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Abstract

We investigate the behavior of integral formulations of variable coefficient elliptic partial dif-
ferential equations (PDEs) in the presence of steep internal layers. In one dimension, the equa-
tions that arise can be solved analytically and the condition numbers estimated in various Lp

norms. We show that high-order accurate Nyström discretization leads to well-conditioned finite-
dimensional linear systems if and only if the discretization is both norm-preserving in a correctly
chosen Lp space and adaptively refined in the internal layer.
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1. Introduction

A number of problems in computational physics require the solution of divergence-form
elliptic equations

∇ · (ε(x)∇u(x)) = f (x) (1)

where ε(x) is a scalar function with steep internal layers in a domain Ω. We assume for the sake
of concreteness that u(x) satisfies a Dirichlet boundary condition

u(x) = g(x) (2)

for x ∈ ∂Ω, but the basic approach outlined below applies equally well to other types of boundary
conditions. Equations of the form (1) arise, for example, in fluid dynamics [2, 22], where ε(x) is
the inverse of the fluid density and in semiconductor device simulation [23], where ε(x) can be
either the semiconductor permittivity, or a complicated function determined by electron and hole
mobilities and diffusion coefficients. They also arise in phase field models for microstructure
evolution in materials science [7]. When ε is piecewise constant, boundary integral equation
methods are well-known to be extremely effective (see, for example, [13, 14, 17, 24, 25]). When
ε is smooth but has a steep internal layer, however, the domain itself must be discretized. In that
setting, it is most common to use finite difference or finite element approximations based on the
partial differential equation itself [4, 21, 27].

Volume integral equations can also been used for problems such as (1). There is a substantial
literature in this area, which we do not attempt to review, except to observe that there are a variety
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of analytic methods which can be used to derive integral formulations, a variety of numerical
methods which can be used for their discretization, and a variety of fast algorithms which can be
used for iterative or direct solution [5, 6, 8, 9, 10, 11, 16, 18, 20, 26].

In this paper, we focus on the behavior of volume integral methods in one dimension, where
the divergence form equation reduces to

∂

∂x

(
ε(x)

∂u
∂x

)
= f . (3)

For the sake of simplicity, we assume the solution is subject to homogeneous Dirichlet con-
ditions on the interval [a, b], that is u(a) = u(b) = 0. We assume that ε(x) is positive, smooth
and bounded, but may have steep gradients, so that its derivative εx(x) can be arbitrarily large,
corresponding to an internal layer. Without care, this can lead to arbitrarily badly conditioned
linear systems. While there is some literature on analyzing the conditioning of second kind
integral equations (see, for example, [1, 19]), the influence of the choice of Lp space has re-
ceived relatively little attention. Here, we show that a combination of adaptivity and a suitable
norm-preserving discretization, to be defined below, leads to condition numbers that depend only
weakly on εx. In particular, we show that for a Lippmann-Schwinger type integral equation with
the second derivative uxx as the unknown, a discretization that is norm-perserving in L1 leads to
nearly optimal schemes.

Our work was motivated, in part, by Bremer’s analysis of boundary integral equations for
scattering problems in the presence of corners [3]. He showed that naive Nyström discretization
leads to ill-conditioned linear systems, but that suitable L2-weighting corrects the difficulty both
in theory and in practice.

2. The integral equation

There are several standard methods for converting the ordinary differential equation (3) to an
integral equation, typically making use of the Green’s function G(x, t) that satisfies

d2

dx2 G(x, t) = δ(x − t), G(a, t) = G(b, t) = 0 .

It is well-known [15] and easy to verify that

G(x, t) =

{
(x − a)(t − b)/(b − a) if x < t
(x − b)(t − a)/(b − a) if x ≥ t . (4)

Rewriting the equation (3) in the form

uxx +
εx

ε
ux =

f
ε

(5)

and representing the solution as

u(x) =

∫ b

a
G(x, t)σ(t) dt , (6)

we obtain an integral equation for the unknown density σ:

σ(x) +
εx(x)
ε(x)

∫ b

a
Gx(x, t)σ(t) dt = g(x) , (7)

2



or
(I + K1)σ(x) = g(x) (8)

where g = f /ε and

K1σ(x) =
εx(x)
ε(x)

∫ b

a
Gx(x, t)σ(t) dt .

Alternatively, one can rewrite (3) in the form

(εu)xx − (εxu)x = f . (9)

Integrating (9) against G(x, t) yields

u(x) +
1
ε(x)

∫ 1

0
Gx(x, t)(εx(t)u(t)) dt =

1
ε(x)

∫ 1

0
G(x, t) f (t)dt (10)

or

(I + K2)u(x) =
1
ε(x)

∫ b

a
G(x, t) f (t)dt , (11)

where

K2u(x) =
1
ε(x)

∫ 1

0
Gx(x, t)(εx(t)u(t)) dt .

The principal difference between (7) and (10) is that, in the former, σ(x) = uxx(x) is the unknown
while, in the latter, u(x) is the unknown. Both are Fredholm equations of the second kind.

2.1. Analytic solution of the integral equation

For the sake of simplicty, let us assume in this section that [a, b] = [0, 1]. ¿From the original
ODE, we have

(ε(x)ux(x))x = g(x)ε(x)

ε(x)ux(x) =

∫ x

0
g(t)ε(t) dt + ε(0)ux(0)

ux(x) =
1
ε(x)

∫ x

0
g(t)ε(t) dt +

ε(0)ux(0)
ε(x)

(12)

Using the fact that σ = uxx, we may write

σ(x) = g(x) −
εx(x)
ε(x)2

(∫ x

0
g(t)ε(t) dt + ε(0)ux(0)

)
. (13)

To remove the ε(0)ux(0) term from the expression, we integrate the equation (12).

u(1) − u(0) =

∫ 1

0

1
ε(x)

∫ x

0
g(t)ε(t) dt dx + ε(0)ux(0)

∫ 1

0

1
ε(x)

dx

so that

ε(0)ux(0) = −

∫ 1
0

1
ε(x)

∫ x
0 g(t)ε(t) dt dx∫ 1
0

1
ε(x) dx

. (14)
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Letting A1 = I + K1 denote the operator applied to σ on the left-hand side of (7), we now have
an expression for its inverse in the form A−1

1 = I − R1. ¿From (13) and (14),

σ(x) = g(x) −
εx(x)
ε(x)2

∫ x

0
g(t)ε(t) dt −

∫ 1
0

1
ε(s)

∫ s
0 g(t)ε(t) dt ds∫ 1
0

1
ε(s) ds

 .
¿From this, it is straightforward to obtain the following formula for the resolvent kernel R1:

R1(x, t) =
εx(x)
ε(x)2

H(x − t)ε(t) −
ε(t)∫ 1

0
1
ε(s) ds

∫ 1

t

1
ε(s)

ds

 , (15)

where H(x) is the standard Heavyside function.
Letting A2 = I + K2 denote the operator applied to u on the left-hand side of (10), a similar

calculation yields an expression for its inverse in the form A−1
2 = I − R2. In this case, R2 is

R2(x, t) = −
εx(t)
ε(t)2

H(x − t)ε(t) −
ε(t)∫ 1

0
1
ε(s) ds

∫ x

0

1
ε(s)

ds

 . (16)

Having analytic expressions for the resolvent kernels permits us to obtain simple estimates
for the condition number of the operators A1 and A2 acting on Lp spaces for 1 ≤ p ≤ ∞. It is
worth noting an important difference between the two resolvent kernels: the term εx/ε

2 in (16) is
evaluated at t rather than x. It is integrated when applying the inverse operator:

u(x) = h(x) +

∫ x

0
h(t)

εx(t)
ε(t)

dt −

∫ 1
0 h(s) εx(s)

ε(s) ds∫ 1
0

1
ε(s) ds

∫ x

0

1
ε(t)

dt (17)

3. Integral Equation Operator Bounds

We wish to characterize functions ε(x) that (a) are fairly flat on some subinterval of [a, b] and
(b) are uniformly bounded from above and below. These conditions are formalized as follows:

Definition 1. Let E denote a family of functions on the interval [a, b].

• E satisfies Property 1 if there exists 0 ≤ δ � 1 and a constant c > 0 such that, for each
ε ∈ E, there is a neighborhood V = B(ζ(ε), c) ⊂ [a, b] such that∥∥∥∥∥ εx

ε
· 1V

∥∥∥∥∥
p
≤ δ

∥∥∥∥∥ εx

ε

∥∥∥∥∥
p

for all 1 ≤ p ≤ ∞.

• E satisfies Property 2 if m > 0 and M < ∞ where

m = inf
ε∈E

[
min

x∈[a,b]
ε(x)

]
and M = sup

ε∈E

[
max
x∈[a,b]

ε(x)
]
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We then have the following result on the condition number of the operator A1, the Fredholm
operator on the left-hand side of (7).

Theorem 1. Let E be a family of functions satisfying Properties 1 and 2. Then

C1

(∥∥∥∥∥ εx

ε

∥∥∥∥∥2

p

)
− 1 ≤ condp(A1(ε)) ≤ C2

(∥∥∥∥∥ εx

ε

∥∥∥∥∥2

p

)
+ 1 ,

where condp(A1(ε)) is the condition number of A1(ε) as an operator from Lp[a, b]→ Lp[a, b] for
1 ≤ p < ∞ and as an operator from L∞[a, b] ∩C[a, b]→ L∞[a, b] ∩C[a, b] for p = ∞.

A proof can be found in the Appendix. Theorem 1 gives us a sense of the qualitative behavior
of A1(ε) acting on Lp spaces. In particular, its condition number is well-controlled in L1, even
when there are steep internal layers (where εx/ε can be large). In L1, it is the total variation of
ε that matters. In the L∞ norm, on the other hand, the operator norm can be seen to be large by
inspection. A dual result can be obtained for the integral operator A2(ε) = I + K2 in (11).

Theorem 2. Let E be a family of functions satisfying Properties 1 and 2. Then

C1

(∥∥∥∥∥ εx

ε

∥∥∥∥∥2

q

)
− 1 ≤ condp(A2(ε)) ≤ C2

(∥∥∥∥∥ εx

ε

∥∥∥∥∥2

q

)
+ 1 ,

where 1/p + 1/q = 1 and condp(A2(ε)) is the condition number of A2(ε) as an operator from
Lp[a, b] → Lp[a, b] for 1 ≤ p < ∞ and as an operator from L∞[a, b] ∩ C[a, b] → L∞[a, b] ∩
C[a, b] for p = ∞.

Since the condition number in Lp depends on the Lq norm of εx/ε in this case, it is clear
that the condition number of A2(ε) will be modest in L∞ and very large in L1 in the presence of
internal layers.

4. Norm-Preserving Discretization

In order to analyze the condition number of discretized integral equations, it is convenient to
introduce the following definition.

Definition 2. A mapping Φ : V ⊂ Lp[a, b]→ Cn is said to be norm-preserving if

‖Φ(g)‖lp = ‖g‖Lp[a,b]

for all g ∈ V.

Let A be an invertible, bounded integral operator mapping V to U. We say that a matrix
Ah(V) is a norm-preserving discretization of A on the subspace V if there exist norm-preserving
mappings Φ and Ψ such that the diagram

V ⊂ Lp[a, b]
A

−−−−−−→ U ⊂ Lp[a, b]yΨ

yΦ

Cn Ah
−−−−−−→ Cn

commutes.
5



In the Hibert space case (p = 2), it was shown in [3] that inner product preserving discretiza-
tions have singular values which approximate those of the original operator. In the Banach space
setting, it is easy to show something equally useful, namely that the condition number of a norm-
preserving discretization approximates that of the original operator.

For this, let B|W denote the restriction of an operator B to a subspace W. Let A be an invertible,
bounded operator mapping V to U, let Ψ, Φ be norm-preserving mappings and let Ah be a norm-
preserving discretization of A, as above. Then,

‖Ah|Ψ(V)‖lp = sup
v∈Ψ(V)

‖Ahv‖lp

‖v‖lp
= sup

g∈V

‖Ag‖Lp

‖g‖Lp
= ‖A|V‖Lp , (18)

‖A−1
h |Φ(U)‖lp = sup

w∈Ψ(V)

‖w‖lp

‖Ahw‖lp
= sup

f∈V

‖ f ‖Lp

‖A f ‖Lp
= ‖A−1|U‖Lp . (19)

Thus, the condition number of Ah restricted to Ψ(V) and of A restricted to V are the same.

4.1. Norm-preserving Nyström discretizations

We build (approximate) norm-preserving Nyström discretizations for A by applying a quadra-
ture rule to the integral operator A = I + K:

A f (x) = f (x) +

∫ b

a
K(x, y) f (y) dy .

For this, we assume that we are given an n-point quadrature rule∫ b

a
f (x) dx ≈

n∑
k=1

f (xk)wk ,

with positive weights. This induces a mapping Φ: Lp[a, b]→ Cn:

Φ( f ) =


f (x1)w1/p

1
...

f (xn)w1/p
n

 (20)

If the quadrature rule is exact for functions of the form |g|p for g ∈ V and | f |p for f ∈ U, then Φ is
a norm-preserving mapping from V into Cn and U into Cn. Further, suppose that the quadrature
rule is exact for functions of the form K(x, ·)g(·) where g ∈ V , and that Ah is given by th Nyström
discretization:

(Ah)i j = δi j + K(xi, x j)w
1/p
i w1−1/p

j . (21)

Then Ah is norm-preserving, since

[AhΦ(g)]i = g(xi)w
1/p
i + w1/p

i

n∑
j=1

K(xi, x j)w
1−1/p
j g(x j)w

1/p
j (22)

= w1/p
i

(
g(xi) +

∫ b

a
K(xi, y)g(y) dy

)
. (23)
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We note that discretization by sampling, i.e. where

Φ( f ) =


f (x1)
...

f (xn)


corresponds to a norm-preserving Nyström discretization on the space L∞[a, b] ∩ C[a, b]. In
particular, suppose we let V ⊂ L∞[a, b] ∩C[a, b] be equicontinuous and let 0 < δ � 1. Then, by
taking a fine enough mesh we can clearly satisfy

‖ f ‖L∞ = ‖Φ( f )‖l∞ (1 + δ)

for any f ∈ V . In short, the simplest Nyström discretization, corresponding to sampling the
unknown on a grid, results in a discrete operator whose condition number approximates that of
the continuous operator acting on L∞[a, b] ∩C[a, b].

4.2. Discrete condition number estimates in alternate norms

Two aspects of norm-preserving discretations should be noted here. First, the fact that a dis-
cretized operator equation is well-conditioned in lp for some p may not be very informative if we
solve the finite-dimensional linear algebra problem using a different norm. Suppose, for exam-
ple, that we wish to solve the equation (7), which is well-conditioned in L1. After discretization
using (21), it is well-conditioned in l1 as well. However, if we use an iterative scheme such as
GMRES [28], we would like to ensure rapid convergence, which depends on the condition num-
ber in l2. (One could, of course, solve linear systems iteratively in lp spaces, but the procedures
are nonlinear and much more expensive.)

Fortunately, in finite dimensional spaces, norms and condition numbers are all equivalent and
satisfy simple relations [12]. For instance,

cond2(Ah) ≤ n cond1(Ah) . (24)

Thus, if the system size is modest and we employ a norm-preserving discretization for L1, we
will have an acceptable bound on the l2 condition number of the system matrix (21).

A second, closely related, feature of norm-preserving discretizations is that spatial adaptivity
is essential for the choice of Lp to have an impact. One can see from (21) that for a uniform
mesh (with wi = h = 1

n for all i), the resulting matrix Ah is the same for every p. Thus, if the
continuous operator equation has a large condition number in L2, the discretized equation will
be ill-conditioned in l2 as well.

We will return to these issues in section 6, following an exploration of the behavior of the l1,
l2 and l∞ discretizations on some model problems.

5. Numerical Examples

To investigate the utility of the analysis outlined above, let us first consider functions ε(x) in
(3) of the form

εδ(x) = 2 + tanh(δ(x − x0)) (25)

7



on the interval [0, 2], where x0 ∈ (0, 2). For large values of δ, these functions have a steep
internal layer centered at x = x0. They are relatively flat away from the internal layer. and they
are bounded in the range [1, 3]. As a result, the family

E = {εδ ∈ Lp : δ ≥ 10} (26)

satisfies Properties 1 and 2 as given in Definition 1. Note that the derivative (εδ)x = δ sech2(δ(x−
x0)), so that

‖(εδ)x‖p =

(∫ 2

0
δp sech2p(δ(x − x0)) dx

)1/p

≤ δ

(∫ 2

0
sech2(δ(x − x0)) dx

)1/p

= δ(1−1/p) (tanh(δ(2 − x0)) + tanh(δx0))1/p (27)

‖(εδ)x‖p =

(∫ 2

0
δp sech2p(δ(x − x0)) dx

)1/p

≥
δ

2

(
2 cosh−1(

√
2)/δ

)1/p

= C(p)δ(1−1/p) (28)

Combining (27) with (28) and the fact that the εδ are uniformly bounded above and below, we
have ∥∥∥∥∥ (εδ)x

εδ

∥∥∥∥∥
p

= Θ
(
δ(1−1/p)

)
(29)

for 1 ≤ p < ∞, using the standard “Big Theta” notation. It is straightforward to check that∥∥∥∥∥ (εδ)x

εδ

∥∥∥∥∥
∞

= Θ (δ) . (30)

Letting A1(ε) and A2(ε) be the operators given by the left hand sides of (8) and (11), respectively,
and applying Theorem 1 to the family E, we see that

cond1(A1(εδ)) = Θ(1),
cond2(A1(εδ)) = Θ(δ),

cond∞(A1(εδ)) = Θ(δ2).

Likewise, we have

cond1(A2(εδ)) = Θ(δ2),
cond2(A2(εδ)) = Θ(δ),
cond∞(A2(εδ)) = Θ(1).

We discretize the integral equations (7) and (10), using a norm-preserving Nyström dis-
cretization scheme, as described in section 4.1. For this, we adaptively refine the interval [a, b] so

8



that the function ε(x) is well resolved with a piecewise Legendre polynomial approximation to a
user-specified precision. More precisely, we use piecewise 16th order approximations, and refine
each interval until the quadrature error in integrating ε is less than 10−15. On each subinterval, we
sample all functions involved (u, ε, f ) at the scaled Gauss-Legendre nodes of order 16. We use
the standard Gauss-Legendre quadrature weights scaled to each subinterval. Given these nodes
and weights, the norm-preserving discretization (21) in Lp applied to equation (7) yields

σ(xi)w
1/p
i +

εx(xi)
ε(xi)

∑
j

Gx(xi, x j)w
1−1/p
j w1/p

i σ(x j)w
1/p
j = g(xi)w

1/p
i . (31)

Likewise, equation (10) yields

u(xi)w
1/p
i +

1
ε(xi)

∑
j

Gx(xi, x j)εx(x j)w
1−1/p
j w1/p

i u(xi)w
1/p
i = h(xi)w

1/p
i (32)

where h is simply the right hand side of (10). We will use A1,p(ε) and A2,p(ε) to denote the p-
norm-preserving discretizations of these integral operators. Because the unknowns σ and u are
weighted by w1/p

i , we see that the entries of the discrete operators are given by

[
A1,p(ε)

]
i j

= δi j +
εx(xi)
ε(xi)

Gx(xi, x j)w
1−1/p
j w1/p

i[
A2,p(ε)

]
i j

= δi j +
εx(x j)
ε(xi)

Gx(xi, x j)w
1−1/p
j w1/p

i

5.1. Condition Numbers
Using the family of functions E defined above, we may study the lp condition numbers of

our discrete operators A1,p(εδ) and A2,p(εδ) for p = 1, 2, and∞. Because of the norm-preserving
discretization, we expect cond1(A1,1(εδ)) = Θ(1), cond2(A1,2(εδ)) = Θ(δ), and cond∞(A1,∞(εδ)) =

Θ(δ2) since that is the behavior of the continous operators (Theorem 1). Similarly, we expect
cond1(A2,1(εδ)) = Θ(δ2), cond2(A2,2(εδ)) = Θ(δ), and cond∞(A2,∞(εδ)) = Θ(1) (from Theorem 2).

In Figs. 1 and 2, we plot numerical results for the family of functions εδ, where δ = 100 j,
with j = 1, . . . , 100. For each εδ, we formed the system matrices for an adaptive norm-preserving
discretization of the domain [0, 2] as described above. The lp condition numbers were computed
by brute force (using the singular value decomposition in MATLAB).
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Figure 1: lp condition numbers of A1,p(εδ) for p = 1 (left), p = 2 (center), and p = ∞ (right). The slope of the internal
layer is approximately δ and the thickness of the internal layer is approximately 1/δ.
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Figure 2: lp condition numbers of A2,p(εδ) for p = 1 (left), p = 2 (center), and p = ∞ (right).

We see from the data that the condition numbers of the discrete operators do, indeed, exhibit
the scaling properties expected from our analysis of the continuous operators. Note that the 1-
norm-preserving scheme to discretize (7) and the ∞-norm-preserving scheme to discretize (10)
result in very well-conditioned matrices, independent of the steepness of the internal layer.

5.2. Convergence behavior using GMRES

As discussed in section 4.2, it is reasonable to ask how standard iterative schemes work
when applied to lp-norm-preserving discretizations. We use GMRES here, whose convergence
behavior depends formally on the l2 condition number of the system matrix. It is reasonable
to expect that the better conditioned systems (the 1-norm-preserving system for A1(ε) and the
∞-norm-preserving system for A2(ε)) will fare better.

For these experiments, we solve the ODE (3), i.e.

∂

∂x

(
ε(x)

∂u
∂x

)
= f

subject to inhomogeneous Dirichlet conditions, u(a) = γa and u(b) = γb. If we let l(x) = mx + c
be a linear function satisfying the boundary conditions, then v = u − l satisfies homogeneous
Dirichlet conditions and the ODE with a modificed right-hand side:

∂

∂x

(
ε(x)

∂v
∂x

)
= f − mεx.

This problem can be addressed using one of the integral equations (7) or (10), from which the
solution to the original problem is u = v + l. Here, we consider f ≡ 1, γa = 1 and γb = 2.
We consider two types of functions ε(x) that contain multiple internal layers by adding together
several hyperbolic tangent functions, as in (25), with multiple centers and δ = 500, as shown in
Fig. 3. We refer to the left-hand profile as a “double hill” and the right-hand profile as a “double
well”.

Using adaptive refinement, we obtain linear systems (31) and (32) as described above, for
p = 1, 2, and ∞. We solve the systems using GMRES and record the relative residuals for each
step in Figs. 4 and 5. The l2 condition numbers of the discrete operators are shown in Table 1.

Note that the l2 condition numbers for A1,1(ε) and A2,∞(ε) operators are the smallest, as ex-
pected. Note also that these linear systems are solved much more easily using GMRES. The other
discretizations fail to reach the desired tolerance (10−15) in a reasonable number of iterations.
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Figure 3: The “double hill” (left) and “double well” (right) functions ε(x).
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Figure 4: Convergence of GMRES for the “double hill” ε(x). The relative residual of the error at each iteration is shown
using the A1,p(ε) operator (left) and the A2,p(ε) operator (right).

6. Discussion

Our work in this paper was motivated by the observation that boundary integral equations are
extremely robust when solving problems of the type (1) when ε is piecewise constant. In partic-
ular, a charge distribution on the dielectric interface leads to well-conditioned integral equations
involving the single layer potential [13, 14, 17, 24, 25]). That charge density, however, is not a
smooth function in the ambient space - it is a singular function supported on the interface alone.

In the variable coefficient case, setting the unknown to be σ = ∆u, as in (7), corresponds
to seeking the solution in terms of a volume charge distribution. As the internal layer becomes
steeper and steeper, the function σ(x) blows up, since it is converging to a distribution and not
a bounded function. One interpretation of the L1 norm-preserving discretization is that, in the
discontinuous limit, the l1-scaled unknown approximates the strength of the δ-function along the
steep interface, rather than trying to sample the δ-function itself.

One concern with using the integral equation (7) is that we are only guaranteed tight bounds
on accuracy in L1, using the standard estimate

‖e‖1
‖x‖1

≤ cond1(A1)
‖r‖1
‖b‖1

11
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Figure 5: Convergence of GMRES for the “double well” ε(x). The relative residual of the error at each iteration is shown
using the A1,p(ε) operator (left) and the A2,p(ε) operator (right).

ε(x) A1,1(ε) A1,2(ε) A1,∞(ε) A2,1(ε) A2,2(ε) A2,∞(ε)
“Double Hill” 35.1453 979.052 86459.5 116010 978.240 31.1643
“Double Well” 33.1648 977.744 98620.1 147328 977.411 27.9858

Table 1: l2 condition numbers for the discretized A1,p(ε) and A2,p(ε) operators.

where x̃ is an approximate solution, e = x − x̃, and r = A1 x̃ − b is the residual. (This estimate
applies to invertible Fredholm equations of the second kind as well as to finite-dimensional linear
systems). Fortunately, the quantities of interest u, ux are computed as integral functionals of σ
using the representation (6) and are obtained with high accuracy. The integral equation (10) can
be discretized naively, corresponding, as noted earlier, to norm-preservation in l∞. While in some
respects simpler, derivative data (ux) must then be computed numerically.

We are currently working on the extension of our analysis to higher-dimensional problems,
and will report on the performance of such solvers at a later date.
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Appendix A. Proof of Theorem 1

Let E be a family of functions satisfying Properties 1 and 2 from Definition 1. Let ε be an
arbitrary function in E and let A1 be given by

A1σ(x) = (I + K1)σ(x) = σ(x) +
εx(x)
ε(x)

∫
Gx(x, y)σ(y) dy .

12



We now establish bounds for A1 as on operator on L∞[0, 1] ∩ C[0, 1]. To begin, we note that
|Gx(x, y)| is bounded by 1. Thus,

‖A1‖∞ = sup
‖σ‖∞=1

sup
x∈[0,1]

∣∣∣∣∣σ(x) +
εx(x)
ε(x)

∫
Gx(x, y)σ(y) dy

∣∣∣∣∣ (A.1)

≤ 1 +

∥∥∥∥∥ εx

ε

∥∥∥∥∥
∞

. (A.2)

Let x∗ be the maximizer of |εx/ε | and define the functions σn by

σn(y) =


1 if y ≤ x∗

1 − 2n(y − x∗) if x∗ < y < x∗ + 1/n
−1 if y ≥ x∗ + 1/n

.

These functions are continuous and approximate the sign of Gx(x∗, y). A straightforward compu-
tation shows that

‖A1‖∞ = sup
‖σ‖∞=1

sup
x∈[0,1]

∣∣∣∣∣σ(x) +
εx(x)
ε(x)

∫
Gx(x, y)σ(y) dy

∣∣∣∣∣ (A.3)

≥ sup
x∈[0,1]

∣∣∣∣∣σn(x) +
εx(x)
ε(x)

∫
Gx(x, y)σn(y) dy

∣∣∣∣∣ (A.4)

≥

∣∣∣∣∣ εx(x∗)
ε(x∗)

∣∣∣∣∣ (∫ |Gx(x∗, y)| dy −
2
n

)
− σn(x∗) (A.5)

≥

∥∥∥∥∥ εx

ε

∥∥∥∥∥
∞

(
1
4
−

2
n

)
− 1 (A.6)

so that
‖A1‖∞ ≥

1
4

∥∥∥∥∥ εx

ε

∥∥∥∥∥
∞

− 1 .

We note that A−1
1 is given by

A−1
1 g(x) = (I − R1)g(x) = g(x) −

εx(x)
ε(x)2

∫ x

0
g(t)ε(t) dt −

∫ 1
0

1
ε(s)

∫ s
0 g(t)ε(t) dt ds∫ 1
0

1
ε(s) ds

 .
It is straightforward to see that

‖A−1
1 ‖∞ = sup

‖g‖∞=1
‖(I − R1)g‖∞ (A.7)

≤ 1 + sup
‖g‖∞=1

sup
x∈[0,1]

∣∣∣∣∣∣∣∣ εx(x)
ε(x)2

∫ x

0
g(t)ε(t) dt −

∫ 1
0

1
ε(s)

∫ s
0 g(t)ε(t) dt ds∫ 1
0

1
ε(s) ds


∣∣∣∣∣∣∣∣ (A.8)

≤ 1 +

∥∥∥∥∥ εx

ε

∥∥∥∥∥
∞

1
m

(
1 +

M
m

)
‖ε‖1 . (A.9)
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Again, let x∗ be the maximizerof |εx/ε | and let mε be the minimum of ε on [0, 1]. We define the
function gε as follows

gε(x) =


mε/ε(x) if x ≤ x∗/2
−mε/ε(x) if x∗/2 < x ≤ x∗

mε/ε(x) if x∗ < x ≤ (1 + x∗)/2
−mε/ε(x) if (1 + x∗)/2 < x ≤ 1

.

The function gε is such that the integral
∫ x

0 gε(t)ε(t) dt is zero at x = x∗, 0, and 1 and positive
otherwise. Let gn be continuous functions which satisfy ‖gn‖∞ = 1 and converge pointwise to gε .
A few straightforward computations and an application of the dominated convergence theorem
yield

‖A−1
1 ‖∞ = sup

‖g‖∞=1
‖(I − R1)g‖∞ (A.10)

≥ lim
n→∞
‖(I − R1)gn‖∞ (A.11)

≥ lim
n→∞
|R1gn(x∗)| − 1 (A.12)

≥

∣∣∣∣∣ εx(x∗)
ε(x∗)2

∣∣∣∣∣ lim
n→∞

∫ 1
0

1
ε(s)

∫ s
0 gn(t)ε(t) dt ds∫ 1
0

1
ε(s) ds

−

∣∣∣∣∣ εx(x∗)
ε(x∗)2

∣∣∣∣∣ lim
n→∞

∫ x∗

0
gn(t)ε(t) dt − 1 (A.13)

=

∣∣∣∣∣ εx(x∗)
ε(x∗)2

∣∣∣∣∣
∫ 1

0
1
ε(s)

∫ s
0 gε(t)ε(t) dt ds∫ 1
0

1
ε(s) ds

− 1 (A.14)

≥
1
M

∥∥∥∥∥ εx

ε

∥∥∥∥∥
∞

mεm
8M

− 1 (A.15)

≥

∥∥∥∥∥ εx

ε

∥∥∥∥∥
∞

m2

8M2 − 1 . (A.16)

We next establish bounds on A1 as an operator on Lp[0, 1], for 1 < p < ∞.

‖A1‖p = sup
‖σ‖p=1

‖(I + K1)σ‖p (A.17)

≤ 1 + sup
‖σ‖p=1

(∫ ∣∣∣∣∣ εx(x)
ε(x)

∫
Gx(x, y)σ(y) dy

∣∣∣∣∣p dx
)1/p

(A.18)

≤ 1 + sup
‖σ‖p=1

∥∥∥∥∥∥
(
εx(x)
ε(x)

)p∥∥∥∥∥∥1/p

1

∥∥∥∥∥∫ |Gx(·, y)σ(y)|p dy
∥∥∥∥∥1/p

∞

(A.19)

≤ 1 +

∥∥∥∥∥ εx(·)
ε(·)

∥∥∥∥∥
p
. (A.20)

Because E satisfies Property 1, we may choose 0 ≤ δ � 1 and a neighborhood V = B(ξ, c) ⊂
[0, 1] centered at ξ and of radius c such that∥∥∥∥∥ εx

ε
· 1V

∥∥∥∥∥
p
≤ δ

∥∥∥∥∥ εx

ε

∥∥∥∥∥
p
.
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For concreteness, assume c ≤ 1/2. Note now that a density σ is the second derivative of a
function u with homogeneous Dirichlet boundary values. In particular, u′(x) =

∫
Gx(x, y)σ(y) dy.

As a result, the function u′ integrates to zero (since u(1) = u(0) = 0). This observation permits
us to build densities σ with the desired properties. In particular, we’d like a density σ such
that u′(x) =

∫
Gx(x, y)σ(y) dy is small only in the neighborhood where εx/ε satisfies the above

property. We choose u′ to be of the form

u′(x) =

{
a(x − ξ)2 for x ≤ ξ
b(x − ξ)2 for x > ξ

where a and b are chosen such that u′ integrates to zero. Setting b = 1 and a = (ξ − 1)3/ξ3 is
sufficient. This yields

σ(x) =

 2(ξ−1)3

ξ3 (x − ξ) for x ≤ ξ
2(x − ξ) for x > ξ

The Lp norm of the above function satisfies

‖σ‖p ≤ ‖σ‖∞ ≤
2(1 − c)

c3 .

Let σε = σ/‖σ‖p. Then the corresponding u′(x) =
∫

Gx(x, y)σε(y) dy is given by

∫
Gx(x, y)σε(y) dy =

 1
‖σ‖p

(ξ−1)3

ξ3 (x − ξ)2 for x ≤ ξ
1
‖σ‖p

(x − ξ)2 for x > ξ
.

This provides a minimum value of |
∫

Gx(x, y)σε(y) dy| on [0, 1] \ V which satisfies

min
x∈[0,1]\V

∣∣∣∣∣∫ Gx(x, y)σε(y) dy
∣∣∣∣∣ ≥ c8

(1 − c)4 .

We then have

‖A1‖p = sup
‖σ‖p=1

‖(I + K1)σ‖p (A.21)

≥ sup
‖σ‖p=1

(∫ (
εx(x)
ε(x)

∫
Gx(x, y)σ(y) dy

)p

dx
)1/p

− 1 (A.22)

≥

(∫ (
εx(x)
ε(x)

∫
Gx(x, y)σε(y) dy

)p

dx
)1/p

− 1 (A.23)

≥ (1 − δ)
c8

1 − c4

∥∥∥∥∥ εx(·)
ε(·)

∥∥∥∥∥
p
− 1 (A.24)

= C(c, δ)
∥∥∥∥∥ εx(·)
ε(·)

∥∥∥∥∥
p
− 1 . (A.25)
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Let 1 < p < ∞ and 1/p + 1/q = 1. Then

‖A−1
1 ‖p = sup

‖g‖p=1
‖(I − R1)g‖p (A.26)

≤ 1 + sup
‖g‖p=1

‖R1g‖p (A.27)

≤ 1 + sup
‖g‖p=1


∫ 1

0

∣∣∣∣∣∣∣∣ εx(x)
ε(x)2

∫ x

0
g(t)ε(t) dt −

∫ 1
0

1
ε(s)

∫ s
0 g(t)ε(t) dt ds∫ 1
0

1
ε(s) ds


∣∣∣∣∣∣∣∣
p

dx


1/p

(A.28)

≤ 1 +

∥∥∥∥∥( εx

ε2

)p∥∥∥∥∥1/p

1
sup
‖g‖p=1

 sup
x∈[0,1]

∣∣∣∣∣∣∣∣
∫ x

0
g(t)ε(t) dt −

∫ 1
0

1
ε(s)

∫ s
0 g(t)ε(t) dt ds∫ 1
0

1
ε(s) ds

∣∣∣∣∣∣∣∣
p

1/p

(A.29)

≤ 1 +

∥∥∥∥∥ εx

ε2

∥∥∥∥∥
p

sup
‖g‖p=1

∫ 1

0
|g(t)ε(t)| dt +

∫ 1
0

1
ε(s)

∫ 1
0 |g(t)ε(t)| dt ds∫ 1
0

1
ε(s) ds

 (A.30)

≤ 1 +

∥∥∥∥∥ εx

ε2

∥∥∥∥∥
p

(
1 +

M
m

)
sup
‖g‖p=1

‖gε‖1 (A.31)

≤ 1 +

∥∥∥∥∥ εx

ε2

∥∥∥∥∥
p

(
1 +

M
m

)
‖ε‖q (A.32)

≤ 1 +

∥∥∥∥∥ εx

ε

∥∥∥∥∥
p

(
1 +

M
m

) M
m
. (A.33)

Let V = B(ξ, c) ⊂ [0, 1] as above. We define a function gε as follows:

gε(x) =


0 if x ≤ ξ − c

1
ε(x) if ξ − c < x ≤ ξ
− 1
ε(x) if ξ < x ≤ ξ + c

0 if x > ξ + c

.

It is easy to see that

∫ x

0
gε(t)ε(t) dt =


0 if x ≤ ξ − c

x − ξ + c if ξ − c < x ≤ ξ
ξ − x + c if ξ < x ≤ ξ + c

0 if x > ξ + c

,

that ∫ 1

0

1
ε(s)

∫ s

0
g(t)ε(t) dt ds ≥

2
M

∫ c

0
t dt =

c2

M
,

and that

‖gε‖p ≤
(2c)1/p

m
≤

1
m
.
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¿From these,

‖A−1
1 ‖p = sup

‖g‖p=1
‖(I − R1)g‖p (A.34)

≥ sup
‖g‖p=1

‖R1g‖p − 1 (A.35)

≥
1
‖gε‖p


∫ 1

0

∣∣∣∣∣∣∣∣ εx(x)
ε(x)2

∫ x

0
gε(t)ε(t) dt −

∫ 1
0

1
ε(s)

∫ s
0 gε(t)ε(t) dt ds∫ 1
0

1
ε(s) ds


∣∣∣∣∣∣∣∣
p

dx


1/p

− 1 (A.36)

≥
1
‖gε‖p


∫

[0,1]\V

∣∣∣∣∣∣∣∣ εx(x)
ε(x)2

∫ x

0
gε(t)ε(t) dt −

∫ 1
0

1
ε(s)

∫ s
0 gε(t)ε(t) dt ds∫ 1
0

1
ε(s) ds


∣∣∣∣∣∣∣∣
p

dx


1/p

− 1

(A.37)

=
1
‖gε‖p


∫

[0,1]\V

∣∣∣∣∣∣∣∣ εx(x)
ε(x)2


∫ 1

0
1
ε(s)

∫ s
0 gε(t)ε(t) dt ds∫ 1
0

1
ε(s) ds


∣∣∣∣∣∣∣∣
p

dx


1/p

− 1 (A.38)

≥

∥∥∥∥∥ εx

ε2

∥∥∥∥∥
p

m(1 − δ)
c2

M
− 1 (A.39)

≥

∥∥∥∥∥ εx

ε

∥∥∥∥∥
p

(1 − δ)
mc2

M2 − 1 . (A.40)

¿From the above, we see that there exist constants C′1 and C′2 – depending only on m,M, c, and δ
– such that

C′1

∥∥∥∥∥ εx

ε

∥∥∥∥∥
p
− 1 ≤ ‖A1‖p ≤ C′2

∥∥∥∥∥ εx

ε

∥∥∥∥∥
p

+ 1

C′1

∥∥∥∥∥ εx

ε

∥∥∥∥∥
p
− 1 ≤ ‖A−1

1 ‖p ≤ C′2

∥∥∥∥∥ εx

ε

∥∥∥∥∥
p

+ 1 ,

so that there are constants C1 and C2 – depending only on m,M, c, and δ – such that

C1

∥∥∥∥∥ εx

ε

∥∥∥∥∥
p
− 1 ≤ condp(A1) ≤ C2

∥∥∥∥∥ εx

ε

∥∥∥∥∥
p

+ 1 ,

which completes the proof.
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