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Abstract. We study modified trigonometric integrators, which generalize the popular class of
trigonometric integrators for highly oscillatory Hamiltonian systems by allowing the fast frequencies
to be modified. Among all methods of this class, we show that the IMEX (implicit-explicit) method,
which is equivalent to applying the midpoint rule to the fast, linear part of the system and the leapfrog
(Störmer/Verlet) method to the slow, nonlinear part, is distinguished by the following properties: (i) it
is symplectic; (ii) it is free of artificial resonances; (iii) it is the unique method that correctly captures
slow energy exchange to leading order; (iv) it conserves the total energy and a modified oscillatory
energy up to to second order; (v) it is uniformly second-order accurate in the slow components; and
(vi) it has the correct magnitude of deviations of the fast oscillatory energy, which is an adiabatic
invariant. These theoretical results are supported by numerical experiments on the Fermi–Pasta–Ulam
problem and indicate that the IMEX method, for these six properties, dominates the class of modified
trigonometric integrators.
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1. Introduction.

1.1. Overview. Over the past two decades, there has been considerable interest
in so-called geometric numerical integrators, particularly symplectic integrators for
Hamiltonian systems [10, 12]. In contrast to general-purpose numerical integrators,
geometric integrators are designed especially to be applied to systems with some
additional underlying structure (symmetries, invariants, etc.) that the algorithm must
preserve exactly, at least up to round-off error.

While there have been many successes in this area, the integration of highly
oscillatory Hamiltonian systems—which feature both stiff, linear forces and soft,
nonlinear forces—has remained persistently difficult, due to the simultaneous presence
of fast and slow time scales. Such systems are especially prevalent, for instance, in
molecular dynamics, where one must contend with strong, short-range bonding forces,
as well as weak, long-range electrostatic forces.

One of the main advances has been the development and analysis of trigonometric
integrators, which are numerical methods designed especially to integrate certain highly
oscillatory systems. However, these methods have certain drawbacks: in particular,
there is a trade-off between numerical stability and consistency with respect to certain
dynamical features, such as the emergent multiscale phenomenon of slow energy
exchange and the near-preservation of adiabatic invariants.

In this paper, we show that modified trigonometric integrators—that is, trigono-
metric integrators with modified oscillatory frequencies—provide a way around this
obstacle. Naively, one might expect that perturbing the frequency would increase
the error, so it may seem counterintuitive to suggest that this can actually improve
numerical performance. Yet, we show that this is indeed the case: allowing for the
frequency to be modified provides an additional degree of freedom, which makes it
possible to sidestep the aforementioned trade-off between stability and multiscale struc-
ture preservation. Specifically, we show that a particular, unique choice of modified
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frequency yields an integrator that is both stable and structure-preserving, and this is
precisely the implicit-explicit (IMEX) method of Stern and Grinspun [15].

1.2. The numerical challenge of fast oscillations. Consider a prototypical
highly oscillatory problem, given by the second-order equation

(1.1) q̈ + Ω2q = g(q),

where q(t) ∈ Rd is a trajectory, Ω =
(
0 0
0 ωI

)
is a d × d matrix with constant fast

frequency ω � 1, and g : Rd → Rd is a conservative nonlinear force, so that g = −∇U
for some scalar potential U : Rd → R. The equation (1.1) can also be written as a
first-order system on (q, p) ∈ R2d,

(1.2)
q̇ = p,

ṗ = −Ω2q + g(q),

which are Hamilton’s equations for the separable Hamiltonian

H(q, p) =
1

2
‖p‖2 +

1

2
‖Ωq‖2 + U(q).

Due to this underlying Hamiltonian structure, it is desirable to use a symplectic
integrator to obtain numerical solutions to (1.1)–(1.2).

One of the most popular, widely used symplectic integrators is the Störmer/Verlet
(or leapfrog) method, which discretizes (1.1) by the centered finite-difference equation

(1.3)
qn+1 − 2qn + qn−1

h2
+ Ω2qn = g(qn),

where h denotes the time step size. An equivalent approximation for the first-order
system (1.2) is given by the symmetric algorithm

pn+1/2 = pn +
1

2
h
[
−Ω2qn + g(qn)

]
,

qn+1 = qn + hpn+1/2,

pn+1 = pn+1/2 +
1

2
h
[
−Ω2qn+1 + g(qn+1)

]
,

which is sometimes called the velocity Verlet method. Note that, if (1.3) is used to
compute a numerical trajectory (. . . , qn−1, qn, qn+1, . . .), then we can still recover pn,
after the fact, by taking pn = qn+1−qn−1

2h . This method corresponds to splitting the
Hamiltonian into kinetic and potential components, H(q, p) = T (p) + V (q), where

T (p) =
1

2
‖p‖2, V (q) =

1

2
‖Ωq‖2 + U(q),

and alternating between the purely kinetic flow of T (p) and the purely potential
flow of V (q). This is an example of a splitting method (see McLachlan and Quispel
[13]), and since the flows of T (p) and V (q) are each Hamiltonian, the composition
(qn, pn) 7→ (qn+1, pn+1) is a symplectic map.

Despite these desirable geometric properties, however, the Störmer/Verlet method
cannot integrate highly oscillatory systems efficiently. As an explicit method, it remains
stable only for time steps on the order h = O(ω−1); in particular, when g = 0, we
have the linear stability condition hω ≤ 2. Therefore, to integrate over a time interval
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of fixed size, the method requires O(ω) time steps, and hence O(ω) evaluations of the
nonlinear force g, which becomes prohibitively expensive for large ω.

A typical implicit method encounters similar difficulties. For example, the implicit
midpoint method discretizes (1.2) by the one-step algorithm

qn+1 = qn + h
(pn + pn+1

2

)
,

pn+1 = pn + h

[
−Ω2

(qn + qn+1

2

)
+ g
(qn + qn+1

2

)]
,

which is equivalent to the centered finite-difference scheme

(1.4)

qn+1 − 2qn + qn−1
h2

+ Ω2
(qn+1 + 2qn + qn−1

4

)
=

1

2
g
(qn + qn+1

2

)
+

1

2
g
(qn−1 + qn

2

)
for the second-order equation (1.1). While this method is linearly unconditionally
stable, it requires a nonlinear solve at each time step, since qn+1 appears inside the
nonlinear force g. However, a numerical solver (e.g., Newton’s method) will require
several evaluations of g at each time step, so this method is also computationally
expensive.

The failure of these traditional symplectic integrators has motivated the devel-
opment of numerical methods designed especially for highly oscillatory Hamiltonian
systems. The goal of this research has been to obtain efficient, explicit integrators that
are stable and accurate for large time steps h. By “large time steps,” we mean that the
step size can be chosen independently of the fast frequency ω, so that h−1 = O(1) as
ω →∞. Therefore, in sharp contrast to the Störmer/Verlet method, such integrators
require only O(1) evaluations of the nonlinear force, rather than O(ω).

1.3. Trigonometric integrators. Trigonometric integrators are designed to
integrate (1.1)–(1.2) exactly when the nonlinear force g vanishes, i.e., when the system
reduces to a harmonic oscillator. Let ψ and φ be a pair of even, real-valued filter
functions satisfying ψ(0) = φ(0) = 1, and denote Ψ = ψ(hΩ), Φ = φ(hΩ), and
gn = g(Φqn). Then the trigonometric integrator corresponding to the filters ψ, φ, is
defined by the difference equation

(1.5) qn+1 − 2 cos(hΩ)qn + qn−1 = h2Ψgn.

We can extend this to a symmetric, one-step method for (q, p) ∈ R2d by introducing a
new filter function ψ1, which satisfies ψ(ξ) = sinc(ξ)ψ1(ξ), and taking Ψ1 = ψ1(hΩ).
We then obtain a velocity Verlet-like algorithm,

p+n = pn +
1

2
hΨ1gn,(

qn+1

p−n+1

)
=

(
cos(hΩ) h sinc(hΩ)
−Ω sin(hΩ) cos(hΩ)

)(
qn
p+n

)
,

pn+1 = p−n+1 +
1

2
hΨ1gn+1.

Similarly to Störmer/Verlet, if (1.5) is used to compute a numerical trajectory
(. . . , qn−1, qn, qn+1, . . .), then pn can be recovered by taking sinc(hΩ)pn = qn+1−qn−1

2h ,
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Method ψ(ξ) φ(ξ) Reference

A sinc2( 1
2ξ) 1 Gautschi [7]

B sinc(ξ) 1 Deuflhard [3]
C sinc2(ξ) sinc(ξ) Garćıa-Archilla et al. [6]
D sinc2( 1

2ξ) sinc(ξ)
(
1 + 1

3 sin2( 1
2ξ)
)

Hochbruck and Lubich [11]
E sinc2(ξ) 1 Hairer and Lubich [9]
G sinc3(ξ) sinc(ξ) Grimm and Hochbruck [8]

Table 1.1: Filter functions corresponding to various trigonometric integrators.

as long as sinc(hω) 6= 0. Whatever the choice of ψ and φ, these methods reduce to
Störmer/Verlet in the case ω = 0, and to the exact solution of the harmonic oscillator
in the case g = 0.

One of the simplest trigonometric integrators is the Deuflhard/impulse method1,
which corresponds to the choice of filters ψ(ξ) = sinc(ξ) (i.e., ψ1 = 1) and φ = 1. In this
case, the trigonometric integrator corresponds to a splitting method: the Hamiltonian
is split as H(q, p) = Hfast(q, p)+U(q), where Hfast(q, p) = 1

2

(
‖p‖2 +‖Ωq‖2

)
. While the

Deuflhard/impulse method has many desirable properties, it has one major drawback:
spurious numerical resonances arise when hω is close to a nonzero integer multiple of
π, causing a loss of stability and accuracy. This resonance instability causes serious
problems whenever hω ≥ π, so effectively, the method forces us to choose h = O(ω−1),
just like the Störmer/Verlet method, making it unsuitable for integration with long
time steps. (Similar resonance phenomena also plague other impulse-type methods,
including multiple-time-stepping methods, cf. Biesiadecki and Skeel [1].)

In contrast to the “unfiltered” Deuflhard/impulse method, other trigonometric
integrators use φ to filter (or “mollify”) the slow force, so as to lessen the problem of
resonance instability. Mollified impulse methods allow the filter φ to be chosen arbitrar-
ily, and then take ψ(ξ) = sinc(ξ)φ(ξ), i.e., ψ1 = φ. Like the Deuflhard/impulse method
(which corresponds to the special case φ = 1), these are also Hamiltonian splitting
methods, where the potential U is replaced by the mollified potential U(q) = U(Φq).
Consequently, mollified impulse methods are symplectic; in fact, it is straightforward
to show that a trigonometric integrator is symplectic if and only if ψ(ξ) = sinc(ξ)φ(ξ),
i.e., it is a mollified impulse method.

Various trigonometric integrators, corresponding to different choices of the filter
functions ψ and φ, have appeared in the literature, and are summarized in Table 1.1.
The alphabetical labels for these methods (A–E and G) follow the convention of
Hairer et al. [10], which has since been adopted by several other authors. (We have
omitted “method F,” from [10], which is a two-force method rather than a trigonometric
integrator.) Of these, note that only method B (Deuflhard/impulse) and method C
(mollified impulse) satisfy the symplecticity condition ψ(ξ) = sinc(ξ)φ(ξ).

1.4. Modulated Fourier expansion and slow exchange. The modulated
Fourier expansion is a powerful technique for analyzing the dynamics of highly oscilla-
tory systems, as well as the numerical behavior of trigonometric integrators for such

1Christian Lubich pointed out to us that, although the Deuflhard and impulse methods are
distinct in general, they happen to coincide in the case of highly oscillatory problems of this type.
This is the reason behind the slash in the name “Deuflhard/impulse.”
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systems. We give only a brief summary here; for a detailed treatment, see Hairer and
Lubich [9], Hairer et al. [10].

Suppose that q(t) is a solution of the highly oscillatory system (1.1). To separate
out its fast- and slow-scale features, we approximate q(t) asymptotically by a trajectory
x(t) of the form

(1.6) x(t) = y(t) + eiωtz(t) + e−iωtz(t),

where y(t) is real-valued and z(t) is complex-valued. Assuming that the energy of x(t)
is bounded on the time interval of interest, this implies that z(t) = O(ω−1). Next, we
can decompose x = (x0, x1), y = (y0, y1), and z = (z0, z1), according to the blocks of
Ω. Plugging x(t) into (1.1), Taylor expanding g(x) around y, and matching the terms
on both sides up to O(ω−3) yields the system of equations

(1.7)

ÿ0 = g0
(
y0, ω

−2g1(y0, 0)
)

+
∂2g0
∂x21

(y0, 0)(z1, z1),

2iωż1 =
∂g1
∂x1

(y0, 0)z1.

(The y1 and z0 components can both be eliminated up to this order of accuracy.) Here,
y0 evolves on the time scale O(1) and describes the non-stiff dynamics of the system,
while z1 evolves on the time scale O(ω) and corresponds to a multiscale phenomenon
known as slow energy exchange. If Ij = 1

2p
2
1,j + 1

2ω
2q21,j is the energy in the jth

stiff component of the system, then it can be shown that, up to O(ω−1), we have
Ij ≈ 2ω2|z1,j |2. Here, we have split q = (q0, q1) and p = (p0, p1) into non-stiff and stiff
blocks, as above, and q1,j , p1,j , z1,j denote the jth components of the corresponding
vectors q1, p1, z1. It follows that the evolution of z1 describes the slow exchange of
energy between the stiff components, coupled through the nonlinear force. Moreover,
the total stiff energy I =

∑
j Ij ≈ 2ω2‖z1‖2 is an adiabatic invariant, since

d

dt
2ω2‖z1‖2 = 4ω2 Re〈z1, ż1〉 = O(ω−1),

and therefore İ = O(ω−1). Hence, deviations in I are also O(ω−1) over a fixed time
interval.

A similar technique can be applied to analyze numerical behavior. For a trigonomet-
ric integrator with time step size h, the numerical trajectory qn can be approximated
asymptotically by xh(nh), where

(1.8) xh(t) = yh(t) + eiωtzh(t) + e−iωtzh(t).

As we did for the continuous dynamics, we can plug this ansatz into (1.5) and match
terms, obtaining a system of equations,

(1.9)

δ2hyh,0 = g0
(
yh,0, γω

−2g1(yh,0, 0)
)

+ β
∂2g0
∂x21

(yh,0, 0)(zh,1, zh,1),

2iωżh,1 = α
∂g1
∂x1

(yh,0, 0)zh,1,

which hold up to O(ω−3). Here, δ2h denotes the second finite-difference operator,
defined by

δ2hyh,0(t) =
yh,0(t+ h)− 2yh,0(t) + yh,0(t− h)

h2
,

5



while the constants α, β, and γ are given by

α =
ψ(hω)φ(hω)

sinc(hω)
, β = φ(hω)2, γ =

ψ(hω)φ(hω)

sinc2( 1
2hω)

.

Comparing (1.7) and (1.9), it follows that the dynamics of zh,1 are consistent with
those for z1 only if α = 1. Moreover, to fully capture the coupled dynamics between
y0 and z1, one would also require β = 1 and γ = 1.

Of the methods listed in Table 1.1, only Method B, the Deuflhard/impulse method,
satisfies α = 1. However, as discussed previously, the resonance instability of this
method makes it practically impossible to take large time steps. Hence, we cannot
hope to model the slow-energy exchange accurately, using a trigonometric integrator,
unless we sacrifice either stability or efficiency. A more fundamental problem is that
α 6= γ in general, so even if we are willing to make the aforementioned trade-off, it is
impossible for a trigonometric integrator to satisfy α = β = γ = 1.

Multi-force methods provide one way around this obstacle, but as their name
suggests, they require multiple evaluations of the slow force g per time step. However,
we show that there is another way around this obstacle: by modifying the fast frequency
ω, it is possible for a stable, efficient method to achieve α = β = γ = 1, with only a
single evaluation of g per time step.

Remark. Strictly speaking, (1.6) and (1.8) contain only the principal (i.e., leading-
order) terms of the modulated Fourier expansion. While the constant and e±iωt terms
are sufficient to describe slow energy exchange, other properties—including long-time
conservation of the total and oscillatory energies—require further expansion in the
higher-order terms e±2iωt, e±3iωt, etc. Again, we refer the reader to Hairer and Lubich
[9], Hairer et al. [10] for a full account.

1.5. Overview of results. We begin, in Section 2, by defining modified trigono-
metric integrators, and by giving a few examples. We then show how the modulated
Fourier expansion can be applied to these methods, and we use this to derive consistency
conditions for slow energy exchange. The main result of this section, Theorem 2.1,
shows that modified trigonometric integrators can indeed satisfy the full consistency
condition α = β = γ = 1; in fact, we prove that there is a unique modified trigonomet-
ric integrator which does so, coinciding with the implicit-explicit (IMEX) method of
Stern and Grinspun [15]. Furthermore, Theorem 2.2 shows that IMEX conserves total
energy and a modified oscillatory energy up to O(h2).

Section 3 presents the results of several numerical experiments for the widely-
studied and dynamically rich Fermi–Pasta–Ulam test problem. We compare the
numerical behavior of the trigonometric integrators listed in Table 1.1 with that of
the IMEX modified trigonometric integrator. These experiments demonstrate the
trade-off between stability, consistency, and accuracy inherent to standard trigono-
metric integrators. By contrast, the IMEX modified method performs well in all of
these experiments, without any observed trade-off, as predicted by Theorem 2.1 and
Theorem 2.2.

Finally, one of these numerical experiments reveals that, although the total
oscillatory energy I =

∑
j Ij is well-conserved by all of the methods considered (both

modified and unmodified), the integrators vary considerably with respect to the
magnitude of deviations in this adiabatic invariant. In Section 4, we analyze the
deviation in total oscillatory energy by examining higher-order terms in the modulated
Fourier expansion. This analysis provides a theoretical explanation for the behavior
observed in the numerical experiments.
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Relationship to previous work. As mentioned above, the IMEX method was
introduced for highly oscillatory problems in Stern and Grinspun [15]. This earlier paper
focused primarily on the variational, symplectic, and stability properties of IMEX, and
on its comparison with multiple-time-stepping methods (as opposed to trigonometric
integrators). It was observed that IMEX can be viewed as a Deuflhard/impulse method
with modified frequency, implying the partial consistency condition α = 1 for slow
energy exchange [15, Theorem 4.1]. Theorem 2.1 is a substantial strengthening of
this consistency result; the other results and numerical experiments presented in the
current paper are independent of those in [15].

2. Modified trigonometric integrators.

2.1. Basic definitions. A modified trigonometric integrator for the highly oscil-
latory system (1.1) is defined by the second-order difference equation

(2.1) qn+1 − 2 cos(hΩ̃)qn + qn−1 = h2Ψgn,

where Ω̃ =
(
0 0
0 ω̃I

)
and ω̃ is called the modified frequency. If ψ and φ are even, real-

valued filter functions satisfying ψ(0) = φ(0) = 1, we now take Ψ = ψ(hΩ̃) and

Φ = φ(hΩ̃), while as before, we denote gn = g(Φqn).
Although Ω is generally singular, we commit a slight abuse of notation by taking

Ω−1Ω̃ to mean the matrix
(
I 0
0 (ω̃/ω)I

)
. Letting Ψ = Ω−1Ω̃ sinc(hΩ̃)Ψ1, we consider the

following symmetric, one-step algorithm:

p+n = pn +
1

2
hΨ1gn,(

qn+1

p−n+1

)
=

(
cos(hΩ̃) hΩ−1Ω̃ sinc(hΩ̃)

−Ω sin(hΩ̃) cos(hΩ̃)

)(
qn
p+n

)
,

pn+1 = p−n+1 +
1

2
hΨ1gn+1.

As with standard trigonometric integrators, this method is symplectic when the filters
satisfy ψ1 = φ; since this gives Ψ1gn = −∇U(qn), by the chain rule, and hence the
integrator corresponds to a splitting method for the modified Hamiltonian. This
symplecticity condition can also be written as ψ(hω̃) = ω−1ω̃ sinc(hω̃)φ(hω̃).

If (2.1) is used to compute a numerical trajectory (. . . , qn−1, qn, qn+1, . . .), then the

pn can be recovered by taking Ω−1Ω̃ sinc(hΩ̃)pn = qn+1−qn−1

2h , as long as sinc(hω̃) 6=
0; note that this is slightly different from the previous expression for a standard
trigonometric integrator. If we define the modified momentum p̃n = Ω−1Ω̃pn, then
it follows that sinc(hΩ̃)p̃n = Ω−1Ω̃ sinc(hΩ̃)pn = qn+1−qn−1

2h . Hence, the numerical
algorithm in (q, p̃) corresponds to

p̃+n = p̃n +
1

2
hΨ̃1gn,(

qn+1

p̃−n+1

)
=

(
cos(hΩ̃) h sinc(hΩ̃)

−Ω̃ sin(hΩ̃) cos(hΩ̃)

)(
qn
p̃+n

)
,

p̃n+1 = p̃−n+1 +
1

2
hΨ̃1gn+1,

where Ψ̃1 = Ω−1Ω̃Ψ1, which implies Ψ = sinc(hΩ̃)Ψ̃1. This is precisely a standard
trigonometric integrator for the modified frequency ω̃.
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2.2. Examples. The first example of a modified trigonometric integrator is
simply a standard trigonometric integrator, where we make the trivial choice of
modified frequency ω̃ = ω.

A more interesting, nontrivial example is the Störmer/Verlet method. Observe
that the finite-difference scheme (1.3) can be rewritten as

qn+1 − 2(I − 1
2h

2Ω2)qn + qn−1 = h2g(qn).

If we choose ω̃ such that sin( 1
2hω̃) = 1

2hω, then it follows that 1 − 1
2h

2Ω2 = 1 −
2 sin2( 1

2hΩ̃) = cos(hΩ̃), and therefore

qn+1 − 2 cos(hΩ̃)qn + qn−1 = h2g(qn).

Hence, the Störmer/Verlet method is a modified trigonometric integrator with the
above choice of ω̃, and with the filters ψ = φ = 1. It should be observed, though, that
sin( 1

2hω̃) = 1
2hω has no solution when 1

2hω > 1; we are again limited by the linear
stability condition hω ≤ 2, as in Section 1.2.

Note that, although (2.1) coincides with Störmer/Verlet, the approximation of pn
is different from that used in velocity Verlet. From sin( 1

2hω̃) = 1
2hω, we obtain

ω̃

ω
sinc(hω̃) =

hω̃ sinc(hω̃)

hω
=

sin(hω̃)

hω
=

2 sin(1
2hω̃) cos( 1

2hω̃)

hω
= cos( 1

2hω̃).

Substituting this into Ω−1Ω̃ sinc(hΩ̃)pn = qn+1−qn−1

2h , it follows that the momentum

pn satisfies cos(1
2hΩ̃)pn = qn+1−qn−1

2h .
A third, particularly interesting example is the implicit-explicit (or IMEX ) integra-

tor first suggested by Zhang and Skeel [16] as a “cheap” version of the implicit midpoint
method, and more recently introduced and analyzed by Stern and Grinspun [15] as
an attractive method in its own right for highly oscillatory problems. (An essentially
similar method has also been applied to the linear Schrödinger equation, cf. Debussche
and Faou [2].) Combining the left-hand side of the implicit midpoint method (1.4)
with the right-hand side of the Störmer/Verlet method (1.3), and multiplying both
sides by h2, we get the IMEX method,

(qn+1 − 2qn + qn−1) + ( 1
2hΩ)2(qn+1 + 2qn + qn−1) = h2g(qn),

which is only linearly implicit, and hence avoids the difficulty of solving a nonlinear
equation for qn+1. Now, if we choose ω̃ such that tan( 12hω̃) = 1

2hω, then this becomes

(qn+1 − 2qn + qn−1) + tan2( 1
2hΩ̃)(qn+1 + 2qn + qn−1) = h2g(qn),

or

qn+1 − 2 cos(hΩ̃)qn + qn−1 = h2 cos2( 1
2hΩ̃)g(qn).

Hence, the IMEX method can be reframed as a modified trigonometric method, with the
modified frequency ω̃ satisfying tan( 12hω̃) = 1

2hω, and with the filters ψ(ξ) = cos2( 12ξ)
and φ = 1. In contrast to Störmer/Verlet, it is always possible to solve for this ω̃, since
arctan (unlike arcsin) is defined on the entire real line. Note that the IMEX method
is also symplectic, since it satisfies the aforementioned condition

ω−1ω̃ sinc(hω̃)φ(hω̃) =
1
2hω̃
1
2hω

sinc(hω̃) =
1
2 sin(hω̃)

tan( 1
2hω̃)

= cos2( 1
2hω̃) = ψ(hω̃).

See Stern and Grinspun [15] for a discussion of IMEX as a splitting method, which
also implies its symplecticity.
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2.3. Modulated Fourier expansion and slow exchange. We have seen that
a modified trigonometric integrator has the same form as a standard trigonometric
integrator with frequency ω̃ (modulo the choice of p̃n = Ω−1Ω̃pn instead of pn).
Therefore, applying the modulated Fourier expansion, we get

(2.2)

δ2hyh,0 = g0
(
yh,0, γ̃ω̃

−2g1(yh,0, 0)
)

+ β̃
∂2g0
∂x21

(yh,0, 0)(zh,1, zh,1),

2iω̃żh,1 = α̃
∂g1
∂x1

(yh,0, 0)zh,1,

where

α̃ =
ψ(hω̃)φ(hω̃)

sinc(hω̃)
, β̃ = φ(hω̃)2, γ̃ =

ψ(hω̃)φ(hω̃)

sinc2( 1
2hω̃)

.

Now, if we define Ĩj = 1
2 |p̃1,j |

2 + 1
2 ω̃

2|q1,j |2, then we have previously seen that

Ĩj ≈ 2ω̃2|z1,j |2. However, we are interested not in the behavior of Ĩj , but in that of
the original stiff energies Ij . Since p̃1,j = (ω̃/ω)p1,j , we get

Ij =
1

2
|p1,j |2 +

1

2
ω2|q1,j |2 =

ω2

ω̃2

(
1

2
|p̃1,j |2 +

1

2
ω̃2|q1,j |2

)
=
ω2

ω̃2
Ĩj ,

and therefore Ij ≈ 2ω2|z1,j |2.
It follows that, if (2.2) is consistent with (1.7), then the modified trigonometric

integrator will be consistent for the corresponding energy exchange behavior. To
compare these, let us rewrite (2.2) as

δ2hyh,0 = g0
(
yh,0, γω

−2g1(yh,0, 0)
)

+ β
∂2g0
∂x21

(yh,0, 0)(zh,1, zh,1),

2iωżh,1 = α
∂g1
∂x1

(yh,0, 0)zh,1,

where α = (ω/ω̃)α̃, β = β̃, and γ = (ω/ω̃)2γ̃, i.e.,

α =
ωψ(hω̃)φ(hω̃)

ω̃ sinc(hω̃)
, β = φ(hω̃)2, γ =

ω2ψ(hω̃)φ(hω̃)

ω̃2 sinc2( 1
2hω̃)

.

Hence, consistency will require α = β = γ = 1. We now arrive at the main result of
this section.

Theorem 2.1. The IMEX method is the unique modified trigonometric integrator
satisfying α = β = γ = 1.

Proof. Clearly β = 1 if and only if φ = 1. Substituting this into α = 1 and solving
for the filter ψ, we get ψ(hω̃) = (ω̃/ω) sinc(hω̃). Therefore,

γ =
ω sinc(hω̃)

ω̃ sinc2( 1
2hω̃)

=
ω sinc( 1

2hω̃) cos( 1
2hω̃)

ω̃ sinc2( 1
2hω̃)

=
ω cos( 1

2hω̃)

ω̃ sinc( 1
2hω̃)

=
1
2hω

tan( 1
2hω̃)

.

Hence, for γ = 1, the modified frequency must satisfy tan( 1
2hω̃) = 1

2hω. Finally,
applying this to the prior equation for ψ, we get

ψ(hω̃) =
ω̃ sinc(hω̃)

ω
=

sin(hω̃)

hω
=

2 sin(1
2hω̃) cos( 1

2hω̃)

2 tan( 1
2hω̃)

= cos2( 1
2hω̃).

9



Therefore, α = β = γ = 1 holds if and only if tan( 1
2hω̃) = 1

2hω, ψ(ξ) = cos2( 1
2ξ), and

φ = 1, which is precisely the IMEX method.
Achieving consistency thus requires solving three equations (for α, β, and γ)

in three unknowns (ψ, φ, and ω̃). This is impossible for standard trigonometric
integrators, since fixing ω̃ = ω results in an overdetermined system. However, allowing
ω̃ to be modified introduces the missing degree of freedom necessary to satisfy all three
consistency conditions.

2.4. Long-time near-conservation of total energy and modified oscil-
latory energy. Away from resonances, standard trigonometric integrators nearly
conserve the total energy H(q, p) and stiff oscillatory energy I(q, p), up to order O(h)
(Hairer et al. [10, Chapter XIII, Theorem 7.1]). In fact, they note that this result
can be refined further: under the same assumptions, trigonometric integrators nearly
conserve the related quantities

H(q, p)− ρqT1 g1(q), J(q, p)− ρqT1 g1(q),

each up to order O(h2), where

ρ =
ψ(hω)

sinc2( 1
2hω)

− 1,

and where J(q, p) = I(q, p) − qT1 g1(q) is called the modified oscillatory energy. In
particular, we have ρ = 0 for Gautschi-type methods with ψ(ξ) = sinc2( 1

2ξ) (e.g.,
Methods A and D in Table 1.1), so it follows that these methods exhibit even better
long-time energy behavior, with H(q, p) and J(q, p) nearly conserved up to order
O(h2). (See Hairer et al. [10, Chapter XIII, Exercise 8].)

We now show that this improved long-time energy behavior also holds for the
IMEX method. Observe that, since IMEX corresponds to a trigonometric integrator
with frequency ω̃ in the modified coordinates (q, p̃), it follows that the total and
modified oscillatory energies,

H̃(q, p̃)− ρ̃qT1 g1(q), J̃(q, p̃)− ρ̃qT1 g1(q),

are nearly conserved up to order O(h2). Here, H̃, J̃ , and ρ̃ are defined just as above,
with ω̃ in place of ω. For the IMEX method, note also that

ψ(hω̃)

sinc2( 1
2hω̃)

=
cos2( 1

2hω̃)

sinc2( 1
2hω̃)

=
( 1
2hω̃)2

tan2( 1
2hω̃)2

=
( 1
2hω̃)2

( 1
2hω)2

=
ω̃2

ω2
,

so ρ̃ = ω̃2/ω2 − 1. The following theorem expresses the true energies H(q, p) and

J(q, p) in terms of their modified counterparts H̃(q, p̃) and J̃(q, p̃), thereby yielding
near-conservation of both quantities up to O(h2).

Note that the IMEX method avoids the undesirable phenomenon of resonance
instability, since hω̃ is bounded away from nonzero integer multiples of π whenever
hω is bounded. (An alternative proof for the stability of this method is given in Stern
and Grinspun [15].) Therefore, this convergence result can be stated without placing
non-resonance restrictions on hω.

Theorem 2.2. For the IMEX method,

H(q, p) =
[
H̃(q, p̃)− ρ̃qT1 g1(q)

]
− ρ̃J(q, p),

J(q, p) =
ω2

ω̃2

[
J̃(q, p̃)− ρ̃qT1 g1(q)

]
.

10



Consequently, both H and J are nearly conserved up to O(h2) as h→ 0 for any fixed
hω.

Proof. The modified Hamiltonian H̃(q, p̃) only differs from H(q, p) in replacing

I(q, p) by Ĩ(q, p̃) = ω̃2/ω2I(q, p) = (ρ̃+ 1)I(q, p). Therefore,

H(q, p) = H̃(q, p̃)− Ĩ(q, p̃) + I(q, p)

= H̃(q, p̃)− ρ̃I(q, p)

= H̃(q, p̃)− ρ̃
[
J(q, p) + qT1 g1(q)

]
=
[
H̃(q, p̃)− ρ̃qT1 g1(q)

]
− ρ̃J(q, p),

which proves the first equality. By a similar calculation,

J(q, p) = J̃(q, p̃)− Ĩ(q, p̃) + I(q, p)

=
[
J̃(q, p̃)− ρ̃qT1 g1(q)

]
− ρ̃J(q, p),

which rearranges to

J(q, p) = (ρ̃+ 1)−1
[
J̃(q, p̃)− ρ̃qT1 g1(q)

]
=
ω2

ω̃2

[
J̃(q, p̃)− ρ̃qT1 g1(q)

]
,

yielding the second equality. Since we have already seen that J̃(q, p̃) − ρ̃qT1 g1(q) is
nearly conserved up to O(h2), it follows that the same is true of J(q, p). Finally, since

H̃(q, p̃) − ρ̃qT1 g1(q) and J(q, p) are nearly conserved up to O(h2), the first equality
implies that so is H(q, p).

3. Numerical experiments.

3.1. The Fermi–Pasta–Ulam problem. Due to its rich multiscale coupling
behavior, a variant of the Fermi–Pasta–Ulam (FPU) problem has become a popular
highly oscillatory test problem for numerical integrators. The original FPU problem is
due to Fermi, Pasta, and Ulam [4], while the version considered here is due to Galgani,
Giorgilli, Martinoli, and Vanzini [5], and appears extensively in Hairer et al. [10, I.5
and XIII].

Suppose we have 2` unit point masses, connected together in series by alternating
weak cubic and stiff linear springs. Denote the displacements of the point masses
by q1, . . . , q2` ∈ R, where the endpoints q0 = q2`+1 = 0 are fixed, and let pi = q̇i for
i = 1, . . . , 2n. In these variables, the FPU system has the Hamiltonian

H(q, p) =
1

2

∑̀
i=1

(p22i−1 + p22i) +
ω2

4

∑̀
i=1

(q2i − q2i−1)2 +
∑̀
i=0

(q2i+1 − q2i)4.

To put this into the standard form of a highly oscillatory problem, we follow Hairer
et al. [10, p. 22] in defining the coordinate transformation

x0,i =
q2i + q2i−1√

2
, x1,i =

q2i − q2i−1√
2

,

y0,i =
p2i + p2i−1√

2
, y1,i =

p2i − p2i−1√
2

,

11
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Fig. 3.1: Maximum deviation of scaled oscillatory energy ωI on the time interval
[0, 1000] vs. hω/π (h = 0.02).

so that the Hamiltonian becomes

H(x, y) =
1

2

∑̀
i=1

(y20,i + y21,i) +
ω2

2

∑̀
i=1

x21,i

+
1

4

[
(x0,1 − x1,1)4 +

`−1∑
i=1

(x0,i+1 − x1,i+1 − x0,i − x1,i)4 + (x0,` + x1,`)
4

]
,

which has the desired form.
Following the numerical examples in Hairer et al. [10], we consider an instance of

the FPU problem with ` = 3, and where the initial conditions are given by

x0,1(0) = 1, y0,1(0) = 1, x1,1(0) = ω−1, y1,1(0) = 1,

with all other initial values set to zero. In terms of the stiff energies Ij = 1
2 (y21,j+ω2x21,j),

where j = 1, 2, 3, these conditions initialize the FPU system with I1 = 1 and I2 = I3 = 0.
As the system evolves dynamically, the phenomenon of slow energy exchange causes
this energy to be transferred among I1, I2, and I3, on the time scale O(ω−1), while
the total stiff energy I = I1 + I2 + I3 remains nearly constant.

3.2. Resonance stability and oscillatory energy deviation. Figure 3.1 de-
picts the maximum deviation in frequency-scaled oscillatory energy ωI, over the time
interval [0, 1000], for a range of different frequencies. As discussed in Section 1.4,
deviations in I are O(ω−1), whereas those in ωI are O(1), making the latter more
appropriate for comparison across frequencies. (To our knowledge, the use of ωI rather
than I for numerical experiments originated in O’Neale and McLachlan [14].) The
time step size is fixed at h = 0.02, while hω/π ranges over (0, 4.5].

The “spikes” seen at nonzero integer values of hω/π correspond to resonance
instability. Note that the energy blowup is particularly severe for Method B (the
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Fig. 3.2: Maximum deviation of total energy on the time interval [0, 1000] vs. hω/π
(h = 0.02). The y-axis is scaled 10 times smaller for Methods A, D, and IMEX due to
the smaller energy deviations for these methods.

Deuflhard/impulse method), while Methods C and E have resonances only at even
values of hω/π. Only Method G and the IMEX method display no resonance spikes
at all.

Away from the resonance instabilities, the energy deviation behavior is also
interesting. For all of the methods considered, ωI appears to be O(1) away from the
resonance spikes. Indeed, as long as the methods are stable (i.e., the solutions remain
bounded), we have I = O(ω−1), so all of the methods nearly conserve the adiabatic
invariant I. (This holds true whether or not the method is consistent for the individual
oscillatory energies Ij .)

However, the methods behave quite differently with respect to the magnitude of
the deviations in oscillatory energy. For the reference solution, the maximum deviation
in ωI is nearly constant with respect to ω, with an approximate numerical value of 4.
Methods B, C, and E display a significant decrease in oscillatory energy deviation near
odd integer values of hω/π, indicating that the adiabatic invariant is conserved too
well, compared to the reference solution. (This artificial “anti-resonance” can be seen
as a sort of numerical damping.) This behavior is even more dramatic for Method G,
where the energy deviation is artificially low for nearly all values of hω/π, not just
values close to odd integers. Of the methods considered, the IMEX method is the only
one which correctly captures the magnitude of these deviations in oscillatory energy.
This phenomenon will be revisited and analyzed in Section 4, where we will show that
this behavior is governed by higher-order terms in the modulated Fourier expansion.

3.3. Long-time near-conservation of total energy. Figure 3.2 shows the
maximum deviation in total energy (i.e., in the Hamiltonian), over the time interval
[0, 1000], for a range of different frequencies. (This is in contrast to Figure 3.1, which
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Fig. 3.3: Log ratio of the maximum deviations in total energy on the the time interval
[0, 1000], for h = 0.02 and h = 0.04, plotted against hω/π. Away from resonances,
Methods A, D and IMEX conserve total energy up to O(h2), while the remaining
trigonometric integrators only conserve total energy up to O(h).

depicted only the oscillatory energy component of the Hamiltonian.) The reference
plot is omitted, as the exact solution preserves total energy exactly. As in Figure 3.1,
Methods A–D again exhibit “spikes” in the energy error at resonant frequencies.
Notably, this is not the case for Method E—despite the fact that it exhibited resonance
spikes for the oscillatory energy alone—nor for Method G or IMEX. Furthermore,
observe that Methods A, D, and IMEX conserve energy much more closely than the
other methods (at least away from resonances), by roughly an order of magnitude. This
is consistent with the discussion in Section 2.4, including the result in Theorem 2.2,
which stated that these methods conserve total energy up to O(h2), whereas the
remaining methods only do so up to O(h).

Figure 3.3 illustrates the relationship of total energy conservation to step size,
plotting the log ratio of the deviation in total energy for h = 0.02 and h = 0.04. As
anticipated by the theoretical results in Section 2.4, including Theorem 2.2, we see
that the energy deviations are O(h2) for Methods A, D, and IMEX, and O(h) for the
remaining methods (at least away from resonances). Only the IMEX method exhibits
second-order conservation of total energy, while also remaining free of resonance spikes.

3.4. Slow energy exchange. Figures 3.4, 3.5, and 3.6 depict the phenomenon
of slow energy exchange for the FPU problem, following similar numerical experiments
in Hairer et al. [10]. Each plot contains four curves, corresponding to the three stiff
energies, I1, I2, I3, along with the adiabatic invariant I = I1 + I2 + I3 ≈ 1.

In Figure 3.4, the parameters ω = 50 and h = 0.03 correspond to a moderate choice
of time step size: since hω/π ≈ 0.48, this is prior to the onset of resonance instability at
nonzero integer values. Methods B, D, and the IMEX method give qualitatively correct
energy exchange behavior on the time interval [0, 200]. By contrast, the exchange
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Fig. 3.4: Slow exchange of individual and total oscillatory energies vs. time (ω = 50,
h = 0.03).
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Fig. 3.5: Slow exchange of individual and total oscillatory energies vs. time (ω = 50,
h = 0.1).

occurs too quickly for Method A, and too slowly for Methods C, E, and G (the latter
quite dramatically).

In Figure 3.5, the fast frequency remains ω = 50, but we take a significantly larger
time step size of h = 0.1 (with hω/π ≈ 1.59). Method B and the IMEX method still
capture the correct rate of energy exchange on the time interval [0, 200], while for
the other methods, the exchange occurs much too slowly. Notice that we are also
beginning to see the effects of oscillatory energy deviation, as in Figure 3.1. Indeed, the
excessive “noise” visible for Method B is due to the wide resonance band at hω/π = 2,

15



0 1 2 3 4
×104

0.0

0.5

1.0

Method A

0 1 2 3 4
×104

0.0

0.5

1.0

Method B

0 1 2 3 4
×104

0.0

0.5

1.0

Method C

0 1 2 3 4
×104

0.0

0.5

1.0

Method D

0 1 2 3 4
×104

0.0

0.5

1.0

Method E

0 1 2 3 4
×104

0.0

0.5

1.0

Method G

0 1 2 3 4
×104

0.0

0.5

1.0

IMEX Method

0 1 2 3 4
×104

0.0

0.5

1.0

Reference

Fig. 3.6: Slow exchange of individual and total oscillatory energies vs. time (ω = 10000,
h = 0.1).

while the pronounced lack of noise in Method G is due to its artificially low deviations
in oscillatory energy. Only the IMEX method displays the correct oscillatory energy
behavior, capturing both the rate of exchange and the magnitude of deviations.

Next, in Figure 3.6, we depict the behavior of these methods as they approach
their high-frequency limit, keeping h = 0.1 but taking ω = 10000 (hence hω/π ≈ 318).
Since ω has been scaled by a factor of 200 compared to the previous experiments,
the time interval must also be scaled correspondingly, so we look at energy exchange
over the interval [0, 40000]. As before, only Method B and the IMEX method capture
the correct rate of exchange, while for the other methods, the exchange occurs so
slowly that it cannot be seen at all on the time scale considered. Method B is again
hampered by resonance instability, as in Figure 3.5, which manifests as excess noise
in the oscillatory energy plot. Of the methods considered, only the IMEX method
captures the correct energy behavior in the high-frequency limit.

3.5. Global error in slow components. Finally, in Figures 3.7 and 3.8, we
investigate the global error in the slow position x0 and slow momentum y0, plotted
against the time step size h. (These are the only components of real concern: indeed,
trigonometric methods are designed precisely for problems where we are not interested
in resolving the fast oscillations.) For both figures, the error plotted is the Euclidean
distance between the numerical solution and a reference solution, taken at the first
time step after t = 1. Dotted vertical lines indicate values for which hω is an integer
multiple of 2π, where some of the methods suffer from resonance instabilities that
manifest as spikes in the global error. Note that the Störmer/Verlet blows up due to
linear instability near h = 2/ω = 2× 10−3, illustrating its unsuitability for this type
of highly oscillatory problem.

Using the modulated Fourier expansion, the analysis of Hairer et al. [10, Chapter
XIII, Theorem 4.1] shows that each of the trigonometric methods is second-order,
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Fig. 3.7: Global error in the slow position x0 at the first time step after t = 1 vs. time
step size (ω = 1000).
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Fig. 3.8: Global error in the slow momentum y0 at the first time step after t = 1 vs.
time step size (ω = 1000).

as long as hω is bounded away from an integer multiple of π. However, near these
resonance points, the order of accuracy reduces to one unless the filter functions
satisfy certain conditions. (See also Grimm and Hochbruck [8].) Among the standard
trigonometric integrators, Methods C, D, and G satisfy these conditions, and hence
are second-order uniformly in hω. By contrast, Methods A, B, and E do not satisfy
these conditions, and the resulting error spikes (visible in Figures 3.7 and 3.8) lead to
a reduction in their uniform order of accuracy.

By construction, however, the IMEX method always has hω̃ bounded away from
nonzero integer multiples of π. Indeed, since hω̃ = 2 arctan( 1

2hω), we have −π <
hω̃ < π, and hω̃ approaches ±π only in the limit as hω approaches ±∞. It follows
that hω̃ is bounded away from nonzero integer multiples of π whenever hω is bounded.
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Hence, comparing the modulated Fourier coefficients, the argument of Hairer et al.
[10] implies that the global error in the slow components for the IMEX method is
second-order, uniformly in hω on any bounded region |hω| ≤M .

Combined with the previous results, we remark that only Method G and the
IMEX method are uniformly second-order and free of resonance instabilities. Of these
two methods, however, only IMEX captures the correct stiff energy behavior.

4. Analysis of oscillatory energy deviations. We observed in Section 3.2
that the oscillatory energy I(x, ẋ) is nearly conserved, for long times, by all the
methods considered. This is proved in Hairer et al. [10, Chapter XIII, Theorem 7.1],
where it is shown that the deviations in oscillatory energy are O(h). However, from
Figure 3.1, it is also apparent that the magnitude of these deviations, for certain
methods, is very different from the correct value displayed in the reference solution.
This can be explained by carrying the modulated Fourier expansion to one more term.

For the exact solution, the system of modulated Fourier coefficients is known
to have a formal invariant I = −iω(uT u̇ − uT u̇) + O(ω−6), where u = eiωtz. A
higher-order expansion of this invariant appears in [10, Chapter XIII, Equation 6.12],
and the O(ω−6) estimate is obtained by observing from [10, Chapter XIII, Equation
5.3] that the remainder is a product of −iω with two additional factors, which are
respectively O(ω−4) and O(ω−3). Now, with u̇ = eiωt(ż + iωz) = iωeiωtz +O(ω−2),
this gives

I = 2ω2‖z1‖2 +O(ω−2).

This should be compared to the oscillatory energy, which is

I(x, ẋ) =
1

2
‖ẋ1‖2 +

1

2
ω2‖x1‖2.

To do this, consider the expansions

x1 = y1 + eiωtz1 + e−iωtz1 +O(ω−4)

ẋ1 = ẏ1 + eiωt(z1 + iωz1) + e−iωt(z1 − iωz1) +O(ω−4).

Inserting y1 = O(ω−2), z1 = O(ω−1), ż1 = O(ω−2), we get the estimate

I(x, ẋ) =
1

2
ω2‖z1 − ż1‖2 +

1

2
ω2‖y1 + eiωtz1 + e−iωtz1‖2 +O(ω−2)

= 2ω2
(
‖z1‖2 + yT1 Re(eiωtz1)

)
+O(ω−4)

= I + 2ω2yT1 Re(eiωtz1) +O(ω−2).

Since I is (nearly) conserved over long times, the second term controls the O(ω−1)
deviations in the oscillatory energy I. This term contains two fluctuating components,
corresponding to the evolution of y1 = ω−2g1(y) and 2iωż1 = g′1(y)z = g1,1(y0, 0)z1 +
O(ω−2). Since the latter is controlled by the formal invariant I, it follows that

|I − I| ≤
√
I√
2
ω−1

∥∥g1,1(y0, 0)
∥∥+O(ω−2).

Repeating the above estimates for modified trigonometric integrators gives the
formal invariant

Ih = 2ω2‖zh,1‖+O(ω−2),
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for h→ 0, hω fixed, which is related to I by

I(xn, ẋn) = Ih + 2ω2yTh,1 Re(eiωtzh,1) +O(ω−2).

From the modulated Fourier expansion, we have

yh,1 = γφ(hω)−1y1 +O(ω−3), żh,1 = αż1 +O(ω−2).

Thus, although the zh,1 factor may have an incorrect evolution on the O(ω−1) time
scale if α 6= 1, in the neighborhood of a particular solution (y, z) on the O(1) time
scale, it does not affect the deviations in I. Rather, these are controlled by the
first factor, and are therefore correct to leading order if and only if γ = φ, i.e.,
ω2ψ(hω̃) = ω̃2 sinc2( 1

2hω̃).
For standard trigonometric integrators, this is true for the Gautschi-type methods

with ψ(ξ) = sinc2( 12hω), i.e., for Method A (with φ = 1) and Method D (with φ 6= 1).
The IMEX method also satisfies this consistency condition, since γ = φ = 1. For the
remaining methods, the observed deviations in Figure 3.1 are correct up to the factor
γ/φ calculated above. For example, Methods C and E have ψ(ξ) = sinc2(ξ), so

γ(ξ)

φ(ξ)
=

sinc2(ξ)

sinc2( 1
2ξ)

=
sinc2( 1

2ξ) cos2( 1
2ξ)

sinc2( 1
2ξ)

= cos2( 1
2ξ),

which is clearly visible, in Figure 3.1, as period-2π oscillations in the magnitude of
energy deviation. On the other hand, for Method G, we have the filter ψ(ξ) = sinc3(ξ),
so

γ(ξ)

φ(ξ)
=

sinc3(ξ)

sinc2( 1
2ξ)

=
sinc3( 1

2ξ) cos3( 1
2ξ)

sinc2( 1
2ξ)

= sinc( 1
2ξ) cos3( 1

2ξ),

which leads to rapid decay in the magnitude of energy deviation.

5. Conclusion. This paper was motivated by the fact that, while conventional
trigonometric integrators have many desirable properties—especially, with respect
to stability, accuracy, and energy behavior—there are “no-go theorems” making it
impossible for any single integrator to have these good properties simultaneously. Other
work, particularly on multi-force methods, showed a way around these obstacles, but
at the cost of several nonlinear force evaluations per time step. On the other hand, the
observations of Stern and Grinspun [15] regarding the IMEX method suggested that,
by modifying the fast frequency, one might find another way around these obstacles,
without suffering the greater computational cost required by multi-force methods.

By extending the modulated Fourier expansion techniques of Hairer and Lubich
[9], Hairer et al. [10], we have shown that, for modified trigonometric integrators, it is
indeed possible to get around these no-go theorems—and that the IMEX method is in
fact the unique modified trigonometric integrator which correctly models the multiscale
phenomenon of slow energy exchange. Moreover, the IMEX method maintains desirable
properties with respect to resonance stability and preservation of adiabatic invariants,
while also being uniformly of second-order accuracy in global error, and does so without
any additional computational cost relative to conventional trigonometric integrators.
Finally, we have shown that while all of these integrators exhibit near-conservation of
oscillatory energy, only some of them—in particular, the Gautschi-type trigonometric
integrators and the IMEX method—consistently model the magnitude of deviations in
this adiabatic invariant.
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