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Abstract

We present a new dynamic elastic network model (DENM) that describes the unfolding process of 

a force-loaded protein. The protein interaction network and its potentials are constructed based on 

information of its native-state structure obtained from the Protein Data Bank, with network nodes 

positioned at the Cα coordinates of the protein backbone. Specifically, to mimic the unfolding 

process, i.e., to simulate the process of overcoming the local energy barrier on the free energy 

landscape with force loading, the noncovalent protein network bonds (i.e., hydrogen bonds, salt 

bridges, hydrophobic contacts, etc.) are broken one-by-one with a certain probability, while the 

strong covalent bonds along the backbone (i.e., peptide bonds, disulfide bonds, etc.) are kept 

intact. The jumping event from local energy minima (bonds breaking rate) are chosen according to 

Kramer’s theory and the Bell model. Moreover, we exploit the self-similar structure of proteins at 

different scales to design an effective coarse-graining procedure for DENM with optimal 

parameter selection. The robustness of DENM is validated by coarse-grained molecular dynamics 

(MD) simulation against atomistic MD simulation of force-extension processes of the Fibrinogen 

and Titin Immunoglobulin proteins. We observe that the native structure of the proteins 

determines the total unfolding dynamics (including large deviations) and not just the fluctuations 

around the native state.
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Introduction

A major challenge in molecular biology is to understand the regulatory mechanisms in large 

protein complexes that are abundant in multicellular organisms, as most proteins perform 

their function through structural deformation driven by mechanical loading. In general, 

atomistic molecular dynamics (MD) simulation has played a significant role in gaining 
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insight into protein dynamics [1, 2]; however, systematic computational characterization of 

protein complex dynamics is still far beyond current computational capabilities. This has 

motivated efforts for developing efficient but physically realistic methods for deriving 

dynamic properties based on structures and mechanical properties. Indeed, coarse-graining 

approaches have proven to be useful in elucidating the functionality of important collective 

motions of large proteins [3].

Proteins in living cells can fold quickly into a unique native state of minimum free energy, 

which conceals a wealth of information about the folding/unfolding processes [4]. The free-

energy landscapes of a protein can basically be mapped out by its native-state structure [5], 

so it has been concluded that the protein dynamics mechanisms are largely determined by its 

native-state structures [6, 7]. Previous experimental and simulation studies also suggested 

that the dominant motion of a protein structure is mainly represented by its carbon backbone 

chains [8]. Based on these arguments, coarse-grained protein models, which are delineated 

by Cα atoms along protein backbone chains, have been suggested. For example, Tirion 

developed the popular elastic network model (ENM) for conformational fluctuations of 

proteins [9], which then inspired many successful studies of protein dynamics and 

mechanics with high computational efficiency [10]. The model reduction scheme (coarse 

graining) of ENM has also been employed for large protein structures because cooperative 

motions between Cα atoms are largely obtained during protein dynamics [11, 12, 13, 14, 

15]. Computational studies based on ENM have been successful in exploring the molecular 

motions of proteins around the folded native state when considered a harmonic 

approximation to the free-energy surface of the protein around native state. However, there 

remains a very simple yet fundamental question: can the simple ENM be used to describe 

the protein folding/unfolding process, given that the folding/unfolding pathways in globular 

proteins are mainly determined by their native topologies [16]? Experimental and theoretical 

studies have shown that the protein unfolding process can be mimicked through breaking the 

native contacts (including hydrogen bonds, salt bridges, hydrophobic contacts, etc.) one-by-

one between the residues [17, 18, 19]. Inspired by these findings, here we extend the widely 

used ENM and propose a multiscale dynamic elastic network model (DENM) at various 

coarse-graining scales. The idea behind the extension of ENM is simple; i.e., as suggested 

by the well-known Levinthal paradox, the protein folds or unfolds through a series of 

metastable intermediate states instead of a random conformational search. Hence, we can 

approximate the entire energy landscape (simply one dimension along the unfolding path) as 

perturbed harmonic potential, where all perturbations are considered as local minima 

(metastable) on the energy surface. The transition rate between these metastable states with 

force loading can be described with the Bell model [20]. Our approach is a general 

framework for constructing a bottom-up coarse-graining model to capture the protein 

unfolding dynamics mechanism. We apply this approach to Fibrinogen (PDB; ID is 1M1J; 

total number of protein atoms and heterogen atoms is 16117) and Titin Immunoglobulin 

(PDB ID is 1TIT; total number of protein atoms and heterogen atoms is 1377) proteins; see 

Figure 1. We will show that the proposed method can reproduce accurately the force-

extension curve of a single protein compared against atomistic MD simulations as well as 

AFM experimental results [21, 22].
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Materials and methods

The standard ENM describes a three-dimensional protein structure as an elastic network of 

Cα atoms connected by harmonic-spring bonds within a cutoff distance rc. The potential 

energy in the elastic network is given by

(1)

where h(r) is the Heaviside function, , with rij the distance between node i and j, 

 the original distance in the native-state structure, n the total number of residues (or total 

number of Cα atoms), and γ a spring force constant. However, in our model, the spring force 

constants for the covalent (i.e., peptide bonds, disulfide bonds, etc.) and noncovalent (i.e., 

hydrogen bonds, salt bridges, etc.) interactions are different for capturing the nonlinear 

extension of the protein network. Here, we set the spring force constants of covalent bonds 

and noncovalent bonds as cγ and γ, respectively, with the new constant c typically greater 

than 1. The potential function of the ENM can be expanded to second order about the 

minimum near the saddle point by computing its Hessian matrix H, which includes the 

second derivatives of the potential function and contains n-by-n superelements each of size 3 

× 3. Correspondingly, the mean-square fluctuations of each node are given by the 

pseudoinverse of the Hessian matrix H−1 as

(2)

The pseudoinverse is constructed based on the 3n−6 nonzero eigenvalues  of the full 

Hessian matrix (quadratic vibrational degrees of freedom) and corresponding eigenvectors 

ui, i.e.,

(3)

The values of the force spring constants cγ and γ are determined by comparing the 

theoretical B-factor, , with the x-ray experimental data in the PDB file of 

the protein. It is worth pointing out that because the magnitude of γ does not affect the 

distribution (or relative size) of residue fluctuations, it has no influence on the correlation 

between the computed and experimental B-factors. So, the value of γ was set to 1 at first and 

the value of c was determined by maximizing the correlation between the computed and 

experimental B-factors. Then, the value of parameter γ was determined by normalizing the 

computed fluctuation with the experimental B-factors.

To capture the unfolding processes of a protein (i.e., to overcome the local energy barrier) as 

well as to cover the timescale of unfolding events in MD simulation, we combine the well-
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known dynamic bond model within the standard ENM here, which we call DENM. As we 

mentioned above, the unfolding event is mimicked through breaking noncovalent bonds; i.e., 

all of the network noncovalent bonds may break reversibly under force loading with a 

certain probability. The probability for the bond to break with an extension Δr is computed 

from

(4)

At the same time, the broken noncovalent bonds may also be formed again if they are in 

close proximity, with the formation probability computed from

(5)

According to the Bell model, the dissociation and formation reaction rates of noncovalent 

bonds are estimated as  and , respectively. 

Here, η is the friction coefficient in the MD simulation, kBT is the unit of energy, and Δt is 

the time step for MD simulation; θ is the angle between the bond direction and the pulling 

force direction. In general, these dynamic bond model parameters are used to describe the 

noncovalent bond breaking, i.e., mainly for hydrogen bonds. Hence, the typical values for 

hydrogen bond formation and dissociation energy barrier ΔGon and ΔGoff can be used; koff 

and kon are chosen on the orders 10−1 and 10−2, respectively, in previous papers.

So far, we have constructed a DENM of a protein by assigning every Cα atom to the node, 

and subsequently we mapped the Cα atom based DENM to a consistent coarse-grained 

DENM (CG-DENM). In general, for coarse-grained models of relatively small biomolecules 

or in cases that the coarse-grained and fine-grained models have similar resolution, the 

construction of mapping is relatively straightforward. However, it is more challenging to 

construct a coarse-grained map when large and complex domains of biomolecules have to be 

represented by a few coarse-grained sites. Here, we use the essential dynamics coarse-

graining (ED-CG) scheme [8, 23, 24] to define the CG-DENM nodes from the original Cα 

atom based DENM. The Cα atom based DENM system is specified by the values of n node 

position vectors as rn = r1, r2, …, rn. These nodes are then separated into N dynamic 

domains, and each domain is a group of nodes that move together in a highly correlated 

fashion, whose motion can be obtained by minimizing the residual as follows:

(6)

where N is the number of dynamic domains, I denotes the CG node, and i, j denote the atoms 

in node I. Here, the same numerical algorithm (simulated annealing method) as in Zhang et 

al. [23, 24] is used to obtain the best CG model that reflects the low-frequency functional 
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dynamics characterized by the ENM. First, N (coarsegrained node number) dynamic 

domains are randomly partitioned. For example, these domains are chosen to be continuous 

on the primary sequence, so they can be chosen by determining N − 1 boundary atoms 

located randomly along the primary sequence. Using a global simulated annealing, at each 

temperature, we adjust variationally the locations of these boundary atoms using a Monte 

Carlo method based on the Metropolis criterion; i.e., if the residual of the new partition 

domains is smaller than the previous one, then the new partition is accepted. If it is higher 

than the previous one, then it is accepted with a probability exp(−χ2/T). We use large 

temperature T at the beginning, and then gradually decrease it during the annealing process, 

allowing the calculation to settle into the global minimum of the residual. After the dynamic 

domains are determined, we set the node that is closest to the center of each domain as a 

coarse-graining node, also called master node, while the other nodes are called slave nodes. 

Now the Cα atom based DENM nodes are decomposed into two regions such that master 

nodes are denoted as residues belonging to a region that is maintained during model 

reduction, whereas the other residues (or slave nodes) are the residues that could be 

eliminated during coarse graining. Based on such decomposition, the potential energy of the 

(coarsened) network model can be represented in the form

(7)

Model condensation (for the master nodes “m” and the slave nodes “s”) reduces the Hessian 

matrix H into the condensed Hessian matrix H̃ for a coarse-grained structure as 

, and its corresponding pseudoinverse matrix can be calculated 

similarly as before, i.e.,

(8)

Here,  are its 3N−6 nonzero eigenvalues and ũi are the corresponding eigenvectors. At the 

same time, based on the above decomposition approach, the CG-DENM is constructed by N 

nodes less than the total number of residues belonging to such protein structures. The 

average cutoff distance  for CG-DENM is in the form of , where b is 

the fractal dimension based on the self-similarity principle of complex network theory. The 

self-similarities of the protein structure can be observed in Figure 1; i.e., the shapes of 

contacts map are conserved during coarse graining. This self-similarity property is 

extremely important for our coarse-graining procedure. Here, the fractal dimension b is 

calculated by the so-called cluster growing method [25], and Γ represents the coarse-grained 

model. Then, the spring constant for CG-DENM is determined from the Kullback–Leibler 

divergence [26, 27] as shown below, while the other parameters remain the same as those 

with the Cα atom based DENM, i.e.,
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(9)

Here,  and  are eigenvalues and corresponding eigenvectors of the CG-DENM 

Hessian matrix HΓ, and  are independent of γ(Γ) since the eigenvalues  are 

proportional to γ(Γ). In total, there are five parameters in our DENM, i.e., the cutoff distance 

rc, spring constants γ and cγ, dissociation rate koff, and association rate kon.

Results and discussion

Next, we apply our DENM to two well-known proteins, Titin Immunoglobulin and 

Fibrinogen, whose fractal dimensions b are 0.42 and 0.50, respectively. The former plays an 

important role in muscle contraction and elasticity [28], while the systematic assembly or 

polymerization of the latter forms the main component of a blood thrombus [29]. We 

employ coarse-grained molecular dynamics in these simulations with a time step Δt = 

10−4ps. This selection is based on the observation that the rate of the force extension 

response is of the order 0.1nm/ps. We start the simulation by fixing one end of the protein 

network and moving the other with constant velocity along the line in the opposite direction, 

and we compute the force exerted on the moving bead as well as the distance between that 

bead and the fixed one. In the MD simulation, a velocity Verlet scheme is used to integrate 

the system, at each time step, and the dynamic bond interactions are considered. First, all 

existing bonds are checked for a potential dissociation according to probability Poff; a bond 

is ruptured if ξ < Poff and left unchanged otherwise, where ξ is a random variable uniformly 

distributed on [0, 1]. Second, we check all the free nodes for possible bond formation 

according to the probability Pon. Finally, the forces of all remaining bonds are calculated 

and applied.

All parameters used in applying this DENM approach to these two proteins are shown in 

Table 1. First, we developed a Cα atom based DENM of these two proteins from the all-

atom PDB file by choosing the cutoff distance rc of 10.0Å and 9.0Å for 1M1J and 1TIT 

proteins, respectively. Then, we obtained the best ENM of these proteins by carefully 

choosing the values of c and γ shown in Table 1, yielding patterns of Cα atom B-factors that 

are similar to those of the experimental data as shown in Figure 2. Next, we consider the 

force-extension unfolding process of these two proteins with the help of coarse-grained MD 

simulation. The sequence of unfolding events depends strongly on the network structure or 

native contact topology. Figure 3 shows the force as a function of cantilever displacement. 

For the Titin protein, the curves are terminated when the protein is fully extended, and the 

sharp rise in force at the end of the curves reflects stretching of the covalent bonds along the 

backbone, which in our DENM strongly depends on the constant c. We can also see that the 

force curves show a series of upward ramps followed by rapid drops where local contacts 

break. Both the Cα based DENM and CG-DENM can predict force-extension curves which 

match well with the atomistic MD simulation results below a certain coarse-graining limit. 

Besides the force-extension curves, the unfolding events, which are marked by the bonds 

breaking, can be clearly understood from the contact map of residues with different stretch 
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lengths as shown in Figures 4 and 5; results from the coarse-grained models are in 

agreement with the fine-grained models for both 1M1J and 1TIT proteins.

The key assumptions behind the coarse-grained scheme are the cooperative motion between 

Cα atoms during the folding/unfolding process and the shape conservation of the contacts 

map during coarse graining. The L2 error between our coarse network model and full 

atomistic simulations is of the order 10% but increases rapidly at extreme coarse-graining 

levels; for example, it reaches order 50% for Fibrinogen for 228 nodes, which is the coarsest 

graining we attempted. Correspondingly, we found our results start to deviate from the 

experimental results when the number of nodes is smaller than 22 and 228 for the Titin and 

Fibrinogen proteins, respectively, as shown in Figure 3. Clearly, we cannot coarse grain our 

model to as small a number of nodes as we want because when the Cα atoms in a coarse-

graining node are not moving in a highly correlated fashion, the model cannot capture the 

real dynamics anymore. In other words, the CG-DENM works well only when the relative 

minimal residual is relative small. As shown in Figure 6, the minimal relative residual error, 

which represents the cooperative motion in coarse-graining nodes, increases proportionally 

to C(N0/N)2 for both proteins, consistent with the scaling first documented in [30]. The 

constant C is different for different proteins with small values for stiffer proteins with large 

persistent length.

Conclusion

In summary, we have developed a general Cα atom topology-based DENM to describe the 

mechanical unfolding of proteins with force loading, which yields quantitative agreement 

with full-atomistic MD simulations. By combining different techniques, e.g., ED-CG and 

the Kullback–Leibler divergence, and exploiting the self-similar structure of proteins at 

different scales, we formulated the Cα atom based DENM to various coarse-graining levels, 

which can be used with particle based methods to model the dynamic properties of proteins. 

Here we have used hydrogen bond values for all the dynamic bond parameters for both 

examples presented. However, in principle, we can employ an adaptive procedure to update 

them based on the large deviation theory, i.e., to minimize the distance of the coarse-grained 

and fine-grained force-excitation responses by considering them as stochastic processes. Our 

results suggest that we can coarse grain with reasonable accuracy about 10 residues to one 

CG node, which taken together with the elimination of the atoms per residue (of the order of 

10; see Table 1) yields a total reduction in degrees of freedom of about two orders of 

magnitude. This is a rather aggressive coarse graining, which can have a tremendous effect 

on speeding up simulations of cell-protein interactions in biological systems. An example is 

blood flow where simulating accurately the cross-linking of fibrin fibers and their 

interactions with blood cells (e.g., platelets and red blood cells) is critical in producing 

physiologically correct results for the formation of thrombus [29]. The computational 

complexity of such coarse-grained MD simulations is of the order of (N log N), where N is 

the number of protein network nodes. However, there is an initial cost associated with the 

coarse-graining procedure due to the eigenvalue problem for constructing the pseudoinverse 

of the Hessian matrix and also due to simulated annealing for parameter selection. While 

this cost is substantial, it is relatively small if many simulations are pursued based on this 

coarse-grained model.
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Fig. 1. 
Atomistic level visualizations (left) and Cα-based ENM (middle) and coarse-grained ENM 

(right) representations of Titin Immunoglobulin (upper) and Fibrinogen (lower) proteins. 

The contact maps of residues are also shown here with the red and black symbols 

representing the covalent and noncovalent contacts, respectively. Color is available only in 

the online version.
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Fig. 2. 
B-factors along Titin Immunoglobulin (left) and Fibrinogen (right) protein backbones from 

experimental measurements (black), Cα-based ENM calculation (red), and coarse-grained 

ENM calculation (green). The insets are the zoom in of the corresponding plots for a more 

clear comparison. Color is available only in the online version.
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Fig. 3. 
Force-extension profile of Titin Immunoglobulin (left) and Fibrinogen (right) proteins 

stretched at 0.0025nm/ps and 0.05nm/ps, respectively. The black, red, and green lines 

represent the results from full-atomistic MD simulation, Cα based DENM, and CG-DENM, 

respectively. The blue line in the right figure represents the failure of DENM at the large 

coarse-graining level. The insets are the zoom in of the corresponding plots for a more clear 

comparison. Color is available only in the online version.
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Fig. 4. 
Contact maps of residues for the fine-grained (upper) and coarse-grained (lower) models of 

Titin Immunoglobulin during unfolding (total extension of protein is 0nm, 15nm, and 25nm, 

respectively, from left to right). The red and black symbols represent the covalent and 

noncovalent contacts, respectively. Color is available only in the online version.
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Fig. 5. 
Contact maps of residues for the fine-grained (upper) and coarse-grained (lower) models of 

Fibrinogen during unfolding (total extension of protein is 0nm, 37.5nm, and 62.5nm, 

respectively, from left to right). The red and black symbols represent the covalent and 

noncovalent contacts, respectively. Color is available only in the online version.
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Fig. 6. 
Minimal relative residual error (normalized by the biggest residual when N = 1) as a 

function of coarse-graining level N0/N for Titin (black) and Fibrinogen (red) proteins. N0 is 

the protein residue number, and N is the coarse-grained network node number. Color is 

available only in the online version.
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