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Bifurcation Analysis of a Simplified Model of a Pressure Relief Valve Attached
to a Pipe*

Csaba Bazsé!, Alan R. Champneys!, and Csaba J. Hés'

Abstract. A two-parameter bifurcation analysis is performed on a mathematical model that represents the
motion of a pressure relief valve connected to a reservoir via a pipe. The system comprises a
dimensionless system of five differential equations representing the valve position and velocity, the
reservoir pressure, and the velocity and pressure components of a quarter-wave within the pipe. Two
key dimensionless parameters represent the mass flow rate into the reservoir and the length of the
pipe. It is found that there are two independent forms of Hopf bifurcation: a so-called valve-only
instability, which involves the valve alone and occurs when the flow rate is too low, and a coupled
acoustic resonance, which involves quarter-waves within the pipe, that occurs when the pipe is
too long. Secondary bifurcations are also traced including curves of grazing bifurcations where the
valve body first impacts with its seat. Using a mixture of simulation and numerical continuation,
it is found that these instabilities interact in a complex bifurcation diagram that involves Hopf—
Hopf interaction, bistability through catastrophic grazing bifurcations, and, for long enough pipes,
subcritical torus bifurcations. A particularly important discovery is a range of parameters for which
the valve-only instability is subcritical, so that large amplitude impacting chaotic motion coexists
with the stable equilibrium operation.

Key words. valve chatter, pressure relief valve, Neimark—Sacker (torus) bifurcation, grazing bifurcation, im-
pacting oscillation
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1. Introduction. In recent work the last two authors [10] studied a simplified model of a
pressure relief valve attached to a reservoir, finding complex nonsmooth bifurcations such as
grazing and chattering for mass flow rates below that for which a Hopf bifurcation occurs. We
shall refer to this form of Hopf bifurcation as a valve-only instability, as it does not involve pipe
wave dynamics in its inception (although large amplitude motion arising from this instability
will couple with pipe modes). In subsequent work, the authors [1] included the additional
destabilizing element of a pipe that connects the valve to the reservoir, finding another form of
Hopf bifurcation where the valve dynamics resonates with a quarter-wave within the pipe. For
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Figure 1. Schematic sketch of the mechanical model.

a given mass flow rate, this instability occurs for pipes beyond a critical length. In particular,
we derived a reduced-order model that was shown to capture the nonlinear dynamics, including
grazing bifurcations, sufficiently close to the initial quarter-wave instability. The purpose of
the present of the paper is to study this reduced-order model in much more detail, undertaking
a careful dynamical systems analysis of the combined effects of both forms of instability.

The specific configuration that we study is depicted schematically in Figure 1 and is
motivated by the experimental findings announced in [13] of a dynamic instability in a conical
poppet valve used for pressure relief in a hydraulic system.

The description and analysis of oscillatory instabilities in such systems goes back at least
to the work of Kasai in the 1960s [11]. He produced equations of motion for a simple poppet
valve and performed a linear stability analysis to find the conditions under which an oscil-
latory instability can occur. A similar analysis, also including the effect of a compressive
reservoir tank, was carried out by MacLeod [15]. Furthermore, Kasai was able to show at
least a qualitative match between the predicted instability and pressure waves observed in an
experiment. Further developments of this work were carried out by a number of authors in
the 80s and 90s, culminating in the review by Hayashi [8], who also shows the propensity for
impacting behavior and chaotic dynamics in a relief valve connected by a pipe to an upstream
chamber (first studied by Thomann [18]). This work is further elaborated in [9], where the
pipe is modeled using a single-degree-of-freedom unsteady Bernoulli equation, to arrive at
a four-dimensional set of ordinary differential equations (ODEs) for the motion of the valve
body. This approach was extended in a recent paper by the present authors [1], in which
we solved the one-dimensional gas dynamics in the pipe using the method of characteristics.
It was then demonstrated that the dominant form of instability is that due to the quarter-
wave frequency. It was also shown that, sufficiently close to the instability, the subsequent
oscillatory motion could be captured by a single mode expansion, including only the pressure
and velocity amplitude of the quarter-wave. Using a nonlinear pseudospectral (collocation)
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method, this results in two ODEs for the fluid motion in the pipe, leading to a five-dimensional
system in total. It is a dimensionless version of that system which we will study in this paper.

Similar forms of oscillatory instability have been observed and analyzed in other valve
systems for example, in simple plug valves [4], compressor valves [7], ball valves subject
to harmonic excitation [17], pilot-operated two-stage valves [2, 19], and fluid dampers with
embedded blow-off valves [6].

More recently Moussou et al. [16] conducted experiments on instabilities in a pressure relief
valve attached to a water pipe for pressure that slightly exceeds the set pressure. By measuring
the pressure both upstream and downstream of the valve, they were able to shed light on
conditions that cause valve instability. In particular, in addition to a dynamic instability
including chatter, they found evidence of a static instability that is caused by a nontrivial
relationship between the valve lift and the pressure drop across the valve. They produced
some preliminary linear instability analysis suggesting that the dynamic instability is due to
an effective negative damping at the valve, which they postulate may couple with acoustic
resonance in the pipe. A static instability was also predicted in the work of Maccari in [14],
who included a continuum description of the valve and spring, allowing the effective spring
constant to vary smoothly, resulting in a static fold bifurcation. Such static bifurcations are
explicitly precluded in the work presented here, as we assume a simple linear spring and a
trivial relationship between the valve lift and the pressure drop.

The rest of the paper is outlined as follows. In section 2, we reproduce the reduced-
order model derived in [1] and introduce a suitable nondimensionalization, which leads to the
identification of seven dimensionless parameters that completely specify the problem (along
with additional coefficient-of-restitution and smoothing parameters). These represent the
fluid compressibility, valve spring precompression, valve damping, fluid density parameter,
the preset valve opening pressure, the length of the pipe, and the mass flow rate into the
reservoir. Taking values for the first five of these parameters that are representative of a bench-
top experimental rig using water-like fluid, the last two parameters are treated as the primary
bifurcation parameters. Section 3 presents preliminary analysis of the two independent forms
of Hopf bifurcation and some initial one-parameter bifurcation diagrams which reveal the
nature of the dynamics beyond both instabilities. Section 4 contains the main results of
the paper, in which a comprehensive two-parameter bifurcation diagram is produced using a
mixture of brute force and continuation methods. Several important codimension-two points
are discovered, and the dynamics in their neighborhood is studied in detail. Finally, section 5
draws conclusions, comments on practical implications of the results for operation of pressure
relief valves, and suggests avenues for future research.

2. The quarter-wave model. We study a reduced-order mathematical model of the me-
chanical setup depicted in Figure 1, first derived in [1]. The rig consists of a pressure relief
valve that vents fluid to the atmosphere, connected by a pipe of length L to a reservoir of
volume V. The model takes the form of five ODEs that describe the displacement z,(t) of
the valve body from its seat, with corresponding velocity v,(t). This motion is coupled to
the pressure dynamics p,(t) in a reservoir tank and to the pressure and velocity of a reso-
nant acoustic wave inside the pipe. This wave is assumed to comprise only the lowest-order
“organ-pipe” mode, with wavelength a quarter that of the pipe. The pressure and velocity
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amplitude of this wave are denoted by B(t) and C(t), respectively. As depicted in the figure,
the geometric properties of the equipment are specified by constants D, A, L, and V corre-
sponding to the diameter, area, length of the pipe, and volume of the reservoir, respectively.
The pressure relief valve is modeled as a single-degree-of-freedom oscillator characterized by
its spring constant s, viscous damping k, valve body mass m, and spring precompression x.
We consider compressible flow of an ideal gas with capacity heat ratio of &, density p, and
sonic velocity a, while the discharge through the valve to ambient pressure pg is assumed to
be chocked. The fluid is assumed to enter the reservoir at constant mass flow rate 1, i,
while the outflow rate through the valve is assumed to be a function of the valve lift x,(¢) and
the pressure at the valve end of the pipe p,({ = L,t). Although the discharge coefficient Cy
should in general be assumed to be a function of Reynolds number, we assume fully developed
turbulent flow and therefore take it to be constant. (However, see the discussion surrounding
(2.3) below.)

Using the assumptions and notation of [1]—to which the reader is referred for precise
meaning of all the physical parameters—the equations of motion take the form

LTy = Uy,

A k
Uy (pT+B)_EUv_£(xO+$v)

(1) pr = ki (1inin — Coor/pr + B kaC)

= —V2k (mr in — CTo\/Dr + B) + <\/§k1/€2 + k3k4) C,
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As is a common approximation in rigid body mechanics, we assume a Newtonian resti-
tution impact law. While this approximation may be overly simplistic, any attempt at a
more realistic law is likely to be problematic, owing to the necessity of resolving the energy
dissipated by the valve and its surrounding fluid during an impact event,

(2.2) T,(tT) =0, wv,(tT) = —rv,(t),
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where t~ and ¢ denote the time just before and after the collision, respectively.

In general, the pressure p, should be assumed to be positive in order to drive flow through
the valve. However, if the oscillatory component of pressure B is large enough, then reverse
flow (where p, + B < 0) may occur, and indeed we find that it does for sufficiently violent
valve oscillations. Strictly speaking, the equations (2.1) are not valid in this case as v/p, + B
is not defined. In fact, the origin of this term is the relationship between pressure and flow
past the valve and, for reverse flow, we need to replace this term by —/|p, + B|. However, the
derivative of ++/|p, + B| becomes singular as p, + B approaches zero, which causes problems
with numerical continuation algorithms. In fact though, p, + B =~ 0 implies slow flow, and
the assumption of fully developed turbulence breaks down. Instead, the square term should
be replaced law in this case. Hence, both for reasons of physical validity and numerical
convenience, in the computational results that follow, we have replaced the /p,. + B term
with the smooth signed square root function
(2.3)

. pr+B
sen(pr + )Vl Blgnsac(p, + ) = tanh (P52 ) Vo T B~ (o, + BV 7 B

where ¢ is a small parameter.

2.1. Nondimensionalization. The equations can be made dimensionless by rescaling with
respect to a reference length scale x.of, a reference pressure scale pyef, and a reference fre-
quency w:

(24) LTy = Tref Y1, Uy = Tref W Y2, Pr = Pref Y3, B = Pref Y4, C= Lyref W Y5,

and

T d 1d
2.5 t=— =—=——=
(2:5) w’ dt wdr
It is convenient to make the choice

Apg s
(26) Pref = PO, Lyef = —, w = -
s m

Making the substitutions (2.4)—(2.6) into (2.1) leads to the set of dimensionless ODEs

Y1 = Yo,
vy = (ys +ya) — kya — (6 + 1),
1
2.7 L= <—SnsE +ys) — ——= >,
(2.7) ys = B ¢ — yisgnsa (y3 + va) oL
Ta [
yh = —V2p (q — yisgnsq,(ys + ya)) + (55 + ;) Ys,
1-2 Ta\ Y1Ys
5= —O0=— —+<1—\/§>0 2
Ys ( \/5 B 27) sgnsq, By1

w1
_ (1 _ \/5) oqf J1 — 20yasgnsd, (y3 + Y4) — =—a
sgnsq, (ys + y4) 2 ay
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Table 1
Sets of values of the dimensionless parameters used in the computations.
Quantity Symbol Value
Mass flow-rate q 0-10
Pipe length parameter ¥ 0-2.6
1/compressibility B 20
Spring precompression 13 3
Damping K 1.5
Density parameter «@ 1.3232
Discharge-like parameter o 6.73346
Coefficient of restitution r 0.8
Smoothing parameter of the square-root term € 0.05
for yo > 0, where the dimensionless parameters are
k .
K= —y]— damping parameter,
m
STo . .
6= — spring precompression parameter,
Apo
pAa .
=— density parameter,
mw
Lw .
= — pipe length parameter,
a

VB =
o=DnCyj—— AT < = +1) discharge-like parameter,

8= \/E—Va o, 1/compressibility,
p
mr in@ 1
= 7A N~ mass flow-rate parameter,
Po ow
€
€= — smoothing parameter,
Po

together with the restitution law defined by (2.2) with (z,,v,) replaced by (y1,y2).

Parameters used in this study are typical of a laboratory-scale rig with highly incompress-
ible (water-like) fluid; see Table 1. In what follows we shall consider the dimensionless mass
flow rate ¢ and the pipe length v to be the primary bifurcation parameters, and hold all other
parameters fixed.

3. Preliminary analysis.

3.1. Equilibrium solution. It is straightforward to show that for an equilibrium solution
to (2.7) we must have no waves in the pipe, y4 = y5 = 0, and no motion of the valve, yo = 0.
Setting the left-hand sides of (2.7) to zero, we additionally obtain

2
q
(3.1) Y3 = <£> .yt dyi - =0.
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Figure 2. Simulation of a slow parameter sweep for v = 0.2. Left: Increasing the mass flow rate q.
Right: Decreasing the mass flow rate. The rates of change in the flow rate are as follows: dgq/dt = 0.01 (red),
dq/dt = 0.05 (blue), dg/dt = 0.1 (green). Other parameters are as in Table 1.
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Figure 3. Similar to Figure 2 but for v = 0.5.

Note that for all § > 0 and ¢ > 0 the cubic has a unique positive solution y?, which tends to
zero as ¢ — 0. Hence there is a unique admissible equilibrium

(yla Y2, Y3, Y4, y5) = (y?) 07 yga 0) 0)
for all parameter regions of interest, and the question remains to determine its stability.

3.2. Initial simulations. A series of transient time-domain simulations were carried out
for four different pipe lengths ~, to observe what might happen in practice as the pressure
relief valve either opens or closes. We found that, for each pipe length ~, there is a flow rate
qo such that the equilibrium solution is stable for all ¢ > gg. We also found that if the flow
rate is rapidly increased up to ¢y or reduced rapidly from ¢y to zero, then no large departure
from the equilibrium is observed. However, the results in Figures 2-3 show that instabilities
generally occur for low flow rates if ¢ is varied slowly.

Consider, for example, Figure 2, which is for a short pipe, v = 0.2. If the flow rate ¢ is
increased sufficiently rapidly from zero (e.g., for dg/dt = 0.1), although oscillations set in, they
are are never of sufficient amplitude to cause the valve to impact its seat (y; = 0). In contrast,
for more gradual increase in ¢ (e.g., for dg/dt = 0.01), violent impacting oscillations appear
almost immediately, with growing amplitude up to ¢ &~ 1.4, at which point the motion becomes
impact-free. As ¢ is further increased, the amplitude decreases, until ¢ ~ 3.5, where the state
becomes stable. In contrast, when slowly decreasing ¢ from the stable state, instability is not
lost until ¢ ~ 0.7, indicating the presence of hysteresis.
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Qualitatively similar results occur for longer pipes, with in general the instability being
more pronounced upon opening than on closing. Note also that the critical flow rate ¢ for
stability is highly dependent on 7, with the maximum ¢y occurring for intermediate v values.
See, for example, Figure 3 for v = 0.5, where stability is not reached upon increasing ¢ until
q ~ 8, whereas ¢y is about 3 for v = 0.2 and about 2 for v = 1.5 (results not shown).
Interestingly, even though the results are more violently unstable upon opening when v = 0.5,
the pipe appears completely stable upon closing, suggesting a high degree of hysteresis in this
case.

3.3. Forms of instability. It is straightforward to numerically analyze the linear stability
of the equilibrium position. For each « we find that upon decreasing ¢, the instability occurs
via a Hopf bifurcation such that the equilibrium is always unstable at sufficiently slow flow
rates. There is, though, a distinction in the form of the Hopf bifurcation encountered. For
low v, the unstable eigenvector occurs primarily in the y;—ys variables; for example, for
v = 0.007065, qropr = 1.70078 and the critical eigenvectors are

(—0.1017  0.06527,0.1766 F 0.2755i,0.9367, —0.0276 £ 0.01197).

However, for higher ~, the unstable eigenvector primarily couples (y1,y2) to (ys3,v4); for ex-
ample, when v = 1.5, gopr = 1.30169 and the critical eigenvectors are

(0.0213 F 0.03864, 0.1179 £ 0.0649¢, 0.0000 F 0.22577, —0.0001 £ 0.6445i, —0.7166).

The former kind of Hopf bifurcation can be understood as essentially a valve-only instability,
as analyzed in [10] in the absence of a pipe, i.e., v = 0. The latter form of bifurcation is the
quarter-wave instability that was observed in [1] and does not occur for v = 0.

To motivate why a quarter-wave instability may occur, consider the following approximate
argument that is revealed by a rearrangement of the equations (2.7). The differential equations
yy and yi can be rewritten in terms of reservoir pressure velocity y5. After some manipulation,
we obtain

Yy = (y3 +ya) — ky2 — (6 + y1),

(3.4) ys =B <q—y1\/y3+y - a%/i%)

yIme
(3.5) yh = —V2yh + 5 Y5
i
(3.6) y’=—2ai(y VY +y)—ziy
’ 5 dr \IVI3 4 2 ary 4

Differentiating (3.5) with respect to 7 and substituting (3.4) for y4 and (3.6) for yi, we then
obtain

d
(3.7) Yy = _KIEY(?JIJJZ%ZM) — K3y, where Y = y1v/y3 + y4,



BIFURCATION ANALYSIS OF A PRESSURE RELIEF VALVE 9

and

2
Ki=2-v2)8+2% >0, Ky= [<1> + 57T]>0
ol 2y 2ayo

Note that for short pipes (7 < ) the constant Ky can be thought of as a small adjustment
to the frequency of quarter-waves in the pipe. Hence we can view (3.7) as an effective harmonic
oscillator corresponding to quarter-wave oscillations in the pipe. The constant K7 can be
thought of as a coefficient of the nonlinear damping term. Hence small amplitude oscillations
are damped if the nonlinear damping expression Y’ = dY/dr is on average proportional to )
over one cycle. Conversely, we can identify the system as being quarter-wave unstable for any
parameter value for which the time average of Y is in antiphase with y) over one cycle.

Consider Y/ more carefully; assuming small changes from the equilibrium position (y1, y2, 3,

y47y5) - (y9707yg7070)7 we get

d
Y' = E(ylvy:a + ya)

Y1 ’ /
= VU3t sy + (1 +y
PN e TR

0
Y1 / /
(3.8) ~ 8y + =5+ ).
21/43
Now, from (3.1), for small ¢ we have
q
Wr—=,  yg=(9)

Hence the first term in (3.8) dominates the second term. Intuitively then we will find instability
for any coupled motion between y; and y4 for which y; is on average in antiphase with yy.
This gives a coupled mode of instability that we should expect to dominate for small q.

In contrast, for large ¢, (3.1) implies 49 ~ 9 ~ ¢*/3. Hence the second term in (3.8)
is of the same order of magnitude as the first. But this term contains an expression that
is directly proportional to y}, which will provide in-phase damping throughout. We might
expect this term to dominate any damping that is cyclical, thus suggesting stability for higher
flow rates q.

This approximate argument suggests that, for a finite length pipe, quarter-waves will be
initially unstable for low mass flow rates ¢ but become stable for higher ¢q. Hence we should
expect to see a Hopf bifurcation upon reducing q.

4. Bifurcation analysis. We now turn to numerical bifurcation analysis to explain the
above findings, delineate the parameter values at which the two forms of Hopf bifurcation
occur, and try to uncover the cause of the large hysteresis we have observed in the initial
simulations.

We have used AUTO [5] to trace curves of nonimpacting periodic solutions and to au-
tomatically detect and follow any fold, period-doubling, or torus bifurcations of such orbits.
In addition, we have used the boundary-value solver in AUTO to automatically detect and
follow grazing bifurcations of these simplest periodic orbits. We have augmented this with
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Figure 4. Bifurcation diagram for v = 0.2. In this and all subsequent plots, solid black lines show stable
equilibria or simple periodic orbits computed with AUTO, with red dashed lines showing unstable orbits so
computed; dots show the result of brute-force computations.

brute-force numerical bifurcation analysis using MATLAB, in which we use the dynamics at
the previously computed point as the initial guess for the next parameter value and allow
sufficient time for any transients to decay. Unless otherwise stated, all results are presented
in the Poincaré section yo = 0.

4.1. One-parameter bifurcation diagrams. Figure 4 shows the effect of varying ¢ for v =
0.2. Decreasing the mass flow rate from g = 3, the equilibrium is stable until ¢ = 2.76845, at
which point a supercritical Hopf bifurcation occurs. Note how the initial increase in amplitude
of the limit cycle is predominantly in the y;—y3 variables, showing the hallmarks of a valve-only.
Nevertheless, because this is a fully coupled nonlinear system, beyond the initial instability,
any finite amplitude behavior involves significant components of all phase-space variables. The
limit cycle grows further in amplitude as the flow rate is further decreased until ¢ = 1.43762,
at which point the valve first grazes with the seat. The ensuing grazing bifurcation [3], as
analyzed in [13] for the case v = 0, gives rise to an impacting chaotic attractor for yet lower
g-values. Such motion, interspersed with windows of impacting period orbits of higher period,
persists all the way down to ¢ = 0.

Figure 5 shows the corresponding behavior for v = 0.5. The main differences here are that
the initial Hopf bifurcation at ¢ = 4.03659 is subcritical, with the bifurcating periodic orbit
restabilizing in a fold bifurcation at ¢ = 6.92055, before the grazing bifurcation at ¢ = 3.6684.
There is thus a large interval of flow rates, ¢ € (4.03659, 6.92055), for which there is bistability
between stable equilibrium and impacting oscillatory motion. Note that the largest portion
of the impacting behavior corresponds to a period-two orbit with two impacts per period.

Figure 6 shows the corresponding bifurcation diagram for v = 1.5. Here the behavior
is quite different. The first thing to note is that the initial Hopf bifurcation is once again
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Figure 6. Similar to Figure 4 but for v = 1.5. Here blue dots represent points in the brute-force diagram
obtained upon decreasing the mass flow rate q, while green dots represent points obtained with increasing q.

supercritical, and the growth in amplitude strongly couples the (y1, y2)-dynamics with that of
(y3,y4). This shows the hallmarks of a quarter-wave instability. The next thing to note is that,
upon further decrease of ¢, the stable limit cycle loses stability by a new mechanism, namely
a Neimark—Sacker or torus bifurcation at ¢ = 1.11086. The numerical bifurcation diagram
strongly suggests that this torus bifurcation is actually subcritical. To see this, note that
the behavior seen on decreasing ¢ is a sudden jump to what would appears to be impacting
quasi-periodic behavior. (Note that the minimum y; value suddenly jumps to zero from about
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Figure 7. Similar to Figure 4, but for v = 2.6.

0.3.) Upon increasing the flow rate there is no jump near ¢ = 1.1, with the abrupt transition
back to the stable equilibrium now occurring in what appears as a fold-like transition of an
invariant torus when ¢ =~ 1.1985. The motion for g-values just below that of the initial torus
bifurcation appears to show all the hallmarks of robust chaos [3], which appears to emanate
from the point at which the original, now unstable, nonimpacting period orbit undergoes a
grazing bifurcation, at ¢ = 0.76771. The nature of the grazing bifurcation appears quite
different from that happening in the previous two cases. Here the transition upon decreasing
q seems to be from a chaotic attractor to a period-two orbit as ¢ is decreased.

Finally, Figure 7 shows the one-parameter plot for v = 2.6. Like that for v = 1.5, the
initial instability is again a supercritical quarter-wave Hopf bifurcation. But now there is
no subsequent bifurcation of the stable nonimpacting periodic orbit before it loses stability
through a grazing bifurcation.

4.2. Two-parameter bifurcation analysis. To explain how these bifurcations unfold in the
(¢,7v) parameter plane, we have computed curves of the simplest bifurcations using AUTO.
The results are presented in Figure 8 with successive zooms in Figures 9, 10, and 12.

Note the distinctive shape of the two different Hopf bifurcation curves. The quarter-wave
instability arises from ¢ = v = 0, whereas the valve-only instability occurs for finite ¢ even
when v = 0. The g-value of the instability initially increases with v before disappearing
altogether for v > 1.365. Also note that whereas the quarter-wave bifurcation is always
supercritical, the valve instability is subcritical for an intermediate range of ~-values—between
0.3771 and 0.7691. These two ~-values correspond to the two Bautin codimension-two points
(see, e.g., [12]) A* and B*, which give rise to extra curves of fold bifurcations. These folds
undergo a complex sequence of other bifurcations involving codimension-two cusp points and
points where a fold and a grazing occur simultaneously.

Figure 10 shows a zoom of the two-parameter plot close to the lower Bautin point A*, and
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Figure 8. Two-parameter bifurcation diagram. Black curves represent location of Hopf bifurcations cor-
responding to quarter-wave and valve-only instabilities. Other curves represent the location of periodic orbit
bifurcations; fold (red), torus bifurcation (green), and grazing bifurcation (blue). Continuous shading represents
where the equilibrium is unstable, and hashed shading to where there is bistability between the equilibrium and
oscillatory behavior of one kind or another.

Figure 11 illustrates the implication of the various bifurcation curves on the one-parameter
bifurcation diagrams. For v = 0.31, upon decreasing the mass flow rate, stability is lost
via a supercritical Hopf bifurcation at ¢ = 3.37877. As the stable limit cycle reaches a fold
point at ¢ = 3.16988, the limit cycle turns back and becomes unstable until a second fold at
q = 3.35226. Here the limit cycle regains stability until it undergoes a grazing at ¢ = 3.22192,
causing chaotic motion. For a slightly shorter pipe (not depicted) the two folds of the periodic
orbit annihilate each other at the cusp point. For a slightly longer pipe, such as v = 0.35
depicted, the boundary of loss of stability and the fold points move towards higher ¢, and
the unstable portion of the limit cycle branch expands. By the time v = 0.3771, the Hopf
bifurcation has become subcritical.

4.3. Dynamics close to the Hopf—Hopf point. At the point C*, where (v, q) = (1.07286,
1.13934), the two Hopf bifurcations coincide in a codimension-two Hopf-Hopf bifurcation.
The dynamics close to such codimension-two points is described in full in [12, Chap. 8] using
normal for theory, including the identification of many different subcases. The left-hand plot of
Figure 12 shows a zoom of the numerically computed bifurcation diagram close to C*, in which
a bifurcating curve of torus bifurcations can be clearly observed. More details in the right-
hand further zoom show that there are in fact two independent Niemark—Sacker bifurcations
that emanate from the codimension-two point, which is one of the generic possibilities in the
unfolded normal form. At first sight, from Figure 12(left), it would seem that additional fold
bifurcations of periodic orbits are also involved in the codimension-two point, which would
represent a degeneracy from the generic cases analysed in [12]. However, the further zoom
indicate a that these bifurcations do not pass through the codimension-two point, but in
fact form a separate arrangement involving two cusp points that happen to be close to the
codimension-two point. To further complicate matters, the grazing bifurcation is also nearby.
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Figure 9. More detail of the bifurcation curves in Figure 8 for smaller q, indicating the location of three
codimension-two points: a Hopf-Hopf point at C* and two degenerate Hopf (Bautin) bifurcations at A* and
B*.
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Figure 10. A zoom of Figure 8 in the region A™.
In fact, although close in parameter space, the fold and grazing bifurcations are some distance

apart in phase space.
To understand the effect on the dynamics of the complex arrangement of bifurcation curves
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Figure 12. (Left) Zoom of Figure 8 close the Hopf-Hopf bifurcation point C*. The color coding of curves
is the same as that used there, but in addition a magenta curve indicates a fold-like bifurcation of an invariant
torus. (Right) A yet further zoom, showing the complex arrangement of fold and torus bifurcation curves.

close to C'*, it is instructive to look at a sequence of one-parameter bifurcation diagrams; see
Figure 13. For v = 1.15, upon decreasing the mass flow rate, the stable equilibrium loses
its stability at ¢ = 1.06913 via a supercritical Hopf bifurcation, and the limit cycle steadily



16 CSABA BAZSO, ALAN R. CHAMPNEYS, AND CSABA J. HOS

| 1.05 1.1 115 12 125 13 1.35
q

Figure 13. FEwolution of one-parameter bifurcation diagrams close to the Hopf-Hopf point C*. Here blue
dots represent points in the brute force diagram obtained upon decreasing the mass flow rate, while green dots
represent points obtained with increasing mass flow rate.

grows until ¢ = 1.07458 where the motion destabilizes in a subcritical torus bifurcation. The
motion immediately jumps to large amplitude apparently quasi-periodic impacting motion. In
contrast, upon increasing the mass flow rate from ¢ = 1, the impacting quasi-periodic motion
survives until ¢ &~ 1.201. At this value there seems to be a fold-like bifurcation that destroys
the large amplitude behavior. We have not analyzed the precise nature of this bifurcation, but
it seems likely to be the result of a grazing bifurcation of an invariant torus; see, for example,
[3, Chap. 9] and references therein.

For v = 1.139 one can observe a much more complicated development of the limit cycle.
The stability is lost via a supercritical Hopf bifurcation at ¢ = 1.07481; then the stable limit
undergoes a torus bifurcation at ¢ = 1.07403 and turns back at a fold point (¢ = 1.06904).
The limit cycle undergoes another torus bifurcation at ¢ = 1.07887 that is followed by two
additional fold points at ¢ = 1.10243 and ¢ = 1.03538. The limit cycle grows until ¢ = 1.18049,
where the motion is interrupted by a grazing bifurcation. The figure also indicates similar
hysteresis between the stable state and the impacting quasi-periodic motion.

Finally for v = 1.12 we see yet different behavior. The Hopf bifurcation is once again
supercritical. The bifurcating periodic orbit now loses stability via a fold bifurcation, and the
fold-like bifurcation of the invariant torus is now replaced by a fold-like grazing bifurcation of
the periodic orbit.

5. Conclusion. This paper has provided a concrete example of the interaction between a
Hopf-Hopf bifurcation and grazing bifurcations in a simple, physically motivated system. From
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a dynamical systems point of view, this appears to be a rich source of interesting behavior
including a complex sequence of folds, and grazing and (subcritical) torus bifurcations.

It is also interesting to speculate on potential physical applicability of these results to
the operation of pressure relief valves. The upper right of the parameter plane depicted in
Figure 8 (large ¢ and «) represents the desired operating regime for any valve. One might
imagine that the fact that instability always occurs for sufficiently small flow rate might cause
problems in practice, because when a pressure-relief valve first opens, ¢ = 0 by definition.
However, as revealed in the transient computations reported in section 3, if the transitions
through low-¢ regimes are rapid enough, no instability is observed. In practice, pressure relief
valves usually open for a higher pressure than that at which they are designed to close. This
means that the initial opening needs to result in a steady mass flow rate that is large enough
to avoid instability.

One of the key conclusions that arises from our results is that straightforward analysis of
the linearization around the equilibrium point will be insufficient to determine the region in
which stability can be guaranteed. This is because of the subcritical Hopf bifurcations that
occur for intermediate pipe lengths, which give rise to large hysteresis regions (light shaded
in Figure 8) in which a sudden disturbance can push an otherwise stable valve into, often
violent, oscillation.

Care need also be taken to avoid pipe lengths v that might exacerbate instability. The
problem here is there appears to be no simple rule of thumb that can be applied. If the pipe is
too short (v < 1.365 for the parameter set considered here), then the system is susceptible to
valve-only instabilities. Yet, the longer the pipe is, the greater is the propensity for quarter-
wave instabilities.

As shown in [1], the model we have used is capable of capturing the true dynamics of more
complex models, but only provided that the amplitude of the quarter-wave terms is not too
large. In reality, then, few practical conclusions should be drawn from the motion predicted
in this simplified model beyond the first grazing instability.

It should also be pointed out that the particular results presented here are valid only for the
set of parameter values chosen, although preliminary searches of other physically motivated
parameter regimes suggest the results to be typical for laboratory-scale systems involving
water-like fluid. Although the model is capable of capturing more highly compressive fluids,
the parameter values for gas-like valves would be rather different, with S typically being
five orders of magnitude smaller. Preliminary analysis has suggested that such systems are
indeed susceptible to quarter-wave instability, but not to valve-only instability, making their
two-parameter bifurcation diagrams somewhat simpler.

A key question that remains to be addressed is whether the model presented here matches
what is observed in practice. Preliminary experimental findings are encouraging but will be
presented in detail elsewhere. Indeed, the main purpose of this study has not been to match
experimental data but to reveal the dynamical complexity in this simple, yet technologically
important, mechanical system.
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