ S sufficiently large. (4.32)

Using (4.32), the definitions of ǫℓ, ηv, ∆ℓv and S, αk ∈ (0, 1], S ′ ⊆ S, and part (ii) of Lemma 4.8

gives

0 ≤ vk − αkηv∆ℓv(ssk;xk) < vk − αFηv(θℓ − ǫℓ) ≤ β2vk for all k ∈ S ′ sufficiently large (4.33)

and some αF > 0, where

β2 :=
(θv + ǫv)− αFηv(θℓ − ǫℓ)

(θv + ǫv)
∈ (0, 1)
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and β2 may be forced to lie in (0, 1) by choosing ǫv sufficiently close to zero and ǫℓ sufficiently

close to θℓ. Now define β∗ := max{β2, β} ∈ (0, 1),

ǫ∗ = min

{

1− β∗

1 + β∗
θv, ǫv

}

> 0,

and the subsequence S ′′ = {k ∈ S ′ : |vk − θv| < ǫ∗} so that

2β∗

1 + β∗
θv < vk <

2

1 + β∗
θv for all k ∈ S ′′ ⊆ S ′ sufficiently large. (4.34)

Given k ∈ S ′′, define k+ ∈ S ′′ to be the successor to k in S ′′. It then follows from (4.34), the

definition of β∗, and (4.33) that

vk+ >
2β∗

1 + β∗
θv > β∗vk = max{β2, β}vk ≥ max

{

vk − αkηv∆ℓv(ssk;xk), βvk
}

for all k ∈ S ′′.

Since S ′′ ⊆ S ′ ⊆ S, it follows from the previous inequality, the definition of k+, the fact that

(vk, fk) ∈ Fk+ , (4.31), the definition of ∆ℓv(ssk;xk), αk ∈ (0, 1], ηv ∈ (0, 1), β ∈ (0, 1), γ ∈ (0, 1),

θv > ǫv ≥ ǫ∗ and the definition of S ′′ that

fk − fk+ ≥ γmin
{

vk − αkηv∆ℓv(ssk;xk), βvk
}

= γmin
{

(1− αkηv)vk + αkηv
∥

∥[c(xk) + J(xk)s
s
k]

−
∥

∥

1
, βvk

}

≥ γmin{1− αkηv, β}vk ≥ γmin{1− ηv, β}(θv − ǫ∗) > 0 for all k in S ′′.

Summing over k ∈ S ′′, we deduce that {fk}k∈S′′ → −∞, which contradicts Assumptions 4.1

and 4.2.

We now prove that our optimality measure for φ converges to zero along a certain subsequence.

Lemma 4.16 Suppose that Assumptions 4.1–4.4 and (4.11) hold, and that |Sv ∪ Sb| =∞.

(i) If |Sv| =∞ and limk∈Sv
xk = x∗ for some x∗ satisfying v(x∗) = 0, then

lim
k∈Sv

∆qφ(spk;xk, Bk, σ̄) = 0.

(ii) If |Sv| <∞ and limk∈Sb
xk = x∗ for some x∗ satisfying v(x∗) = 0, then

lim inf
k∈Sb

∆qφ(spk;xk, Bk, σ̄) = 0.

Proof. We first prove part (i). To obtain a contradiction, suppose that there exists the

subsequence

S ′ := {k ∈ Sv : k ≥ k′ and ∆qφ(spk;xk, Bk, σ̄) ≥ ǫ′}
for some constant ǫ′ > 0 and k′ defined in (4.11). It then follows from line 34 of Algorithm 1 that

∆qφ(sk;xk, Bk, σ̄) ≥ ηφ∆qφ(spk;xk, Bk, σ̄) ≥ ηφǫ
′ for k ∈ S ′. (4.35)

Then, since v(x∗) = 0 by assumption, we may use (4.35) (analogous to (4.24)) and follow the

same steps that led to (4.26) to show that

∆ℓf (sk;xk) ≥ ǫf ≥ γv∆ℓv(sk;xk) for k ∈ S ′ sufficiently large and some ǫf > 0,
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where the second inequality follows from limk∈Sv
xk = x∗, v(x∗) = 0, and the definition of ∆ℓv.

Thus, (2.31) does not hold and implies that k /∈ Sv. This is a contradiction and proves part (i).

We now prove part (ii), where |Sv| <∞ = |Sb|. To obtain a contradiction, suppose that

∆qφ(spk;xk, Bk, σ̄) ≥ ǫ′ for k ∈ Sb sufficiently large

and some constant ǫ′ > 0. It then follows from line 34 of Algorithm 1 that

∆qφ(sk;xk, Bk, σ̄) ≥ ηφ∆qφ(spk;xk, Bk, σ̄) ≥ ηφǫ
′ for k ∈ Sb sufficiently large. (4.36)

Since (4.36) is analogous to (4.35), we may again conclude as above that

∆ℓf (sk;xk) ≥ ǫf ≥ γv∆ℓv(sk;xk) for k ∈ Sb sufficiently large and some ǫf > 0. (4.37)

Using (4.37), limk∈Sb
v(xk) = v(x∗) = 0, and part (iii) of Lemma 4.8, we may conclude that there

exists αf > 0 such that (α, sk) satisfies (2.32b) for all α ∈ (0, αf ] and k ∈ Sb sufficiently large.

Now, if αk → 0 along some subsequence S ′b ⊆ Sb, then it follows from the previous sentence and

(4.37) that (αk, sk) satisfies (2.32a) and (2.32b) for all k ∈ Sb sufficiently large. We now show

that xk + αksk is also acceptable to the filter Fk for all k ∈ S ′b sufficiently large.

To this end, let (vi, fi) ∈ Fk for some k ∈ S ′b. It then follows from Lemma 2.14 that either vk ≤
max

{

vi − αiηv∆ℓv(ssi ;xi), βvi
}

or fk ≤ fi − γmin
{

vi − αiηv∆ℓv(ssi ;xi), βvi
}

. In this first case,

it follows from the definition of a b-pair that v(xk+αksk) ≤ vk ≤ max
{

vi−αiηv∆ℓv(ssi ;xi), βvi
}

for all k ∈ Sb. In the second case, we have from the fact that (2.32b) holds for k ∈ S ′b sufficiently

large (recall that αk → 0 on S ′b), (4.37), and Lemma 4.5 that f(xk+αksk) ≤ fk ≤ fi−γmin
{

vi−
αiηv∆ℓv(ssi ;xi), βvi

}

. Thus, in either case we have that
(

v(xk+αksk), f(xk+αksk)
)

is acceptable

to the single element filter {(vi, fi)} for all k ∈ S ′b sufficiently large. Since this element (vi, fi)

of the filter Fk was arbitrary, we may conclude that
(

v(xk + αksk), f(xk + αksk)
)

is, in fact,

acceptable to the filter Fk for all k ∈ S ′b sufficiently large.

To summarize, we have shown that (αk, sk) is an o-pair for k ∈ S ′b sufficiently large. This

is a contradiction since Algorithm 1 would have labeled such an iterate as an o-iterate, not a

b-iterate. Thus, there exists αb such that αk ≥ αb > 0 for all k ∈ Sb sufficiently large. Combining

this with (2.1), (2.29), v(·) ≥ 0, Lemma 4.7, (2.7), (2.15), and (4.37) gives

f(xk)− f(xk + αkŝk) = φ(xk; σ̄)− φ(xk + αkŝk; σ̄)− σ̄
(

v(xk)− v(xk + αkŝ)
)

≥ γφαkρ
φ
k − σ̄v(xk)

≥ γφαb min
[

Cρ∆ℓφ(sk;xk, σ̄)
2, 1

2∆ℓφ(sk;xk, σ̄)
]

− σ̄v(xk)

= γφαb min
[

Cρ

(

∆ℓf (sk;xk)
2 + 2σ̄∆ℓf (sk;xk)∆ℓv(sk;xk) + σ̄2∆ℓv(sk;xk)

2
)

,

1
2

(

∆ℓf (sk;xk) + σ̄∆ℓv(sk;xk)
)

]

− σ̄v(xk)

≥ γφαb min
[

Cρ∆ℓf (sk;xk)
2, 1

2∆ℓf (sk;xk)
]

− σ̄v(xk)

≥ γφαb min
[

Cρ

(

ǫf
)2
, 1
2ǫ

f
]

− σ̄v(xk) for k ∈ Sb sufficiently large.

(4.38)

Since |Sb| =∞ > |Sv|, we may define k+ as the first iteration greater than k such that k+ ∈ Sb∪So.
It then follows from the construction of Algorithm 1 and |Sv| <∞ that

if k ∈ Sb is sufficiently large, then k+ ∈ Sb ∪ So and l ∈ Sp for all k < l < k+.
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Using (2.29), αi ≥ 0, (2.19), and (2.27) we conclude that

φ(xk+1; σ̄)− φ(xk+ ; σ̄) =
k+−1
∑

i=k+1

φ(xi; σ̄)− φ(xi + αiŝi; σ̄) ≥
k+−1
∑

i=k+1

γφαiρ
φ
i

=

k+−1
∑

i=k+1

γφαimin
[

∆ℓφ(si;xi, σ̄), ∆qφ(scφi ;xi,Hi, σ̄)
]

≥ 0 for k ∈ Sb sufficiently large,

which may be combined with (2.1), v(·) ≥ 0, and (2.34) to conclude that

f(xk+1)− f(xk+) ≥ σ̄
(

v(xk+)− v(xk+1)
)

≥ −σ̄v(xk+1) > −σ̄v(xk) for k ∈ Sb sufficiently large.

(4.39)

It then follows from (4.38) and (4.39) that

f(xk)− f(xk+) =
(

f(xk)− f(xk + αkŝk)
)

+
(

f(xk+1)− f(xk+)
)

> γφαbmin
[

Cρ

(

ǫf
)2
, 1
2ǫ

f
]

− 2σ̄v(xk) for k ∈ Sb sufficiently large. (4.40)

Next, since limk∈Sb
v(xk) = 0 we know that

v(xk) ≤
1

4σ̄
γφαbmin

[

Cρ

(

ǫf
)2
, 1
2ǫ

f
]

for k ∈ Sb sufficiently large,

which may be combined with (4.40) to deduce that

f(xk)− f(xk+) >
1
2γφαb min

[

Cρ

(

ǫf
)2
, 1
2ǫ

f
]

=: ǫv > 0 for k ∈ Sb sufficiently large. (4.41)

If we define k̂+ to be the first b-iteration greater than k (thus, k̂+ ≥ k+), it follows from (4.41),

the fact that Algorithm 1 does not allow further p-iterations until it has its next b-iteration, and

the fact that the objective f is decreased during o-iterations that f(xk)− f(x
k̂+

) > ǫv for k ∈ Sb
sufficiently large. Since |Sb| =∞, this implies that f(xk)→ −∞, which contradicts the fact that

f is bounded as a consequence of Assumptions 4.1 and 4.2. This proves the result.

We now show that limit points of {xk}Sv∪Sb
are infeasible stationary or KKT point for prob-

lem (1.1).

Theorem 4.17 Suppose that the Assumptions 4.1–4.4, (4.11), and |Sv ∪ Sb| = ∞ hold. Then,

there exists a limit point x∗ of {xk}Sv∪Sb
such that either

(i) x∗ is a KKT point of problem (1.1) or

(ii) x∗ is an infeasible stationary point.

Proof. From Assumptions 4.1 and 4.2 we that there exists a limit point x∗ of {xk}Sv∪Sb
. First,

if v(x∗) > 0, then it follows from Lemma 4.15 and Lemma 2.1 that x∗ is an infeasible stationary

point, which is part (ii) of this theorem. Second, if v(x∗) = 0 and |Sv| =∞, then it follows from

part (i) of Lemma 4.16 and Lemma 2.2 that x∗ is a KKT point of problem (1.1). This is case (i)

of this theorem. Finally, if v(x∗) = 0 and |Sv| <∞ (so that |Sb| =∞), then it follows from part

(ii) of Lemma 4.16 and Lemma 2.2 that x∗ is a KKT point of problem (1.1), which once again is

case (i) of the theorem.
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4.2 Convergence analysis under unbounded weighting parameter

We now consider the situation when the weighting parameter increases without bound, i.e, that

lim
k→∞

σk =∞. (4.42)

Our analysis begins with the following lemma, which is similar to [7, Lemma 3.8].

Lemma 4.18 Suppose that Assumptions 4.1–4.4 are satisfied, (4.42) holds, x∗ is a limit point

of {xk} satisfying v(x∗) > 0, and ∆ℓv(ss∗;x∗) > 0, where ss∗ is the solution to

minimize
(s,r)∈Rn+m

eTr subject to c(x∗) + J(x∗)s+ r ≥ 0, r ≥ 0, ‖s‖∞ ≤ δ,

for some δ ∈ [δmin, δmax]. Then, along any subsequence {xk}k∈K that converges to x∗, the weighting

parameter is updated only a finite number of times.

Proof. We begin by defining

sφk(σ) := argmin
s∈Rn

qφ(s;xk, Bk, σ) (4.43)

and

µ := µ(σ) :=

(

1− ησ
ηv

)

σ < σ, (4.44)

where we used the fact that 0 < 1− ησ/ηv < 1 holds since 0 < ησ < ηv < 1 is defined in (2.18).

Using the fact that ∆qφ(sφk(µ);xk, Bk, µ) ≥ 0, (2.8), and the definition of µ = µ(σ), we can

see that

∆qφ(sφk(µ);xk, Bk, µ) = ∆qf (sφk(µ);xk, Bk) +

(

1− ησ
ηv

)

σ∆ℓv(sφk(µ);xk)

= ∆qφ(sφk(µ);xk, Bk, σ) −
ησ
ηv

σ∆ℓv(sφk(µ);xk) ≥ 0 for µ = µ(σ) and all σ > 0,

which implies that

∆qφ(sφk(µ);xk, Bk, σ) ≥
ησ
ηv

σ∆ℓv(sφk(µ);xk) for µ = µ(σ) and all σ > 0. (4.45)

Since ∆ℓv(ss∗;x∗) > 0 and limk∈K xk = x∗ by assumption, it follows from [15, Theorem 3.2.8]

that there exists ǫ ∈ (0, 1) and k′ such that

∆ℓv(ssk;xk) > ǫ for all k′ ≤ k ∈ K. (4.46)

Moreover, since the Newton step −B−1
k gk minimizes qf (s;xk, Bk), it follows from Assumption 4.3

that

qf (sφk(σ);xk, Bk) ≥ qf (−B−1
k gk;xk, Bk) = fk − 1

2gk
TB−1

k gk ≥ fk −
‖gk‖22
2λmin

for all σ > 0. (4.47)

Next, it follows from (2.9), the choice δk ∈ [δmin, δmax], norm inequalities, and Assumption 4.3

that

qf (ssk;xk, Bk) ≤ fk + ‖gk‖2 δmax +
1
2λmaxδ

2
max. (4.48)
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Then, (4.47), (4.48), and Assumptions 4.1 and 4.2 imply the existence of a constant Cqf > 0 such

that

qf (ssk;xk, Bk)− qf (sφk(σ);xk, Bk) ≤ Cqf for all σ > 0. (4.49)

We now define

σcrit :=
Cqf

ǫ(1− ηv)
(

1− ησ
ηv

) > µ (σcrit) =
Cqf

ǫ(1− ηv)
> 0, (4.50)

and the associated infinite subsequence

S ′ = {k ∈ K : k ≥ k′ and σk ≥ σcrit}. (4.51)

It follows from the fact that ∆qφ(sφk(σ);xk, Bk, σ) ≥ ∆qφ(ssk;xk, Bk, σ) (by the definition of

sφk(σ)), (2.8), (4.49), (4.46), and (4.50) that

∆ℓv(sφk(σ);xk) ≥ ∆ℓv(ssk;xk)−
1

σ

(

qf (ssk;xk, Bk)− qf (sφk(σ);xk, Bk)
)

≥ ∆ℓv(ssk;xk)−
1

σ
Cqf = ∆ℓv(ssk;xk)

(

1− Cqf

σ∆ℓv(ssk;xk)

)

≥ ηv∆ℓv(ssk;xk) for σ ≥ µ(σcrit) and k′ ≤ k ∈ K. (4.52)

We may now use the definition of S ′, (4.52), the fact that sφk(σk) ≡ spk, (2.14), and (2.15) to show

that

τk = 1, sk = spk, and ∆qφ(sk;xk, Bk, σk+1) ≥ ηφ∆qφ(spk;xk, Bk, σk+1) for k ∈ S ′ (4.53)

since ηφ ∈ (0, 1) in Algorithm 1. Next, it follows from (4.53), (2.8), Bk ≻ 0, the fact that

spk ≡ sφk(σk) and spk minimizes qφ(s;xk, Bk, σk), (4.45), the fact that µ(σk) ≥ µ(σcrit) for k ∈ S ′,
and (4.52) that

∆ℓφ(sk;xk, σk) ≥ ∆qφ(spk;xk, Bk, σk) ≥ ∆qφ(sφk
(

µ(σk)
)

;xk, Bk, σk) ≥
ησ
ηv

σk∆ℓv(sφk
(

µ(σk)
)

;xk)

≥ ησ
ηv

σk
(

ηv∆ℓv(ssk;xk)
)

= σkησ∆ℓv(ssk;xk) for k ∈ S ′. (4.54)

We now conclude from (4.53), (4.54), (2.18), and the fact that the weighting parameter is only

increased in lines 12 and 34 of Algorithm 1, that σk is increased a finite number of times on K.
We now consider feasible limit points at which the MFCQ [31] holds.

Lemma 4.19 Suppose that Assumptions 4.1–4.4 are satisfied, (4.42) holds, x∗ is a limit point

of {xk} at which v(x∗) = 0 and the MFCQ holds. Then, the following hold for all xk sufficiently

close to x∗ and σk sufficiently large: (i) ∆ℓv(spk;xk) = v(xk); (ii) sk = spk; and (iii) σk is not

increased during iteration k.

Proof. We may use [7, Lemmas 3.12 and 3.13] since the proofs only used the properties of the

MFCQ, the continuity of the problem functions f and g, and the convexity of their penalty and

steering subproblems. Their subproblem [7, Equations 2.7(a–d)] is equivalent to our predictor

subproblem (2.11) and both methods minimize the same quadratic model of the penalty function.

A small difference is that our predictor subproblem is designed so that if ℓv(ssk;xk) = 0, then
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ℓv(spk;xk) = 0 as well; they satisfy this requirement by increasing their penalty parameter in

Step 4a [7, Eqn 2.11] and re-solving for a new step. Their steering subproblem [7, Equations 2.9(a–

e)] is equivalent to (2.9).

The assumptions of this lemma and [7, Lemma 3.12] imply the existence of r > 0 and k′ ≥ 0

so that

ℓv(spk, xk) = v(xk) for all k ∈ S ′, (4.55)

where S ′ := {k : ‖xk − x∗‖ ≤ r and k ≥ k′}, which proves part (i). The inequality ∆ℓv(ssk;xk) ≥
0, (4.55), and the definition of ∆ℓv imply

∆ℓv(spk;xk) ≥ v(xk)− ℓv(ssk;xk) = ∆ℓv(ssk;xk) ≥ ηv∆ℓv(ssk;xk) for k ∈ S ′,

where ηv ∈ (0, 1) is defined in (2.15). Thus, we conclude from (2.15) that τk = 1 and sk = spk for

k ∈ S ′, which proves part (ii). Finally, it follows from [7, Lemma 3.13] and the assumptions of

this lemma, that

∆qφ(spk;xk, Bk, σk) ≥ σkησv(xk) ≥ σkησ∆ℓv(ssk;xk) for k ∈ S ′, (4.56)

where the last inequality follows from the definition of ∆ℓv. It then follows from part (ii) of this

lemma, (2.8), Bk ≻ 0, and (4.56) that

∆ℓφ(sk;xk, σk) = ∆ℓφ(spk;xk, σk) ≥ ∆qφ(spk;xk, Bk, σk) ≥ σkησ∆ℓv(ssk;xk) for k ∈ S ′.

We may conclude from this inequality, (2.18), and the fact that σk will not be increased on Line 34

as a result of part (ii) of this lemma, that σk+1 = σk for k ∈ S ′, which proves part (iii).

Theorem 4.20 If Assumptions 4.1–4.4 and (4.42) hold, there is a limit point x∗ such that either

(i) x∗ is an infeasible stationary point; or

(ii) x∗ is feasible, but the MFCQ does not hold.

Proof. Let D to be the infinite index set consisting of the iterations for which the weight-

ing parameter is increased. Then, let x∗ be a limit point of {xk}k∈D, which must exist as a

consequence of Assumptions 4.1 and 4.2. First, suppose that v(x∗) > 0. It then follows from

Lemma 4.18 that if ∆ℓv(ss∗;x∗) > 0 (ss∗ is defined in Lemma 4.18), then the weighting parameter

is updated only a finite number of times along D, which is a contradiction. Therefore, we deduce

that ∆ℓv(ss∗;x∗) = 0 and consequently that x∗ is an infeasible stationary point. Second, suppose

that v(x∗) = 0. It then follows from Lemma 4.19 that if the MFCQ holds at x∗, then σk only

be increased a finite number of times along D. This is a contradiction and, therefore, the MFCQ

does not hold at x∗.

5 Conclusions

In this paper, we presented a new filter linesearch method that replaced the traditional restoration

phase with a penalty mode that systematically decreased an exact penalty function. Importantly,

we solved a single strictly convex quadratic program subproblem during each iteration that was

always feasible. Each search direction was defined as a convex combination of a steering step (a
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solution of a linear program) that represented the best local improvement in constraint violation

and a predictor step that reduced our strictly convex quadratic model of the exact penalty func-

tion. We also allowed for the computation of an accelerator step defined as a solution to a simple

equality constrained quadratic program (plus trust-region constraint) to promote fast local con-

vergence. In this manner, the trial step always incorporated information from both the objective

function and constraint violation. To further promote step acceptance, we utilized second-order

information in the computation of Cauchy steps that provided realistic measurements of the de-

crease one might expect from the nonlinear problem functions. An additional contribution was

the use of local feasibility estimates that emerged during the steering process to define a new and

improved margin (envelope) of the filter. This new definition encouraged the acceptance of steps

that make reasonable progress, but might very well be considered inadmissible by a traditional

filter. Under standard assumptions, we proved global convergence of our algorithm.

References
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[3] A. Barclay, P. E. Gill, and J. B. Rosen, SQP methods in optimal control, in Variational

Calculus, Optimal Control and Applications, R. Bulirsch, L. Bittner, W. H. Schmidt, and

K. Heier, eds., vol. 124 of International Series of Numerical Mathematics, Basel, Boston and

Berlin, 1998, Birkhäuser, pp. 207–222.
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