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Abstract. In the paper we consider the Stiefel manifold Vn,k as a principal U(k)-
bundle over the Grassmann manifold and study the cut locus from the unit element.
We gave the complete description of this cut locus on Vn,1 and presented the sufficient
condition on the general case. At the end, we study the complement to the cut locus
of V2k,k.

1. Introduction

A sub-Riemannian geometry is an abstract setting for study geometry with non-
holonomic constraints. A sub-Riemannian manifold is a triplet (Q,D, gD), where Q
is a C∞-smooth manifold, D is a smooth sub-bundle of the tangent bundle TQ of the
manifold Q (or smooth distribution) and gD is a smoothly varying with respect to q ∈ Q
inner product gD(q) : Dq ×Dq → R. The topic is actively developed last decades and
as, now classical, sources we refer to [1, 11, 20, 24, 28].

One of the main objects of interest in sub-Riemannian geometry are normal and
abnormal geodesics that are two different but not mutually disjoint families. The ex-
ponential map is not a local diffeomorphism anymore. Nevertheless, the singularities of
the exponential map, as in the Riemannian geometry are closely related to the cut locus
and failure of the optimality for geodesics. The cut locus in sub-Riemannian geometry
is an object that is of big interest, but rather poorly studied. There exist very few re-
sults concerning the global and local structure of it and most of them restricted to low
dimensional manifolds. The work [25] studies the one dimensional Heisenberg group,
and the results easily can be extended to higher dimensions. A full description of the
global structure of the cut locus for the groups SU(2), SO(3), SL(2), and lens spaces is
given in [10]. For the groups SO(3), SL(2), and lens spaces the cut locus is a stratified
set, whereas in SU(2) it is a maximal circle S1 without one point. The reader will find
similar structures to those that obtained in the present work. The global structure of
the exponential map and the cut locus of the identity on the group SE(2) is completely
presented in [27].

The nature of normal and abnormal geodesics and complexity of the cut locus struc-
ture in sub-Riemannian geometry on the example of the Martinet manifold is pointed
out in the work [4]. The Martinet manifold is the smooth manifold R3 with smooth
distribution spanned by vector fields

X =
∂

∂x
+

1

2
y2 ∂

∂t
, Y =

∂

∂y
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and an inner product, making X, Y orthonormal. The cut locus in this case is the
Martinet surface y = 0 minus the abnormal geodesic z = 0 inside of the surface [Thm.
1.2, [4]]. The cut locus for contact manifolds were also studied in [5].

A progress in study of the cut locus of the identity on the sub-Lorentzian counterpart
of one dimensional Heisenberg group can be found in [17].

In the present work we consider the Stiefel manifold Vn,k as a principal U(k)-bundle
with the Grassmann manifold as a base space. We completely describe the cut locus
from the unit element for the case Vn,1. The technical difficulties and possible presents
of abnormal geodesics did not allowed to extend this result to the general case Vn,k.
Nevertheless, we present a partial description of the cut locus, that is to our knowledge
almost unique example for manifolds of higher dimensions.

The structure of the work is the following. Section 2 collects the basic definitions that
nowadays are standard in sub-Riemannian geometry, but sometimes fussy. In Section 3
we define Grassmann and Stiefel manifolds embedded in U(n), metric of constant bi-
invariant type and normal geodesics based on the general theorem that can be found
in [24]. In Section 4 we describe the cut locus for the equivalence class of the unit
element on the principal U(1)-bundle structure on the Stiefel manifold Vn,1. Since the
considered manifold is homogeneous it gives the structure of the cut locus for any point.
Section 5 is dedicate to the cut locus for the general case of the Stiefel manifold Vn,k
and V2k,k. In Section 6 we briefly review some particular cases of the Stiefel manifold
embedded in SO(n).

2. Basic definitions from sub-Riemannian geometry

We remind the necessary definitions and propositions based on [24].

Definition 1. A sub-Riemannian manifold is a triplet (Q,H, 〈· , ·〉), where Q is a C∞-
manifold, H is a vector subbundle of the tangent bundle TQ, and 〈· , ·〉 is a fibre inner-
product. The subbundle H is called horizontal and Hq is a horizontal space at a point
q ∈ Q. The metric 〈· , ·〉q : Hq×Hq → R, q ∈ Q is called a sub-Riemannian metric,
and the couple (H, 〈· , ·〉) is a sub-Riemannian structure on Q.

Definition 2. The horizontal subbundle H is called bracket generating if for every
q ∈ Q there exists r(q) ∈ Z+ s.t.

Hr(q) = TqQ,

where H1 := H and Hr+1 := [Hr,H] +Hr, r ≥ 1.

Definition 3. An absolutely continuous curve γ : [0, T ] → Q is called horizontal if
γ̇(t) ∈ Hγ(t) almost everywhere.

Definition 4. We define the length l := l(γ) of an absolutely continuous horizontal
curve γ : [0, T ]→ Q as in the Riemannian geometry:

l(γ) :=

∫ T

0

‖γ̇‖dt =

∫ T

0

√
〈γ̇(t), γ̇(t)〉 dt.

Introduce the function d(q0, q) for q0, q ∈ Q by

d(q0, q) := inf
γ
{l(γ)},

where the infimum is taken over all absolutely continuous horizontal curves that connect
q0 and q. If there is no horizontal curve joining q0 to q, then we declare d(q0, q) =∞.
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Recall the Chow-Rashevskii theorem [12, 26] that gives a sufficient condition of the
existence of horizontal curves.

Theorem 1. Let Q be a connected manifold. If the horizontal subbundle H ⊂ TQ is
bracket generating, then any two points in Q can be joined by a horizontal curve.

It follows that if H is bracket generating on a connected manifold, then the function
d introduced in Definition 3 is finite and defines the distance between two points on the
manifold, called Carnot-Carathéodory distance.

Definition 5. An absolutely continuous horizontal curve that realizes the distance be-
tween two points is called a minimizing geodesic.

Let Q be n-dimensional smooth manifold and H be a smooth horizontal subbundle
such that dimHq = k ≤ n for all q ∈ Q. Considering a neighborhood Uq around
q ∈ Q such that the subbundle H is trivialized in Uq, one can find a local orthonormal
basis X1, . . . , Xk with respect to the sub-Riemannian metric 〈· , ·〉. The associated
sub-Riemannian metric Hamiltonian is given by

H(p, λ) =
1

2

k∑
m=1

λ(Xm(p))2,

where (p, λ) ∈ T ∗Uq. A normal geodesic is defined as the projection to Uq ⊂ Q of the
solution to the Hamiltonian system

ṗi =
∂H

∂λi
λ̇i = −∂H

∂pi
,

where (pi, λi) are the coordinates in T ∗Uq. We note that the word “normal” appears
due to the fact that in the sub-Riemannian geometry there is another type of geodesics,
calling “abnormal” arising from different type of Hamiltonian function. For a more
detailed examination of abnormal geodesics we refer to [2, 3, 9, 20, 23]. The present
work is mostly concerned with the normal geodesics, therefore we omit the detailed
definition for abnormal ones.

Suppose two differentiable manifolds Q, M , and the submersion π : Q→M are given.
The fibre through q ∈ Q is the set Qm := π−1(m), m = π(q), which is a submanifold
according to the implicit function theorem. The differential dqπ : TqQ → Tπ(q)M of π
defines the vertical space Vq ⊂ TqQ that is the tangent space to the fibre Qπ(q) and it
is written as Vq := ker(dqπ) = Tq(Qm), where ker(dqπ) denotes the kernel of the linear
map dqπ. It can be shown that V =

⋃
q∈Q Vq is a smooth subbundle of TQ that is called

vertical subbundle [24].

Definition 6. An Ehresmann connection (or connection) for a submersion π : Q→M
is a subbundle H ⊂ TQ that is everywhere transverse and of complementary dimension
to the vertical: Vq ⊕Hq = TqQ. The space Hq is called horizontal subspace of TqQ.

Definition 7. Let π : Q→M be a submersion with connection H and let c : I →M be
a curve starting at m ∈M . A curve γ : I → Q is called a horizontal lift of the curve c
if γ is tangent to H and projects to c, i.e. γ̇(t) ∈ Hγ(t) and π ◦ γ(t) = c(t) for all t ∈ I.

There are different ways to introduce a sub-Riemannian structure on Q. In the sequel
we describe two of them and indicate when they coincide.
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Assuming that Q is a Riemannian manifold in the submersion π : Q → M , we can
use its Riemannian metric to define the orthogonal complement Hq of the vertical space
Vq at each point q ∈ Q. Then H is a connection and the restriction of the Riemannian
metric to H defines a sub-Riemannian metric on Q.

Assume that the manifold M is endowed with a Riemannian metric and the submer-
sion π : Q→M has a connection H. Since Vq = ker(dqπ) and Im(dqπ|Hq) = Im(dqπ) =
Tπ(q)M , it follows that dqπ|Hq is a linear isomorphism from Hq to Tπ(q)M . By pulling
back the Riemannian metric on M to Q, we obtain a sub-Riemannian metric on Q
with underlying subbundle H. This sub-Riemannian metric is said to be induced by
the connection H on Q and the Riemannian metric on M .

Suppose Q and M are smooth Riemannian manifolds and a submersion π : Q → M
is given. Let Hq be orthogonal complement to the vertical Vq at every q ∈ Q. Two
ways of inducing a sub-Riemanian metric on Q, by restricting the Riemannian metric
of Q or by pulling back the Riemannian metric on M using dπ, coincide if dqπ restricts
to a linear isometry Hq → Tπ(q)M for all q ∈ Q.

Definition 8. Let Q and M be Riemannian manifolds and let π : Q → M be a sub-
mersion. Let Vq ⊂ TqQ denote the vertical subspace at q ∈ Q and Hq := V⊥q be its
orthogonal complement. If dπ : TQ→ TM restricts to a linear isometry Hq → Tπ(q)M
for each q ∈ Q, then π is called a Riemannian submersion.

Thus, Riemannian metrics on Q and M induce the same subriemannian structure on
Q if the submersion is Riemannian.

Definition 9. A fibre bundle π : Q → M is a principal G-bundle if its fibre is a Lie
group G that acts freely and transitively on each fibre.

As a consequence we can identify M with the quotient Q/G of Q by the group action
of G. Furthermore, π corresponds to the canonical projection to the quotient.

Definition 10. A connection on π : Q→ M is a principal G-bundle connection if the
action of G preserves the connection.

We assume that the group acts on itself on the right q 7→ qg, q ∈ Q, g ∈ G.

Definition 11. Let Q → M be a principal G-bundle with connection H. A sub-
Riemannian metric on (Q,H) which is invariant under the action of G is called a
metric of bundle type.

A sub-Riemannian metric which is induced from a G-invariant metric on Q is an
example of a metric of bundle type.

Definition 12. A bi-invariant Riemannian metric 〈· , ·〉 on a differentiable manifold Q
with the Lie group G acting on it is said to be of constant bi-invariant type if its inertia
tensor Iq : g× g→ R defined by Iq(ξ, η) := 〈σqξ, σqη〉 is independent of q ∈ Q. Here

σq : g → TqQ

ξ 7→ d

dε

∣∣∣∣
ε=0

q exp(εξ).

Definition 13. Let π : Q → M be a principal G-bundle with a Riemannian metric of
constant bi-invariant type and H be the induced connection. We define the g-valued
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connection one-form Aq uniquely as the linear operator Aq : TqQ → g which satisfies
following properties:

ker(Aq) = Hq, Aq ◦ σq = Idg,

where Idg is the identity map on g.

The map A : TQ→ g defines a g-valued connection tensor on Q.
Theorem 2. [24] Let π : Q→M be a principal G-bundle with a Riemannian metric of
constant bi-invariant type. Let H be the induced connection, with g-valued connection
tensor A. Let expR be the Riemannian exponential map, so that γR(t) = expR(tv) is
the Riemannian geodesic through q with initial velocity v ∈ TqQ. Then any horizontal
lift γ of the projection π ◦ γR is a normal sub-Riemannian geodesic and is given by

γ(t) = expR(tv) expG(−tA(v)),

where expG : g → G is the group G exponential map. Moreover, all normal sub-
Riemannian geodesics can be obtained in this way.

3. Stiefel and Grassmann manifolds embedded in U(n)

We use the following notations in the present section. Let Cn denote a n-dimensional
complex vector space and Cm×n the set of (m× n)-matrices with complex entries. We
want to apply Theorem 2 for the submersion π : Vn,k(Cn)→ Gn,k(Cn), where Vn,k(Cn) =
Vn.k is the Stiefel manifold and Gn,k(Cn) = Gn,k is the Grassmann manifold for n ∈ N
and k ∈ {1, . . . , n}.

We start from the description of a general construction. Given a group G with an
invariant inner product on its Lie algebra g and two subgroups H,K ⊂ G, we form
the quotient spaces G/H and G/(H ×K). The submersion G/H → G/(H ×K) is a
principal K-bundle, with Riemannian metrics on G/H and G/(H ×K) induced from
the bi-invariant Riemannian metric on G generated by an invariant inner product. The
Riemannian metrics are induced by the projections G → G/H and G → G/(H ×K).
Both manifolds in the submersion G/H → G/(H × K) are homogeneous manifolds,
where the group G acts transitively. The induced Riemannian metric on G/H is also
bi-invariant under the action of the group G. The geodesics on G/H are the projections
from G of one-parameter subgroups exp(tξ) with ξ orthogonal to the Lie algebra h ⊂ g
of H. We set G = U(n), H = Un(n− k), K = Un(k), where

Un(k) :=

{(
Uk 0
0 In−k

) ∣∣∣ Uk ∈ U(k)

}
⊂ U(n) and

Un(n− k) :=

{(
Ik 0
0 Un−k

) ∣∣∣Un−k ∈ U(n− k)

}
⊂ U(n).

Note that we use the notations Un(k) and Un(n − k) with the lower subscript in the
current section to emphasise that the elements of these groups are written as (n× n)-
matrices. Then the quotient G/H = U(n)/Un(n− k) is isomorphic to the Stiefel mani-
fold Vn,k and G/(H ×K) = U(n)/(Un(n− k)×Un(k)) is isomorphic to the Grassmann
manifold Gn,k.
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3.1. Unitary group and bi-invariant metric. Before we give detailed definition of
Stiefel and Grassmann manifolds we remind that the unitary group U(n) is a matrix
Lie group, whose elements X satisfy the condition

U(n) = {X ∈ Cn×n| X̄TX = XX̄T = In}.
Here In is the unite (n × n)-matrix and X̄T is the complex conjugate and transposed
of the matrix X. The Lie algebra u(n) consists of all skew-Hermitian matrices:

u(n) = {X ∈ Cn×n| X = −X̄ T}.
We remind that a matrix X ∈ U(n) is of full rank, its columns and rows are orthonormal
with respect to the standard Hermitian product in Cn and that the main diagonal of
the skew-Hermitian matrices are purely imaginary. Moreover, the Hermitian product in
Cn is invariant under the action of U(n), that particularly means that the orthogonality
is preserved under this action. The Lie algebra u(n) can be endowed with the inner
product (X ,Y)u(n)− 2n tr(XY), X ,Y ∈ u(n). Considering U(n) as a smooth manifold,
we denote its points by q and the metric at this point by 〈· , ·〉U(n)(q) or, if it is clear
from the context, simply by gq. Then a left-invariant metric on U(n) with respect to
the group action of U(n) on its Lie algebra is given by

〈· , ·〉U(n)(q) : TqU(n)× TqU(n) ∼= qu(n)× qu(n) → R
(qX , qY) 7→ −2n tr(XY)

q ∈ U(n), X ,Y ∈ u(n). This metric is actually bi-invariant, that follows from the
observation that can be found, for instance, in [15] and [22]. It is stated as follows:
Let g be a Lie algebra of a Lie group G endowed with an inner product (· , ·)g. An
inner product (· , ·)g is called invariant if it is invariant under the adjoint action of G,
i.e. (q−1ηq, q−1ξq)g = (η, ξ)g for all η, ξ ∈ g and q ∈ G. Then it is well known, see for
instance [19], that an invariant inner product (· , ·)g on a Lie algebra g determines a
bi-invariant metric on the group G via

〈η, ξ〉G(q) := (q−1η, q−1ξ)g = (ηq−1, ξq−1)g

for all η, ξ ∈ TqG.
We only need to check that the inner product (X ,Y)u(n) = −2n tr(XY) on u(n) is

invariant. Indeed,

(q−1X q, q−1Yq)u(n) = −2n tr(q−1X qq−1Yq) = −2n tr(q−1XYq)
= −2n tr(Yqq−1X ) = −2n tr(XY) = (X ,Y)u(n)

for all X ,Y ∈ u(n) and q ∈ U(n).

Remark 1. The left and right action of any subgroup Un(k), 1 ≤ k ≤ n on the group
U(n) and on the Lie algebra u(n) are defined as a matrix multiplication from the left
or from the right. The inner product (· , ·)g = −2n tr(· , ·) on the Lie algebra u(n) is
invariant under the adjoint action of Un(k) and therefore the metric 〈· , ·〉U(n), defined
by left or right translations by the action of Un(k), is bi-invariant under this action.

3.2. Stiefel manifold and metric of constant bi-invariant type. The Stiefel man-
ifold Vn,k is the set of all k-tuples (q1, . . . , qk) of vectors qi ∈ Cn, i ∈ {1, . . . , k}, which
are orthonormal with respect to the standard Hermitian metric. This is a compact
manifold which can be equivalently defined as

Vn,k := {X ∈ Cn×k| X̄TX = Ik}.
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The condition X̄TX = Ik is equivalent to the orthonormality of columns. This k
orthonormal columns can be considered as arbitrary k columns in a matrix X ∈ U(n).
This allows us to realize the Stiefel manifold as a quotient set of U(n) by the group
Un(n− k). To do this we introduce the equivalence relation v1 on U(n) by

q v1 p ⇐⇒ q = p

(
Ik 0
0 Un−k

)
, q, p ∈ U(n), Un−k ∈ U(n− k).

This results to the equivalence class for q ∈ U(n)

[q]v1 =

{
q

(
Ik 0
0 Un−k

)
,
∣∣∣Un−k ∈ U(n− k)

}
∈ U(n)/Un(n− k), q ∈ U(n).

The quotient U(n)/Un(n − k) is a smooth manifold with the quotient topology and
we denote the natural projection from U(n) to the quotient U(n)/Un(n − k) by π1.
We identify the equivalence class [q]v1 with a point in the Stiefel manifold and write
[q]Vn,k

∈ Vn,k instead of [q]v1 to emphasize that point belongs to the Stiefel manifold. So,
practically, an element of Vn,k is thought of an element in U(n) whose first k columns
from the left are of interest and the last n− k columns are not. The real dimension of
Vn,k is 2nk − k2.

The tangent space to the Stiefel manifold is a quotient of the tangent space to U(n) by
tangent space of the equivalence classes. To obtain it we differentiate curves γ(t) ∈ [q]v1

at t = 0 for a fixed q ∈ U(n) and get the space R =
{
q

(
0 0
0 C

)
| C ∈ u(n − k)

}
.

Intuitively, movements in the direction R make no change in the quotient space. It
follows that the tangent space T[q]Vn,k

Vn,k to the Stiefel manifold at [q]Vn,k
∈ Vn,k is

given by the quotient of the tangent space TqU(n), that is isomorphic to qu(n), by R:

T[q]Vn,k
Vn,k =

{
[q]Vn,k

(
X1 −X̄2

T

X2 0

) ∣∣∣ X1 ∈ u(k),X2 ∈ C(n−k)×k
}
.

Similar results can be found in [6] or [21].
Now we define a metric 〈· , ·〉Vn,k

on Vn,k by

〈
[q]Vn,k

(
X1 −X̄2

T

X2 0

)
, [q]Vn,k

(
Y1 −Ȳ2

T

Y2 0

)〉
Vn,k

(
[q]Vn,k

)
:=

〈
q

(
X1 −X̄2

T

X2 0

)
, q

(
Y1 −Ȳ2

T

Y2 0

)〉
U(n)

(
q
)

=

((
X1 −X̄2

T

X2 0

)
,

(
Y1 −Ȳ2

T

Y2 0

))
u(n)

,

where q ∈ [q]Vn,k
is any representative of the equivalence class [q]Vn,k

. It is clear from this
definition that the metric 〈· , ·〉Vn,k

is independent of the choice of the representation.
Since Uk[q]Vn,k

= [Ukq]Vn,k
and [q]Vn,k

Uk = [qUk]Vn,k
, Uk ∈ Un(k), it follows directly

from the definition of the metric on T[q]Vn,k
Vn,k and the bi-invariance of the metric
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〈· , ·〉U(n) with respect to Un(k) that〈
[Ukq]Vn,k

(
X1 −X̄2

T

X2 0

)
, [Ukq]Vn,k

(
Y1 −Ȳ2

T

Y2 0

)〉
Vn,k

=

((
X1 −X̄2

T

X2 0

)
,

(
Y1 −Ȳ2

T

Y2 0

))
u(n)

=

〈
[q]Vn,k

(
X1 −X̄2

T

X2 0

)
, [q]Vn,k

(
Y1 −Ȳ2

T

Y2 0

)〉
Vn,k

and 〈
[qUk]Vn,k

(
X1 −X̄2

T

X2 0

)
, [qUk]Vn,k

(
Y1 −Ȳ2

T

Y2 0

)〉
Vn,k

=

((
X1 −X̄2

T

X2 0

)
,

(
Y1 −Ȳ2

T

Y2 0

))
u(n)

=

〈
[q]Vn,k

(
X1 −X̄2

T

X2 0

)
, [q]Vn,k

(
Y1 −Ȳ2

T

Y2 0

)〉
Vn,k

,

where Uk is any element in Un(k) ⊂ U(n). So the metric of 〈· , ·〉Vn,k
is invariant under

the action of Un(k).
Now we show that the metric 〈· , ·〉Vn,k

on Vn,k is of constant bi-invariant type with
respect to the right group action of Un(k). To prove it we recall that the infinitesimal
generator σ[q]Vn,k

: un(k) → T[q]Vn,k
Vn,k is given by σ[q]Vn,k

(ξ) = [q]Vn,k
ξ, where un(k) is

the Lie algebra of Un(k). It follows that

I[q]Vn,k
(ξ, η) = 〈[q]Vn,k

ξ, [q]Vn,k
η〉Vn,k

= −2n tr(ξη), where [q]Vn,k
∈ Vn,k.

This implies that I[q]Vn,k
(ξ, η) is independent of [q]Vn,k

.

3.3. Grassmann manifold. The Grassmann manifold Gn,k is defined as a collection
of all k-dimensional subspaces Λ of Cn. Equivalently, an element Λ of Gn,k can be
written as a (n × k) matrix with columns e1, . . . , ek, such that span(e1, . . . , ek) = Λ.
We are interested in the representation of Gn,k as a quotient of U(n) by some subgroup.
As in the previous case of the Stiefel manifold, we quotient U(n) by Un(n − k), but
moreover, since the definition of Gn,k does not depend on the choice of the orthonormal
basis e1, . . . , ek for Λ, but only on its span, we also quotient U(n) by the group Un(k)
that leaves span{e1, . . . , ek} invariant. Therefore, we define the equivalence relation v2

in U(n) by

m1 v2 m2 ⇐⇒ m1 = m2

(
Uk 0
0 Un−k

)
, m1,m2 ∈ U(n),

where Uk ∈ U(k), Un−k ∈ U(n− k). This leads to the equivalence class

[m]v2 =

{
m

(
Uk 0
0 Un−k

) ∣∣∣ Uk ∈ U(k), Un−k ∈ U(n− k)

}
⊂ U(n), m ∈ U(n),

which is isomorphic to U(k) × U(n − k) ∼= Un(k) × Un(n − k). We identify Gn,k with
the quotient space U(n)/(Un(k)×Un(n− k)) and use the notation [m]Gn,k

for [m]v2 in
the present Section 3.
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Furthermore, we obtain that the tangent space to the equivalence class [m]v2 is{
m

(
X1 0
0 X4

) ∣∣∣ X1 ∈ u(k), X4 ∈ u(n− k)

}
, m ∈ U(n),

and it implies that the tangent space of Gn,k at the point [m]Gn,k
is given by

T[m]Gn,k
Gn,k =

{
[m]Gn,k

(
0 X2

−X̄2
T

0

) ∣∣∣ X2 ∈ Ck×(n−k)

}
.

It has real dimension 2k(n− k) that gives the real dimension of Gn,k, see also [6, 21].
We define a metric 〈· , ·〉Gn,k

on Gn,k by〈
[m]Gn,k

(
0 X2

−X̄2
T

0

)
, [m]Gn,k

(
0 Y2

−Ȳ2
T

0

)〉
Gn,k

(
[m]Gn,k

)
:=

〈
m

(
0 X2

−X̄2
T

0

)
,m

(
0 Y2

−Ȳ2
T

0

)〉
U(n)

(
m
)

=

((
0 X2

−X̄2
T

0

)
,

(
0 Y2

−Ȳ2
T

0

))
u(n)

,

where m ∈ U(n) is any representative of [m]Gn,k
.

3.4. Submersion π : Vn,k → Gn,k and sub-Riemannian geodesics. Starting from
now, we will consider the matrices q and m as elements in U(n). Now we can define
the submersion

π : Vn,k → Gn,k,

[q]Vn,k
7→ [m]Gn,k

.

The projection π sends the equivalence class [q]v1 to the equivalence class [m]v2 , where
m ∈ U(n) can be any matrix from the set{

q

(
Uk 0
0 Un−k

) ∣∣∣ Uk ∈ U(k), Un−k ∈ U(n− k)

}
.

Note that the latter set consists of all unitary matrices whose first k columns from the
left span the same space as the first left k columns of q. This implies that a fibre over
a point [m]Gn,k

∈ Gn,k is given by

π−1([m]Gn,k
) =

{[
m

(
Uk 0
0 In−k

)]
Vn,k

∣∣∣ Uk ∈ U(k)

}
=

{
[m]Vn,k

(
Uk 0
0 In−k

) ∣∣∣ Uk ∈ U(k)

}
, m ∈ U(n),

which is homeomorphic to Un(k) ∼= U(k).
The submersion π is also a principal Un(k)-bundle, where the right group action is

defined by the multiplication from the right by an element from Un(k). It remains to
show that the right action of Un(k) is continuous, preserves the fibre, acts freely and
transitively on the fibre.
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The multiplication of [q]Vn,k
∈ Vn,k from the right by an element U0

k ∈ U(k) is given
by

q

(
Ik 0
0 Un−k

)(
U0
k 0

0 In−k

)
= q

(
U0
k 0

0 Un−k

)
, q ∈ U(n),

where Un−k is an arbitrary element of U(n − k) and U0
k is a fixed element of U(k). It

follows that the right multiplication is well defined and continuous. It can also be seen,
that it preserves the fibre of π−1(π([q]Vn,k

)). By the definition of the fibre it is clear
that [q]Vn,k

U(k) = π−1(π([q]Vn,k
)) and this implies the transitivity of the Un(k) action.

To show that Un(k) acts freely, we assume that Ũ1 =

(
U1 0
0 In−k

)
∈ Un(k), Ũ2 =(

U2 0
0 In−k

)
∈ Un(k) and [q]Vn,k

Ũ1 = [q]Vn,k
Ũ2 with [q]Vn,k

=

(
q1 q2

q3 q4

)
, q1 ∈ Ck×k,

q2 ∈ Ck×(n−k), q3 ∈ C(n−k)×k and q4 ∈ C(n−k)×(n−k). Then we get the equations

q1U1 = q1U2 ⇐⇒ q1 = q1U2U
−1
1 = q1U1U

−1
2 ,

q3U1 = q3U2 ⇐⇒ q3 = q3U2U
−1
1 = q3U1U

−1
2 ,

which leads to U1 = U2 and so Ũ1 = Ũ2. Thus, we showed that π : Vn,k → Gn,k is a
principal Un(k)-bundle.

The differential of π defines the vertical and horizontal spaces. The differential
d[q]Vn,k

π at [q]Vn,k
acts as

[q]Vn,k

(
X1 X2

−X̄2
T

0

)
7→ [m]Gn,k

(
0 X2

−X̄2
T

0

)
,

where m is defined as above for π. So, the kernel of d[q]Vn,k
π or the vertical space V[q]Vn,k

is given by

V[q]Vn,k
=

{
[q]Vn,k

(
X1 0
0 0

) ∣∣∣ X1 ∈ u(k)

}
, q ∈ U(n).

We choose the horizontal space of Vn,k by setting

(1) H[q]Vn,k
=

{
[q]Vn,k

(
0 X2

−X̄2
T

0

) ∣∣∣ X2 ∈ Ck×(n−k)

}
, q ∈ U(n).

It is clear that dπ : TVn,k → TGn,k is a linear isometry if we restrict it to the horizontal
space, H[q]Vn,k

→ Tπ([q]Vn,k
)Gn,k for each [q]Vn,k

∈ Vn,k, therefore π is a Riemannian

submersion.
The un(k)-valued connection one-form A[q]Vn,k

: T[q]Vn,k
Vn,k → un(k) is given by

A[q]Vn,k

(
[q]Vn,k

(
X1 X2

−X̄2
T

0

))
:=

(
X1 0
0 0

)
∈ un(k), X2 ∈ Ck×(n−k).

Now we can write precisely the normal sub-Riemannian geodesic on Vn,k starting
from a point [q]Vn,k

with initial velocity v ∈ T[q]Vn,k
Vn,k. It is given by

γv(t) = expR(tv) expUn(k)(−tA(v))

= π1

(
q expU(n)

(
t

(
X1 X2

−X̄2
T

0

)))
expUn(k)

(
−t
(
X1 0
0 0

))
(2)
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where q ∈ U(n), v = [q]Vn,k

(
X1 X2

−X̄2
T

0

)
∈ T[q]Vn,k

Vn,k with

(
X1 X2

−X̄2
T

0

)
∈ u(n).

We simplify the notation and from now on write q ∈ Vn,k, m ∈ Gn,k, U(k) for Un(k),
U(n− k) for Un(n− k), and g for the Riemannian metric of constant bi-invariant type.

4. The cut-locus of Vn,1

In this section we study the cut locus of the Stiefel manifold Vn,1 considered as a
sub-Riemannian manifold by making use of the normal sub-Riemannian geodesics (2).

Definition 14. An absolutely continuous horizontal path that realizes the distance be-
tween two points is called a minimizing geodesic.

Recall the definition of the sub-Riemannian cut locus.

Definition 15. The cut locus of q0 ∈ Q in a sub-Riemannian manifold (Q,H, gH) is a
set Kq0 ⊂ Q of points reached optimally by more than one horizontal geodesic, i. e. the
cut locus is

Kq0 :=
{

q ∈ Q | there exist T ∈ R+, v1, v2 ∈ Tq0Q, v1 6= v2, and

minimizing horizontal geodesics γv1(t), γv2(t), starting from q0, and

γv1(T ) = γv2(T ) = q
}
.

If we replace minimizing horizontal geodesics into minimizing normal horizontal geodesics
we obtain a definition of the normal sub-Riemannian cut locus. Further on we will work
with cut locus, given in Definition 15.

Starting from now we will write Id for the equivalence class [In]Vn,k
∈ Vn,k. The main

theorem is stated as following.

Theorem 3. The cut locus KId on Vn,1 is given by

L :=

{[(
C 0
0 D

)]
Vn,1

∣∣∣ C ∈ U(1), D ∈ U(n− 1)

}
\ {Id} .

Before we present the proof of Theorem 3 we consider in details the particular case
for n = 2, k = 1. It allows to understand the general idea of the proof without using
tough technical calculations.

4.1. The cut locus of V2,1. Observe that V2,1 is three dimensional and the distribu-
tion (1) is strongly bracket generating. Recall the definition.

Definition 16. A smooth distribution H on M is strongly bracket generating if for any
non-zero section Z of H, the tangent bundle TM is generated by H and [Z,H].

For the manifold V2,1 Definition 16 is reduced to the statement that there exist
two sections Z1 and Z2 of H such that span{Z1(q),Z2(q), [Z1,Z2](q)} = TqV2,1 for all

q ∈ V2,1. We can choose, Z1(q) := q

(
0 1
−1 0

)
and Z2(q) := q

(
0 i
i 0

)
. It is known, see

for instance [10, 24], that on sub-Riemannian manifolds with strongly bracket generating
distributions all minimizing geodesics are normal.
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The tangent spaces at the identity are given by

TIdV2,1 =

{
Id

(
x1 x2

−x̄2 0

) ∣∣∣ x1 = λi, λ ∈ R, x2 ∈ C
}

and

TIdGr2,1 =

{
Id

(
0 x2

−x̄2 0

) ∣∣∣ x2 ∈ C
}
.

For a given initial vector v = Id

(
x1 x2

−x̄2 0

)
∈ TIdV2,1 a normal sub-Riemannian geo-

desic is written as

γv(t) = π1(expU(2)(tv)) expU(1)

(
−t
(
λi 0
0 0

))
= π1

(
expU(2)

(
t

(
λi x2

−x̄2 0

)))(
e−λti 0

0 1

)
= π1

((
γ1
v(t) γ2

v(t)
γ3
v(t) γ4

v(t)

))
=

[(
γ1
v(t) γ2

v(t)
γ3
v(t) γ4

v(t)

)]
Vn,k

with

γ1
v(t) =

( λ

2
√
λ2 + 4x2x̄2

+
1

2

)
µ1(−λ, x2, t) +

(
− λ

2
√
λ2 + 4x2x̄2

+
1

2

)
µ2(−λ, x2, t),

γ2
v(t) =

x2i√
λ2 + 4x2x̄2

(
µ2(λ, x2, t)− µ1(λ, x2, t)

)
,

γ3
v(t) =

i

4x2

(
λ2

√
λ2 + 4x2x̄2

−
√
λ2 + 4x2x̄2

)(
µ2(−λ, x2, t)− µ1(−λ, x2, t)

)
= − x̄2i√

λ2 + 4x2x̄2

(
µ2(−λ, x2, t)− µ1(−λ, x2, t)

)
,

γ4
v(t) = − µ1(λ, x2, t)

2
√
λ2 + 4x2x̄2

(
λ−

√
λ2 + 4x2x̄2

)
+

µ2(λ, x2, t)

2
√
λ2 + 4x2x̄2

(
λ+

√
λ2 + 4x2x̄2

)
,

where

µ1(λ, x2, t) = e
ti
2

(λ+
√
λ2+4x2x̄2) and µ2(λ, x2, t) = e

ti
2

(λ−
√
λ2+4x2x̄2).

In calculations we used the diagonalization of the matrix t

(
λi x2

−x̄2 0

)
= SDS−1 with

S =

 1 1

− i
2x2

(λ−
√
λ2 + 4x2x̄2) − i

2x2
(λ+

√
λ2 + 4x2x̄2)

 .

S−1 =


λ

2
√
λ2+4x2x̄2

+ 1
2

− x2i√
λ2+4x2x̄2

1
2
− λ

2
√
λ2+4x2x̄2

x2i√
λ2+4x2x̄2

 ,

D =

it(λ+
√
λ2+4x2x̄2

2
) 0

0 it(
λ−
√
λ2+4x2x̄2

2
)

 ,
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in order to express expU(2)

(
t

(
λi x2

−x̄2 0

))
= S expU(2)(D)S−1.

Lemma 1. The set

L :=

{[
expU(2)

(
c1i 0
0 c2i

)]
V2,1

∣∣∣ c1, c2 ∈ R

}
\ {Id}

is the cut locus KId of V2,1.

Proof. It is clear that it is enough to concentrate on the calculation of the first column(
γ1
v(t)
γ3
v(t)

)
in the equivalence class

[(
γ1
v(t) γ2

v(t)
γ3
v(t) γ4

v(t)

)]
V2,1

. We show first that if q ∈ L,

then there are several minimizing geodesics reaching q in the same time.

Suppose there exists an initial vector v∗ =

(
λ∗i x∗2
−x̄∗2 0

)
with x∗2 6= 0, and T ∈ R+

such that the minimizing geodesic γv∗ connects Id ∈ V2,1 with

q = γv∗(T ∗) =

[(
ec1i 0
0 ec2i

)]
V2,1

∈ L.

We see that γ2
v∗(T ∗) = 0. It implies the following equivalences

µ1(λ∗, x∗2, T
∗) = µ2(λ∗, x∗2, T

∗)(3)

⇐⇒ e
T∗i
2

(λ∗+
√

(λ∗)2+4|x2|2) = e
T∗i
2

(λ∗−
√

(λ∗)2+4|x2|2)

⇐⇒ e
T∗i
2

√
(λ∗)2+4|x2|2 = e−

T∗i
2

√
(λ∗)2+4|x2|2

⇐⇒ T ∗

2

√
(λ∗)2 + 4x∗2x̄

∗
2 = kπ, for some k ∈ Z.

Let us fix such k ∈ Z and note

µ1(λ∗, x∗2, T
∗) = e

T∗i
2

(λ∗+
√

(λ∗)2+4|x2|2) = ±e
T∗i
2
λ∗ = µ2(λ∗, x∗2, T

∗).

We conclude that functions µ1(λ∗, x∗2, T
∗) and µ2(λ∗, x∗2, T

∗) are independent of x∗2 itself,
but depend on the norm |x∗2|2 = x∗2x̄

∗
2. Let us pick up another initial velocity vector

v1 =

(
λ∗i y2

−ȳ2 0

)
with |y2|2 = |x∗2|2 and x∗2 6= y2. Then γv1(T

∗) = q.

In the next step we show that the length of the geodesic γv1 coincides with the length
of the minimizing geodesic γv∗ . We actually claim that the length of any geodesic γv

with v =

(
λi x2

−x̄2 0

)
depends on the fixed final time T and the norm |x2|.

We recall that the square of the length of the velocity vector γ̇v(t) is given by

〈γ̇v(t), γ̇v(t)〉V2,1 = −2n tr
(
[γv(t)

−1γ̇v(t)]
2
)
.
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Fix a point p(t) = expU(2)

(
t

(
λi x2

−x̄2 0

))(
e−λti 0

0 1

)
∈ U(2) such that γv(t) =

π1

(
p(t)

)
. To calculate γ̇v(t) = dp(t)π1p

′(t) we use the chain rule

γ̇v(t) = dp(t)π1

[
expU(2)

{
t

(
λi x2

−x̄2 0

)}(
λi x2

−x̄2 0

)(
e−λti 0

0 1

)
+ expU(2)

{
t

(
λi x2

−x̄2 0

)}(
e−λti 0

0 1

)(
−λi 0

0 0

)]
= dp(t)π1

[
expU(2)

{
t

(
λi x2

−x̄2 0

)}(
e−λti 0

0 1

)(
λi x2e

λit

−x̄2e
−λit 0

)
+ expU(2)

{
t

(
λi x2

−x̄2 0

)}(
e−λti 0

0 1

)(
−λti 0

0 0

)]
= dp(t)π1

[
expU(2)

{
t

(
λi x2

−x̄2 0

)}(
e−λti 0

0 1

)(
0 x2e

λit

−x̄2e
−λit 0

)]
= γv(t)

(
0 x2e

λit

−x̄2e
−λit 0

)
.

It follows that 〈γ̇v(t), γ̇v(t)〉V2,1 = −4 tr

(
−|x2|2 0

0 −|x2|2
)

= 8|x2|2. Since the length of

the geodesic γv depends only on T and the norm |x2| we conclude that γv1 is a minimizing
geodesic from the identity to q. With this we finished to show the inclusion L ⊂ KId.

To prove the converse inclusion KId ⊂ L we use a contradiction. Suppose q ∈ V2,1\L,

but q ∈ KId, i. e. there exist v1 =

(
λ1i x2

−x̄2 0

)
, v2 =

(
λ2i y2

−ȳ2 0

)
∈ u(n) with v1 6= v2

such that γv1 and γv2 are minimizing geodesics from the identity to q, which reach the
point q for the first time at the moment T ∈ R+. Note that values x2 and y2 do not
vanish as otherwise γv1(t) = γv2(t) = Id for all t ∈ R.

We observe that for any unitary matrix q =

(
q1 q2

q3 q4

)
one obtains q2 6= 0 ⇔ q3 6= 0.

It follows that if q ∈ V2,1 \ L, then

γ2
v1
6= 0, γ3

v1
6= 0 ⇐⇒ µ2(λ, x2, T ) 6= µ1(λ, x2, T ) ⇐⇒ T

2

√
λ2 + 4|x2|2 6∈ πZ

by (3). It immediately implies T < min
{

2π√
λ21+4|x2|2

, 2π√
λ22+4|y2|2

}
. In the next step we

show that neither of these inequalities can be realized under our assumptions.
Case 1. Assume that |x2| 6= |y2| and λ1, λ2 are arbitrary. Then g(v1, v1) = 8|x2|2 6=

8|y2|2 = g(v2, v2), that implies that the length of both minimizing geodesics γv1 and γv2
is different, which is a contradiction to the assumption that they are both minimizing
at the same time.
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Case 2. Let |x2| = |y2| and λ1 = λ2. As γ3
v1

(T ) = γ3
v2

(T ) 6= 0 it follows that

γ3
v1

(T ) =− x̄2i√
λ2

1 + 4|x2|2
(µ2(λ1, x2, T )− µ1(λ1, x2, T ))

=− ȳ2i√
λ2

2 + 4|y2|2
(µ2(λ2, y2, T )− µ1(λ2, y2, T )) = γ3

v2
(T )

if and only if x2 = y2,

because
√
λ2

1 + 4|x2|2 =
√
λ2

2 + 4|y2|2, µ1(λ1, x2, T ) = µ1(λ2, y2, T ), and µ2(λ1, x2, T ) =
µ2(λ2, y2, T ) by definition. But the equality x2 = y2 implies v1 = v2, that leads to a
contradiction.

Case 3. Finaly we suppose that λ1 6= λ2 and |x2| = |y2|. As in the previous case the
equality γ3

v1
(T ) = γ3

v2
(T ) implies |γ3

v1
(T )| = |γ3

v2
(T )| and

1√
λ2

1 + 4|x2|2
|µ2(λ1, x2, T )−µ1(λ1, x2, T )| = 1√

λ2
2 + 4|y2|2

|µ2(λ2, y2, T )−µ1(λ2, y2, T )|.

Taking into account | exp
(
T iλj

2

)
| = 1 for j = 1, 2, we obtain

|µ2(λj, x2, T )− µ1(λj, x2, T )| = |e−
Ti
2

√
λ2j+4|x2|2 − e

Ti
2

√
λ2j+4|x2|2 |

= 2 sin
(T

2

√
λ2
j + 4|x2|2

)
, j = 1, 2,

as sin x > 0 for x ∈ (0, π). These both equations lead to

2 sin
(
T
2

√
λ2

1 + 4|x2|2
)√

λ2
1 + 4|x2|2

=
2 sin(T

2

√
λ2

2 + 4|y2|2)√
λ2

2 + 4|y2|2

⇐⇒
2 sin(T

2

√
λ2

1 + 4|x2|2)

T
√
λ2

1 + 4|x2|2
=

2 sin(T
2

√
λ2

2 + 4|y2|2)

T
√
λ2

2 + 4|y2|2
.

Since the function sinx
x

is injective on the interval (0, π) we obtain T
2

√
λ2

1 + 4|x2|2 =
T
2

√
λ2

2 + 4|y2|2 which is equivalent to λ1 = ±λ2.
We only need to consider the case λ1 = −λ2. Note that µj(λ2, x2, T ) = µj(λ2, y2, T ),

j = 1, 2, and

µ1(−λ2, x2, T ) =
1

µ2(λ2, y2, T )
, µ2(−λ2, x2, T ) =

1

µ1(λ2, y2, T )
.

From this it follows that

(4) γ1
v1

(T ) = γ1
v2

(T ) ⇐⇒
tan(T

2

√
λ2

2 + 4|y2|2)√
λ2

2 + 4|y2|2
=

tan(Tλ2
2

)

λ2

.

Since 0 < Tλ2
2
< T

2

√
λ2

2 + 4y2ȳ2 < π the equality (4) is not true.

Figure 4.1 illustrates that y1 < y2 implies tan y1
y1
6= tan y2

y2
. The similar calculations can

be found in [10, p. 1871].
These 3 cases finish the proof of the theorem. �
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Figure 1. tan(x)
x

on the interval [0 , π]

4.2. Isomorphism between V2,1 and SU(2). In this subsection we show that the
results obtained above recover the results obtained in [10]. An element q of V2,1 is an
equivalence class which can be written as

[q]V2,1 =

{(
α exp(λi)β̄
β − exp(λi)ᾱ

) ∣∣∣λ ∈ (0, 2π)

}
.

Since

(
α exp(λi)β̄
β − exp(λi)ᾱ

)
is a unitary matrix we know that the norm ‖α‖2 + ‖β‖2

of the vector

(
α
β

)
is equal one. Furthermore, we note that points q ∈ V2,1 can

be parametrized by the vector

(
α
β

)
. Recall the definition of the group SU(2) ={(

α β
−β̄ ᾱ

) ∣∣∣‖α‖2 + ‖β‖2 = 1

}
. So, it is clear that every element of SU(2) can be

represented by the vector

(
α
β

)
. It follows that the both manifolds are diffeomorphic

under the mapping f : V2,1 → SU(2), [g]V2,1 7→
(
α β
−β̄ ᾱ

)
. The metric in both cases is

left invariant, arising from an inner product on Lie algebras making basis of Lie algebra
orthogonal. The horizontal distribution is orthogonal to the vertical one.

Remark 1. The set L as a subset of V2,1 depends only on c1 ∈ (0, 2π), since the part
depending on c2 is quotient out. This implies that the cut locus of SU(2), which is given

by

{(
exp(c1i) 0

0 exp(−c1i)

) ∣∣∣c1 ∈ (0, 2π)

}
[10], has a bijective relation under the map

f to the cut locus of V2,1, given in Lemma 1.

Now we proceed to the proof of Theorem 3 that describes the cut locus from the
identity on Vn,1.

Proof. We only need to show the inclusion KId ⊂ L since the converse inclusion L ⊂ KId

will be proved in Theorem 4 for the more general case Vn,k.
First of all we claim that in the case of Vn,1 there are no abnormal minimizing

geodesics because the distribution is strongly bracket generating. To show that the
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horizontal distribution is strongly bracket generating we consider an arbitrary ele-

ment

(
0 B
−B̄T 0

)
∈ HId with B = (b1, . . . , bn−1) ∈ C1×(n−1). Take basis elements(

0 Emj
−ĒT

mj 0

)
, m ∈ {0, 1}, and j ∈ {1, . . . , n − 1}. Here Emj ∈ C1×(n−1) is the row

with entry im at the place j and zeros everywhere else. Then, the commutator is written
as [(

0 B
−B̄T 0

)
,

(
0 Emj

−ĒT
mj 0

)]
=

(
−BĒT

mj + EmjB̄
T 0

0 0

)
,

where

−BĒT
mj + EmjB̄

T =

{
−2i Im(bj), m = 0

−2iRe(bj), m = 1
.

An arbitrary choice of B and linearity of Lie bracket imply that any B generates the
whole vertical space which allows to conclude that the distributionH is strongly bracket
generating.

Now we calculate the precise form of a geodesic γv, concentrating on components

γ1
v and γ3

v . Let the velocity vector be given by v =

(
xi B
−B̄T 0

)
, where x ∈ R and

B ∈ C1×(n−1). Recall exp(tv) =
∑∞

n=0
tn

n!
vn. First we will calculate the two parts of

vn := v(n) =

(
v1(n) v2(n)
v3(n) v4(n)

)
, namely v1(n) and v2(n). From the recursion formula

vn = vn−1v it follows that

v1(n) = v1(n− 1)xi− v2(n− 1)B̄T = v1(n− 1)xi− v1(n− 2)BB̄T

as v2(n) = v1(n− 1)B. Furthermore, as vn = vvn−1 we deduce

v3(n) = −B̄Tv1(n− 1).

Having the initial values v1(0) = 1, v1(1) = xi, and v3(0) = 0 we obtain that

v1(n) =
2−n−1

i
√
x2 + 4BB̄T

(
ix((i

√
x2 + 4BB̄T + ix)n − (ix− i

√
x2 + 4BB̄T )n

)
+ i

√
x2 + 4BB̄T

(
(ix− i

√
x2 + 4BB̄T )n + (i

√
x2 + 4BB̄T + ix)n)

)
and we obtain for exp(tv) :=

(
exp(tv)1 exp(tv)2

exp(tv)3 exp(tv)4

)

exp(tv)1 =
∞∑
n=0

tn

n!
v1(n) =

1

2i
√
x2 + 4BB̄T

(
e−

it
2

(
√
x2+4BB̄T−x

)
×

(
i
√
x2 + 4BB̄T

(
eit
√
x2+4BB̄T

+ 1
)

+ ix
(
eit
√
x2+4BB̄T − 1)

))
=

1

2
√
x2 + 4BB̄T

(
e−

it
2

(
√
x2+4BB̄T−x

)
×

(√
x2 + 4BB̄T

(
eit
√
x2+4BB̄T

+ 1
)

+ x
(
eit
√
x2+4BB̄T − 1)

))
.
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The first part γ1
v(t) of the normal geodesic γv(t) =

(
γ1
v(t) γ2

v(t)
γ3
v(t) γ4

v(t)

)
is written as

γ1
v(t) = expU(n)(tv)1 expU(1)(−tix) =

1

2
√
x2 + 4BB̄T

e−
it
2

(
√
x2+4BB̄T +x)

×
(√

x2 + 4BB̄T (eit
√
x2+4BB̄T

+ 1
)

+ x(eit
√
x2+4BB̄T − 1)

)
,(5)

that coincides with calculations in the case n = 2.
The second important part of the geodesic is

exp(tv)3 =
∞∑
n=0

tn

n!
v3(n) =

∞∑
n=1

tn

n!
v3(n)

=
∞∑
n=0

tn+1

(n+ 1)!
v3(n+ 1) =

∞∑
n=0

tn+1

(n+ 1)!

(
− B̄Tv1(n)

)
= −B̄T 1

i
√
x2 + 4BB̄T

e−
ti
2

(
√
x2+4BB̄T−x)

(
eti
√
x2+4BB̄T − 1

)
,

γ3
v(t) = expU(n)(tv)3 expU(1)(−tix)

= −B̄T 1

i
√
x2 + 4BB̄T

e−
ti
2

(
√
x2+4BB̄T +x)

(
eti
√
x2+4BB̄T − 1

)
.(6)

It follows that γ3
v(t) = 0 for t = 2π√

x2+4BB̄T
. That means that the geodesic reaches the

set L at t = 2π√
x2+4BB̄T

, and since L ⊂ KId it is also reaches the cut locus. This implies

that the geodesic loses its optimality at the latest t = 2π√
x2+4BB̄T

.

Having exact formulas for coordinates of geodesics we proceed to the core of the
proof. Suppose q ∈ Vn,1 \ L but q ∈ KId, and there exist two optimal normal geodesics

γv1 and γv2 with γv1(0) = γv2(0) = Id, γv1(T
∗) = γv2(T

∗) = q and v1 =

(
x1i B
−B̄T 0

)
,

v2 =

(
x2i E
−ĒT 0

)
such that v1 6= v2 and xj ∈ R, j = 1, 2 and B,E ∈ C1×(n−1).

Further we argue mostly as in the proof of Lemma 1.
Case 1. Assume BB̄T 6= EĒT . Since the length of both geodesics γv1 and γv2 should

coincide, it can be shown, as in the proof of Proposition 3, that

BB̄T = tr(BB̄T ) = ‖B‖2 = ‖E‖2 = tr(EĒT ) = EĒT

This is a contradiction.
Case 2. Let x1 = x2 and ‖B‖2 = ‖E‖2. It follows from

γ3
v1

(T ∗) = γ3
v2

(T ∗) ⇐⇒

− B̄T 1

i
√
x2

1 + 4BB̄T
e−

iT
2

(
√
x21+4BB̄T +x1)(eiT

√
x21+4BB̄T − 1)

= − ĒT 1

i
√
x2

2 + 4EĒT
e−

iT
2

(
√
x22+4EĒT +x2)(eiT

√
x22+4EĒT − 1)

that B̄T = ĒT and so B = E, that leads to the contradiction with v1 6= v2.
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Case 3. Let now x1 6= x2 and ‖B‖2 = ‖E‖2. We know that γ3
v1

(T ∗) = γ3
v2

(T ∗) 6= 0,
which implies ‖γ3

v1
(T ∗)‖ = ‖γ3

v2
(T ∗)‖. Thus

‖B‖√
x2

1 + 4BB̄T
‖2 sin(

T ∗

2

√
x2

1 + 4BB̄T )‖ =
‖E‖√

x2
2 + 4EĒT

‖2 sin(
T ∗

2

√
x2

2 + 4EĒT )‖,

and we get a contradiction as was shown in Case 3 of the proof of Lemma 1. �

Remark 2. We observed that the distribution H is strongly bracket generating. It may
be worth mentioning that Vn,1 is also a contact manifold, which was studied in [16] and
also in [24]. To show that statement, we note that the submersion U(1)→ Vn,1 → Grn,1
can be written as S1 → S2n−1 → CP n−1. In [16] it is shown that for submertion
S2n−1 → CP n−1 the vertical vector space is spanned by

V (q) = −y0∂x0 + x0∂y0 − . . .− yn−1∂xn−1 + xn−1∂yn−1 , q ∈ S2n−1.

The horizontal distribution D is defined as the orthogonal complement to span{V } in
TS2n−1 with respect to the Euclidean metric in R2n ∼= Cn. At the point (1, 0, . . . , 0) ∈

S2n−1 the vertical vector V = (i, 0, . . . , 0) coincides with the generator ξ =

(
i 0
0 0

)
of the

Lie algebra un(1) and the horizontal distribution D = V ⊥ coincides with the horizontal

distribution H =

{(
0 B
−B̄T 0

)
| B ∈ C1×(n−1)

}
that is orthogonal to ξ with respect

to the trace metric. Since metrics, vertical and horizontal distributions are invariant
under the action of U(n) we conclude that sub-Riemannian geometries are essentially
the same. It is shown in [16] that the distribution D coincides with the holomorphic
tangent space HS2n−1 of S2n−1 thought of as an embedded CR-manifold and that it also
coincides with the contact distribution given by ker(ω) with respect to the contact form

ω = −y0dx0 + x0dy0 − . . .− yn−1dxn−1 + xn−1dyn−1.

Thus the contact structure can be transferred to the Stiefel manifold.

5. The cut loci of Vn,k

In the present section we show that some of the properties of the cut locus of Vn,1
is preserved in the case Vn,k. In general we were not able to describe the total cut
locus, since the distribution is not always strongly bracket generating, that leads to
the existence of abnormal minimizers. Abnormal minimizers are also have to be taken
into account since they can be minimizers due to [23]. The interested reader can find a
further information about abnormal minimizers in [2, 7, 8, 9, 13, 14, 18, 20].

The fact that the distribution is in general not strongly bracket generating follows
from the following proposition in [24].

Proposition 1. Let Q be an m-dimensional manifold and H an l-dimensional strongly
bracket generating distribution of codimension 2 or greater. Then at least one of the
following conditions

(1) l is a multiple of 4, (2) l ≥ (m− l) + 1.

have to be fulfilled.

It is obvious that it is not always the case for Vn,k, where m = 2nk − k2 and l =
2nk − 2k2. Moreover, it is technically hard to write the exact form of normal sub-
Riemannian geodesics for an arbitrary Vn,k.
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Proposition 2. The distribution H on Vn,k is bracket generating.

Proof. First we note that the commutator [H ,H] is given by[(
0 B
−B̄T 0

)
,

(
0 C
−C̄T 0

)]
=

(
−BC̄T + CB̄T 0

0 −C̄TB + B̄TC

)
.

It is sufficient if we show that for every upper triangular (k × k)-matrix Dlm, m > l
with an entry dlm 6= 0 on the intersection of l-row and m-column and all other entries
vanish we can find B,C ∈ Ck×(n−k) such that Dlm = −BC̄T . For instance, if we choose

B =
(
bαβ
)

= by bαβ =

{
dlm for α = l, β = min{m,n− k}
0 otherwise,

and

−CT = (cαβ) by cαβ =

{
1 for α = min{m,n− k}, β = m

0 otherwise,

then we deduce that Dlm = −BC̄T .
We also need to construct diagonal-form (k × k)-matrices Dj with i ∈ C on the

intersection of j-row and j-column and all other entries vanish and show that there are
B,C ∈ Ck×(n−k) such that Dj = −BC̄T . In this case we choose

B = (bαβ) by bαβ =

{
i for α = j, β = min{j, n− k}
0 otherwise,

and

−C̄T = (cαβ) by cαβ =

{
1 for α = min{j, n− k}, β = j

0 otherwise.

Then we obtain that Dj = −BC̄T . It implies that H is bracket generating of step 2. �

Proposition 3. Suppose γv(t) is a normal sub-Riemannian geodesic, which connects the

identity Id with the point q ∈ Vn,k, q 6= Id, at the time T > 0, where v =

(
A B
−B̄T 0

)
∈

u(n). The length of γv is given by l(γv, T ) = 2T
√
n tr(BB̄T ).

Proof. First of all we calculate the velocity vector of γv(t) at the time t, which is
γ̇v(t) = γv(t)vD for vD ∈ u(n). We omit the subscript U(n) or U(k) from exp(·), since
it is clear which one we use from the context. By the chain rule we get that

γ̇v(t) = dp(t)π1

[(
exp

{
t

(
A B
−B̄T 0

)})(
A B
−B̄T 0

)(
exp

{
t

(
−A 0
0 0

)})
+

(
exp

{
t

(
A B
−B̄T 0

)})(
exp

{
t

(
−A 0
0 0

)})(
−A 0
0 0

)]
,
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where p(t) := exp

(
t

(
A B
−B̄T 0

))
exp

(
t

(
−A 0
0 0

))
. We note that(

A B
−B̄T 0

)
exp

{
t

(
−A 0
0 0

)}
=

(
A exp(−tA) B
−B̄T exp(−tA) 0

)
= exp

{
t

(
−A 0
0 0

)}(
exp(tA)A exp(−tA) exp(tA)B
−B̄T exp(−tA) 0

)
= exp

{
t

(
−A 0
0 0

)}(
A exp(tA)B

−B̄T exp(−tA) 0

)
.

Thus

γ̇v(t) = dp(t)π1

[
exp

{
t

(
A B
−B̄T 0

)}
exp

{
t

(
−A 0
0 0

)}
×

((
A exp(tA)B

−B̄T exp(−tA) 0

)
+

(
−A 0
0 0

))]
= γv(t)

(
0 exp(tA)B

−B̄T exp(−tA) 0

)
and

vD =

(
0 exp(tA)B

−B̄T exp(−tA) 0

)
.

It follows that

g(γ̇v(t), γ̇v(t)) = −2n tr(v2
D)

= −2n tr

((
− exp(tA)BB̄T exp(−tA) 0

0 −B̄TB

))
= −2n

(
− tr

(
exp(tA)BB̄T exp(−tA)

)
− tr(B̄TB)

)
= 4n tr(BB̄T ).

In the last equation we used tr(XY ) = tr(Y X) and tr(−X) = − tr(X).
We conclude that the length of γv does not depend on A, but depend on final time

T and the trace of the matrix BB̄T . �

Theorem 4. The set

L =

{[(
C 0
0 D

)]
Vn,k

∣∣∣ C ∈ U(k), D ∈ U(n− k)} \ [Id]Vn,k

}
is a subset of the cut locus KId on Vn,k.

Proof. Suppose the point [g]Vn,k
=

[(
C 0
0 D

)]
Vn,k

∈ L. This point is reached optimally

by a geodesic γv =

[(
γ1
v γ2

v

γ3
v γ4

v

)]
Vn,k

at some T from the initial point Id ∈ Vn,k and the

initial velocity vector v =

(
A B
−B̄T 0

)
∈ u(n). Let us see how γjv, j = 1, 2, 3, 4, depend
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on A and B. We recall that

γv(t) = π1

(
exp

{
t

(
A B
−B̄T 0

)}
exp

{
t

(
−A 0
0 0

)})
=

[(
γ1
v(t) γ2

v(t)
γ3
v(t) γ4

v(t)

)]
Vn,k

.

We start from calculating exp

(
t

(
A B
−B̄T 0

))
=

(
v1(t) v2(t)
v3(t) v4(t)

)
. Using the notation(

A B
−B̄T 0

)n
:=

(
v1(n) v2(n)
v3(n) v4(n)

)
, we find that v1(n) = v1(n − 1)A − v1(n − 2)BB̄T ,

n ≥ 2, for initial values v1(0) = Id and v1(1) = A. This implies that v1 as function
of t depends on A and BB̄T . Furthermore, we get the formulas v2(n) = v1(n − 1)B,
v3(n) = −B̄Tv1(n− 1) and v4(n) = −B̄Tv1(n− 2)B.

Now we claim that the geodesic γv∗ with v∗ :=

(
A −B
B̄T 0

)
is also minimizing from

Id to [g]Vn,k
such that with γv∗(T ) = [g]Vn,k

. Indeed, since (−B)(−B̄T ) = BB̄T and

(−B̄T )(−B) = B̄TB the length of both geodesics coincides. It remains to show that
γv∗(T ) = [g]Vn,k

. Observe, that the value v1(t) depends on A, BB̄T and t, and therefore
γ1
v∗(T ) = γ1

v(T ). Finally γ2
v(T ) = γ3

v(T ) = 0 implies γ2
v∗(T ) = −γ2

v(T ) = 0 = γ2
v(T ) and

γ3
v∗(T ) = −γ3

v(T ) = 0 = γ3
v(T ). We conclude that γv∗(T ) = γv(T ) and that L ⊂ KId.

The geodesic γv∗ can be replaced by γv̂ with v̂ =

(
A −BU

(BU)T 0

)
for all U ∈

U(n− k). It is also a minimizing geodesic from Id to [g]Vn,k
, with γv̂(T ) = [g]Vn,k

. �

5.1. Points that are not in the cut locus of V2k,k. Since the description of the cut
locus for general Stiefel manifolds is very complicated we focus on the Stiefel manifolds
Vn,k with n = 2k and study points which never can belong to cut locus. The main
result of this section is the following.

Proposition 4. All the points of the form

[(
0 D
C 0

)]
V2k,k

with C,D ∈ U(k) are not

in the normal cut locus of V2k,k.

We start the proof of Proposition 4 from the following lemma.

Lemma 2. The points

[(
0 D
C 0

)]
G2k,k

∈ Gr2k,k is reached by geodesics starting from[(
Idk 0
0 Idk

)]
G2k,k

only if the initial velocity vector v has the form v =

(
0 B
−B̄T 0

)
with B ∈ U(k). If we assume that tr(BB̄T ) = 1 the condition B ∈ U(k) is changed to√
kB ∈ U(k).

Proof. Geodesics of the Grassmann manifold Gr2k,k are given by

(7) γv(t) =

[
exp

(
t

(
0 B
−B̄T 0

))]
Gr2k,k

=

(
γ1
v(t) γ2

v(t)
γ3
v(t) γ4

v(t)

)
,
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where

γ1
v(t) = cos(t

√
BB̄T )

γ3
v(t) = −B̄T sin(t

√
BB̄T )(

√
BB̄T )−1.

We are looking for all geodesics for which there exists T0 > 0, such that γ1
v(T0) = 0

and γ3
v(T0) = C. As C ∈ U(k) and particularly is invertible it follows from the form

of γ3
v(T0) that B is invertible. Therefore, the matrix BB̄T is positive definite and

diagonalizable: BB̄T = PDP−1, where D = diag(d1, . . . , dk) is a diagonal matrix with
di > 0 for i ∈ {1, . . . , k}. This implies that

cos(t
√
BB̄T ) = P cos(t

√
D)P−1

and so γ1
v(T0) = cos(T0

√
BB̄T ) = 0 if and only if cos(T0

√
d1) = . . . = cos(T0

√
dk) = 0.

For the moment we assume that B ∈ U(k). Then using the normalisation tr(BB̄T ) =

1 we get
√
kB ∈ U(k). Thus BB̄T = 1

k
Idk = diag( 1

k
, . . . , 1

k
), and T0 := min{t >

0| cos(t
√
BB̄T ) = 0} = π

√
k

2
.

Now we want to show that no other minimizing geodesics exist except of those with
the initial velocity defined by matrices from U(k). Let B be an arbitrary invertible
matrix, not necessary from U(k). If we again assume the normalization tr(BB̄T ) = 1,
then we get that there exist at least two eigenvalues 1

λ1
and 1

λ2
of BB̄T with 0 < 1

λ1
<

1
k
< 1

λ2
. It follows that if cos(T0

√
BB̄T ) = 0, then cos( T0√

λ1
) = 0. We conclude that

T0 ≥ π
√
λ1

2
> π

√
k

2
and a geodesic with initial velocity defined by the matrix B and that

reach the point

[(
0 D
C 0

)]
G2k,k

at time T0 is not minimizing. �

Corollary 1. Let p =

[(
0 D
C 0

)]
V2k,k

∈ V2k,k with C,D ∈ U(k) and v =

(
0 B
−B̄T 0

)
with

√
kB ∈ U(k), tr(BB̄T ) = 1. Then geodesics γv(t) in V2k,k reaching the points p at

time T0 = π
√
k

2
are minimizing. Furthermore, if B1 6= B2, then γ3

v1
(T0) 6= γ3

v2
(T0).

Proof. First we note that geodesics in Gr2k,k defined by v satisfying the assumption

of Lemma 2 are minimizing geodesics from

[(
Idk 0
0 Idk

)]
G2k,k

to

[(
0 D
C 0

)]
G2k,k

by

Lemma 2. The time of reaching the points

[(
0 D
C 0

)]
G2k,k

is T0 = π
√
k

2
. Furthermore,

(8) γ3
v(T0) = −B̄T diag

(
sin(

T0√
k

), . . . , sin(
T0√
k

)

)√
k = −

√
kB̄T ∈ U(k).

The unique horizontal lift of (7) is a minimizing between fibers passing through [Id]V2k,k
and p and moreover they are geodesics since they are horizontal lifts of geodesics.
Fix a point p0 at the fiber passing through [Id]V2k,k . Then the unique horizontal lift
γv(t)V2k,k = [exp(tv)]V2k,k of (7) starting from p0 always reaches different points at the

fiber π−1

([(
0 D
C 0

)]
G2k,k

)
at the time T0 since γ3

v(T0) depends on B̄T but not on

BB̄T as shows (8). �
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Now we prove Proposition 4.

Proof. Let assume that a point p =

[(
0 D
C 0

)]
V2k,k

belongs to the cut locus from the

identity point in V2k,k. Let v∗ =

(
A B
−B̄T 0

)
with A 6= 0 be an initial velocity of a

minimizing normal horizontal geodesic

γ∗(t) =

[
exp

(
t

(
A B
−B̄T 0

))]
V2k,k

exp

(
−t
(
A 0
0 0

))
from [Id]V2k,k to p such that γ∗(T0) = p. Then its projection γ̃ to Gr2k,k is a minimizing

geodesic from [Id]Gr2k,k to

[(
0 D
C 0

)]
G2k,k

. This implies that γ̃ have to coincide with a

geodesic in Gr2k,k having form (7) with some B1 satisfying
√
kB1 ∈ U(k). It is also clear

that γ∗(t) is a horizontal lift of γ̃ starting at the point [Id]V2k,k . From the other side

the horizontal lift of a geodesic having form (7) is equal to

[
exp

(
t

(
0 B1

−B̄T
1 0

))]
V2k,k

which is different from γ∗(t). This is a contradiction to the fact that horizontal lift
starting from the same point is unique. We conclude that the points of the form[(

0 D
C 0

)]
V2k,k

can not be in the cut locus. �

Corollary 2. The set{[
exp

(
t

(
0 B
−B̄T 0

))]
V2k,k

∣∣∣ tr(BB̄T ) = 1 ,
√
kB ∈ U(k) , t ∈

[
0 ,
π
√
k

2

]}
is not in the normal cut locus of V2k,k.

6. Stiefel and Grassmann manifold as embedded into SO(n)

In this section we assume that the Stiefel and Grassmann manifolds are embedded
into SO(n). We use similar notations for the Stiefel and the Grassmann manifolds as
in the previous sections.

6.1. The group SO(n), Stiefel and Grassmann manifolds. We recall that the
special orthogonal group SO(n) is the set of matrices

SO(n) := {X ∈ Rn×n| XTX = XXT = In , det(X) = 1}.
This is a compact Lie group with the Lie algebra so(n) given by

so(n) := {X ∈ Rn×n| X = −X T}.
Every entry on the diagonal of X ∈ so(n) is zero and the real dimension of the manifold
is 1

2
n(n− 1).

We define a bi-invariant Riemannian metric on SO(n) by

〈· , ·〉 : qso(n)× qso(n) → R
〈qX , qY〉 := − tr(XY),

with X ,Y ∈ so(n).
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The Stiefel manifold Vn,k for k < n is the set of all k-tuples (q1, . . . , qk) of vectors
qi ∈ Rn, i ∈ {1, . . . , k}, which are orthonormal with respect to the standard Euclidean
metric. This compact manifold can be equivalently defined as

Vn,k := {X ∈ Rn×k| XTX = Ik}.
Another way to define the Stiefel manifold Vn,k is to introduce the equivalence relation
v1 in SO(n) by

q v1 p ⇐⇒ q = p

(
Ik 0
0 Sn−k

)
, q, p ∈ SO(n), Sn−k ∈ SO(n− k),

such that the equivalence class [q]v1 of a point q ∈ SO(n) is given by

[q]v1 =

{
q

(
Ik 0
0 Sn−k

) ∣∣∣Sn−k ∈ SO(n− k)

}
∈ SO(n)/SOn(n− k).

The Stiefel manifold Vn,k can be identified with SO(n)/SOn(n−k). We use the notation
[q]Vn,k

for [q]v1 in the present section.
The tangent space at a point [q]Vn,k

∈ Vn,k is given by

T[q]Vn,k
Vn,k =

{
[q]Vn,k

(
X1 −X T

2

X2 0

) ∣∣∣ X1 ∈ so(k),X2 ∈ R(n−k)×k
}
.

The induced metric 〈· , ·〉Vn,k
on Vn,k is given by〈

[q]Vn,k

(
X1 −X T

2

X2 0

)
, [q]Vn,k

(
Y1 −YT2
Y2 0

)〉
Vn,k

(
[q]Vn,k

)
:=

〈
q

(
X1 −X T

2

X2 0

)
, q

(
Y1 −YT2
Y2 0

)〉
SO(n)

(
q
)

= − tr

((
X1 −X T

2

X2 0

)(
Y1 −YT2
Y2 0

))
,

where q ∈ [q]Vn,k
is any representative of the equivalence class [q]Vn,k

.
The Grassmann manifold Gn,k is defined as a collection of all k-dimensional subspaces

Λ of Rn. Equivalently, an element Λ of Gn,k can be written as an (n× k)-matrix with
columns w1, . . . , wk ∈ Rn, such that span{w1, . . . , wk} = Λ, or, it can be defined as a
quotient space in SO(n) with respect to the following equivalence relation

m1 v2 m2 ⇐⇒ m1 = m2

(
Sk 0
0 Sn−k

)
, m1,m2 ∈ SO(n),

where Sk ∈ O(k), Sn−k ∈ O(n − k), such that det(Sk) = det(Sn−k) ∈ {−1, 1}. This
leads to the equivalence classes

[m]v2 =

{
m

(
Sk 0
0 Sn−k

) ∣∣∣ Sk ∈ O(k), Sn−k ∈ O(n− k) , det(Sk) = det(Sn−k)

}
,

m ∈ SO(n), which is isomorphic to O(k)× SO(n− k) ∼= On(k)× SOn(n− k), as

m

(
Sk 0
0 Sn−k

)
7→
(
Sk, Sn−k

(
det(Sk) 0

0 Idn−1

))
∈ O(k)× SO(n− k).

We identify Gn,k with the quotient space SO(n)/(On(k) × SOn(n − k)) and use the
notation [m]Gn,k

for [m]v2 in the current section.
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The tangent space of Gn,k at the point [m]Gn,k
is given by

T[m]Gn,k
Gn,k =

{
[m]Gn,k

(
0 X2

−X T
2 0

) ∣∣∣ X2 ∈ Rk×(n−k)

}
.

It has real dimension k(n− k) that gives the real dimension of Gn,k.
The induced metric 〈· , ·〉Gn,k

on Gn,k is given by〈
[m]Gn,k

(
0 X2

−X T
2 0

)
, [m]Gn,k

(
0 Y2

−YT2 0

)〉
Gn,k

(
[m]Gn,k

)
:=

〈
m

(
0 X2

−X T
2 0

)
,m

(
0 Y2

−YT2 0

)〉
SO(n)

(
m
)

= − tr

((
0 X2

−X̄2
T

0

)(
0 Y2

−Ȳ2
T

0

))
,

where m ∈ SO(n) is any representative of [m]Gn,k
.

A normal sub-Riemannian geodesic on Vn,k starting from [q]Vn,k
is given by the formula

similar to (2) presented in Section 3.4.

γ(t) = expVn,k
(tv) expOn(k)(−tA(v))

= π1

[
q expSO(n)

(
t

(
X1 X2

−X̄2
T

0

))]
expOn(k)

(
−t
(
X1 0
0 0

))
,(9)

where q ∈ SO(n), v = [q]Vn,k

(
X1 X2

−X̄2
T

0

)
∈ T[q]Vn,k

Vn,k with

(
X1 X2

−X̄2
T

0

)
∈ so(n),

π1 : SO(n)→ SO(n)/SOn(n− k) is the natural projection from SO(n) to the quotient
space, and A : TVn,k → son(k) is the son(k)-valued connection one form.

6.2. The cut locus of Vn,1, n ∈ N. In this case dim(Vn,1) = dim(Gn,1) = n − 1 and
all sub-Riemannian geodesics are Riemannian ones. For the reason of completeness we
present the cut locus in this case, because it is strongly related to the cut locus of Vn,1
embedded in U(n).

Two parts γ1
v(t), γ

3
v(t) of the geodesic γv(t) =

[(
γ1(t) γ2(t)
γ3(t) γ4(t)

)]
Vn,1

for an initial

velocity v =

(
0 B
−BT 0

)
are given by

γ1
v(t) =

1

4
√
BBT

e−it
√
BBT

2
√
BBT (e2it

√
BBT

+ 1),

=
1

2
e−it

√
BBT

(e2it
√
BBT

+ 1) = cos(t
√
BBT )

γ3
v(t) = −BT 1

i2
√
BBT

e−it
√
BBT

(e2it
√
BBT − 1)

=
−BT

√
BBT

sin(t
√
BBT ).

These formulas are a particular case of formulas (5) and (6) for the choice of the

initial velocity v =

(
0 B
−BT 0

)
∈
{(

xi E
−ĒT 0

) ∣∣∣ E ∈ C1×(n−1), x ∈ R
}

. Thus we can
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use arguments of Theorem 3 and state that the cut locus of the Stiefel manifold Vn,1
embedded in SO(n) consists of exactly one point:{[(

C 0
0 D

)]
Vn,k

∣∣∣ C ∈ O(1), D ∈ O(n− 1) :

(
C 0
0 D

)
∈ SO(n)

}
\
{

[Id]Vn,k

}
={[(

±1 0
0 D

)]
Vn,k

∣∣∣ D ∈ O(n− 1) :

(
±1 0
0 D

)
∈ SO(n)

}
\
{

[Id]Vn,k

}
={[(

−1 0
0 D

)]
Vn,k

∣∣∣ D ∈ O(n− 1) :

(
−1 0
0 D

)
∈ SO(n)

}
.

6.3. The cut locus of V3,2. Since V3,2
∼= SO(3)/SO(1) and SO(1) is a normal sub-

group of SO(3), one can identify the sub-Riemannian structure of V3,2 with the sub-
Riemannian structure on the group SO(3), that was studied in [10]. In particular all
equivalences classes contain exactly one matrixa11 a12 a13

a21 a22 a23

a31 a32 a33


Vn,k

=


a11 a12 a13

a21 a22 a23

a31 a32 a33

(I2 0
0 S1

) ∣∣∣S1 ∈ S(1)


=


a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,

such that we can identify V3,2 with SO(3). Furthermore, the induced horizontal and
vertical space coincide with the horizontal and vertical space of the k ⊕ p problem on
SO(3) stated in [10].

6.4. About the cut locus for V2k,k. Analogous to Proposition (4) we state here the
following result.

Proposition 5. All the points of the form

[(
0 D
C 0

)]
V2k,k

with C,D ∈ O(k) are not

in the normal cut locus of V2k,k.

Proof. The proof of Proposition 4 does not use the specific of the unitary group, rather
the orthogonality property. Therefore, we can literally repeat the proof of Proposition 4
here. �

Corollary 3. The set{[
exp

(
t

(
0 B
−B̄T 0

))]
V2k,k

∣∣∣ tr(BB̄T ) = 1 ,
√
kB ∈ O(k) , t ∈

[
0 ,
π
√
k

2

]}
is not in the normal cut locus of V2k,k.
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