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A filter method with unified step

computation for nonlinear optimization

Nicholas I. M. Gould,!? Yueling Loh?® and Daniel P. Robinson®*

ABSTRACT

We present a filter linesearch method for solving general nonlinear and nonconvex optimization
problems. The method is of the filter variety, but uses a robust (always feasible) subproblem
based on an exact penalty function to compute a search direction. This contrasts traditional
filter methods that use a (separate) restoration phase designed to reduce infeasibility until a
feasible subproblem is obtained. Therefore, an advantage of our approach is that every trial step
is computed from subproblems that value reducing both the constraint violation and the objec-
tive function. Moreover, our step computation involves subproblems that are computationally
tractable and utilize second derivative information when it is available.

The formulation of each subproblem and the choice of weighting parameter is crucial for obtaining
an efficient, robust, and practical method. Our strategy is based on steering methods designed for
exact penalty functions, but fortified with a trial step convexification scheme that ensures that a
single quadratic optimization problem is solved per iteration. Moreover, we use local feasibility
estimates that emerge during the steering process to define a new and improved margin (envelope)
of the filter. Under common assumptions, we show that the iterates converge to a local first-order
solution of the optimization problem from an arbitrary starting point.
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1 Introduction
This paper considers the general nonlinear optimization problem

miniInglize f(z) subject to c(x) >0, (1.1)
zER™

where both the objective function f : R™ — R and the constraint function ¢ : R™ — R" are
assumed to be twice continuously differentiable. We seek a first-order KKT point (x,y) that

_ (9(@) = J(@)y\ _ (0
Face(z,y) = (min [c(:v),y] ) N <0> ’ (1.2)

where g(z) := Vf(z) € R" is the gradient of the objective function, J(x) := Ve(z) € R"™*™ is
the Jacobian of the constraint function, y is the Lagrange multiplier vector, and the minimum

satisfies

is taken component-wise. Our algorithm may easily handle constraints with general lower /upper
bounds, and handle equality constraints directly, i.e., do not replace them with pairs of inequality
constraints. Problems of this type arise naturally in many areas including optimal control [2, 3,
5, 22, 28], resource allocation [1, 27], solution of equilibrium models [17, 33|, and structural
engineering [4, 30], among others.

Popular methods for solving (1.1) can broadly be characterized as interior-point or active-set
methods. Interior-point algorithms [38, 40, 41] offer polynomial-time complexity bounds in many
cases and readily scale-up to problems involving millions of variables. Their main disadvantage
is the inability to use effectively a good initial estimate of a solution. In fact, many interior-
point methods immediately move the initial guess into the strict interior of the feasible region.
It is from this interior location that future iterates are forced to remain and justifies the name
“interior-point” methods; more modern “infeasible” interior-point methods avoid this defect to
some degree.

Active-set methods [8, 14, 23, 24, 25, 26, 32, 34] complement interior-point methods since they
naturally utilize information derived from a good estimate of a solution. In fact, if the optimal
active set (the set containing those constraints satisfied as equalities at a solution) was known in
advance, then problem (1.1) could be solved as an equality constrained problem and its combi-
natorial nature would be eliminated. It is precisely this property that makes active-set methods
widely used to solve the previously mentioned class of problems. The main weakness of active-set
algorithms is that each subproblem typically requires the solution of a linear or quadratic pro-
gram, which is often expensive when compared to interior-point methods that require a single
linear system solve per iteration.

In this paper we describe an active-set method that generates a sequence of iterates from
the solutions of subproblems defined by local models of the nonlinear problem functions. The
subproblems are always feasible since they are based on an exact penalty function. To ensure
that these models result in productive steps, we use steering techniques [9] to adaptively adjust
the weighting (penalty) parameter. In contrast to original steering methods, we use a step
convexification procedure similar to [] to avoid solving multiple quadratic programs during each
iteration.

To provide convergence guarantees, we must include a mechanism for determining when one
point is “better” than another. A merit (penalty) function or a filter is amongst the most common
tools used for this purpose. A merit function combines the objective function and a measure



2 N. I. M. Gould, Y. Loh and D. P. Robinson

of constraint violation into a single function, whereby their individual perceived importance
is determined by a weighting parameter. The quality of competing points is then measured
by comparing their respective merit function values. A potential weakness is that the quality
of iterates depends on the value of the weighting parameter, which can make step acceptance
sensitive to its value. In part, filter methods surfaced to mitigate this parameter dependence.
In the context of nonlinear optimization, filter methods were introduced by Fletcher, Leyffer,
and Toint [19, 20] and have since been rather popular [11, 12, 13, 18, 21, 38]. A filter views
problem (1.1) as a multi-criterion optimization problem consisting of minimizing the objective
function and minimizing some measure of the constraint violation, with certain preference given
to the latter. Roughly, a trial iterate is then considered acceptable if it has a smaller value of
either the objective function or the constraint violation compared to the previously encountered
points. Consequently, it is often the case that filter methods accept more iterates and perform
better. It should be mentioned, however, that every known provably convergent filter method has
a weak dependence between these two criteria that is embedded in the step acceptance criteria.
In fact, this observation partly motivated the work on flexible penalty methods by Curtis and
Nocedal [16]. They describe how a single element filter is essentially equivalent to the union
of points acceptable to the ¢1-penalty function defined over an interval of weighting parameter
values.

A great disadvantage of filter methods is that they (traditionally) require the use of a restora-
tion phase. A restoration phase is (typically) entered when the subproblem used to compute trial
steps is infeasible; some algorithms, e.g., [40], enter the restoration phase for additional reasons.
When this situation occurs, the restoration phase is triggered and a sequence of iterates focused
on reducing the constraint-violation is computed until the desired subproblem becomes feasible.
During this phase, the objective function is essentially ignored, which is highly undesirable from
both a practical and computational perspective.

Our active-set method is globalized by using a filter, but never needs to enter a (traditional)
restoration phase. This is accomplished by using subproblems that are always feasible and, in
certain instances, allowing for the acceptance of iterates that decrease both the exact penalty
function and the constraint violation. In essence, we replace an undesirable restoration phase
with an attractive penalty phase. Thus, we combine ideas from both filter and penalty methods to
formulate a robust and effective method; we believe this further builds upon the basic observations
in [16].

This paper contains three main contributions. First, we present a filter method that avoids a
traditional and highly undesirable restoration phase. To this end, we utilize subproblems based
on exact penalty functions that are always feasible and formed from models of both the objective
function and constraint violation. Second, our method incorporates second derivative information
without requiring global minimizers of nonconvex constrained subproblems (c.f. [18]). Our step
computation is most similar to [24, 26], which was described in the context of line-search and
trust-region penalty methods. Third, we use local feasibility estimates that emerge during the
steering step computation to define a new and improved margin (envelope) of the filter. This
allows us to define an adaptive and practical margin.

Our work is not the only method designed to resolve weaknesses in traditional filter methods.
Chen and Goldfarb [10] presented an interior point method that uses two penalty functions to
determine step acceptance: a piecewise linear penalty function whose break points are essentially
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elements in the filter, and the fo-penalty function. Under this scheme, a trial step is accepted if
it provides sufficient reduction for either penalty function.

The remainder of this paper is organized as follows. In Section 2 we describe the algorithm
in detail and in Section 3 prove that it is well-posed. In Section 4 we provide convergence results

and conclude with final remarks in Section 5.

2 A filter sequential quadratic programming method

In this section we describe our new filter sequential quadratic programming method, FiSQP. The
algorithm is iterative and relies on computing trial steps from carefully constructed subproblems.
These subproblems and the resulting trial steps are explained in Sections 2.1-2.6. In Section 2.7
we introduce the filter construct and related terminology; we emphasize that acceptability to the
filter is only a necessary condition for accepting a trial iterate. A full statement and description
of the algorithm is given in Section 2.8.

Our step computation is based on the ¢;-penalty function

¢(x;0) = f(2) + ov(z), (2.1)

where the constraint violation at x is defined by

“||;, with [y]” := max(—~y,0). (minimum is component-wise) (2.2)

and o is a positive weighting parameter. Appropriate linear and quadratic models of ¢ are given
by
00(s;z,0) =0 (s;2) + olV(s;2) and ¢%(s;z, M, 0) := ¢/ (s;2, M) + ol?(s; ), (2.3)
where
(siz) = f(x) +gx)Ts and ¢f(s;2, M) =0/ (s;2) + %STMS (2.4)

are linear and quadratic model approximations, respectively, of the objective function f for a
given symmetric matrix M € R™ ", and

' (s;2) = ||[e(x) + J(@)s] |,

is a piecewise-linear approximation to the constraint violation function v. Using these models we
may predict the change in v with the function

AP (si) i= £(02) — € (532) = e@)] [, — [ef@) + T@)s), (25)
the change in f with the functions
Al (s;2) == 07 (0;2) — €/ (s;2) = —g(2)Ts  and (2.6a)
Aq! (s;2, M) := ¢/ (0;2, M) — ¢/ (s;2, M) = At/ (s;z) — tsTMs, (2.6b)
and the change in the penalty function ¢ with the functions
AL (s;2,0) == L2(0;x,0) — £9(s;2,0) = Al (5;2) + 0 AL°(s;2)  and (2.7)

Ag®(s;2, M, 0) = q®(0;2, M,0) — ¢®(s;2,M,0) = A®(s;2,0) — %STMS.

For the remainder of this section, let (zx, yx) denote the current estimate of a solution to (1.1).
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2.1 The steering step s;

In order to strike a proper balance between reducing the objective function and the constraint
violation, we compute a steering step s; as a solution to the linear program

minimize e’r subject to cp 4+ Jgs+7 >0, >0, sl < Ok, (2.9)
(s,r)ERnH™

where ¢ = c(xg), Jp = J(2k), Ok € [Omins Omax), a0d 0 < i < paxe < 00. Problem (2.9) is

equivalent to the nonsmooth problem

mi?ei]%llize 0(s;x) subject to ||s]|,, < O, (2.10)
since s solves (2.10) if and only if (s,7) solves (2.9), where r = max(—(cx + Jxs),0). Since
°(0;2x) = v(xg), €Y is a convex function, and s = 0 is feasible for (2.10), it follows from (2.5)
that Al”(si;xp) > 0. The quantity A¢¥(sj;xy) is the best local improvement in linearized
constraint feasibility for steps of size d.

All methods for nonconvex optimization may converge to an infeasible point that is a local
minimizer of the constraint violation as measured by v. Points of this type are known as infeasible

stationary points, which we now define by utilizing the steering subproblem.

Definition 2.1 (Infeasible stationary point) The vector x' is an infeasible stationary point
if v(z') > 0 and AL°(s";x") = 0, where s = argmincgn £¥(s;z") subject to ||s|, < § for some
0> 0.

2.2 The predictor step s

The predictor step is computed as the unique solution to one of the following strictly convex
minimization problems:

V4 SER™

{argmin fe + gls + %STBkS subject to c¢g + Jis > 0, if AlY(si; k) = v(wk), (2.11a)
s, =

argmin q¢(s; Tk, Bk, 0k), otherwise, (2.11b)
seR™

where o, > 0 is the kth value of the penalty parameter, fr, = f(x), gr = Vf(zk), cx = c(xg), Jp =

Ve(zr), By is a positive-definite matrix that we are free to choose such that By, ~ V2, L(zk, yz),

and the Lagrangian L is defined by L(x,y) = f(z)—c(z)"y. Analogous to the steering subproblem,

the nonsmooth minimization problem (2.11b) is equivalent to the smooth problem

grel%bigleiﬁg fr+ ggs + %STBks + opelr subject to ¢+ Jgs+r >0, >0, (2.12)
which is the problem solved in practice. We use y;’ to denote the Lagrange multiplier vector for
the constraint ¢ + Jis > 0 in (2.11a) and ¢, + Jis +r > 0 in (2.12) (equivalently (2.11b)). A
trivial choice for the positive-define matrix is By, = I, but other choices based on quasi-Newton
updates such as BFGS [35] or L-BFGS [29] are also possible.

The next result shows how convergence to KKT points may be deduced from the predictor
problem.
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Lemma 2.2 Suppose that x, satisfies

v(ry) =0 and 0= arg%lin fzy) + g(ze) s + %STBS subject to c(xy) + J(x4)s >0 (2.13)
seR™

for some positive definite matriz B, and let y, denote the associated Lagrange multiplier vector.
Then, it follows that (x.,y«) is a KKT point for problem (1.1) as defined by (1.2).

Proof. Since B is positive definite, s = 0 is the unique solution to the optimization problem
in (2.13). It then follows from the first-order necessary optimality conditions at s = 0 that

g(v.) = J(z:)Tys, and min (c(z,),y.) =0,
where y, is the Lagrange multiplier for the constraint ¢(z,) + J(x4)s > 0. It now follows from
Definition 1.2 that (z,,ys) is a KKT point for problem (1.1). 0
2.3 The search direction s,

The steering direction sj provides a measure of local progress in infeasibility. Since we desire a
search direction s that makes progress towards feasibility, we define

Sk 1= (1 - Tk)SZ + Tksi (2.14)
where 7, is the largest number on [0, 1] such that
AL (s xp) = nuALY(s3;2x) > 0 for some 7, € (0,1). (2.15)

The next lemma shows that 7, > 0 when x; is not an infeasible stationary point. This is
important since the step s then has a significant contribution from sg, which was computed from
a subproblem that modeled both the objective and constraint functions; this contrasts traditional
filter methods when restoration is entered since the subproblem formulations then focus solely
on the constraint violation.

Lemma 2.3 If x is not an infeasible stationary point as given by Definition 2.1, then 1 > 0.

Proof. If v(xy,) = 0, then A¢¥(s;;x;) = 0. It then follows from (2.11a) that ¢ + Jis, > 0,
which in turn implies that A¢¥(s}; ) = 0. Thus, the choice 75, = 1 satisfies (2.14) and (2.15).
Now suppose that v(xy) > 0 and define

s(r) =1 —71)si +7sh

so that lim, o s(7) = s7. It then follows from continuity of A¢”(- ;) and the fact that AC¥(s7; xy) >
0 since x}, is not an infeasible stationary point by assumption, that

h?()l AL (s(1);ar) = AL (s; k) > 0.

Therefore, there exists 7/ > 0 such that

| AL (s(7); ) — Af”(sz;xkﬂ < (1 —ny,)AL(s5;21) for all 7 € [0,7]
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since 1, € (0,1) in (2.15) and A¢¥(s7;xy) > 0. However, this implies that
AL (s(7); xk) = nuAL°(s3; @) for all 7 € [0,7'],

which guarantees that ¢, > 7/ > 0. 0
We now proceed to show that if A¢Y(si;xx) > 0, then sy, is a descent direction for v(-). We
require the definition of the directional derivative of a function.

Definition 2.4 The directional derivative of a function h(-) in the direction d and at the point
x is defined (when it exists) as

.. h(z+td) — h(x)
[Dgh](z) := l;fél " .

We now show that the directional derivative is bounded by the negative of the change in its
model.

Lemma 2.5 At any point x and for any direction d, it follows that
[Davl(x) < —AL(ds ),
where the function Dgv is the directional derivative of v in the direction d.

Proof. Since ¢V is a convex function and ¢¥(0;z) is finite, it follows from [37, Theorem 23.1]

that
(td; x) — £°(0; )

t
is monotonically non-decreasing with ¢, [Dg¢"](0; z) exists, and

[Dat)(0;2) = inf F(td; ) - f0:z). (2.16)

It then follows from [7, Lemma 3.1], (2.16) and the definition of A¢" that
[Dgv|(z) = [Dgl’](0;z) < 0°(d;x) — £°(0;2) = —ALY(d; x),

which is the desired result. O
Thus the search direction sj is a descent direction for v when our infeasibility measure is

positive.
Lemma 2.6 If AlY(sy;x) > 0, the direction sy, is a descent direction for v at the point xy,, i.e.,
[Ds, v](xr) < —AL(sp;xr) < —npALY(s; ) < 0, where 0, is defined in (2.15).
Proof. 1t follows directly from Lemma 2.5, (2.15), and A¢Y(s7;x)) > 0 that
D)) < AL (s55) < A (s 2) < 0,

which implies that s, is a descent direction for v at the point xj. 0
We now consider the case when our infeasibility measure is zero.

Lemma 2.7 Suppose AlY(sy;xy) =0, then one of the following must occur:
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(1) v(xg) > 0 and xy is an infeasible stationary point; or
(ii) v(zk) = 0 and AL (sy; zp, 0) > %ngBksg for all 0 < o < 0.

Proof. If v(xy) > 0, then by Definition 2.1, xj is an infeasible stationary point which is part
(i). Now, suppose that v(x) = 0. As in the proof of Lemma 2.3, it follows that

Al(sp;x) =0, 7,=1, and s, =s). (2.17)
We may then use the definition of s} in (2.11a), (2.17), and (2.6b) to conclude that
0 < Ag?(sh; w, Br, o) = Aq? (sh; w, By) = AL (s} ) — %siTBksi,
which yields A¢/ (sV; ) > %siTBksi. Combining this with (2.7) and (2.17), we have that

A€¢(sk;xk,0) = Aéf(sk; xg) + o AL (sg; xx)

= Aéf(sk; xp) = Aff(sz;xk) > %SZTBksz for all finite o,

which completes the proof. 0

2.4 Updating the weighting parameter

By design, the trial step sp is a descent direction for v when local improvement in feasibility
is possible. Since the weighting parameter provides a balance between reducing the objective
function and the constraint violation, it makes sense to adjust the weighting parameter so that
sk is also a descent direction for ¢. This is accomplished by defining

ok if AL (s, 0%) > opne AL (s8; zy)

— AU (sp5zi) :
rizn) 1o ALY (5725 otherwise

Ok+1 =

max {Uk + Uinca APv
(2.18)
for some oy, > 0 and 7, satisfying 0 < 7, < 1, < 1, where 7, is defined in (2.15).

Lemma 2.8 If xy is not an infeasible stationary point, then the parameter update (2.18) is well
defined and ensures that

AL (S Th, Opg1) > Opp 1Mo AL (s5525) >0 for all k > 0. (2.19)

Proof. If A@d’(sk; Tk, 0%) > 0pNe ALY(s7; xy), then the desired result immediately follows from
the update o1 = 0. Thus, for the remainder of the proof we assume that

AL (sg; T, o) < Opnle AL (555 21). (2.20)

Suppose, for a contradiction, that A¢¥(s7;xy) = 0. Since xj, is not an infeasible stationary point
by assumption, it follows that v(xg) = 0. Then, it follows from Lemma 2.7 and the fact that By
is positive definite by assumption that A¢?(sg;ap, op) > %SZTBksz > 0, which contradicts (2.20)
since Al¥(si;x) = 0. Thus, we conclude that A¢Y(si;xy) > 0. Combining this with the
choice 0 < 1y < 1, < 11in (2.18) and (2.15) we conclude that AlY(sp;xy) > 0, ALY (s xy) >
NeALY(s3;xx) > 0, and thus

Ne ALY (s xk) — AL (s x) < 0. (2.21)
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It then follows from (2.7), (2.20), (2.21), and the fact that o > 0 that
Agf(sk; .%'k) = A£¢(3k; Tl O’k) — O’kAgv(Sk; xk) < Ok [UUAKU(SZ; .%'k) — Agv(sk; xk)] < 0. (2.22)

Inequalities (2.21) and (2.22) imply that the penalty parameter update (2.18) is well-defined and
positive.
It now follows from (2.18) that

o > —Agf(sk; .%'k)
ktl = AL (sp; w5) — Ne ALY (s5; 7))

which may then be combined with (2.21) to yield
T 1M AL (s7508) < AL (1 23) + opp 1 AL (555 21) = ALP (535 28, 05 11),

which is the desired result (2.19). 0
The next result will allow us to show that s, is a descent direction for ¢ under certain
assumptions.

Lemma 2.9 For any given value of the penalty parameter o, point x, direction d, and positive-
definite matrixz B, it follows that

[Dyo)(z;0) < —AL(d;z,0) < —Ag®(d;x, B, o).

Proof. Linearity of the directional derivative, (2.6a), Lemma 2.5, (2.7), (2.8), and the fact
that By is positive definite by choice, imply that

[Da¢l(;0) = [Daf](x) + o[Dgv](z) = —g(x)"d + o[Dgv)(z) < —Al (d; 2) — 0 AL"(d; 7)
= —Al(d;x,0) = —A¢®(d;x, B,o) — Ld" Bd < —A¢®(d;x, B, o),

which is the desired result. O

In most situations, we may now show that s is a descent direction for the penalty function.

Lemma 2.10 If xy is neither an infeasible stationary point nor a KKT point for problem (1.1),
then the direction sy is a descent direction for ¢(x;0ox11) at the point xy, i.e.,

(D, dl(zk; 0p41) < —A€¢(sk;xk,ak+1) < 0.

Proof. If AL’(si;xy) > 0, then xj cannot be an infeasible stationary point, and it follows
from Lemma 2.9, Lemma 2.8, and (2.19) that [Ds, @](2k; 0xt1) < —ALP(sy; 2, 0k +1) < 0, which
is the desired result. Conversely, if Al(s};x) = 0, then v(zy) = 0 since xj, is not an infeasible
stationary point by assumption. It now follows from Lemma 2.9, v(x;) = 0, Lemma 2.7, the
fact that By is positive definite, and si # 0 since zj is not a KKT point for problem (1.1) by
assumption (see Lemma 2.2), that [Ds, ¢](z1;0%41) < —ALP(sp; 2k, 0011) < —%SZTBkSg < 0,

which completes the proof. 0
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2.5 The accelerator step sj,

To improve performance, we compute an additional “acceleration” step; here we consider a single
(simple) possibility, but other variants may be used [24].

Under common assumptions, the predictor step st will ultimately correctly identify those
constraints that are active at a local solution of (1.1) [36]. A prediction based on s} is formulated
by

Ag = {i : [ex + Jis})i = 0F. (2.23)

It is then natural to compute an accelerator step si as the solution to

mini]glize qf(sg + s;xy, H) subject to [Jis]a, =0, |s]l, <0, (2.24)
seR™
where 6 > 0 is the trust-region radius, Hy, is a symmetric and uniformly bounded approximation
of V2, L(zy,yx), and yy, is a suitable Lagrange multiplier vector such as those from the predictor
subproblem. We note that subproblem (2.24) may be solved, for example, with the projected
GLTR algorithm (see [15, Section 7.5.4] and the notes at the end that describe how to cope
with the affine constraints [J;s] 4, = 0). It can be shown that if ¢, + Jis > 0 is feasible, oy, is
sufficiently large, and zy, is “close enough” to a solution of (1.1) that satisfies certain second-order
sufficient optimality conditions, then s} + s{ is the solution to

mini}gize ¢/ (s;xp, Hy) subject to ¢ + Jps > 0, (2.25)

sER™

which is the traditional SQP subproblem. However, our method of step computation is robust
whereas the generally nonconvex subproblem (2.25) introduces many points of contention such
as multiple solutions, unboundedness, and inconsistent constraints.

2.6 The Cauchy steps szf and sz(b

Since the matrix By is positive definite by construction and the exact second-derivative matrix
Hy, is generally an indefinite matrix, they may differ dramatically. To account for this when
assessing overall step acceptance, we define and use a Cauchy-f step szf and Cauchy-¢ step 82¢
as follows.

Given the search direction s, we define the Cauchy-f step as

szf = aisk, where ai := argmin qf(ozsk;xk,Hk). (2.26)
0<a<l
Similarly, we define the Cauchy-¢ step as
sz(b = azsk, where ozz = aor<gniiln qd)(ask;xk,Hk,akH). (2.27)
<a<

The step size ozz may be found efficiently by examining the piecewise quadratic function ¢%(avsy; .,

Hy, 0141) segment-by-segment between each derivative discontinuity.

2.7 The filter

We ensure global convergence of our method by maintaining/updating a filter Fj during each
iteration. A filter is defined as follows, where R™ denotes the positive real numbers.
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Definition 2.11 (filter) A filter is any finite set of points in R x R.

The initial filter is defined to be Fy = 0 and then sequentially updated in a manner that
guarantees that F, C {(vj, fj) : 0 < j < k}. The decision to add certain ordered pairs to the
filter depends on the concept of trial points being acceptable to the filter, which we now define.

Definition 2.12 (acceptable to Fi) We say that the point x is acceptable to Fy, if its associ-
ated ordered pair (v(z), f(z)) satisfies

v(z) < max{vi—avafv(sf;xi), ﬁvi} or f(z) < fi—7ymin {vi—avaEU(sf;xi), ﬁvz} (2.28)
for all 0 < i < k such that (v;, f;) € Fi. and some constants {n,, 5,7} C (0,1).

The first inequality in (2.28) ensures that the the constraint violation has been sufficiently
reduced. We note that previous filter methods have not used the first quantity in the max
on the right-hand side. Our improved condition takes advantage of the information supplied
by the steering steps s;. Previous filter methods may easily have requested a decrease in the
constraint violation that was unreasonable. In these circumstances, the trust-region radius would
be decreased until the subproblem became infeasible and then a feasibility restoration phase would
be entered. Our modified definition provides a practical target constraint violation based on local
information derived from the steering step s;. The second inequality in (2.28) guarantees that
the objective function is sufficiently smaller at the point x than at points x; whose ordered pair
is in the current filter Fj. These two conditions provide a so-called margin around the elements
of the filter.

Note that Definition 2.12 does not require and does not imply that the current vector xj is
in Fj when determining acceptability. During our search for an improved estimate of a solution
to (1.1), it often does not make sense to accept a new point unless it is acceptable to the current
filter and better than the current point x;. This leads to the following definition.

Definition 2.13 (acceptable to Fj, augmented by zy) We say that x is acceptable to Fy
augmented by xy, if x is acceptable to Fy, as given by Definition 2.12 and (2.28) holds with i = k.

In the next section we present our main filter SQP method. Each iteration requires the search
for a new point that must satisfy a subset of specified conditions. We stress that the updated
point x4 1 is not necessarily acceptable to Fi. Moreover, the vector .1 being acceptable to Fj,
(possibly augmented by xj) is a necessary, but not sufficient condition, for adding the ordered
pair (vki1, fr+1) to the filter Fi. Details of how we update Fj, are described in the next section.

2.8 The algorithm

In this section we formally state and describe our filter trust-region algorithm. Specific termina-
tion tests are not stated, but would be included in practice.

Algorithm 1 on page 13 begins by defining step acceptance parameters {7y, %y, Tine, ¥, Yo, Vf> Vo C
(0,1), steering trust region parameters 0 < 6., < 6., < 00, an initial weighting parameter oy,
an initial trust region radius for the steering subproblem 0y € [Omin, Omax], and an initial positive
definite matrix By. It then sets the iteration index k£ = 0 and flag P-mode to false, which indicates
that we begin in what we shall call filter (as opposed to penalty) mode.



A filter method with unified step computation for nonlinear optimization 11

The main loop is now entered and a sequence of trial steps is computed. First, a steering step
sy is computed as a solution of (2.10), which is then used to calculate A¢¥(s7;xy). This quantity
gives us a tangible quantity that predicts the decrease in feasibility that one might expect to
acquire. In particular, the quantity allows us to determine whether x;, is an infeasible stationary
point. If x; is not an infeasible stationary point, then the predictor step SZ is computed as
the unique solution to the strictly convex subproblem (2.11). The search direction sy is then
defined by (2.14) to satisfy (2.15). By construction this definition ensures that s is a descent
direction for v whenever v(zg) > 0 (see Lemma 2.6). Next, we adjust the penalty parameter
using (2.18) so that s is also a decent direction for the penalty function ¢ (see Lemma 2.10).
To accelerate convergence, we compute an accelerator step s, as an (approximate) solution to
subproblem (2.24), which requires an active set prediction 4y given by (2.23). We complete the
step calculations by computing the Cauchy steps szf and Szd) defined by (2.26) and (2.27).

If P-mode has the value true, we perform a backtracking linesearch until we find a p-pair
(o, Sg) for some §5, € {s¢,s,}. We define a p-pair as follows.

P-PAIR
The pair (a, s) constitutes a p-pair if
Gk + 005504 11) < G@k; Oki1) — VpOP) (2.29)
for some 74 € (0,1), where
Pl = min | AL (sy; 2k, opi1), Aq¢(82¢;xk,Hk,0k+1)] : (2.30)

If (o, 8) is a p-pair, then ¢(xg + agS; ogt1) is sufficiently smaller than ¢(xx; op11), and we say
that the kth iterate is a p-iterate. Moreover, if xj 4+ ;S is acceptable to the current filter, we
signal a return to filter mode by setting P-mode to false. Otherwise, P-mode remains true and
penalty mode continues.

In contrast, if P-mode has the value false, we perform a backtracking linesearch until we find
either a pair (ay,5;) with 8, € {sp, s} that is a v-pair or o-pair, or a pair (o4, s;) that is a
b-pair. A v-pair is defined as follows.

V-PAIR

The pair («, s) constitutes a v-pair if ) + as is acceptable to Fy, augmented by xj and

AU (s 1) < VAL (sg; ) for some v, € (0,1). (2.31)

A v-pair (o, 8) earns its name since the step = + ai 8 is acceptable to the current filter
augmented by xj, but the step s; did not predict sufficient decrease in f; we say that k is a
v-iterate. Note that the focus of the iteration is on reducing the violation v and that we add the
pair (vg, fi) to the filter Fi. An o-pair is characterized as follows.
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O-PAIR

The pair (o, s) constitutes an o-pair if x + as is acceptable to Fy,

AV (s ) > YA (s ), and (2.32a)
oy +as) < f(zr) —vrap], (2.32b)

where v, € (0,1) is the same constant used to define a v-pair and

p£ := min [Aff(sk;xk), Aqf(szf; xp, H) | . (2.33)

An o-pair (ay, k) is so designated since x, + ay 8y is acceptable to the filter, si predicts decrease
in the objective function, and a sufficient decrease in the objective is realized; we say that k is
an o-iterate. Finally, a b-pair is formalized as follows.

B-PAIR

The pair (o, s) constitutes a b-pair if (2.29) holds and

v(xg + as) < v(zy). (2.34)

An iterate zj + oy sk associated with a b-pair (o, s;) decreases both the constraint violation and
penalty function, and thus suggests that one or more filter entries is blocking a productive step;
we say that k is a b-iterate. Our strategy is to accept the point, add (v, fi) to the filter, and
enter penalty mode. We view this as a satisfying alternative to a traditional restoration phase.
Note that we only add (v, fx) to the filter for v- and b-iterates. Moreover, if P-mode has the
value false at the beginning of the kth iterate, steps are always tested for acceptability based
on the filter criteria (o- and v-pairs) before checking for decrease in the constraint violation and
penalty function (b-pairs). In this manner, we give clear preference to staying in filter mode.
Finally, we increase the penalty parameter if

AG?(sk; 2k, Bry ok 1) < 1Aq°(sh; ok, Br, 0511), (2.35)

since this indicates that 75 is very small and the search direction s; does not adequately reflect
the decrease predicted by sg in the penalty function.
We find it useful to define the following index sets:
Sy = {k: kis a v-iterate }, S, = {k : k is an o-iterate },
Sp ={k : k is a p-iterate }, Sy = {k : k is an b-iterate }.

These definitions and the construction of Algorithm 1 allow us to prove the following important
result.

Lemma 2.14 If P-mode = false at the beginning of iteration k, then xj, is acceptable to Fy,.

Proof. The result immediately follows from the construction of Algorithm 1 and consideration
of the possible outcomes associated with iteration k£ — 1. 0
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Algorithm 1 Filter sequential quadratic programming algorithm.

1: Input an initial primal-dual pair (zg,yo).

2: Choose parameters {1y, o Ngs Tincs Vs Yo, Vf> Yo} C (0,1) and 0 < 0,5, < 0 < 00.
3: Set k + 0, Fy < 0, P-mode «+ false, and then choose oy > 0 and dy € [Omin, Omax]-

4: loop

5: Compute 57 as a solution of (2.9), and then calculate A¢¥(s7;xy) from (2.5).

6: if AlY(sy;2) =0 and v(z) > 0, then

T: return with the infeasible stationary point xj, for problem (1.1).

8: Choose By, - 0 and then compute s} as the unique solution of (2.11) with multiplier yj.
9: if Aq?(sh;xp, 04) = v(zg) = 0, then

10: return with the KKT point (x,y}) for problem (1.1).

11: Compute s from (2.14) such that (2.15) is satisfied.

12: Compute the new weight o4 from (2.18).

13: Choose 6} > 0 and then compute s{, as an (approximate) solution of (2.24).

14: Compute SZ¢ from (2.27) and then calculate Aq¢(sz¢;xk,Hk, Ok+1) from (2.8).

15: if P-mode then

16: for 7 =0,1,2,... do

17: Set ay = 7.

18: for 55, € {s},s} do

19: if (o, 8k) is a p-pair then

20: Set Fri1 < Fr and go to Line 21. > p-iterate
21: if ;. + a5, is acceptable to Fj, then

22: Set P-mode < false.

23: else

24: Compute szf from (2.26) and then calculate Aqf(sif;mk,Hk) from (2.6b).

25: for j=0,1,2,... do

26: Set ay + 7.

27: for 55, € {s?,s} do

28: if (o, 8k) is a v-pair then

29: Set Fi41 < Fr U {(vg, fr)} and go to Line 34. > v-iterate
30: if (ag, $x) is an o-pair then

31: Set Fri1 < Fr and go to Line 34. > o-iterate
32: if (ag, sx) is a b-pair then

33: Set Fiy1 < Fr U{(vg, fr)}, P-mode < true, and go to Line 34. > b-iterate
3: if Aq®(sk; xk, Br, 0ka1) < 1pAq°(sh; 2k, By, 0x11) then

35: Set op11 ¢ Tkt1 + Tine.

36: Set Tp11 ¢ Tk + WUky Yk+1 < Yps Ok+1 € [Omin, Omax|, and k < k + 1.
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3 Well-posedness

In this section we verify that every step of the method is well-posed under the following assump-
tion, which we do not explicitly state for each result.

Assumption 3.1 The functions f and ¢ are both differentiable with Lipschitz continuous deriva-
tives in the neighborhood of the point xy,.

We begin by observing that the steering problem (2.10) is convex, always feasible, and the
objective function is bounded below by zero, i.e., it is well-defined. Next, we argue that the
predictor problem (2.11) is well-defined. This is obvious when A¢"(s7) # v(xy) since then the
strictly convex problem (2.11b) is always feasible. On the other hand, if AfY(s}) = v(xy),
then it follows that ||[c(x) + J(xk)s;]"||1 = 0, which implies that ¢, + Js; > 0. Thus, s =
sy is feasible for (2.11a), and the predictor problem is well-defined. Lemma 2.3 shows that
7 > 0 and Lemma 2.8 shows that the update to the weighting parameter is well-defined. The
accelerator problem (2.24) does not cause difficulties since by construction it is feasible, has
bounded solutions, and may be solved (approximately) as noted in Section 2.5. It is also easy to
see that both Cauchy step problems (2.26) and (2.27) are well-defined.

We now proceed to show that the linesearch terminates finitely. To this end, we first show
that feasible iterates are never added to the filter.

Lemma 3.1 Algorithm 1 ensures that if (vk, fi) is added to the filter, then vy > 0.

Proof. For a proof by contradiction, suppose that v(zy) = 0. It follows from v(xr) = 0 and
the fact that ¢V is a convex function that A¢Y(s7,x) = 0, and we may then use (2.11a), (2.14),
(2.15), and the fact that xy is not a KKT point for (1.1) (otherwise we would already have exited
on Line 10 of Algorithm 1) to show that

=1, sp=s, #0, and AL(sp;xr) = AL(sh; ) = 0. (3.1)
It then follows from (3.1), (2.7), Lemma 2.7, v(xy) = 0, and the fact that By > 0 that
Aff(sk;xk) = Aﬂf(sg; xp) = Aﬁ(sg; Ty Opg1) = AL (sp: g, 0pp) > %SZTBkSZ > 0. (3.2)

Since (v, fr) was added to the filter, it follows from the construction of Algorithm 1 that either
(g, 8k) is a v-iterate or (ay, Si) is a b-pair, which implies that at least one of v(xp+aysk) < v(xg)
or Al (sp; 1) < v ALY (s 23) holds, amongst other requirements. However, since v(z4ags;) <
v(xy,) = 0 is not possible, we conclude that A¢f (sy;xr) < Y ALY (sk; 1) = 0, where we have also
used (3.1); this contradicts (3.2) and proves the result. O
The next two results show that our linesearch procedure terminates anytime P-mode has the
value false at the beginning of the kth iteration. We first consider the case when x;, is feasible.

Lemma 3.2 If P-mode = false at the beginning of the kth iteration, v(zy) =0, and xy, is not a
first-order solution to problem (1.1), then the pair (c, sg) is an o-pair for all o > 0 sufficiently
small. Moreover, k € S,.

Proof. As in the proof of Lemma 3.1, it follows that v(zy) = A€Y(sf;2;) = 0. This may
be combined with the fact that zj is assumed to not be a first-order solution to (1.1), (2.11a),
(2.14), (2.15), Lemma 2.7, By, = 0, and the definition of A¢? to conclude that

sk=sp#0, cptJise >0, and A (spyap) = AL (s Tp, 0p41) > 0 = WAL (s 31). (3.3)
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Next, v(x) = 0 and (3.3) imply that ¢, + aJisp > 0 for all a € [0,1]. Combining this fact
with Taylor’s Theorem, Assumption 3.1, and (3.3) yields

v(xg + asg) = || el + ask)]_Hl = H[ck + aJisi + O(on)]_H1 <O0(a?) for a €[0,1]. (3.4)
Since Lemma 3.1 implies that v; > 0 for all (v;, f;) € Fi, we may conclude from (3.4) that

v(rk +asg) < min_ Pu; for all a > 0 sufficiently small,
(vi, fi)EFy

where 5 € (0,1) is defined in (2.28), so that
xy, + sy is acceptable to the filter for all a > 0 sufficiently small. (3.5)
Next, Taylor’s Theorem, Assumption 3.1, the definition of A¢f, and (3.3) imply that

flag +ask) = fr + ozggsk + O(a2) = fr — ozAEf(sk; xE) + O(a2)
< fr— 'yfaAﬁf(sk; xy) for all & > 0 sufficiently small, (3.6)

where v € (0,1) is defined in (2.32b). It follows from (3.3), (3.5), and (3.6) that (a,s;) is an
o-pair for all a > 0 sufficiently small, which proves the first result of this lemma..

We just proved that the for loop on line 25 in Algorithm 1 always terminates. Moreover, it
can never terminate as a result of the if on line 32 since v(zy + asi) < v(zg) = 0 is impossible
for all ae. Moreover, it can not terminate on line 28 since (3.3) holds. Therefore, the linesearch
must terminate with an o-pair (ay, §), which implies that k € S,. O

We now consider the case when x;, is infeasible.

Lemma 3.3 If P-mode = false at the beginning of iteration k, v(xy) > 0, and xj is not an
infeasible stationary point, then (o, sg) is a b-pair for all o > 0 sufficiently small.

Proof. 1t follows from the assumptions of this lemma and Lemma 2.10 that
(D@ (@x; on41) < A (5521, 0811) <0 (3.7)

so that the direction sj is a strict descent direction for ¢ at xj with penalty parameter opq.
Using the definition of the directional derivative, (3.7), 74 € (0,1) defined in (2.29), and (2.30)
we conclude that

Az + asg; op41) < O(Tr; 0pg1) + v Ds, O (@k; Okt1)

< G(ap; opa1) — VALY (k3 Tk, Opt1) (3.8)
< p(g; opa1) — CquPz for all o > 0 sufficiently small.
Since v(xy) # 0 and x, is not an infeasible stationary point, we know that A¢Y(sy; ) > 0.
Lemma 2.6 then implies that

[Ds, v](zr) < —AL(sp; 1) < —np AL (sp;25) <0

so that sj is a descent direction for v at xp. A similar argument as the one that lead to (3.8),
yields
v(xg + asg) < v(zg) for all a > 0 sufficiently small. (3.9
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It follows from (3.8) and (3.9) that («, sx) is a b-pair for all & > 0 sufficiently small. O

The next lemma considers the case when P-mode is true at the beginning of the kth iteration,
and shows that successful trial iterates may be obtained through backtracking as performed in
Algorithm 1.

Lemma 3.4 If P-mode = true at the beginning of the kth iteration and xj, is neither an infea-
sible stationary point nor a first-order solution to problem (1.1), then (a, sg) is a p-pair for all
a > 0 sufficiently small.

Proof. The proof follows exactly as in the first part of Lemma 3.3. O

We now combine these results to prove that Algorithm 1 is well-posed.
Theorem 3.5 Algorithm 1 is well-posed.

Proof. As described in the first paragraph of Section 3, every subproblem and step computa-
tion is well defined, and Lemma 2.8 ensures that the update to the weighting parameter is well
defined.

All that remains is to prove that the linesearch terminates. First, if P-mode has the value false
at the beginning of iteration z; and v(zy) = 0, then Lemma 3.2 guarantees finite termination
and that k € S,. Second, if P-mode has the value false and v(zy) > 0, then Lemma 3.3 ensures
that the backtracking linesearch will terminate finitely. Finally, suppose that P-mode has the
value true at the beginning of iteration k. It then follows from Lemma 3.4 that the backtracking
terminates finitely. 0

4 Global Convergence

In this section we prove that limit points of the iterates generated by Algorithm 1 have desirable
properties. To this end, we use the following common assumptions.

Assumption 4.1 The iterates {xy} lie in an open, bounded, conver set X.

Assumption 4.2 The problem functions f(x) and c(x) are twice continuously differentiable on
X.

Assumption 4.3 The matrices By, are uniformly positive definite and bounded, i.e., there exists
values 0 < \pin < Amew < 00 such that X, Hng < $TBrs < Apus HSHS for all s € R™ and all By,.

Assumption 4.4 The matrices Hy are uniformly bounded, i.e., |Hg|ly < fae fOT SOME [0 > 1.

For clarity and motivational purposes, we immediately state our main convergence theorem
that makes use of the Mangasarian-Fromovitz constraint qualification (MFCQ) [31].

Theorem 4.1 If Assumptions 4.1—4.4 hold, then one of the following must occur.

(i) Algorithm 1 terminates finitely with either a first-order KKT point or an infeasible station-

ary point in lines 10 or 7, respectively, for problem (1.1).
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(ii) Algorithm 1 generates infinitely many iterations {xp}, o = ¢ < oo for all k sufficiently
large, and there exists a limit point x, of {xy} that is either a first-order KKT point or an
infeasible stationary point for problem (1.1).

(iii) Algorithm 1 genmerates infinitely many iterations {zy}, limg_ oo 0 = 00, and there exists
a limit point x. of {xx} that is either an infeasible stationary point or a feasible point at

which the MFCQ fails.

Proof. The result follows from the following analysis that considers the various cases that
can occur. In particular, it follows from Theorems 4.11, 4.14, 4.17, 4.20, and the construction of
Algorithm 1. O

We now present a sequence of lemmas that will be useful in the convergence analysis. The
first result is adapted from [7, Theorem 3.6] and provides a bound on the trial step s.

Lemma 4.2 If Assumptions 4.1-4.3 hold and xj and s, are generated by Algorithm 1, then

2
sty < mevx {122 gl + o)) VS | (1)
Furthermore, if {o} is bounded, then there exists a constant Mg > 0 such that ||sk|l, < My for
all k.

Proof. First, we claim that the predictor step sg must satisfy

st < maox {1,522 [laull, + owotan)] | (12)

min

which can be seen as follows. Suppose that (4.2) is not satisfied so that

2l > 1 snd ]

stlly > lgrlly + onv(z). (4.3)
It then follows from the definitions of Ag® and ¢V, the Cauchy-Schwarz inequality, Assumption 4.3,

and (4.3) that

T
AG®(sys xx, By, ox) = —giisy — 58y Bish + ox (€°(0;2) — € (s7; 2x))

IN

‘siHi + opv(zy)

lgilly [Is% 5 = 5 A
< llgxll2 H%HQ — 5 Amin

=I5t lly (llgnllz = $rass 5211, + ox0()) <0,

[ + skl o)

which contradicts the fact that sﬁ is the unique global minimizer to the strictly convex predictor
problem. Thus, (4.2) must hold and when combined with (2.14), the use of the triangle-inequality,
the use of the trust-region radius 0 € [Omin, Omax) i the steering problem, implies that

2
sl < e {1, 22 el + o)), Vi (1.0

min

which proves (4.1). Since g and v(zy) are uniformly bounded as a result of Assumptions 4.1
and 4.2, it is clear that if {0} is bounded, then there exists M, < oo such that ||s||, < M, for
all k. 0

The following result provides a relationship between the predicted change in the linear model
and the change achieved in the line search process for both the objective function and the con-

straint violation.
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Lemma 4.3 (Equivalent to [39, Lemma 3]) Suppose that Assumptions 4.1 and 4.2 hold. Then,
there exist constants {C¢,Cy} > 0 such that for all k and o € (0,1], we have

Fon+as) < flar) — oAl (s;a0) +02Cy |2 (4.5)

and
v(zy + as) < v(xy) — aAl(s; ) + o2C, ||5])3 . (4.6)

Proof. Inequality (4.5) is a direct result of Taylor’s theorem and Assumption 4.2.

For (4.6), it follows from the integral mean-value theorem, Assumptions 4.1 and 4.2 and their
the implied Lipschitz continuity of J(x), the triangle inequality, and the convexity of £V, that for
some constant Lipschitz constant C|

vz +as) = ||[e(zk +as)]” ||, =

[c(xk) +adis +a /0 (e + fas) — J(xk)]sde} )

1
< ||le(@r) + adis] ||, + o*v/nC Isll3

< (1= 0) et |, + o le(ew) + sl + a2 v/AC 5]
= v(xp) — AL (s;21) + a®y/nC||s|5  for all a € (0,1].
This proves (4.6) by defining C,, := /nC. 0

The next two lemmas provide a relationship between the predicted linear decrease in the
objective function and the quantity p£ defined by (2.33).

Lemma 4.4 If Assumption 4.4 holds and Atf (sy;xy) > 0, then
Al (s
Aq! (s, Hy) > LA (s);.24) min {%, 1} : (4.7)
,u’maa: Sk‘ 2

Proof. If At/ (sg;x) = 0, then the result follows immediately from the definition of szf
in (2.26).
Now, suppose that Al (sp;x3) > 0. Tt follows from (2.26) and the definition of Ag/ that
Aqf(szf; xp, Hi) > Aqf(ask; xp, H) = —aggsk — %azngksk forall 0 < o < 1.
The right hand side of the previous equation may be written as

q(@) = aa® + ba, where a = —3s{Hys), and b= AV (s ) = —gisy > 0.

We wish to maximize ¢ on the interval [0, 1] so we differentiate g(a)) with respect to a and set
the result to zero to obtain a stationary point at —%. Now, consider three cases.

Case 1: (a < 0 and —% < 1) The maximum of g(«) on the interval [0, 1] is achieved at
o= —%. Note that o > 0, since b = Aff(sk;:ck) > 0 by assumption. Then, we have

AR
1 2a)  4a? 2  4da’

It follows from the definition of @ and b, the Cauchy-Schwarz inequality, and Assumption 4.4 that

( b ) Aﬁf(sk;mkf > Aﬁf(sk;mkf > Aﬁf(sk;mkf
g\ —5- | = = :
2a 25pHise 2| Hlly skll3 2t [lskll3




A filter method with unified step computation for nonlinear optimization 19

Case 2: (a < 0 and —% > 1) The maximum of g(«) on the interval [0, 1] is achieved at o = 1,
where
) =a+b>-1b+b=1b= %Aff(sk; Tp)-

Case 3: (a > 0) The maximum of ¢(«) on the interval [0,1] is achieved at o = 1 so that
gq)=a+b>b>3b= %Aéf(sk;xk).
Finally, combining all three cases and defining o/ = arg maxa,eo,1] q(a), it follows that

f . 2
Ag! ({5 2y, Hy) = q(o) > min{%7 3O (si; xk)} = 5O (sy; ) min{
)U/max Sk 2

Al (sp; )
2 )
Hmax HSICHZ

as desired. 0

Lemma 4.5 Suppose that the Assumptions 4.1-4.4 are satisfied and that {oy} is bounded. Then,
there exists a constant C, > 0 such that whenever Al (sp;21) > 0, it follows that

pi > min [CpAﬂf(sk;xk)Q, %Aff(sk;:ck) . (4.8)

Proof. Tt follows from (2.33), Lemma 4.4, Lemma 4.2 and the assumption A¢/(sp; ) > 0
that

p}: = min Aﬁf(sk; xk), Aqf(szf; Tk, Hk)}
| Al (s1;21,)2
> min Aff(sk;:ck), min {M, %Aff(sk;xk)}]
L 2ftmax HSkHQ
_Aff(sk' Tp)? AL (835 21,)?
> min | —— 5 LA (sy;21) | > min [ : : lAff(Sk;xk)] :
| 2t 555 Ut M2 7 2

where { My, fimax } C (0,00) are defined in (4.1) and Assumption 4.4, respectively. The result now
follows by defining C), := 1/ (2ptmax M2). O

The next two results provide a relationship between the predicted linear change in the penalty
function and the quantity pﬁ defined by (2.30).

Lemma 4.6 If Assumption 4.4 holds and xj, is not an infeasible stationary point, then

AL (5p; T, Opr1) 1}
2 ’ .
lu'maz HSKHQ

Aqd’(szd);xk,Hk,akH) > %A€¢(Sk;l‘k,ak+1)min{ (4.9)

Proof. Since xy, is not an infeasible stationary point by assumption, it follows from Lemma 2.8
that AL?(sg; Tr, opr1) > 0. If AlP(sy; 21, 041) = 0, then the result follows immediately. There-
fore, for the remainder of the proof we assume that AL (sg; 2, opy1) > 0.

It follows from (2.27), the convexity of ¢(-), and simple algebra that

Ag?(s5%; e, Hy, 03s1)
> A¢®(asy; zp, Hy, 0p41)

= —aggsk — %Q2S£Hksk + Ok+1 (H[ck]iul - H[Ck + OéJkSk]ful)

V

> —aggsk — g0’ s Hesk + op ([[len] ™[, — o [len + Jesi] ||, = (1= @) [|le]7[],)
= —agfsy — 30 s Hysg + aopy (| lex] 7|, — ||lex + Jeskl ™ [])
= aA€¢(sk; Ty Okt1) — %azngksk for all « € [0, 1].

|
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The right hand side of the equation is a quadratic function of «:
q(a) = aa® 4+ ba, where a = —%s{Hksk and b= A£¢($k;xk,0k+1) > 0.
Analysis similar to that used in the proof of Lemma 4.4 yields

AL (815 gy Opr1)?

2
21umax HSICHZ

Aq¢(sz¢;mk,Hk,ak+1) > min{ , %A€¢(sk; T, Jk+1)} , (4.10)

where fi,,., is from Assumption 4.4, as desired. d

Lemma 4.7 Suppose that Assumptions 4.1-4.4 are satisfied, that Algorithm 1 never encounters
an infeasible stationary point, and {o}} is bounded. Then, there exists a constant C, € (0,00)
such that

pﬁ > min CpA€¢(sk;xk,ak+1)2, %A€¢(sk;xk,ak+1)] for all k > 0.

Proof. The proof follows exactly as in Lemma 4.5. O

4.1 Convergence analysis under bounded weighting parameter

In this section we study Algorithm 1 under the assumption that the weighting parameter stays
bounded. It follows from this assumption and Lemma 4.2 that there exists some &’ and & < oo
such that

lsklly < Ms < oo and op =6 <oo forall k>Fk. (4.11)

In certain situations, we can ensure that the line search step length is bounded away from zero.

Lemma 4.8 If Assumptions 4.1-4.3 and (4.11) hold and € > 0, then the following hold:

(i) There exists a constant ap > 0 such that ap > ap > 0 for all k € Kp, where
Kp={ke€S,:k>FK and AL®(sp;x1,5) > €}.
(ii) There exists a constant ay > 0 such that ap > ap > 0 for all k € Kp, where
Krp={keS, US,US,:k>k and AL’(s};x) > €}.

(iii) There exists a constant oy > 0 such that (o, s) = («, si) satisfies (2.32b) for all 0 < a < o
and all k € Ky, where
ICf = {/{? > /{?/ : Aﬁf(sk;xk) > 6}.

Proof. From [6, Lemma 3.4], there exists some positive constant Cy such that
P(xy, + asg;7) — 2(asy; 2k, )| < Cy |lasy|l5 for all k> k' and a € [0,1]. (4.12)

We first prove part (i). Suppose that « satisfies

(4.13)
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where 74 € (0,1) is set in Algorithm 1 and Mj is defined in (4.11). To simplify notation, we define
Eﬁ(s) = (9(s;x1,0) and Afﬁ(s) = Al?(s;xp,5). We then use ¢(zy;5) = Ei(O), the convexity of
fﬁ(-), (4.12), Afz(sk) > ¢ for k€ Kp, (4.11), (4.13), and (2.30) to conclude that

Ow; 0) = O + asis7) = [6(0) — £ (asp)] = [0 + asis7) — G (asy)]

i( )= (1= ) O)] = Cyo®|lsill3
= al(R(0) = (k)] = Coa® skl
= 160 (58) + (1= 1)l (%) = Coo® |15kl
> ey (sp) + (1 - %)046 — Co0® |53
Yo ozAfd)(sk) > 7¢ozpk for all k € Cp,

which with (2.29) implies that (o, sg) is a p-pair. Thus, Algorithm 1 must select an «ay that

. 1-— €
Q> min {%, 1} =: ap, (4.14)

where v € (0, 1) is the backtracking parameter in Algorithm 1, which completes the proof of part
().

We now prove part (ii). It follows from (2.19) that

satisfies

AL (s g, 0) > a1 AL (55 21) > Gnge for k € K. (4.15)

If « satisfies

(1 =9g)anse  mye
CoMz " CyM;

where C, is defined in (4.6) and 7, is defined in (2.15), then we may use (4.15) and proceed as

in the proof of part (i) to conclude that («, si) is a p-pair, i.e., (2.29) holds. Moreover, we have

from Lemma 4.3, (2.15), (4.16), Al%(s};x) > € for k € Kp, and (4.11) that

o < min

(4.16)

v(zg + asp) — v(xg) < —aAL(sp;x) + 20, ||skll5 < —an, AL (s5; 1) + 2C Isell3

C M
< —anye+ anye =0 forall k € Kp, (4.17)

where the strict inequality holds since si # 0 as a result of (4.15). Combining (4.17) with (2.29)
implies that («, si) is a b-pair. Thus, we conclude from the structure of Algorithm 1 that

V(1 —=7g)on0€  ynye
CoM2 ' C,M2’

o > min{ 1} =:qap >0 for all k € Kp, (4.18)

where v € (0,1) is the backtracking parameter used in Algorithm 1.
Part (iii) is a standard result used in continuous unconstrained optimization that follows since
Al (sp;21,) > € is equivalent to g(x)T sp < —e < 0 and sy, is uniformly bounded by (4.11). 0
The next lemma justifies the three cases that we consider when analyzing Algorithm 1.

Lemma 4.9 If Algorithm 1 does not terminate finitely, then one of the following scenarios oc-
curs:

Case 1: k € S, for all k sufficiently large;

Case 2: k € S, for all k sufficiently large; or

Case 3: |S, US| = o0
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Proof. We proceed by contradiction and assume that none of the cases occur. In particular,
since Case 3 does not hold it follows that k € S, U S, for all k sufficiently large. Combining this
with the fact that Cases 1 and 2 do not hold implies that the iterates must oscillate between p-
and o-iterates. However, this is not possible since there is no mechanism in Algorithm 1 that
allows for iterate k + 1 to be a p-iterate if iterate k is an o-iterate. d

We now analyze Algorithm 1 for each of the three possible scenarios stated in the previous
result.

Case 1: k € S, for all k sufficiently large
In this case, there exists &” such that
keS8, forall k>k' >k, (4.19)
where £’ is defined in (4.11). We first show that our measure of feasibility converges to zero.
Lemma 4.10 If Assumptions 4.1—4.4, (4.11), and (4.19) hold, then limy_,o ALY(s7;xy) = 0.
Proof. For a proof by contradiction, suppose that there exists an infinite subsequence
S ={k >k A" (s5;x) > €'}

for some constant €” > 0. It follows from (4.19), (2.19), (4.11), and the definition of S” that

AP (sp; 1, G) > 51 ALY (s 2) > Gnge” =:€ >0 for all k € S”, (4.20)
which implies with (4.19) that

S"CKp:={keS,:k>FK and Al’(sy;zp,5) > e > 0}.

Combining Kp with Lemma 4.8 implies the existence of a positive ap such that ap > ap > 0 for
all k € §”, which used with the definitions of 8” and S,, (4.19), Lemma 4.7, and (4.20) yield

d(x;0) — oz + agSp; 7) > ’quakpi > Y0y, min [C,,AW(SM Tk, 6)2, %A€¢(Sk; Tk, 6)}
> Yp0p Min [CPGQ, s€] >0 forall ke S”. (4.21)
Now, for k" <k € S, \ 8", it follows from (2.29), (2.19), and (2.27) that
Ok 0) — p(x + pdy; 0) > Y0 min [Aﬁd’(sk; Tk, 0), Aq¢(sz¢; Ths Hk,ﬁ)} > 0. (4.22)

It is now easy to see from (4.21), (4.22), and (4.19) that ¢(zx;5) — —oo, which contradicts
Assumptions 4.1 and 4.2. Thus, we conclude that limy_,o ALY(s7;x) = 0. O
We now show that all limit points are infeasible stationary points for problem (1.1).

Theorem 4.11 Suppose that Assumptions 4.1—4.4, (4.11), and (4.19) hold. If x. is any limit
point of the sequence {xy} generated by Algorithm 1, then x, is an infeasible stationary point for
problem (1.1).
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Proof. Let vmin := min{v; : (v;, f;) € Fir} = min{v; : (vj, fj) € Fr and k > k”}, where the
second equality holds since by assumption k € S, for all £ > k" and the filter is never expanded
when k € §,,. It follows from Lemma 3.1 that vyi, > 0. But then if there was a feasible limit point
Ty, there must be iterates xy, k > k” that are arbitrarily close to feasibility, and thus ultimately
one such that x is acceptable to Fi. Thus line 21 of Algorithm 1 implies that there will be an
iterate k > k" for which k ¢ S, which contradicts (4.19). Thus, all limit points are infeasible. It
follows from this fact, Lemma 4.10, and Lemma 2.1 that all limit points are infeasible stationary
points. O

Case 2: k € S, for all k sufficiently large

In this case, there exists &” such that
keS8, forallk>k' >k, (4.23)
where & is defined in (4.11). We begin by showing that our feasibility measure converges to zero.
Lemma 4.12 If Assumptions 4.1-4.4, (4.11), and (4.23) hold, then limy_,oo ALY(s7;xy) = 0.
Proof. For a contradiction, suppose that there exists €’ > 0 and an infinite subsequence
"=k > K AP (5] o) > €' C S,

where we have used k” defined in (4.23). It then follows from the definition of S,, the o-pair
(v, S) selected in Algorithm 1, (2.32b), (4.11), Lemma 4.5, (2.32a), (2.15), and part (ii) of
Lemma 4.8 that

Fxr) — Fxy + axdr) > vrowpl > vrau mlH{C Al (sp;mp)?, IAff(Sk;xk)}
> vyrag mm{Cp Yo ALY sk,xk)]2, %%Aﬁv(sk;xk)}
> yroy, mln{Cp %nvAf sk,ﬂ:k)]Q, %%nvAfv(sZ;xk)}
> ypap min {C’p Yorwe |7, 2%771, } for all k € S”,

for some ap > 0. Similarly, for £/ < k € S,\ 8", it follows from (2.32), (2.15), and (2.26) that

flxg) — flxg + agsy) > 7fakp£ > vy, min {%AEU(S/,C; T), Aqf(szf;:ck,Hk)} > 0.

Combining the two previous inequalities with the definition of k” yields f(x;) — —oo, which
contradicts the fact that f is bounded as a consequence of Assumptions 4.1 and 4.2. This proves
the result. 0

We now show that feasible limit points are also first-order solutions of the penalty function.

Lemma 4.13 Suppose that Assumptions 4.1-4.4, (4.11), and (4.23) hold. If x, = limges xy for
some subsequence S and v(x,) =0, then limyeg Aqu(sg; Zg, Bg,0) = 0.

Proof. Suppose that there exists a constant ¢/ > 0 and an infinite subsequence

—{]CES k>k//'Aq (SkaxkaBka )>€//}
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where k" is defined in (4.23). It follows from line 34 of Algorithm 1, (4.11), and (4.23) that
AG?(sk; Tk, Br, 7) > 1oAq? (sh; xg, Br, &) > nge”  for k€ S”. (4.24)
From (2.5) and (2.15), we know that v(zy) > ALY(sp;xp) > Ny ALY(s3;x) > 0 for all k, which

may be combined with limges v(z) = v(x,) = 0 (holds by assumption) to conclude that

7

Al (sg;r) < _nie for k € S sufficiently large, (4.25)
&+ Y

where 7, € (0,1) is defined in (2.32a). It follows from (2.7), (2.8), (4.24), By > 0, and (4.25) that

Aﬁf(sk; x) > %s{Bksk — AL (sp; ) + n¢6" > n¢e'/ — AL (sg; k)

. Mo ! _ YoTl !

- - = >0 forkeS” sufficiently large. (4.26)
0+ Y 0+ Yo

> 77(2561/ .

Combining this with part (iii) of Lemma 4.8, we know that there exists some ay > 0 such that
(o, s1,) satisfies (2.32b) for all k € S” sufficiently large and o € (0,ay], since by assumption
Sy =S, US,US, for k > k".
Next, we define
®p = mi { i AL (55 1), Boi }>0, 4.97
k (vi,rJI%l)relfk max [vl My (s5;24) ﬁvl] ( )
where Fj, is the kth filter. The fact that ®; > 0 follows since v; > 0 for all (v;, f;) € Fi as a
consequence of Lemma 3.1. Moreover, it follows from (4.23) that Fj, = Fp» for all k € S” so that
), = O > 0 for all k € S”. Now, pick €’ > 0 such that &y — C,M2 < €’ < ®pr and consider
a such that

@k” - Ev
— < 1. 4.28

It then follows from Lemma 4.3, the fact that lim,ecs v(zg) = 0, (2.15), (4.23), and (4.28), that

0<a<

v(zp + asp) < v(xg) — aAl (sp;xp) + 2Cy ||skl|3 < € + a0, M2
(I)k” — ¢’

§6v+aCUM3SEU+T]\4.3

C'UMS2 = & for all k € §” sufficiently large.
Thus, x + asy is acceptable to Fj, = Fpr for all « satisfying (4.28) and k € S” sufficiently large.

Combining the above, (4.23), and the structure of Algorithm 1, we conclude that

(b v — €v
o > min {757]\426,7%% 1} =: i > 0 for all k € S sufficiently large, (4.29)
v S

where v € (0,1) is the backtracking parameter used in Algorithm 1. It then follows from (4.23),
(2.32b), (2.15), Lemma 4.5, (2.32a), (4.29), and (4.26) that

Flax) — flan + apdy) = ypappl > vpaymin [CpAgf(SkQ zi)?, SAL (s ﬂ?k)]
> Y f Qi N {Cp(ef)Q, %ef] > 0 for all k£ € 8" sufficiently large.
(4.30)

However, for all k € S,, it follows from (2.32b), (2.32a), (2.15), and (2.26) that f(zx) — f(zr +
arSk) > 0. This observation combined with (4.30) implies that limy_, o f(xr) = —oo, which
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contradicts the fact that f is bounded as a consequence of Assumptions 4.1 and 4.2. This
completes the proof. 0

We now show that limit points are either infeasible stationary points or KKT points for
problem (1.1).

Theorem 4.14 Suppose that Assumptions 4.1-4.4, (4.11), and (4.23) hold. If x, is a limit point
of {xx}, then either

(i) x4 is an infeasible stationary point; or
(il) z is a KKT point for problem (1.1).

Proof. Suppose that limgesxr = 4 for some subsequence §. It follows from Lemma 4.12
that limy_,oo ALY(s7;25) = 0 so that if v(z,) > 0, then z, is an infeasible stationary point (see
Definition 2.1). Otherwise, we have that v(z,) = 0. In this case, it follows from Lemma 4.13
and (4.11) that limges Aq¢(s£; Xk, B, ) = 0. It follows from this fact, v(x,) = 0, and Lemma 2.2
that z, is a KKT point for problem (1.1). O
Case 3: |S, US| = o0

We first show that the feasibility measure converges to zero along S, U Sp.
Lemma 4.15 If Assumptions 4.1-4.3 hold and |S, U Sp| = oo, then limyes,us, ALY (sy; k) = 0.
Proof. To reach a contradiction, suppose that we have the infinite subsequence
S:={keS,USy: Al’(si;xr) > €}
for some constant € > 0. It follows from the definition of S, Lemma 2.14 and (2.28) that
vp < max {v; — an, ALY (5325, Buj} or  fr < fj—~vymin{v;— an, ALY (53 x5), Bu;} (4.31)

for k € S and (vj, fj) € Fi; note that by construction (vg, fi) € Fi41 for all k € S. Moreover,
it follows from the definitions of A¢” and S that v, > Al’(s};x) > € for k € S. Using
Assumptions 4.1 and 4.2 we have a subsequence S’ C S so that

lim AlY(si;xx) =0p and lim vy =6, for constants 6, > 60y > € > 0.
keS’ keS’

For any ¢, € (0,0,) and ¢, € (0,6,), it follows that
|AL(s3;ak) — 0 < € and  |vg — 6,] <€, for all k € S’ C S sufficiently large. (4.32)

Using (4.32), the definitions of €/, n,, A¢¥ and S, o, € (0,1], ' C S, and part (ii) of Lemma 4.8
gives

0 < v — AL (s 2k) < vp — apny(Bp — €) < Bovy for all k € 8’ sufficiently large  (4.33)

and some ap > 0, where

(ev + ev) - aan(eé - 65)

Ba = Gt er)

€ (0,1)
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and [ may be forced to lie in (0,1) by choosing ¢, sufficiently close to zero and €, sufficiently
close to 6y. Now define 8* := max{f9, 5} € (0, 1),

1 _ *
e* = min {Tg*ﬂv, Ev} > 0,
and the subsequence 8" = {k € &’ : vy, — 0,| < €*} so that

206" 2
Tﬂﬂ*% <y < Tﬂ*av for all k € 8" C &' sufficiently large. (4.34)
Given k € §”, define k™ € §8” to be the successor to k in §”. It then follows from (4.34), the

definition of 5*, and (4.33) that
1+ p8*

Since 8" C &' C 8, it follows from the previous inequality, the definition of k™, the fact that
(vk, fx) € Fr+, (4.31), the definition of AL¥(si;zk), oy € (0,1], n, € (0,1), B € (0,1), v € (0,1),
0, > €, > €* and the definition of S” that

Vgt > 0, > v, = max{fs2, f}vr > max {vk — apny AL (si; ), 5vk} for all k € S”.

fe = fer = ymin {vg — apn, AL (sh; ay), Bug}
= 4 min {(1 — QM Uk + gy | [e(xg) + J(zk)si] Hl , ﬁvk}
> ymin{l — agny, B}vr > ymin{l — n,, 8}(0, — €*) > 0 for all k in S”.

Summing over k € S”, we deduce that {fi}resr — —oo, which contradicts Assumptions 4.1
and 4.2. 0
We now prove that our optimality measure for ¢ converges to zero along a certain subsequence.

Lemma 4.16 Suppose that Assumptions 4.1-4.4 and (4.11) hold, and that |S, U Sp| = co.
(1) If |Sy| = 00 and limges, xp = x4 for some x, satisfying v(zy) = 0, then

Jim Ag?(s}; ax, B, 7) = 0,

(i) If |Sy| < 00 and limges, o1, = 4 for some x, satisfying v(z,) =0, then

liminf Ag?(s?; 2y, Bg, ) = 0.
im inf Ag (s ok, B, o)

Proof. We first prove part (i). To obtain a contradiction, suppose that there exists the

subsequence
S i={keS,:k>k and Aq®(s};zy, By,o) > €'}

for some constant ¢ > 0 and £’ defined in (4.11). It then follows from line 34 of Algorithm 1 that
Ag?(sp; xp, By, 7) > nd)Aqd’(si; Tk, B,7) > nye for k€ S (4.35)

Then, since v(z.) = 0 by assumption, we may use (4.35) (analogous to (4.24)) and follow the
same steps that led to (4.26) to show that

Aﬁf(sk;xk) > ef > Yo AL (sp; ) for k € 8 sufficiently large and some e >0,
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where the second inequality follows from limges, x = x4, v(z.) = 0, and the definition of A¢Y.
Thus, (2.31) does not hold and implies that k ¢ S,. This is a contradiction and proves part (i).
We now prove part (ii), where |S,| < co = |Sp|. To obtain a contradiction, suppose that

Aq¢(sz; Tk, B,5) > € for k € Sy sufficiently large
and some constant ¢ > 0. It then follows from line 34 of Algorithm 1 that
Aqd’(sk; Tk, Bg,0) > n¢Aq¢(si;xk,Bk,5) > ng€ for k € S sufficiently large. (4.36)
Since (4.36) is analogous to (4.35), we may again conclude as above that
Aﬁf(sk;xk) >l > VAL (sg; xp) for k € Sp sufficiently large and some e > 0. (4.37)

Using (4.37), limges, v(x) = v(zy) = 0, and part (iii) of Lemma 4.8, we may conclude that there
exists oy > 0 such that («,sy) satisfies (2.32b) for all & € (0,a¢] and k € S sufficiently large.
Now, if ag, — 0 along some subsequence S; C Sp, then it follows from the previous sentence and
(4.37) that (o, sy) satisfies (2.32a) and (2.32b) for all £ € S sufficiently large. We now show
that x5, + oy sy, is also acceptable to the filter F, for all k € S} sufficiently large.

To this end, let (vs, f;) € Fj, for some k € S;. It then follows from Lemma 2.14 that either v;, <
max {vi R AN CHE AR ﬁvi} or fr < f; —ymin {vi — Ny AL (835 24), ﬂvi}. In this first case,
it follows from the definition of a b-pair that v(xg + axsk) < vp < max {vi — Ny ALY (835 x;), ﬂvi}
for all k € . In the second case, we have from the fact that (2.32b) holds for k € S; sufficiently
large (recall that o, — 0 on S), (4.37), and Lemma 4.5 that f(z+ags;) < fr < fi—vymin {vi —
a;ny ALY (535 24), ﬁvi}. Thus, in either case we have that (v(ﬂvk—l—aksk), f(xk—l—aksk)) is acceptable
to the single element filter {(v;, f;)} for all k € S} sufficiently large. Since this element (v;, f;)
of the filter F} was arbitrary, we may conclude that (v(xk + agsk), f(zr + aksk)) is, in fact,
acceptable to the filter Fj, for all k € S} sufficiently large.

To summarize, we have shown that (o, s;) is an o-pair for k € S sufficiently large. This
is a contradiction since Algorithm 1 would have labeled such an iterate as an o-iterate, not a
b-iterate. Thus, there exists oy such that oy > ap > 0 for all k£ € S, sufficiently large. Combining
this with (2.1), (2.29), v(:) > 0, Lemma 4.7, (2.7), (2.15), and (4.37) gives

f(zg) — fzk + ardy) = ¢lag;0) — d(v + apdp; 7) — 6(1}(3@) —v(z, + aké)) > ’yd)akpﬁ —ov(zk)
> 7YpQp min {CpA€¢(sk;xk,5)2, %Af‘b(sk;xk,&)} —ov(xy)
= Y0 Min [Cp (Aﬁf(sk; 21)? 4 25 A (51 21 ) ALY (51 ) + GEALY (s xk)2),
3 (A (sg; 1) + T AL (sy; wk))] — ov(zk)
> Yy min [CpAﬁf(sk; )2, %Aﬁf(sk; xk)] —ov(xy)

> 7YpQp min [C’p (ef)z, %ef} —ov(xy) for k € S sufficiently large.
(4.38)

Since |Sy| = 0o > |S, |, we may define k™ as the first iteration greater than k such that k™ € SUS,.
It then follows from the construction of Algorithm 1 and |S,| < oo that

if k € Sy is sufficiently large, then k™ € S,US, and 1 € S, for all k < < k.
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Using (2.29), a; > 0, (2.19), and (2.27) we conclude that

Et—1 Et—1

¢(xk+1; ) xk+7 Z ¢ xu 1’14‘04@3@7 Z 'Y(baipf
i=k+1 i=k+1
kt—1
Z Y0y min [AE (si;2,5), Ag®(sS xZ,HZ,U)}
i=k+1

>0 for k € Sy sufficiently large,
which may be combined with (2.1), v(-) > 0, and (2.34) to conclude that

f(@rg1) = fzpe) > 0 (v(@gs) — v(zpg1)) > —00(2ps1) > —ov(y) for k € Sy sufficiently large.
(4.39)
It then follows from (4.38) and (4.39) that

flan) = fape) = (F(ar) = flon + awdr) + (F(@rer) = f(agpe)
> Yy, min [Cp (ef)z, % f} —20v(xy) for k € Sy sufficiently large. (4.40)

Next, since limges, v(zx) = 0 we know that
v(zg) < %%éab min {Cp(ef)z, %ef] for k € Sy sufficiently large,
which may be combined with (4.40) to deduce that
f(xg) = fzp+) > 2yp0p min [Cp(ef)Q, éef] =:€" >0 for k € S sufficiently large. (4.41)

If we define k* to be the first b-iteration greater than k (thus, kt > k1), it follows from (4.41),
the fact that Algorithm 1 does not allow further p-iterations until it has its next b-iteration, and
the fact that the objective f is decreased during o-iterations that f(xz) — f(zj4) > €” for k € Sy
sufficiently large. Since |Sp| = oo, this implies that f(zr) — —oo, which contradicts the fact that
f is bounded as a consequence of Assumptions 4.1 and 4.2. This proves the result. d

We now show that limit points of {zj}s,us, are infeasible stationary or KKT point for prob-
lem (1.1).

Theorem 4.17 Suppose that the Assumptions 4.1-4.4, (4.11), and |S, U Sp| = oo hold. Then,
there exists a limit point z, of {x}}s,us, such that either

(i) z« is a KKT point of problem (1.1) or
(ii) x4 is an infeasible stationary point.

Proof. From Assumptions 4.1 and 4.2 we that there exists a limit point z, of {z}}s,us,. First,
if v(x,) > 0, then it follows from Lemma 4.15 and Lemma 2.1 that x, is an infeasible stationary
point, which is part (ii) of this theorem. Second, if v(z,) = 0 and |S,| = oo, then it follows from
part (i) of Lemma 4.16 and Lemma 2.2 that z, is a KKT point of problem (1.1). This is case (i)
of this theorem. Finally, if v(z,) = 0 and |S,| < oo (so that |Sy| = 00), then it follows from part
(ii) of Lemma 4.16 and Lemma 2.2 that z, is a KKT point of problem (1.1), which once again is
case (i) of the theorem. O
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4.2 Convergence analysis under unbounded weighting parameter

We now consider the situation when the weighting parameter increases without bound, i.e, that

lim oy = oo. (4.42)

k—o0

Our analysis begins with the following lemma, which is similar to [7, Lemma 3.8].

Lemma 4.18 Suppose that Assumptions 4.1-4.4 are satisfied, (4.42) holds, x, is a limit point
of {xx} satisfying v(zy) > 0, and ALY(s3;x,) > 0, where s$ is the solution to

minimize e’r subject to c(z.) + J(zx)s+7r >0, >0, [s| <9,
(s,r)ERN+mM

for some § € [Omins Omaz|- Then, along any subsequence {xy }kex that converges to x., the weighting

parameter is updated only a finite number of times.

Proof. We begin by defining

sf(a) := argmin ¢®(s;xy, By, 0) (4.43)
sER™
and
wi=p(o) = (1 — 77_a> o <o, (4.44)
v

where we used the fact that 0 < 1 —1n,/n, < 1 holds since 0 < 1, < 1, < 1 is defined in (2.18).
Using the fact that Aqd’(sf(u);xk,Bk,u) > 0, (2.8), and the definition of y = u(o), we can
see that

AG (52 (1); o By pt) = Ag? (s2(40)s o Br) + (1 - "—“) oA (2 (11): )

Uz
= Aqd’(sﬁ(u);xk,Bk,U) - n—”aAK”(sﬁ(u);xk) >0 for p= (o) and all o > 0,
Ty
which implies that
Aq¢(si(,u); T, B, o) > n—OUAKU(si(,u); xy) for p= u(o) and all o > 0. (4.45)

(2

Since AlY(s%;x,) > 0 and limgeic 2, = x, by assumption, it follows from [15, Theorem 3.2.8]
that there exists € € (0,1) and &’ such that

AL (s5;a) > € forall ¥ <k € K. (4.46)

Moreover, since the Newton step — B, ! g, minimizes ¢/ (s; xp, By), it follows from Assumption 4.3
that

2
”ng2

. for all 0 > 0. (4.47)

¢/ (s2(0); ok, Br) > ¢/ (=B Ygr; oy Br) = o — 304 B tgr > fro —
Next, it follows from (2.9), the choice 0 € [Omins Omax], DOrm inequalities, and Assumption 4.3
that

¢! (55321, Br) < fre + 119k |lg Omax + 5 Amax 02 (4.48)
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Then, (4.47), (4.48), and Assumptions 4.1 and 4.2 imply the existence of a constant C; > 0 such
that

¢’ (s3;x, By) — qf(sﬁ(a); x, Br) < Cy for all o > 0. (4.49)
We now define
Oerit = Ca > p(Oan) = <7 ( 1qun 7 >0 (4.50)
_ _ Yo — T
et—m)(1-2)
and the associated infinite subsequence
S ={keK:k>k and o, > 0.} (4.51)

It follows from the fact that Aqd’(sf(a);xk,Bk,a) > Aq¢(sz;xk,Bk,U) (by the definition of
s7(0)), (2.8), (4.49), (4.46), and (4.50) that

1
Aﬁv(sﬁ(a);xk) > ALV (si; k) — p (qf(si; xp, B) — qf(si(a); xk,Bk)>

1 Coyt
> AL (si;ap) — —Cy = ALY (875 l— —————
= Al (s w) Uqu ¢ (Sk’xk)< aAK”(sZ;ﬂ%))
> ALY (s ) for o > p(owy) and k' < k € K. (4.52)

We may now use the definition of &', (4.52), the fact that si(ak) = 7, (2.14), and (2.15) to show
that

=1, sp=s}, and AG®(s; T, B, 0ps1) > nd)Aqd’(si;xk,Bk,akH) for k e S (4.53)

since 7y € (0,1) in Algorithm 1. Next, it follows from (4.53), (2.8), By > 0, the fact that
sh = sﬁ(ak) and s} minimizes q®(s; xy, By, 01), (4.45), the fact that p(oy) > p(ow,) for k € &,
and (4.52) that

AL (sg; m, 00) > AP (88w, Br,y 03) > Aq® (s (u(ok)); iy B, o3) > n—GJkAfv(Si(M(Uk));Sﬂk)

v
> n—aak (nu ALY (535 w)) = opne AL (s} ) for ke S (4.54)
T
We now conclude from (4.53), (4.54), (2.18), and the fact that the weighting parameter is only
increased in lines 12 and 34 of Algorithm 1, that oy, is increased a finite number of times on K. O
We now consider feasible limit points at which the MFCQ [31] holds.

Lemma 4.19 Suppose that Assumptions 4.1-4.4 are satisfied, (4.42) holds, x. is a limit point
of {zx} at which v(z.) =0 and the MFCQ holds. Then, the following hold for all xj, sufficiently
close to x, and oy, sufficiently large: (1) ALY(sh;xy) = v(wg); (ii) sp = sh; and (iii) oy is not
increased during iteration k.

Proof. We may use [7, Lemmas 3.12 and 3.13] since the proofs only used the properties of the
MFCQ, the continuity of the problem functions f and g, and the convexity of their penalty and
steering subproblems. Their subproblem [7, Equations 2.7(a—d)] is equivalent to our predictor
subproblem (2.11) and both methods minimize the same quadratic model of the penalty function.
A small difference is that our predictor subproblem is designed so that if ¢”(s};x) = 0, then
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f”(si;xk) = 0 as well; they satisfy this requirement by increasing their penalty parameter in
Step 4a [7, Eqn 2.11] and re-solving for a new step. Their steering subproblem [7, Equations 2.9(a—
e)] is equivalent to (2.9).
The assumptions of this lemma and [7, Lemma 3.12] imply the existence of » > 0 and k' > 0
so that
0°(sh,zp) = v(xy) for all k € S, (4.55)

where &’ := {k : ||z — z|| <r and k >k}, which proves part (i). The inequality Al (s5; ) >
0, (4.55), and the definition of A¢¥ imply

AL (shs ) > v(xg) — O (sh o) = AL (s ag) > nuALY (s ) for ke S,

where 7, € (0,1) is defined in (2.15). Thus, we conclude from (2.15) that 7, = 1 and s, = s% for
k € &', which proves part (ii). Finally, it follows from [7, Lemma 3.13] and the assumptions of
this lemma, that

Aq¢(sz; Tk, B, o1) > opnev(zy) > opne ALY (s3; xy) for k€ 8, (4.56)

where the last inequality follows from the definition of A¢Y. It then follows from part (ii) of this
lemma, (2.8), B > 0, and (4.56) that

AL (sp; g, 03) = AW(Si;xk,ak) > Aq¢(s£;xk,Bk,ak) > opne ALY (s xy) for ke 8.

We may conclude from this inequality, (2.18), and the fact that o} will not be increased on Line 34
as a result of part (ii) of this lemma, that o1 = o for k € ', which proves part (iii). O

Theorem 4.20 If Assumptions 4.1-4.4 and (4.42) hold, there is a limit point x, such that either
(i) x4 is an infeasible stationary point; or

(i) @ is feasible, but the MFCQ does not hold.

Proof. Let D to be the infinite index set consisting of the iterations for which the weight-
ing parameter is increased. Then, let x, be a limit point of {zj}rep, which must exist as a
consequence of Assumptions 4.1 and 4.2. First, suppose that v(xz,) > 0. It then follows from
Lemma 4.18 that if A¢Y(s3;x.) > 0 (s§ is defined in Lemma 4.18), then the weighting parameter
is updated only a finite number of times along D, which is a contradiction. Therefore, we deduce
that AlY(s$;z.) = 0 and consequently that z, is an infeasible stationary point. Second, suppose
that v(z,) = 0. It then follows from Lemma 4.19 that if the MFCQ holds at x,, then o} only
be increased a finite number of times along D. This is a contradiction and, therefore, the MFCQ
does not hold at z.. O

5 Conclusions

In this paper, we presented a new filter linesearch method that replaced the traditional restoration
phase with a penalty mode that systematically decreased an exact penalty function. Importantly,
we solved a single strictly convex quadratic program subproblem during each iteration that was
always feasible. Each search direction was defined as a convex combination of a steering step (a
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solution of a linear program) that represented the best local improvement in constraint violation
and a predictor step that reduced our strictly convex quadratic model of the exact penalty func-
tion. We also allowed for the computation of an accelerator step defined as a solution to a simple
equality constrained quadratic program (plus trust-region constraint) to promote fast local con-
vergence. In this manner, the trial step always incorporated information from both the objective
function and constraint violation. To further promote step acceptance, we utilized second-order
information in the computation of Cauchy steps that provided realistic measurements of the de-
crease one might expect from the nonlinear problem functions. An additional contribution was
the use of local feasibility estimates that emerged during the steering process to define a new and
improved margin (envelope) of the filter. This new definition encouraged the acceptance of steps
that make reasonable progress, but might very well be considered inadmissible by a traditional
filter. Under standard assumptions, we proved global convergence of our algorithm.
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