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Abstract

We develop in this note a homogenization method to tackle the problem of a diffusion
process through a cracked medium. We show that the cracked surface of the domain
induces a source term in the homogenized equation. We assume that the cracks are
orthogonal to the surface of the material, where an incoming heat flux is applied. The
cracks are supposed to be of depth 1, of small width, and periodically arranged.

1 Motivation and setting of the problem
We consider the propagation of radiation through a cracked medium, made of an optically
thick material. The propagation is initiated by an incoming given energy flux imposed on
the left boundary of the crack (see figure 1 where the flux is represented in dashed lines).

Physically, the exchange surface between the optically thick medium and the source may
be greatly modified by the fractures. This may have a significant impact on the energy
balance of the considered system. In many situations, we cannot model the surface of the
cracked medium directly, which is often too intricate to be described. Besides, the shape
of the fractures may have a stochastic feature and it may involve many spatial scales. Full
numerical simulations of such multi-scaled media become hence infeasible.

That is why we have been looking for an average approach, to capture the effects
of cracks in a homogenized medium. The model presented here is simple enough to be
coupled to standard FEM codes. The physical idea behind the model developed in this
paper, called "MOSAIC" (Method Of Sinks Averaging Inhomogeneous behavior of Cracked
media), is to treat the flux enhancement induced by the crack as a volume source term
in the homogenized energy equation. We will show that this can be justified rigorously by
homogenization theory.

Since the medium is assumed to be optically thick, the propagation of radiation follows
a diffusion process [9]. For the sake of simplicity, we shall assume a linear behavior law,
which means that the energy flux F is proportional to the energy gradient ∇u.1

Besides, we consider the diffusion process on a short time scale, so that the hydrodynamic
effects, which are not supposed to play a significant role, are disregarded.

1But the results given here could be extended to the non-linear (power law) case.
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Figure 1: The cracked domain Ωε.

The linear diffusion problem can thus be modeled by:

∂tu−∆u = 0 in Ωε,

∂nu = 0 on Γ0
ε

∂nu = 1 on Γ1
ε,

∂nu = α−β
2 ε on Γαε ,

∂nu = β
α on Γβε .

(1.1)

We also need an initial condition:

u(x, y, t = 0) = u0(x, y), (1.2)

so that problem (1.1)-(1.2) is well-posed. For the problem at hand, u(x, y, t) is the energy
density but it could represent any field following a diffusion process.

We impose u(x, y, t) to be periodic of period ε with respect to the y direction. The
domain Ωε, as well as the boundaries Γ0

ε,Γ
1
ε,Γ

α
ε ,Γ

β
ε are defined on figure 1. The right-most

boundary Γ0
ε is supposed to coincide with the set {x = 1}, while Γβε is a subset of {x = 0},

and the left-most boundary Γ1
ε is a subset of {x = −1}. The parameter ε > 0 is supposed to

be small and will tend to 0, whereas α ∈ [0, 1) is a fixed parameter related to the width of the
crack. The parameter β ∈ [0, α) measures the portion of the flux which, coming through the
segment {x = −1,−αε/2 < y < αε/2}, reaches the bottom Γβε of the crack. The remaining
part of the incoming flux is distributed on the horizontal part of the boundary, namely Γαε .
The parameter β is supposed to be fixed. The boundary conditions in (1.1) are defined in
such a way that the total incoming flux is exactly equal to 1, which is the value we impose
on the left boundary in the case α = 0 (no crack).

A space-time dependence of the flux applied on the boundaries Γαε may be introduced
but it does not affect the homogenization process that we describe here.

2 Changing the scale
To carry out an asymptotic expansion of the solution u = uε of (1.1) in powers of ε, we
"scale" the variable y, in the spirit of [2]. Actually, 2 scales describe the model: the variable
y is the macroscopic one, whereas

y

ε
represents the "microscopic geometry". Thus, we define:

u(x, y, t) = v
(
x,
y

ε
, t
)
,
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so that v is periodic of period 1.
We notice that:

∂xu(x, y, t) = ∂xv
(
x,
y

ε
, t
)
, ∂2

xu(x, y, t) = ∂2
xv
(
x,
y

ε
, t
)
,

∂yu(x, y, t) =
1

ε
∂yv

(
x,
y

ε
, t
)
, ∂2

y(x, y, t) =
1

ε2
∂2
yv
(
x,
y

ε
, t
)
.

And v is solution of (2.1): 

−∂2
xv −

1

ε2
∂2
yv + ∂tv = 0 in Ω1,

∂nv = 0 on Γ0
1,

∂nv = 1 on Γ1
1,

1

ε2
∂nv =

α− β
2

on Γα1 ,

∂nv = β
α on Γβ1

(2.1)

3 Asymptotic expansion
Firstly, we notice that in the system (2.1) the domain Ω1 does not depend of ε anymore.
We have to study an equation depending on ε in a fixed domain. Besides, the parameter ε
appears in the equation (2.1) only as ε2, which means that ε2 is a good parameter for an
asymptotic expansion. Thus, it seems natural to look for v as follows:

v(x, y, t) = v0(x, y, t) + ε2v1(x, y, t) + ε4v2(x, y, t) + . . . (3.1)

Hence, we insert the ansatz (3.1) into the system (2.1) and identify the different powers of
ε2. We obtain:

• At the order ε−2 :
∂2
yv0 = 0,

which means that v0 can be written

v0(x, y, t) = f(x, t) + yg(x, t),

where f and g are 2 functions independent of the variable y. The condition of period-
icity in y verified by v implies that v0(x, 1/2, t) = v0(x,−1/2, t), hence: g = 0. Thus,
v0 does not depend on y :

v0(x, y, t) = v0(x, t). (3.2)

Besides, the boundary conditions on v0 are:

∂nv0 = 0 on Γ0
1, ∂nv0 = 1 on Γ1

1, ∂nv0 = 0 on Γα1 , ∂nv0 =
β

α
on Γβ1 . (3.3)

We check that the boundary condition on Γα1 is consistent with (3.2), because it is
equivalent to the statement: ∂yv0 = 0 on Γα1 , which is automatically verified since v0

does not depend on y.

• At the order ε0 :

− ∂2
xv0 − ∂2

yv1 + ∂tv0 = 0. (3.4)

The boundary conditions on v1 give

∂nv1 = 0 on Γ0
1, ∂nv1 = 0 on Γ1

1, ∂nv1 =
α− β

2
on Γα1 , ∂nv1 = 0 on Γβ1 .
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We now integrate (3.4) with respect to y : we get

− (1− α)∂2
xv0 + (1− α)∂tv0 =

∫ −α2
− 1

2

∂2
yv1dy +

∫ 1
2

α
2

∂2
yv1dy, (3.5)

if x < 0, and

−∂2
xv0 + ∂tv0 =

∫ 1
2

− 1
2

∂2
yv1dy,

if x > 0. (recall that we assume that the axis x = 0 contains the border Γβ1 .) In the
first case x < 0, we use the boundary value for ∂nv1,which gives

∂yv1

(
x,−α

2
, t
)

=
α− β

2
, ∂yv1

(
x,
α

2
, t
)

= −α− β
2

.

Besides, the periodicity in y implies that boundary values in y = 1/2 are exactly
compensated by those in y = −1/2. Thus, the right hand side of equation (3.5) is
α−β

2 + α−β
2 = α− β, and we obtain{

−(1− α)∂2
xv0 + (1− α)∂tv0 = α− β if x < 0,

−∂2
xv0 + ∂tv0 = 0 if x > 0.

Hence, v0 satisfies an equation in {x < 0}, and an equation in {x > 0}. In order to define it
properly, we need boundary conditions. For Γ0

1 and Γ1
1, we have (3.3). We are now going to

derive boundary conditions on {x = 0}. Since we have assumed that ∂nu = β/α on Γβ1 , and
since v0 does not depend on y, it may seem natural to impose that ∂xv0(x = 0) = −β/α.
However, as we will see below, the flux ∂xv0 is not continuous across the interface {x = 0}.
Therefore, we need to take into account a boundary layer at this interface. For this purpose,
we go back to (2.1), in which we zoom at x = 0, that is, we define

v(x, y, t) = w
(x
ε
, y, t

)
.

Inserting this into (2.1), we see that,

− ∂2
xw − ∂2

yw + ε2∂tw = 0. (3.6)

We integrate this equation over the domain Aδ = [−δ, δ] × [−1/2, 1/2] ∩ Ω1 (see figure 2),
integrate by parts, and find∫

{x=δ}
∂xw −

∫
{x=−δ,α/2<|y|<1/2}

∂xw −
∫
{x=0,|y|<α/2}

∂xw

−
∫
{y=α/2,−δ<x<0}

∂yw +

∫
{y=−α/2,−δ<x<0}

∂yw = ε2

∫
Aδ

∂tw

The right-hand side vanishes as ε→ 0. In the left-hand side, the fourth and fifth terms are
bounded by δ, hence, taking ε→ 0, then δ → 0, we infer∫

{x=0+}
∂xw =

∫
{x=0−,α/2<|y|<1/2}

∂xw − β.

Therefore, we have, going back to v0, and using the fact that it does not depend on y,

(1− α)∂xv0(0−, y, t) = ∂xv0(0+, y, t) + β. (3.7)
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Figure 2: The domain Aδ on which we integrate.

We can also compute the relation between v0(0+, y, t) and v0(0−, y, t) by multiplying (3.6)
by x, and integrating it again over Aδ. We then have

δ

∫
{x=δ}

∂xw+δ

∫
{x=−δ,α/2<|y|<1/2}

∂xw−
∫
{y=α/2,−δ<x<0}

x∂yw+

∫
{y=−α/2,−δ<x<0}

x∂yw

−
∫
{x=δ}

w +

∫
{x=−δ,α/2<|y|<1/2}

w +

∫
{x=0,|y|<α/2}

w = ε2

∫
Aδ

∂tw

Here again, the right-hand side vanishes as ε → 0, while the first line vanishes as δ → 0.
Hence, we find that∫

{x=0+}
w =

∫
{x=0−,α/2<|y|<1/2}

w +

∫
{x=0,|y|<α/2}

w.

Going back to v0, this implies that v0 is continuous accross the interface.
We can thus write the system of equation satisfied by v0:

−∂2
xv0 + ∂tv0 = α−β

1−α in Ω1 ∩ {x < 0},
∂nv0 = 1 on Γ1

1,

∂nv0 = 0 on Γα1 ,

(3.8)

and {
−∂2

xv0 + ∂tv0 = 0 in Ω1 ∩ {x > 0},
∂nv0 = 0 on Γ0

1,
(3.9)

This system is not well-posed, since boundary conditions are missing at the interface {x = 0}.
We thus impose the transmission conditions (3.7), together with the fact that v0 should be
continuous accross the interface:

v0(x = 0−) = v0(x = 0+), (1− α)∂xv0(x = 0−) = ∂xv0(x = 0+) + β. (3.10)

5



4 Homogenized equation
We have formally shown that

u(x, y, t) ≈ v0

(
x,
y

ε
, t
)
,

with v0 solution of (3.8)-(3.9). Moreover, if we extend u by 0 outside Ωε, we use the fact
that, for any function f which is 1-periodic with respect to y, we have

f
(y
ε

)
∗−⇀
∫ 1/2

−1/2

f(y)dy, (4.1)

in L∞. Hence, u converges to the average of v0 with respect to y, that is, (1− α)v0(x, t) if
x < 0, and v0(x, t) if x > 0. In other words, the limit equation on u is thus (3.8) multiplied
by (1−α), and (3.9). Note that the boundary conditions are treated exactly as the equation,
using (4.1). Hence, the system satisfied by u reads:

−∆u+ ∂tu = α− β in {−1 < x < 0},
∂nu = 1− α on {x = −1},
u is 1− periodic in y.

(4.2)


−∆u+ ∂tu = 0 in {0 < x < 1},
∂nu = 0 on {x = 1},
u is 1− periodic in y.

(4.3)

We also have the corresponding transmission condition inherited from (3.10):

u(x = 0−) = (1− α)u(x = 0+), ∂xu(x = 0−) = ∂xu(x = 0+) + β. (4.4)

Remark 4.1 In the coupling condition (4.4), we have a jump for u as well as for the flux
∂xu. Therefore, it is a priori not possible to recast (4.2)-(4.3)-(4.4) into a single boundary
problem in the domain {−1 < x < 1} (however, see Section 7.2 below for a formal formu-
lation of the problem). Nevertheless, when α is small and β = 0, (4.4) almost amounts to
impose continuity of u and its derivative accross the interface {x = 0}. Therefore, in such
a case, the approximate problem

−∆u+ ∂tu = α1{x<0} in {−1 < x < 1},
∂nu = 1− α on {x = −1},
∂nu = 0 on {x = 1},
u is 1− periodic in y,

(4.5)

should give a solution which is close to the solution to (4.2)-(4.3)-(4.4).

Remark 4.2 A spatial dependence on the flux imposed on the boundary Γαε may be intro-
duced. In this case, and setting β = 0 for the sake of simplicity, the formulation of the
problem written on the cracked domain Ωε reads:

∂tu−∆u = 0 in Ωε,

∂nu = 0 on Γ0
ε

∂nu = 1 on Γ1
ε,

∂nu = fα(x)ε on Γαε ,

∂nu = 0 on Γβε .

(4.6)
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The function fα(x) is such that:∫ x=0

x=−1

fα(x)dx =
α

2
,

ensuring the conservation of energy as ε varies.
Furthermore, if fα(x) is such that fα(0) = 0, then the singularity at x = 0 vanishes and

the formulation of the homogenized model is exactly given by:
−∆u+ ∂tu = fα(x)1{x<0} in {−1 < x < 1},
∂nu = 1− α on {x = −1},
∂nu = 0 on {x = 1},
u is 1− periodic in y.

(4.7)

In such a case, the solution u and its gradient ∂nu are continuous across the interface
x = 0.

5 Analysis of the homogenized problem
In this section, we prove that problem (4.2)-(4.3)-(4.4) is well posed. Let us first set the
notation:

Ω =

{
(x, y) ∈ R2, −1

2
< y <

1

2
, −1 < x < 1

}
. (5.1)

Ω+ = Ω ∩ {x > 0} =

{
(x, y) ∈ R2, −1

2
< y <

1

2
, 0 < x < 1

}
. (5.2)

Ω− = Ω ∩ {x < 0} =

{
(x, y) ∈ R2, −1

2
< y <

1

2
, −1 < x < 0

}
. (5.3)

Γ1 =

{
(x, y) ∈ R2, −1

2
< y <

1

2
, x = −1

}
. (5.4)

Γ0 =

{
(x, y) ∈ R2, −1

2
< y <

1

2
, x = 1

}
. (5.5)

Γβ =

{
(x, y) ∈ R2, −1

2
< y <

1

2
, x = 0

}
. (5.6)

Lemma 5.1 Assume that α ∈ (0, 1). Then for any T > 0, problem (4.2)-(4.3)-(4.4) has a
unique solution (u−, u+) ∈ X, where

X = C
(
[0, T ], H1(Ω−)

)
∩ C1

(
[0, T ], L2(Ω−)

)
× C

(
[0, T ], H1(Ω+)

)
∩ C1

(
[0, T ], L2(Ω+)

)
Proof: First, let us point out that, for any F ∈ L2(Γβ), the problem

−∆u+ ∂tu = 0 in Ω+,

∂nu = 0 on Γ0,

∂nu = F on Γβ ,

u is 1− periodic in y,
u(t = 0) = u0 in Ω+.

(5.7)

admits a unique solution u+ ∈ C
(
[0, T ], H1(Ω+)

)
∩C1

(
[0, T ], L2(Ω+)

)
, for any T > 0. This

is easily proved using standard tools of the analysis of elliptic PDEs. See for instance [5] for
the details.
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Next, consider the problem (here, g ∈ L2(Γβ):

−∆u+ ∂tu = α− β in Ω−,

∂nu = 1− α on Γ1,

u = g on Γβ ,

u is 1− periodic in y,
u(t = 0) = u0 in Ω−.

(5.8)

Here again, standard theory of elliptic equations allows to prove that (5.7) has a unique
solution u− ∈ C

(
[0, T ], H1(Ω−)

)
∩ C1

(
[0, T ], L2(Ω−)

)
, for any T > 0 (see [5]). We now

study the following fixed-point approach: consider an initial guess F 0 ∈ L2(Γβ), to which
we associate the solution u+,0 of (5.7). Then, define g0 as the trace of (1 − α)u+,0 on Γβ ,
and solve (5.8) with data g = g0: this defines u−,0, and a new flux F 1 = β − ∂nu−,0 in
L2(Γβ). Repeating this procedure, we build a sequence (Fn)n∈N in L2(Γβ), together with
the corresponding solutions u±,n and the data gn. In order to prove that this sequence
converges, we are going to prove that the application Φ : L2([0, T ]× Γβ)→ L2([0, T ]× Γβ),
which associates Fn+1 to Fn is a contraction mapping. For this purspose, we define

Gn = Fn+1 − Fn, vn,± = un+1,± − un,±, hn = gn+1 − gn.

It is clear that vn,+ satisfies (5.7) with F = Gn and u0 = 0. Similarly, vn,− is the solution to
(5.8) with α−β = 0, 1−α = 0, u0 = 0, and g = hn. As a consequence, using the uniqueness
for problem (5.8), we infer vn,−(x, y, t) = (1− α)vn,+(−x, y, t), whence

Gn+1 = (1− α)Gn. (5.9)

This immediately implies that the sequence (Fn)n∈N converges in L2
(
[0, T ]× Γβ

)
. Denoting

by F its limit, it is clear that the corresponding solution u± is a solution to (4.2)-(4.3)-(4.4).
This proves the existence of a solution. Next, considering the uniqueness, we assume that

we have two solutions u1 and u2 such that u1 6= u2, we necessarily have ∂xu1|Γβ 6= ∂xu2|Γβ ,
according to the uniqueness of the solution to (5.7). Hence, defining F1 = ∂xu1|Γβ and
F2 = ∂xu2|Γβ , these functions are fixed points of the above application Φ. Hence, the above
argument implies that F1 = F2, which proves uniqueness. �

Remark 5.2 The above proof is in fact useful for numerical purposes. Indeed, it proves that
this fixed-point approach always converges. Hence, it may be used to compute the solution
u to (4.2)-(4.3)-(4.4). However, it should be noted that (5.9) is an equality. Hence, if α is
close to 1, the convergence will be very slow.

6 Proof of convergence
In this section, we give a rigourous proof of the fact that the solution uε to (1.1) converges
to the solution u to (4.2)-(4.3) as ε→ 0.

As a preliminary remark, let us point out that, using standard results of PDE analysis,
one easily proves that (1.1) has a unique solution in C

(
[0, T ], H1(Ωε)

)
∩C1

(
[0, T ], L2(Ωε)

)
,

for any T > 0 and any ε > 0. See for instance [5] for the details.

Proposition 6.1 Let uε be the unique solution to (1.1). We extend it by 0 outside Ωε, and
assume that the initial data uε(t = 0) is such that

uε(t = 0) −⇀ u0 in L2(Ω). (6.1)

Then, for any T > 0, we have

uε−⇀
ε→0

u in L2(Ω× [0, T ]), (6.2)

where u is the unique solution to (4.2)-(4.3)-(4.4).
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Remark 6.2 We have set uε = 0 outside Ωε. This strategy is physically relevant, since uε
is a temperature, and the heat transfer is only modelled inside Ωε: one may think of the
outside of Ωε as the vacuum, or at least a domain which is transparent to radiation.

Remark 6.3 In (6.2), we have only a weak convergence. The reason for this is the fact that
we have extended uε by 0 outside Ωε, as it is explained in Remark 6.2, whereas it is positive
in Ωε, due to the imposed incoming flux. Hence, uε qualitatively behaves like a function
which is equal to 1 in Ωε, and 0 outside. In the domain Ω1, this function converges weakly
to its average, but does not converge strongly in L2.

Remark 6.4 The convergence (6.2) is only local in time (T cannot be infinite). This is due
to the fact that we impose a constant incoming flux. Therefore, integrating (1.1) over Ωε,
and using an integration by parts, we have

d

dt

∫
Ωε

u = 1,

hence uε cannot be bounded with respect to t.

Before we prove this result, we need a few technical lemmas:

6.1 Technical preliminary results
Lemma 6.5 Under the hypotheses of Proposition 6.1, for any ε ∈ (0, 1), we have the fol-
lowing estimate: ∫

Γ0
ε

u2
ε +

∫
Γ1
ε

u2
ε + ε

∫
Γαε

u2
ε ≤ C

(∫
Ωε

u2
ε +

∫
Ωε

|∇uε|2
)
, (6.3)

where C > 0 does not depend on ε.

Proof: We use the same rescaling as in Section 2, and define

v(x, y) = uε (x, εy) . (6.4)

Then, the fact that uε ∈ H1(Ωε) implies that v ∈ H1(Ω1). On this fixed domain, we
can apply standard trace theorems [4, 6, 8], which imply that there is a constant C > 0
depending on α only, such that∫

∂Ω1

v2 ≤ C
(∫

Ω1

v2 +

∫
Ω1

|∇v|2
)
.

Inserting (6.4) into this equation, we find that∫
Γ0
1

uε(x, εy)2 +

∫
Γ1
1

uε(x, εy)2 +

∫
Γα1

uε(x, εy)2 ≤ C
∫

Ω1

uε(x, εy)2

+ C

∫
Ω1

(
∂uε
∂x

(x, εy)

)2

+ ε2

(
∂uε
∂y

(x, εy)

)2

Hence, changing variables in these integrals, we have

1

ε

∫
Γ0
ε

u2
ε +

1

ε

∫
Γ1
ε

u2
ε +

∫
Γαε

u2
ε ≤ C

∫
Ωε

1

ε
u2
ε +

1

ε

(
∂uε
∂x

)2

+ ε

(
∂uε
∂y

)2

,

which proves the result. �
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Remark 6.6 In the above proof, we did not use the fact that uε satisfies (1.1). Hence, the
result of Lemma 6.5 is valid for any uε ∈ H1(Ωε).

Lemma 6.7 Under the hypotheses of Proposition 6.1, there exists u ∈ L2([0, T ] × Ω) such
that ∇u ∈ L2([0, T ]× Ω+) and ∇u ∈ L2([0, T ]× Ω−), and the following convergences hold,
up to extracting a subsequence:

uε −⇀
ε→0

u in L2 ([0, T ]× Ω) , (6.5)

∇uε −⇀
ε→0

∇u in L2
(
[0, T ]× Ω+

)
, (6.6)

Proof: First note that the function uε(t = 0) converges weakly to u(t = 0). Hence,

‖uε(t = 0)‖L2(Ω) ≤ C, (6.7)

for some constant C > 0 independent of ε. We consider (1.1), multiply it by uε, and integrate
it over Ωε :

1

2

d

dt

∫
Ωε

u2
ε(x, y, t)dxdy −

∫
Ωε

∆uε(x, y, t)uε(x, y, t)dxdy = 0.

Using an integration by parts and the boundary conditions in (1.1), we have

−
∫

Ωε

∆uε(x, y, t)uε(x, y, t)dxdy =

∫
Ωε

|∇uε(x, y, t)|2dxdy −
∫
∂Ωε

uε∂nuε

=

∫
Ωε

|∇uε(x, y, t)|2dxdy −
∫

Γ1
ε

uε(x, y, t)dy − αε
∫

Γαε

uε(x, y, t)dx.

Thus, applying Cauchy-Schwarz inequality,

1

2

d

dt

(∫
Ωε

u2
ε(x, y, t)dx

)
+

∫
Ωε

|∇uε(x, y, t)|2dx =

∫
Γ1
ε

uε + αε

∫
Γαε

uε

≤
√
ε(1− α)

(∫
Γ1
ε

u2
ε

)1/2

+ αε

(∫
Γαε

u2
ε

)1/2

We then apply Lemma 6.5, finding

1

2

d

dt

(∫
Ωε

u2
ε(x, y, t)dx

)
+

∫
Ωε

|∇uε(x, y, t)|2dx ≤ C
√
ε(1− α)

(∫
Ωε

|∇uε|2
)1/2

+ Cα
√
ε

(∫
Ωε

|∇uε|2
)1/2

, (6.8)

for some constant C depending only on α. As a consequence, there exists a constant C
(possibly different from the preceding one), for which we have

d

dt

(∫
Ωε

u2
ε(x, y, t)dx

)
≤ Cε.

Integrating this equation with respect to time, we thus have∫
Ωε

u2
ε(x, y, t)dxdy ≤

∫
Ωε

u2
ε(x, y, 0)dxdy + Cεt.

Then, we split Ω into 1/ε domains of size ε in the direction y, and apply this inequality to
each of these domains. Since uε = 0 outside Ωε, this immediately implies∫

Ω

u2
ε(x, y, t)dxdy ≤

∫
Ω

u2
ε(x, y, 0)dxdy + Ct ≤ C(1 + t),

10



for some constant C > 0. The last inequality uses (6.7). We next integrate with respect to
t, finding that the sequence uε is bounded independently of ε in L2(Ω × [0, T ]). Hence, up
to extracting a subsequence, it converges to some u ∈ L2(Ω× [0, T ]).

Next, going back to (6.8), and integrating with respect to time, we have∫ T

0

∫
Ωε

|∇uε|2(x, y, t)dxdydt ≤ CεT +
1

2

∫
Ωε

u2
ε(x, y, 0)dxdy. (6.9)

This immediately implies that∫ T

0

∫
Ω+

|∇uε|2(x, y, t)dxdydt ≤ CT +
1

2

∫
Ω

u2
ε(x, y, 0)dxdy.

Hence, uε is bounded in L2([0, T ], H1(Ω+)). Extracting a subsequence if necessary, we thus
have (6.6). �

Lemma 6.8 Under the hypotheses of Proposition 6.1, there exists a constant C > 0 inde-
pendent on ε and T such that:

‖uε‖L2([0,T ]×Γαε ) ≤ C(T + 1) (6.10)

up to the extraction of a subsequence.

Proof: We go back to (6.9), which implies that∫ T

0

∫
Ωε

|∇uε|2 ≤ C(T + 1)ε,

where C does not depend on ε nor on T . Indeed, uε(t = 0) satisfies (6.7), and is ε-periodic
with respect to y. Hence, ∫

Ωε

u2
ε(x, y, 0)dxdy ≤ Cε.

Here again, we use the scaling (6.4), namely

vε(x, y, t) = uε(x, εy, t),

and find that ∫ T

0

∫
Ω1

(∂xvε)
2

+
1

ε2
(∂yvε)

2 ≤ C(1 + T ).

In particular, vε is bounded in L2([0, T ], H1(Ω1)). Using trace theorems [4, 6, 8], we infer
that vε is bounded in L2([0, T ], H1/2(Γα1 )), where

Γα1 =
{(
x,
α

2

)
, −1 < x < 0

}⋃{(
x,−α

2

)
, −1 < x < 0

}
.

In particular, vε is bounded in L2([0, T ]× Γα1 ). We finally point out that

‖uε‖L2([0,T ]×Γαε ) = ‖vε‖L2([0,T ]×Γα1 ),

which completes the proof. �

Lemma 6.9 Under the hypotheses of Proposition 6.1, we have the following convergences,
up to the extraction of a subsequence:

uε −⇀
ε→0

u in L2
(
[0, T ]× Γ1

)
, (6.11)

uε −→
ε→0

u in L2
(
[0, T ]× Γ0

)
, (6.12)
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where u is defined in Lemma 6.7. Moreover, for any δ ∈ (0, 1), we have the following
convergences, up to the extraction of a subsequence:

uε −⇀
ε→0

u in L2 ([0, T ]× Ω ∩ {x = −δ}) , (6.13)

uε −⇀
ε→0

u in L2 ([0, T ]× Ω ∩ {x = δ}) , (6.14)

where u is defined in Lemma 6.7.

Proof: We already know that uε converges weakly to u in L2([0, T ], H1(Ω+)). Using trace
theorems, we infer that we have weak convergence in L2([0, T ], H1/2(Γ0)), hence strong
convergence in L2([0, T ], L2(Γ0)) = L2([0, T ]× Γ0). This proves (6.12).

Next, we prove (6.11). In view of (6.3), we already know that uε is bounded in L2([0, T ]×
Γ1), thus it converges weakly, up to extracting a subsequence, to some limit. We are now
going to prove that this limit is u. For this purpose, we use here again the scaling (6.4),
namely

vε(x, y, t) = uε(x, εy, t).

We use (6.9), which implies that vε is bounded in L2([0, T ], H1(Ω1)). Hence, we have the
following convergence:

vε−⇀
ε→0

v in L2([0, T ], H1(Ω1)),

for some v ∈ L2([0, T ], H1(Ω1)). Using the link between uε and vε, one easily proves using
(6.5), that

u(x, y, t) =

∫ α/2

−α/2
v(x, z, t)dz.

Now, using trace theorems [4, 6, 8], we also have weak convergence of vε to v in L2([0, T ]×
H1/2(Γ1

1)), hence in L2([0, T ] × Γ1
1). Now, let ϕ be a test function in C∞([0, T ] × Γ1), and

let us compute the integral of uεϕ on [0, T ]× Γ1):∫ T

0

∫
Γ1

uεϕ =
∑

k∈Z,ε|k|<1/2

∫ T

0

∫
Γ1
ε+εke2

uεϕ

=
∑

k∈Z,ε|k|<1/2

∫ T

0

∫ εα/2

−εα/2
uε(−1, y, t)ϕ(−1, y + kε, t)dydt

=
∑

k∈Z,ε|k|<1/2

∫ T

0

∫ εα/2

−εα/2
vε

(
−1,

y

ε
, t
)
ϕ(−1, y + kε, t)dydt

=
∑

k∈Z,ε|k|<1/2

ε

∫ T

0

∫ α/2

−α/2
vε (−1, z, t)ϕ(−1, εz + kε, t)dzdt,

where we have used the fact that uε is extended by 0 outside Ωε, the fact that uε is ε-periodic
in y, and the link between uε and vε. Since ϕ is smooth, one easily proves that∑

k∈Z,ε|k|<1/2

εϕ(−1, εz + kε, t) =

∫ 1/2

−1/2

ϕ(−1, y, t)dy +O(ε),

where the remainder does not depend on z nor on vε. Hence, since vε converges to v in
L2([0, T ]× Γ1

1), we infer

lim
ε→0

∫ T

0

∫
Γ1

uεϕ =

∫ T

0

(∫ α/2

−α/2
v(−1, z, t)dz

∫ 1/2

−1/2

ϕ(−1, y, t)dy

)
dt

=

∫ T

0

∫ 1/2

−1/2

u(−1, y, t)ϕ(−1, y, t)dydt.

12



We thus have proved (6.11).
The convergence (6.13) follows exactly the same pattern. The proof of (6.14) is a direct

consequence of (6.6) and of trace theorems [4, 6, 8]. �

Lemma 6.10 Under the hypotheses of Proposition 6.1, we have the following convergence,
up to extraction of a subsequence:

1

ε

∫ T

0

∫
Γβε

uε−→
ε→0

α

∫ T

0

∫
Γβ
u. (6.15)

The function u is defined in Lemma 6.7, and in the right-hand side, u is the trace on Γβ of
u|Ω+ .

Proof: We already know that uε is bounded in L2([0, T ], H1(Ω+)). Hence, using trace
theorems [4, 6, 8], uε is bounded in L2([0, T ], H1/2({x = 0} ∩ Ω)) = L2([0, T ], H1/2(Γβ)).
Hence, up to extracting a subsequence, uε converges in L2([0, T ] × Γβ). Since the trace
operator is continuous, its limit must be the trace of u|Ω+ . Now, since uε is ε-periodic in y,
we have

1

ε

∫ T

0

∫
Γβε

uε =
∑

k∈Z,ε|k|<1/2

∫ T

0

∫
Γβε+kεe2

uε =

∫ T

0

∫
Γβ
uε

∑
k∈Z,ε|k|<1/2

1|y−kε|<α/2.

In this integral, we have strong convergence on uε, whereas∑
k∈Z,ε|k|<1/2

1|y−kε|<α/2−⇀
ε→0

α in L2([0, T ]× Γβ).

Hence, we may pass to the limit and obtain (6.15). �

6.2 Proof of Proposition 6.1
We are now in position to give the
Proof of Proposition 6.1: We first apply Lemmas 6.7, 6.8 and 6.9, getting the con-
vergences (6.5), (6.6), (6.10) and (6.11). We next prove that this limit u is a solution to
(4.2)-(4.3)-(4.4). For this purpose, we define

Ω−ε = Ωε ∩ {x < 0} , (6.16)

and
Ω+
ε = Ωε ∩ {x > 0} . (6.17)

We assume that ϕ ∈ C∞(Ω× [0, T ]), such that

∀(x, y) ∈ Ω, ϕ(x, y, T ) = 0, and ∀y ∈
(
−1

2
,

1

2

)
,∀t ∈ [0, T ], ϕ(0, y, t) = ∂xϕ(0, y, t) = 0.

We multiply the equation satisfied by uε by ϕ, and integrate over Ω+
ε × [0, T ]:∫ T

0

∫
Ω+
ε

∂tuεϕdxdydt−
∫ T

0

∫
Ω+
ε

∆uεϕdxdydt = 0. (6.18)

In the first term, we integrate by parts with respect to t:∫ T

0

∫
Ω+
ε

∂tuεϕdxdydt = −
∫ T

0

∫
Ω+
ε

uε∂tϕdxdydt

−
∫

Ω+
ε

uε(x, y, 0)ϕ(x, y, 0)dxdy (6.19)
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Repeating this argument in each set Ω+
ε + kεe2, where k ∈ Z and ε|k| < 1/2, and using the

fact that the union of these sets is Ω+ (if ε−1 is an integer, which we may assume), we have∫ T

0

∫
Ω+

∂tuεϕdxdydt = −
∫ T

0

∫
Ω+

uε∂tϕdxdydt

−
∫

Ω+

uε(x, y, 0)ϕ(x, y, 0)dxdy (6.20)

The weak convergence of uε in L2(Ω × [0, T ]) and of uε(t = 0) in L2(Ω) allows to pass to
the limit in the right-hand side, finding

lim
ε→0

∑
k∈Z,ε|k|< 1

2

∫ T

0

∫
Ω+
ε +kεe2

∂tuεϕdxdydt =

−
∫ T

0

∫
Ω+

u∂tϕdxdydt−
∫

Ω+

u(x, y, 0)ϕ(x, y, 0)dxdy (6.21)

The same argument allows to prove this convergence in Ω− (recall that we have extended
uε by 0 outside Ωε):

lim
ε→0

∫ T

0

∫
Ω−
ε

∂tuεϕdxdydt = −
∫ T

0

∫
Ω−

u∂tϕdxdydt−
∫

Ω−
u(x, y, 0)ϕ(x, y, 0)dxdy (6.22)

We next deal with the second term in (6.18), in which we integrate by parts with respect to
(x, y). Using the boundary conditions we have on uε, we infer∫ T

0

∫
Ω+
ε

∆uεϕdxdydt =

∫ T

0

∫
∂Ω+

ε

∂nuεϕ−
∫ T

0

∫
Ω+
ε

∇uε · ∇ϕ

= −
∫ T

0

∫
Ω+
ε

∇uε · ∇ϕ. (6.23)

Using (6.6), we thus have

lim
ε→0

∫ T

0

∫
Ω+
ε

∆uεϕdxdydt = −
∫ T

0

∫
Ω+

∇uε · ∇ϕ.

This and (6.21) implies

−
∫ T

0

∫
Ω+

u∂tϕdxdydt−
∫

Ω+

u(x, y, 0)ϕ(x, y, 0)dxdy = −
∫ T

0

∫
Ω+

∇u·∇ϕ, (6.24)

which is the weak formulation of (4.3).

We are now going to apply the same strategy on the set Ω−ε , but the situation is more del-
icate here. Integrating over Ω−ε instead of Ω+

ε , we already know that (6.22) holds. Moreover,
we have∫ T

0

∫
Ω−
ε

∆uεϕdxdydt =

∫ T

0

∫
∂Ω−

ε

∂nuεϕ−
∫ T

0

∫
∂Ω−

ε

uε∂nϕ+

∫ T

0

∫
Ω−
ε

uε∆ϕ

=

∫ T

0

∫
Γ1
ε

ϕ+

∫ T

0

(α− β)
ε

2

∫
Γαε

ϕ−
∫ T

0

∫
∂Ω−

ε

uε∂nϕ+

∫ T

0

∫
Ω−
ε

uε∆ϕ. (6.25)

In order to recover an integral over the domain Ω−, we repeat this operation for the domain
Ω−ε + εk, for k ∈ Z and ε|k| ≤ 1/2. We thus have (6.25) for this domain. Summing these
equalities with respect to k, and setting

Ω̃−ε =
⋃

k∈Z, ε|k|<1/2

(
Ω−ε + εke2

)
, (6.26)
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we find∫ T

0

∫
Ω̃−
ε

∆uεϕdxdydt =
∑

k∈Z, ε|k|<1/2

∫ T

0

∫
Γ1
ε+εke2

ϕ

+
∑

k∈Z, ε|k|<1/2

∫ T

0

(α− β)
ε

2

∫
Γαε+εke2

ϕ−
∑

k∈Z, ε|k|<1/2

∫ T

0

∫
∂(Ω−

ε +εke2)

uε∂nϕ

+

∫ T

0

∫
Ω−

uε∆ϕ. (6.27)

We deal with each term of the right-hand side of (6.27) separately: for the first term, we
have ∑

k∈Z, ε|k|<1/2

∫ T

0

∫
Γ1
ε+εke2

ϕ−→
ε→0

(1− α)

∫ T

0

∫
Γ1

ϕ. (6.28)

Next, the second term of the right-hand side of (6.27) is interpreted as a Riemann sum with
respect to k for the map y 7→

∫
Γ1
ε+ye2

ϕ. Since ϕ is smooth, we thus have

∑
k∈Z, ε|k|<1/2

∫ T

0

(α− β)
ε

2

∫
Γαε+εke2

ϕ−→
ε→0

(α− β)

∫ T

0

∫
Ω−

ϕ. (6.29)

Finally, we deal with the third term of the right-hand side of (6.27). We first note that, due
to (6.26), this term is equal to

∑
k∈Z, ε|k|<1/2

∫ T

0

∫
∂(Ω−

ε +εke2)

uε∂nϕ =

∫ T

0

∫
∂Ω̃−

ε

uε∂nϕ

= −
∑

ε|k|<1/2

∫ T

0

∫
Γ1
ε+εke2

uε∂xϕ+
∑

ε|k|<1/2

∫ T

0

∫
Γαε+εke2

uε∂nϕ (6.30)

Here again, each term of the right-hand side of (6.30) is dealt will separately. The first term
reads

−
∑

ε|k|<1/2

∫ T

0

∫
Γ1
ε+εke2

uε∂xϕ = −
∫ T

0

∫
Γ1

uε∂xϕ.

Hence, applying (6.11), we find

−
∑

ε|k|<1/2

∫ T

0

∫
Γ1
ε+εke2

uε∂xϕ−→
ε→0
−
∫

Γ1

u∂xϕ. (6.31)

Turning to the second term of the right-hand side of (6.30), we note that the value of uε
on this boundary does not depend on k since uε is periodic of period ε with respect to y.
Hence, we write

∑
ε|k|<1/2

∫ T

0

∫
Γαε+εke2

uε∂nϕ =

∑
ε|k|<1/2

∫ T

0

∫ 0

−1

uε

(
x,−α

2
ε, t
)
∂yϕ

(
x, εk − α

2
ε, t
)
dxdt

−
∑

ε|k|<1/2

∫ T

0

∫ 0

−1

uε

(
x,
α

2
ε, t
)
∂yϕ

(
x, εk +

α

2
ε, t
)
dxdt.
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We use a Taylor expansion of ϕ with respect to the y variable, around the point y = εk:

∂yϕ
(
x, εk ± α

2
ε, t
)

= ∂yϕ (x, εkε, t)± εα
2
∂2
yϕ(x, εk, t) +O

(
ε2
)
.

The remainder O(ε2) depends only on ϕ, and may be chosen bounded independently of x
and t. Hence, we have

∑
ε|k|<1/2

∫ T

0

∫
Γαε+εke2

uε∂yϕ = O(ε)

+
∑

ε|k|<1/2

∫ T

0

∫ 0

−1

(
uε

(
x,−α

2
ε, t
)
− uε

(
x,
α

2
ε, t
))

∂yϕ (x, εk, t) dxdt

− εα
2

∑
ε|k|<1/2

∫ T

0

∫ 0

−1

(
uε

(
x,−α

2
ε, t
)

+ uε

(
x,
α

2
ε, t
))

∂2
yϕ (x, εk, t) dxdt.

The last term is a Riemann sum with respect to k. The corresponding integral is∫ 1/2

−1/2

∂2
yϕ(x, y, t)dy = 0.

Hence, using Lemma 6.8, one easily proves that this last term converges to 0. For the first
term, we use the same strategy, but we need to prove a little more: we write the sum over
k as follows:

∑
ε|k|<1/2

∂yϕ(x, εk, t) =
∑

ε|k|<1/2

(
∂yϕ(x, εk, t)− 1

ε

∫ εk+ε/2

εk−ε/2
∂yϕ(x, y, t)dy

)

=
∑

ε|k|<1/2

∫ εk+ε/2

εk−ε/2

∂yϕ(x, εk, t)− ∂yϕ(x, y, t)

ε
dy

=
∑

ε|k|<1/2

∫ εk+ε/2

εk−ε/2
(y − εk)∂2

yϕ(x, εk, t)dy

+ ε
∑

ε|k|<1/2

∫ εk+ε/2

εk−ε/2

1

2
(y − εk)2∂3

yϕ(x, εk, t)dy +O(ε),

where the remainder O(ε) is uniform with respect to x and t. The first term vanishes because
the integrand is even with respect to the variable y − εk. The second term is easily shown
to be of order ε by computing the integrals explicitly. Finally, we thus have

∑
ε|k|<1/2

∫ T

0

∫
Γαε+εke2

uε∂nϕ−→
ε→0

0. (6.32)

Inserting (6.31) and (6.32) into (6.30), we infer

∑
k∈Z, ε|k|<1/2

∫ T

0

∫
∂(Ωε+εke2)

uε∂nϕ−→
ε→0
−
∫

Γ1

u∂xϕ. (6.33)

Then, we collect (6.28), (6.29), (6.33), and insert them into (6.27). Hence,∫ T

0

∫
Ω̃−
ε

∆uεϕdxdydt−→
ε→0

(1− α)

∫ T

0

∫
Γ1

ϕ+ (α− β)

∫ T

0

∫
Ω−

ϕ−
∫

Γ1

u∂xϕ−
∫ T

0

∫
Ω−

u∆ϕ.
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Finally, we use this convergence and (6.22), and insert it into the equation∫ T

0

∫
Ω−
ε

∂tuεϕdxdydt−
∫ T

0

∫
Ω−
ε

∆uεϕdxdydt = 0,

finding

−
∫ T

0

∫
Ω−

u∂tϕdxdydt−
∫

Ω−
u(x, y, 0)ϕ(x, y, 0)dxdydt =

(1− α)

∫ T

0

∫
Γ1

ϕ+ (α− β)

∫ T

0

∫
Ω−

ϕ+

∫ T

0

∫
Ω−
∇u · ∇ϕ, (6.34)

which is a weak formulation of (4.2).

To end the proof, we need to show that the transmission conditions (4.4) hold. For this
purpose, we first point out that, since uε −⇀ u in L2([0, T ]× Ω) and since uε is ε-periodic
in y, u must be independent of y. Next, we define a test function ϕ which depends only on
t, and has compact support in (0, T ). We multiply the first line of (1.1) by ϕ and integrate
over [0, T ]× Ω̃ε,δ, where

Ω̃ε,δ = Ω̃ε ∩ {|x| < δ} .

(Recall that Ω̃ε is defined by (6.26).) Integrating by parts, we have

0 =

∫ T

0

∫
Ω̃ε,δ

(∂tuε −∆uε)ϕ(t)dxdydt

= −
∫ T

0

∫
Ω̃ε,δ

uε∂tϕ−
∫ T

0

∫
∂(Ω̃ε,δ)

∂nuεϕ

Computing the boundary term, we get

0 = −
∫ T

0

∫
Ω̃ε,δ

uε∂tϕ−
∫ T

0

∫
Ω∩{x=δ}

∂xuεϕ+

∫ T

0

∫
Ω̃ε∩{x=−δ}

∂xuεϕ

−(α− β)
ε

2

∑
k∈Z,ε|k|<1/2

∫ T

0

∫ 0

−δ
2ϕ(t)dxdt

−β
α

∑
k∈Z,ε|k|<1/2

∫ T

0

∫
Γβε+kεe2

ϕ. (6.35)

It is easy to pass to the limit in each of the above terms, except for the second and third
one. We thus deal with them separately: we multiply the equation by ϕ and integrate on
Ω̃ε ∩ {x < −δ} instead of Ω̃ε,δ. Integrating by parts, we find

0 = −
∫ T

0

∫
Ω̃ε∩{x<−δ}

uε∂tϕ−
∫ T

0

∫
Ω̃ε∩{x=−δ}

∂xuεϕ

−(α− β)
ε

2

∑
k∈Z,ε|k|<1/2

∫ T

0

∫ −δ
−1

2ϕ(t)dxdt.

Passing to the limit in the first and third term, we find that

lim
ε→0

∫ T

0

∫
Ω̃ε∩{x=−δ}

∂xuεϕ = −
∫ T

0

∫
Ω̃ε∩{x<−δ}

u∂tϕ+ (α− β)

∫ T

0

∫
Ω∩{x<−δ}

ϕ.
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Integrating by parts in the right-hand side and using the equation satisfied by u, namely
(4.2), we infer

lim
ε→0

∫ T

0

∫
Ω̃ε∩{x=−δ}

∂xuεϕ =

∫ T

0

∫
Ω∩{x=−δ}

∂xuϕ. (6.36)

Likewise, integrating over Ω̃ε ∩ {x > δ}, we have

lim
ε→0

∫ T

0

∫
Ω̃ε∩{x=δ}

∂xuεϕ =

∫ T

0

∫
Ω∩{x=δ}

∂xuϕ. (6.37)

We insert (6.36) and (6.37) into (6.35), and interpreting the last term of (6.35) as Riemann
sum, we get

0 = −
∫ T

0

∫
Ω∩{|x|<δ}

u∂tϕ−
∫ T

0

∫
Ω∩{x=δ}

∂xuϕ+

∫ T

0

∫
Ω∩{x=−δ}

∂xuϕ

− (α− β)δ

∫ T

0

ϕ(t)dt− β
∫ T

0

∫
Γβ
ϕ.

Letting δ → 0, and using the fact that u does not depend on y, we thus find

∂xu
− = ∂xu

+ + β if x = 0. (6.38)

Then, we repeat the same argument with xϕ(t) instead of ϕ(t), and we find

0 = −
∫ T

0

∫
Ω∩{|x|<δ}

xuε∂tϕ+

∫ T

0

∫
∂(Ω̃ε,δ)

uε∂n (xϕ)− xϕ∂nuε.

Since xϕ does not depend on y, the first boundary term contains only terms on the vertical
boundaries {x = δ}, Ω̃ε ∩ {x = −δ}, and Γβε + kεe2, for k ∈ Z, ε|k| < 1/2. We thus have

0 = −
∫ T

0

∫
Ω∩{|x|<δ}

xuε∂tϕ

+

∫ T

0

∫
Ω∩{x=δ}

uεϕ−
∫ T

0

∫
Ω̃ε∩{x=−δ}

uεϕ−
∑

k∈Z,ε|k|<1/2

∫ T

0

∫
Γβε+εke2

uεϕ

−
∫ T

0

∫
Ω∩{x=δ}

∂xuεxϕ+

∫ T

0

∫
Ω̃ε∩{x=−δ}

∂xuεxϕ

−(α− β)
ε

2

∑
k∈Z,ε|k|<1/2

∫ T

0

∫ 0

−δ
2xϕ(t)dxdt

Here again, we use (6.13), (6.14), (6.36) and (6.37), to pass to the limit in the above equation,
finding

0 = −
∫ T

0

∫
Ω∩{|x|<δ}

xu∂tϕ+

∫ T

0

∫
Ω∩{x=δ}

uϕ−
∫ T

0

∫
Ω∩{x=−δ}

uϕ− α
∫ T

0

∫
Γβ
u+ϕ

−
∫ T

0

∫
Ω∩{x=δ}

∂xuεxϕ+

∫ T

0

∫
Ω̃ε∩{x=−δ}

∂xuεxϕ− (α− β)
δ2

2

∫ T

0

ϕ

Hence, letting δ → 0, we have

u+ − u− − αu+ = 0 if x = 0. (6.39)

Collecting (6.38) and (6.39), we find (4.4).

Thus, we have proved that, up to extracting a subsequence, the sequence uε converges to
u, weakly in L2, and that u ∈ H1(Ω) is solution to (4.2)-(4.3)-(4.4). Next, we point out that,
according to Lemma 5.1, such a solution is unique. Hence, the whole sequence converges,
without any need to extract a subsequence. �
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7 A numerical illustration
In this section, we illustrate the model MOSAIC on the crack geometry given by figure 1,
which is simple enough to be calculated directly. We can thus compare the solution of the
diffusion problem (1.1) that we will compute for different periods ε → 0 with the homoge-
nized approach, corresponding to (4.2)-(4.3). To calculate the solution of the homogenized
problem, we use two independent methods that we describe in details:

• a weak formulation in the whole homogenized model Ω.

• a fixed-point approach connecting the 2 sub-domains Ω+ and Ω−.

Computations presented here are performed using a P 1 finite element approximation on
triangular meshes. It has been implemented using the software FreeFem++ [7].

7.1 Direct simulation of the cracked domain
We start by solving the problem corresponding to the diffusion model (1.1) on a cracked
domain Ωε whose shape reproduces figure 1. We recall that the domain Ωε is periodic of
period ε with respect to the y direction. The width of the crack α is fixed: for example,
we take α = 0.1 for the simulations illustrated on figure 3. In what follows, we always
take β = 0. We represent the field u(x, y, t1) solution of (1.1) at a given time t1 = 0.5 for
different periods ε. The time t1 is such that the normalized spatial profile of the field has
reached a stationary state. We carry out direct calculations for the periods ε = 1, ε = 0.5,
ε = 0.2, ε = 0.02. We make sure the simulations are converged with respect to the mesh
size as well as the time step. The fields calculated for each period ε are shown on figure 3a.
We note that the convergence in ε is quite fast: for ε ≤ 0.2, the field does not depend on
the variable y anymore and the limit in ε appears to be reached. This is not true for ε = 1
where the field still depends on y, especially in the vicinity of the crack. Besides, since
α is rather small here, we make use of remark 4.1 and compare the field solution of the
direct calculation with that of the approximated homogenized model (4.5). Equation (4.5)
is solved in the domain Ω where the crack is no more described in the geometry but its effect
on the diffusion process is modeled by a source term of the form α1{x<0} in the right hand
side of equation (4.5). The incoming flux applied on the left boundary located at x = −1
is now 1 − α (see figure 3b). It is consistent with the fact that the indentation of width α
is no more described in the homogenized domain Ω. A fraction of the incoming flux is thus
"converted" into a source term in the homogenized equation. This accounts for the name
given to our approach: MOSAIC, as Model Of Sinks Averaging Inhomogeneous behavior of
Cracked media. Note that the homogenized model (4.5) does not take the singularity at
x = 0 into account, which should play a significant role as α increases. We are now going to
devise two approaches to treat this singularity in the homogenized model for any given α.

7.2 Weak formulation of the homogenized model
We compare the direct approach, considered as a reference point, with the homogenized
model established in (4.2)-(4.3) on the average domain Ω (i.e without any crack). This
domain, which represents the limit of Ωε as ε → 0, is invariant in the y direction and its
length is 2 in the x direction (same length as the cracked domain Ωε). With respect to the
model (4.2)-(4.3), the incoming flux applied on the left boundary located at x = −1 is now
1− α.

The first strategy to compute the solution of (4.2)-(4.3) is to find an equivalent weak
formulation of the problem and then solve it numerically using standard finite element
methods.
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Ωε

Fin = 1

ε = 0.5

ε = 0.2

y

(0,0)

ε = 1

(a) −∆u+ ∂tu = 0 in Ωε.

Fin = 1−α
x

(0,0)

Ωy

(b) −∆u+ ∂tu = α1{x<0} in Ω.

Figure 3: Direct calculation on the periodic cracked domain Ωε for different peri-
ods ε→ 0. The crack occupies the fraction α = 0.1. The field solution of (1.1) is plotted at
time t1 = 0.5. We compare the result with that of the homogenized approach approximated
by equation (4.5) where the singularity at x = 0 is disregarded. This approximation makes
sense here because α is rather small.

We recall the equations that have to be solved:
−∆u+ ∂tu = α− β in Ω− = {−1 < x < 0},
∂nu = 1− α on {x = −1},
u is 1− periodic in y.

(7.1)


−∆u+ ∂tu = 0 in Ω+ = {0 < x < 1},
∂nu = 0 on {x = 1},
u is 1− periodic in y.

(7.2)

with the so-called transmission conditions at the bottom of the crack located at x = 0:

u(x = 0−) = (1− α)u(x = 0+), ∂xu(x = 0−) = ∂xu(x = 0+) + β. (7.3)

Multiplying (7.1) by a test function v and integrating by parts on the domain Ω−, we
get: ∫

Ω−
∂tuv −∆vu+

∫
∂Ω−

u∂nv − v∂nu = (α− β)

∫
Ω−

v.

Using the boundary conditions on Ω−, this becomes:

∫
Ω−

∂tuv −∆vu+

∫
x=−1

u∂nv − v(1− α) +

∫
x=0

u(x = 0−)∂xv − v∂xu(0−)

= (α− β)

∫
Ω−

v. (7.4)

Then, applying the same processes (7.2) and integrating on Ω+, we obtain :∫
Ω+

∂tuv −∆vu+

∫
∂Ω+

u∂nv − v∂nu = 0.

The boundary conditions lead to:∫
Ω+

∂tuv −∆vu−
∫
x=1

u∂xv +

∫
x=0

∂xu(0+)v − u(x = 0+)∂xv = 0. (7.5)
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We sum (7.4) and (7.5) :∫
Ω

∂tuv −∆vu−
∫
x=1

u∂xv +

∫
x=−1

u∂nv − v(1− α)

+

∫
x=0

v
(
∂xu(0+)− ∂xu(0−)

)
+
(
u(x = 0−)− u(x = 0+)

)
∂xv = (α− β)

∫
Ω−

v.

We now make use of the transmission conditions (7.3) at x = 0, leading to∫
Ω

∂uv −∆vu−
∫
x=1

u∂xv +

∫
x=−1

u∂nv − v(1− α)

−
∫
x=0

βv −
∫
x=0

αu(x = 0+)∂xv = (α− β)

∫
Ω−

v.

Integrating by parts again, we finally obtain:

∫
Ω

∂tuv +∇v∇u−
∫
x=−1

v(1− α)

−
∫
x=0

βv −
∫
x=0

αu(x = 0+)∂xv − (α− β)

∫
Ω−

v = 0, (7.6)

which is the weak formulation of our problem.
The corresponding equation is:

−∆u+ ∂tu = (α− β)1x<0

−α∂x (u(x = 0+)δx=0) + βδx=0 in Ω = {−1 < x < 1},
∂nu = 1− α on{x = −1},
∂nu = 0 on {x = −1},
u is 1− periodic in y.

(7.7)

Remark 7.1 Taking v = 1 in (7.6) leads to the energy conservation equation:

d

dt

∫
Ω

u = 1.

We compute the solution of (7.6) using the numerical approximation of the Dirac mass
at x = 0: ∫

x=0

αu(x = 0+)∂xv ≈
∫

Ω

α

δ
10<x<δu∂xv,

for δ arbitrary small. Note that this approximation may not be satisfactory as α increases.
Taking a piecewise linear approximation of the Dirac mass around x = 0 may improve the
numerical treatment. This approach nevertheless diverges from the direct calculation for
bigger α (see figure 5), especially in the vicinity of the crack interface at x = 0.

7.3 Fixed-point approach
Another numerical approach to solve (4.2)-(4.3) that might be more accurate is to use the
fixed-point approach, in the spirit of section 5 and remark 5.2. We apply the following
iterative process:

• Starting with an initial guess F 0 corresponding the flux imposed on Γβ , we solve the
problem (5.8), and get the unique solution u+,0.
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• Then, we compute the trace g0 of (1 − α)u+,0 on Γβ , and solve (5.7) with the data
g = g0. This gives us the unique solution u−,0.

• We compute a new flux on Γβ F 1 = β − ∂nu−,0 and we repeat the first step with F 1.

This procedure builds a converging sequence (Fn)n∈N in L2(Γβ), together with the cor-
responding solutions u±,n and the data gn. We assess the convergence of (Fn)n∈N when the

relative change between two successive iterations ‖F
n+1 − Fn

Fn
‖ is smaller than a small fixed

parameter. This has to be carried out at each time step of the simulation.

7.4 Synthesis
We thus compute the results given by each method:

• direct calculation on the cracked domain Ωε,

• weak formulation on the homogenized domain Ω,

• fixed point approach on Ω,

for two crack configurations: α = 0.1 (small crack) and α = 0.6 (big crack). We fix β = 0 in
the simulations for the sake of simplicity. We compare the different simulations by plotting
the time evolution of the solution at x = 0.5 (that is to say, in the core of the intact part of
the cracked material) and the spatial profile of the solution at final time t1 = 0.5. Results
are shown in figures 4 and 5. We can note that the fixed-point method appears to be more
accurate than the solution of the weak formulation (7.6) especially as α increases. This is
due to the fact that (7.6) involves a Dirac mass at x = 0, proportional to the width of the
crack α. This term is treated approximately in our finite element simulations and leads to
more significant errors for greater α. In some way, the fixed-point method amounts to treat
the Dirac mass at x = 0 exactly.

We conclude this numerical illustration by studying the error associated with the homog-
enized model (4.2)-(4.3) with respect to the period ε of the cracked domain. More precisely,
we calculate the error defined by:

err =
‖ũε − uε‖L2(Ω+

ε )

‖uε‖L2(Ω+
ε )

, (7.8)

where uε is the solution of the exact model (1.1) in the cracked domain Ωε and ũε is the
projection of the solution u of the homogenized model (4.2)-(4.3) on the sub-domain Ω+

ε .
The error is plotted as a fonction of ε on figure (6). It shows that the error depends linearly
on the period ε. Besides, as ε→ 0, the error tends to the residual error linked to the mesh
size used in the finite elements calculations.

8 Conclusion and future work
We have shown that a diffusion process initiated by an incoming flux through a periodic
cracked medium can be modeled by a volume source term in the diffusion equation solved
in the homogenized domain. The crack induces also a singularity at x = 0 giving rise to
some complications in the formulation of the homogenized problem. We have introduced a
boundary layer around x = 0 to treat it properly, and it leads to a Dirac mass located at
the bottom of the crack in the weak formulation of the homogenized problem. Note that
this singularity might be interpreted physically by considering that the temperature field in
the vicinity of the crack is well described by a ponctual source located at the bottom. This
remains true as long as we observe the temperature sufficently far from the crack, where we
are not too sensitive to the details of the fracture profile. This can be shown rigorously in
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Figure 4: Comparison of the direct and homogenized approaches for α = 0.1.The
black curve is the direct calculation of the crack, i.e the limit solution of (1.1) as ε→ 0. The
two other curves correspond to the solution of the homogenized problem (4.2)-(4.3) computed
by two approaches: in red, it is the fixed-point method whereas the blue curve represents the
numerical solution of the weak formulation (7.6).

0 0.1 0.2 0.3 0.4 0.5
Time t

1

1.05

1.1

1.15

S
o
lu

ti
o
n
 u

 a
t 

(x
=

0
.5

,y
=

0
)

Direct calculation
Weak formulation
Fixed-point

(a) Time evolution of u(0.5, 0)

0 0.2 0.4 0.6 0.8 1
x

1

1.1

1.2

1.3

u
(x

,0
) 

at
 f

in
al

 t
im

e 
t=

0
.5

Direct calculation
Fixed-point

Weak formulation

(b) Spatial profile at time t1 = 0.5

Figure 5: Comparison of the direct and homogenized approaches for α = 0.6.We
note that when we get close to x = 0, i.e the bottom of the crack, the agreement between the
different approaches is not so good. This is due to the singularity represented by a Dirac
mass at x = 0 in the weak formulation of the homogenized problem.

23



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

ε

0.026

0.028

0.03

0.032

0.034

e
rr
o
r

Figure 6: The error associated with the homogenized model as a function of ε.The error
depends linearly on the period ε. As ε → 0, the error tends to the residual error linked to
the mesh size used in the finite element calculations, ∼ 0.02 here.

a very particular configuration for which the shape of the fracture is smooth enough to be
described analytically using conformal mappings [10, 11].

Besides, we have developped our method in a very particular setting, where the cracks
are supposed to be orthogonal to the surface of the material and periodically arranged. This
is an elementary case on which we have tested our approach. We may now have in view to
address much more general situations on which MOSAIC could be applied. For example, we
may add some stochastic features, e.g the width of the crack α (which was supposed to be
a fixed parameter) may become a stochastic variable. The periodicity of the structure may
then disappear. The position of the crack might obey a stochastic process as well, and the
crack setting may thus become very general. It would be interesting to see how the model
developed here and proved on an elementary pattern may be extended to more intricate
stochastic configurations. Even more generally, the homogenization of a diffusion process
through fractal cracks, in the spirit of [1], may be a challenging question to tackle.

Another extension of the present work may be to consider that the cracked material is
not homogeneous but filled with radiation-free micro-cracks (see figure 7 for an illustration).
Provided the size of such micro-cracks is much smaller than α, the effective behaviour of
the micro-cracked medium can be estimated - and in some cases rigorously bounded - using
general methods from the theory of composites materials, possibly extended in a non-linear
regime ([12], [13], [14]). Those methods make use of the so-called "translation method"
devised by Murat and Tartar [15]. Combining such approaches with the MOSAIC method
is the object of ongoing work [16].
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