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Abstract

We consider the problem of how much edge connectivity is necessary to force a graph G to
contain a fixed graph H as an immersion. We show that if the maximum degree in H is ∆, then all
the examples of ∆-edge connected graphs which do not contain H as a weak immersion must have
a tree-like decomposition called a tree-cut decomposition of bounded width. If we consider strong
immersions, then it is easy to see that there are arbitrarily highly edge connected graphs which do
not contain a fixed clique Kt as a strong immersion. We give a structure theorem which roughly
characterizes those highly edge connected graphs which do not contain Kt as a strong immersion.

1 Introduction

We consider graphs with parallel edges but no loops. In this article, we will examine the immersion
relation between graphs.

Definition. A graph G admits an immersion of a graph H if there exists a function π with domain
V (H)∪E(H) mapping to the set of connected subgraphs of G which satisfies the following:

a. for all v ∈V (H), π(v) is a vertex of G, and if u ∈V (H), u 6= v, then π(u) 6= π(v);

b. for every edge f ∈ E(H) with endpoints x and y, π( f ) is a path with endpoints equal to π(x) and
π(y);

c. for edges f , f ′ ∈ E(H), f 6= f ′, π( f ) and π( f ′) have no edge in common.

The vertices {π(x) : x∈V (H)} are the branch vertices of the immersion. We will also say that G immerses
H or alternatively that G contains H as an immersion. The edge-disjoint paths π( f ) for f ∈ E(H) are
the composite paths of the immersion.

One can distinguish between strong and weak immersions. The definition given above is that of a weak
immersion; in a strong immersion, one additionally requires that no branch vertex be contained as an
internal vertex of a composite path. We will consider both forms of immersions in this article. In the

∗Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI), Budapest, Hungary
dmarx@cs.bme.hu. Research partially supported by the European Research Council (ERC) grant “PARAMTIGHT: Pa-
rameterized complexity and the search for tight complexity results,” reference 280152 and OTKA grant NK105645.

†Department of Computer Science, University of Rome, “La Sapienza”, Rome, Italy wollan@di.uniroma1.it. Par-
tially supported by the European Research Council under the European Unions Seventh Framework Programme (FP7/2007-
2013)/ERC Grant Agreement no. 279558

1

ar
X

iv
:1

30
5.

13
31

v3
  [

m
at

h.
C

O
] 

 1
0 

Ja
n 

20
14



interest of brevity, we will typically refer to weak immersions as simply “immersions”, and explicitly
specify strong immersions whenever we are focusing on strong immersions.

There is an easy structure theorem for graphs excluding a fixed H as an immersion [15], [4]. If we fix
the graph H and let ∆ be the maximum degree of a vertex in H, then one obvious obstruction to a graph
G containing H as an immersion is if every vertex of G has degree less than ∆. The structure theorem
shows that this is approximately the only obstruction. The structure theorem says that for all t ≥ 1, any
graph which does not have an immersion of Kt can be decomposed into a tree-like structure of pieces
with at most t vertices each of degree at least t2.

The value t2 cannot be significantly improved. Consider the graph Pk,n to be the graph obtained from
taking a path on n vertices and adding k− 1 additional parallel edges to each edge. See Figure 1. The

Figure 1: The graph P3,4.

graphs Pk,n are natural examples of graphs which are highly edge connected and exclude a given immer-
sion or strong immersion. Observe that the graph Pt2/4−1,n is roughly t2/4-edge connected, but does not
contain Kt as an immersion.

The structure theorem for weak immersions gives rise to a variant of tree decompositions based on edge
cuts instead of vertex cuts, called tree-cut decompositions. The minimum width of a tree-cut decom-
position is the tree-cut width of a graph. We give the exact definition of these notions in the following
section. The example above of a highly edge connected graph with no Kt immersion has tree-cut width
bounded by a function of t. Thus, one might hope that all the highly edge connected graphs which do not
admit Kt as an immersion similarly have bounded tree-cut width. This is the main result of this article.

Theorem 1. There exists a function g satisfying the following. Let k≥ 4,n≥ 1 be positive integers. Then
for all graphs H with maximum degree k on n vertices and for all k-edge connected graphs G, either G
admits an immersion of H, or G has tree-cut width at most g(k,n).

The k = 4 case of Theorem 1 was proven by Chudnovsky, Dvorak, Klimosova, and Seymour [2]; our
proof builds on this result to show the statement for general k ≥ 4.

The theorem is not true for k = 3. This is because if G and H are 3-regular graphs, then G contains H as
an immersion if and only if G contains H as a topological minor. Thus, if H is any 3-regular graph which
cannot be embedded in the plane, then any 3-regular planar graph G cannot contain H as an immersion
and such graphs can have arbitrarily large tree-width.

Recent work has proven several special cases of Theorem 1 while generalizing the statement to strong
immersions. Giannopolous, Kaminski, and Thilikos [8] have shown that for k ≥ 4, every k-edge con-
nected graph embedded in a surface of bounded genus either contains a fixed H of maximum degree k as
a strong immersion, or has tree-width bounded by a function of H and the genus of the surface. Dvorak
and Klimosova showed [7] that the k = 4 case of Theorem 1 holds for strong immersions as well when
the graph G is assumed to be simple. It is unclear whether Theorem 1 might also be true in general for
strong immersions in simple graphs.

Theorem 1 can also be contrasted with recent work of Norine and Thomas on clique minors in large k-
connected graphs. They have announced a proof that for every k≥ 5, every sufficiently large k-connected
graph G either contains Kk as a minor or there exists a set X ⊆V (G) with |X |= k−5 such that G−X is
planar. Here we see similarly that every k-edge connected graph which does not admit an immersion of
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Kk+1 falls into a relatively simple class of graphs (although the proofs here are dramatically easier than
the proof of Norine and Thomas’ result). Note that Theorem 1 cannot be improved further to simply
bound the size of the graph G. Again consider that the graph Pk,n is k-edge connected and can be chosen
to have arbitrarily many vertices, but will not admit an immersion of Kk+1.

If we instead consider the strong immersion relation, then it has recently been shown that in simple
graphs with no parallel edges, any graph with minimum degree 200t contains a strong immersion of Kt

by DeVos, Dvorak, Fox, McDonald, Mohar, and Scheide [3]. This bound is clearly best possible, up
to improvements in the constant 200. However, if we consider graphs which do possibly have parallel
edges, then there exist arbitrarily highly edge connected graphs which do not contain a fixed strong
immersion. For example, for all fixed t, the graphs Pk,n are k-edge connected and do not contain a strong
immersion of K3 for all k and n since paths linking a pair of vertices in Pk,n must pass through all the
vertices in between. In the second main result of this article, we will see that such long paths of parallel
edges are essentially the only obstructions to highly edge connected graphs containing a fixed clique as
a strong immersion. We leave the exact statement until Section 7. The proof proceeds by starting from
the edge bound in [3] and analyzing how parallel edges can be contained in the graph.

We quickly outline how the article will proceed. In Section 2, we give the definitions of tree-cut de-
compositions and the tree-cut width of a graph as well as state the structure theorem for immersions. In
Section 3, we introduce several important graph minors tools which we will use going forward, includ-
ing a necessary result of Robertson and Seymour on tangles, and look at a packing result for subgraphs
called spiders. In Section 4, we give an exact characterization when a given graph and tangle contain a
spider. In Section 5, we see that any k-edge connected graph which does not contain an immersion of a
given H of max degree k must essentially have bounded degree. In Section 6, we introduce another tool
of Robertson and Seymour on finding disjoint paths given the presence of a clique minor, and proceed to
give the proof of Theorem 1. Finally, in Section 7, we turn our attention to strong immersions and state
and prove the structure theorem for highly edge connected graphs which do not have a strong immersion
of Kt for a fixed value t.

We conclude with some notation. Let G be a graph and v ∈ V (G). The degree deg(v) is the number of
edges incident with v and ∆(G) is the maximum degree of a vertex in G. The neighborhood of v is the set
of vertices adjacent to v and is denoted N(v). Note that deg(v) ≥ |N(v)|, however given the possibility
of parallel edges, it is not necessarily true that equality holds. A graph is simple if it has no parallel
edges. Let X ⊆ V (G). The set of edges with exactly one endpoint in X is denoted δ (X). We will use
δ (v) for δ ({v}). The set of vertices of V (G)\X with a neighbor in X is denoted NG(X), or simply N(X)
when there can be no confusion. We refer to the graph induced on X by G[X ]. We use G−X to refer
to the graph induced on V (G)\X . For a subset F ⊆ E(G) of edges, we use G−F to refer to the graph
(V (G),E(G) \F). For subgraphs G1 and G2 of G, the subgraph G1∪G2 has vertex set V (G1)∪V (G2)
and edge set E(G1)∪E(G2). We will use G− x as shorthand notation for G−{x} when x is a single
element of either V (G) or E(G). Finally, we will often want to reduce G to a smaller graph by identifying
a subset of vertices to a single vertex. Let X ⊆V (G), define G′ be the graph obtained by deleting every
edge with both endpoints in X and identifying the vertex set X to a single vertex. We will say that G′ is
obtained from G by consolidating X . Contraction is the special case of this operation when X induces a
connected graph. Note that consolidating (contracting) a vertex set X can create parallel edges if there is
a vertex v 6∈ X with more than one edge into X .

2 Tree-cut decompositions

In this section, we give the necessary definitions of tree-cut decompositions as well as state the structure
theorem for graphs excluding a fixed clique immersion. A near-partition of a set X is a family of subsets
X1, . . . ,Xk, possibly empty, such that

⋃k
1 Xi = X and Xi∩X j = /0 for all 1≤ i < j ≤ k.
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Definition. A tree-cut decomposition of a graph G is a pair (T,X ) such that T is a tree and X = {Xt ⊆
V (G) : t ∈ V (T )} is a near-partition of the vertices of G indexed by the vertices of T . For each edge
e = uv in T , T −uv has exactly two components, namely Tv and Tu containing v and u respectively. The
adhesion of the decomposition is

maxuv∈E(T )

∣∣∣∣∣∣δG

 ⋃
t∈V (Tv)

Xt

∣∣∣∣∣∣
when T has at least one edge, and 0 otherwise. The sets {Xt : t ∈ V (T )} are called the bags of the
decomposition.

In the definition, we allow bags to be empty.

Let G be a graph and (T,X ) a tree-cut decomposition of G. Let t ∈ V (T ) be a vertex of T . The torso
of G at t is the graph H defined as follows. If |V (T )| = 1, then the torso of G at t is simply itself. If
|V (T )| ≥ 2, let the components of T − t be T1, . . . ,Tl for some positive integer l. Let Zi =

⋃
x∈V (Ti) Xx for

1≤ i≤ l. Then H is made from G by consolidating each set Zi to a single vertex zi. The vertices Xt are
called the core vertices of the torso. The vertices zi are called the peripheral vertices of the torso.

We can now state the structure theorem for excluded immersions. A graph has (a,b)-bounded degree if
there are at most a vertices with degree at least b.

Theorem 2 ([15]). Let G be a graph and t ≥ 1 a positive integer. If G does not admit Kt as a weak
immersion, then there exists a tree-cut decomposition (T,X ) of G of adhesion less than t2 such that
each torso has (t, t2)-bounded degree.

Tree decompositions and their corresponding tree width were introduced by Halin [9] and independently
by Robertson and Seymour [11]. The parameters have proven immensely useful in structural graph
theory. Several of the results going forth will use the parameter tree-width. However, as we will not use
any specific properties of tree decompositions in this article, we omit the technical definitions here. See
[5] for further background on tree-width.

Given tree-cut decompositions, it is natural to ask what is an appropriate definition for the width of such
a decomposition. While some care must be taken to deal with 1 and 2 edge cuts, in 3-edge connected
graphs, the width is the maximum of the adhesion and the size of the torsos. See [15] for more details.
As we will only be considering tree-cut decompositions of graphs which are at least 3-edge connected,
we use a simplified definition here for the width of a tree-cut decomposition.

Definition. Let G be a 3-edge connected graph and (T,X ) a tree-cut decomposition of G. For each
vertex t ∈V (T ), let Xt be the bag at the vertex t. Let Ht be the torso of G at t. Let α be the adhesion of
the decomposition. The width of the decomposition is

max{α}∪{|V (Ht)| : t ∈V (T )}.

The tree-cut width of the graph G, also written tcw(G), is the minimum width of a tree-cut decomposition.

Note that the tree-cut width of a graph G is not the same as the tree-width of the line graph of G.
For example, under the full definition for tree-cut width taking into account one and two edge connected
graphs, it holds that all trees have tree-cut width one. Trivially, there exist trees with vertices of arbitrarily
large degree; therefore their line graphs contain arbitrarily large clique subgraphs. We conclude that the
line graphs of trees can have arbitrarily large tree-width.

Tree-cut decompositions share many of the natural properties of tree decompositions. See [15] for further
details. One fact which we will use in the sections to come is the following result.
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Lemma 3 ([15]). Let w,d ≥ 1 be positive integers and let G be a graph with ∆(G)≤ d and tree-width at
most w. Then there exists a tree-cut decomposition of adhesion at most (2w+2)d such that every torso
has at most (d +1)(w+1) vertices. Specifically, the tree-cut width of G is at most (2w+2)d.

Thus, if a graph has bounded tree-width and bounded degree, then it has bounded tree-cut width. How-
ever, the converse is not true. Again, trees have tree-cut width one but clearly can have arbitrarily large
degree. Also, if we consider the graph consisting of two vertices with t parallel edges connected them,
then the graph is t-edge connected but has tree-cut width two. However, as a consequence of our proof of
Theorem 1, we will see that if we eliminate these two possibilities, then the converse of Lemma 3 does
hold. This is proven in Section 5.

3 Tangles, minors, and spiders

In this section, we introduce many of the graph minors tools which we will use, including tangles, and
see how they show a packing result for subgraphs called spiders. Let G be a graph, k ≥ 1 a positive
integer, and X ⊆V (G). An X-spider of order k consists of k pairwise edge-disjoint paths P1, . . . ,Pk and a
vertex v∈V (G)\X such that each Pi has one endpoint equal to v, the other endpoint in X , and no internal
vertex in X . The vertex v is called the body of the spider.

Finding and packing spiders can be thought of as a first step of finding immersions: a spider of order
k can possibly serve as the image of a vertex of degree k and the incident edges. Therefore, it will be
useful to know that spiders have the Erdős-Pósa property: either there is a large edge-disjoint collection
or there is a bounded-size set of edges hitting all spiders.

Theorem 4. There exists a function f (t,k) satisfying the following. Let G be a graph, X ⊆ V (G), and
k, t ≥ 1 a positive integer. Either G has t pairwise edge-disjoint X-spiders each of order k, or there exists
a set Z of at most f (t,k) edges intersecting every X-spider of order k in G.

Note that the edge-disjoint spiders in Theorem 4 may share body vertices. Theorem 4 is implicit in [14]
using the language of tangles. We give the proof below after presenting the necessary background on
separations and tangles.

A separation in a graph G is an ordered pair of subgraphs (A,B) which are pairwise edge disjoint such
that A∪B = G. The order of the separation is |V (A)∩V (B)|. The separation is trivial if A is a subgraph
of B or vis versa, B a subgraph of A. Note that separations are usually defined to be unordered pairs.
However, since we will only consider separations in the context of tangles where the separations are
necessarily ordered, it will be convenient for us to always assume that separations are ordered.

Tangles play an important part of the theory of minors and allow one to disregard “small” pieces of the
graph which are separated off by “small” cutsets. If G is a graph and Θ a positive integer, a tangle in G
of order Θ is a set T of separations of G, each of order < Θ, such that

i. for every separation (A,B) of G of order < Θ, one of (A,B) or (B,A) is in T , and

ii. if (A1,B1), (A2,B2), (A3,B3) ∈T then A1∪A2∪A3 6= G, and

iii. if (A,B) ∈T , then V (A) 6=V (G).

See [13] for a more in depth introduction to tangles.

A graph G contains a graph H as a minor if H can be obtained from a subgraph of G by repeatedly
contracting edges. If H is a simple graph, then a model of an H-minor in G is a set of subsets of V (G)
{Xv ⊆V (G) : v ∈V (H)} such that
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i. for all u,v ∈V (G), u 6= v, Xu∩Xv = /0,

ii. G[Xv] is connected for all v ∈V (H), and

iii. for all uv ∈ E(H), there exists an edge of G with one end in Xu and one end in Xv.

The sets Xv are called the branch sets of the model. Clique minors give rise in a natural way to large
tangles in a graph. Let G be a graph, let t and k positive integers such that t ≥ 3

2 k, and let {Xi : 1≤ i≤ t}
be the branch sets of a model of Kt in G. For every separation (A,B) of order less than k, exactly one of
V (A) \V (B) or V (B) \V (A) contains a branch set Xi for some i. Let T be the set of separations (A,B)
of order less than k such that V (B) \V (A) contains a branch set Xi for some i. Then T forms a tangle
of order k. We refer to the tangle T as the tangle induced by the model of Kt of order k. Note that the
requirement t ≥ 3

2 k (and not simply t > k) is necessary to ensure that property ii in the definition of a
tangle holds.

We will need the following theorem of Robertson and Seymour ([14], Proposition 7.2). Given a tangle
T in a graph G of order Θ, a set X ⊆V (G) is free with respect to T if there does not exist (A,B) ∈ T
of order strictly less than |X | such that X ⊆V (A).

Theorem 5 ([14]). Let T be a tangle in a graph G, and let W ⊆ V (G) be free relative to T with
|W | ≤ w. Let h≥ 1 be an integer, and let T have order ≥ (w+h)h+1 +h. Then there exists W ′ ⊆V (G)
with W ⊆W ′ and |W ′| ≤ (w+h)h+1 such that for every (C,D) ∈T of order < |W |+h with W ⊆V (C),
there exists (A′,B′) ∈T with W ′ ⊆V (A′∩B′), |V (A′∩B′)\W ′|< h, C ⊆ A′ and E(B′)⊆ E(D).

We will use a slightly reformulated statement which follows immediately from Theorem 5. Given a
tangle T in a graph G and a set Z ⊆V (G) such that |Z| is less than the order of T , the tangle T −Z is
defined as the set of separations (A′,B′) of G−Z such that there exists a separation (A,B) ∈T such that
Z ⊆V (A∩B), A−Z = A′, and B−Z = B′ hold. Robertson and Seymour proved that T −Z is indeed a
tangle [13].

Theorem 6. Let G be a graph and T a tangle in G of order t. Let k and w be positive integers with
t ≥ (k+w)k+1 + k. Let {X j ⊆ V (G) : j ∈ J} be a family of subsets of V (G) indexed by some set J with
|X j|= k for all j ∈ J. Then there exists a set J′ ⊆ J satisfying the following.

1. for all j, j′ ∈ J′, X j ∩X j′ = /0, and

2. X =
⋃

j∈J′ X j is free.

Moreover, if |X |< w, then there exists a set Z with X ⊆ Z and |Z| ≤ (w+ k)k+1 satisfying the following:

3. for all j ∈ J, either X j ∩Z 6= /0 or X j is not free in T −Z.

Proof. Pick J′ ⊆ J such that J′ satisfies 1. and 2. Moreover, pick J′ to maximize |X | for X =
⋃

j∈J′ X j. If
|X |< w, we apply Theorem 5 to W = X with h = k and the value w. Let W ′ be the set given by Theorem
5. Let j ∈ J and consider X j. Assume X j∩W ′ = /0. By the choice of J′ to maximize |X |, X j∪X is not free
in T . Thus, there exists a separation (C,D) ∈T with X j∪X ⊆C and of order < |X |+k. The separation
(A′,B′) guaranteed by Theorem 5 ensures that the set X j is not free in T −W ′, as desired.

Note that the set J′ in Theorem 6 may be empty, but in this case it must hold that every Xi is not free in
T . The proof of Theorem 4 follows easily by invoking Theorem 6 on the line graph of G:

6



Proof (of Theorem 4). First consider the following observation. If e1,e2, . . . ,ek are distinct edges sharing
a common endpoint v, then they form a Kk subgraph, call it K, in the line graph of G. If there exist k
vertex disjoint paths P1, . . . ,Pk from K to δ (X) in the line graph of G, then in the original graph G, those
paths will contain an X-spider of order k with body equal to v. There is a subtlety here, in that the
X-spider may not contain the edges e1, . . . ,ek since some Pi may contain two edges incident the vertex v.

To find the pairwise disjoint spiders or the bounded hitting set, first consolidate the vertex set X to a
single vertex x. In the line graph, the set of edges δ (x) forms a large clique subgraph which induces a
large order tangle. We let the subsets X j be all possible subsets of k edges with a common endpoint in
V (G)\X and apply Theorem 6 to these sets X j in the line graph. Either we find t of them whose union is
free in the line graph, corresponding to t pairwise edge-disjoint spiders in G, or alternatively, we get the
bounded size hitting set as desired.

4 Excluding a spider

In this section, we give an exact characterization of when a given graph has an X-spider for a fixed subset
X of vertices. However, in the applications to come, we will need a stronger version of this theorem and
so we generalize the statement in terms of tangles.

In order to use the results of the previous section, which are based on tangles and vertex separations, we
will need to pass back and forth between the graph G where we are looking for a spider and the line graph
of G. This leads us to make the following definition. Let G be a graph and U ⊆ V (G). We denote by
N(U) the set of vertices of V (G)\U with at least one neighbor in U . The set U defines an edge cut in G,
namely δ (U). This edge cut in G corresponds to a separation in the line graph. We define the separation
(A,B) of the line graph as follows. Let L be the line graph L(G). Let A = L[E(G[U ])∪ δG(U)]. Let
B = L[E(G−U)∪δG(U)]−E(L[δG(U)]). We refer to (A,B) as the canonical separation in L(G) for U .
Note that the order of the canonical separation is |δG(U)|.

Define a k-star in a graph G to be a set F of k edges for which there exists a vertex u such that every
edge in F has u as an endpoint. The vertex u is called the center of the star. We now characterize when
a graph has a k-star which is free with respect to the given tangle in the line graph. We first need two
easy claims on properties of tangles. The first follows from property ii in the definition of a tangle and
the second follows from the first, again along with property ii in the definition of a tangle.

Observation 7. Let G be a graph and T a tangle in G. Let (A,B) ∈ T and let S = V (A)∩V (B). Let
(Ā, B̄) be the separation with Ā = A∪G[S] and B̄ = B−E(G[S]). Then (Ā, B̄) ∈ T . Let (A′,B′) be a
separation with |V (A∩B)| ≥ |V (A′∩B′)| such that V (A′)⊆V (A). Then (A′,B′) ∈T .

Lemma 8. Let G be a graph, and let L(G) be the line graph of G. Let t,k be positive integers with k < t.
Let T be a tangle in L(G) of order t. Let U ⊆V (G). There does not exist a k-star F with center u ∈U
which is free in T if and only if there exists a positive integer l and subsets U1, . . . ,Ul ⊆V (G) such that:

1. Ui∩U j = /0 for 1≤ i < j ≤ l and U ⊆
⋃l

1Ui,

2. |δG(Ui)|< k for all 1≤ i≤ l, and

3. if (Ai,Bi) is the canonical separation in L(G) for Ui, then (Ai,Bi) ∈T for all 1≤ i≤ l.

Proof. To see necessity, assume we have such sets U1, . . . ,Ul satisfying 1.-3. For any k-star F with center
u ∈U , there exists an index i such that u ∈Ui. But then the canonical separation (Ai,Bi) for Ui satisfies
F ⊆V (Ai) and is of order at most k−1. Thus, F is not free.
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We now show sufficiency. Assume the statement is false, and pick a counterexample G, T , U . Let L(G)
be the line graph of G. Assume there does not exist a k-star F which is free with respect to T in L(G).
Let {Fi : i ∈ I} be the set of all possible distinct k-stars in G with center vertex in U indexed by a set I.
Let ui be the center vertex of Fi for i ∈ I.

In general, separations in the line graph L(G) do not immediately correspond to edge cuts in G: one must
take into account trivial separations and separations which are not minimal.

Claim 9. Let F be a k-star in G with center u ∈U. Let (A,B) ∈T be a separation of order strictly less
than k in L(G) such that F ⊆ E(A) and E(A∩B)⊆ E(A). Assume further that (A,B) is selected from all
such sets to have minimum order. Then there exists a set W ⊆ V (G) with u ∈W such that (A,B) is the
canonical separation for W.

Proof. Observe that V (A)\V (B) is not empty, as |V (A)| ≥ k, and V (B)\V (A) 6= /0 by the properties of
a tangle. Thus, L(G)−V (A∩B) is disconnected, which implies that G−V (A∩B) is also disconnected.
Each component of G−V (A∩B) intersects at most one of V (A)\V (B) and V (B)\V (A). Let H be the
components of G−V (A∩B) containing edges of V (A)\V (B); thus V (A)\V (B) =E(H). Let W =V (H).
Note that the center u of F is contained in W . We claim that (A,B) is the canonical separation of W . To
see this, it suffices to show that every edge of V (A∩B) has one end in W and one end in V (G)\W . This
follows from our choice of (A,B) to be a separation of minimal order in T with F ⊆V (A), proving the
claim. y

We fix a set {Wj ⊆V (G) : j ∈ J} of subsets of V (G) such that if (A j,B j) is the canonical separation for
Wj for j ∈ J, then

a. (A j,B j) ∈T for all j ∈ J,

b. for all i ∈ I, there exists j ∈ J such that ui ∈Wj, and

c. subject to a and b, ∑ j∈J |Wj| is minimized.

Note that such a set {Wj ⊆V (G) : j ∈ J} exists by Claim 9 and the fact that for every k-star F with center
in U , we can find a separation (A,B) ∈T of L(G) with F ⊆V (A) of order strictly less than k.

We claim that the set {Wi : i ∈ J} are pairwise disjoint. Assume that there exist j, j′ ∈ J, j 6= j′, such that
Wj ∩Wj′ 6= /0. If Wj ⊆Wj′ , then E(A j) ⊆ E(A j′), and therefore {Wi : i ∈ J− j} satisfy a and b, contrary
to our choice of {Wi : i ∈ J}. Thus, we may assume that both Wj \Wj′ and Wj′ \Wj are non-empty. It is a
basic property of edge cuts in graphs that

|δ (Wj)|+ |δ (Wj′)| ≥ |δ (Wj \Wj′)|+ |δ (Wj′ \Wj)|.

Thus, without loss of generality, we may assume that |δ (Wj \Wj′)|< k. Then if (A′,B′) is the canonical
separation of Wj \Wj′ , by Observation 7, we have that (A′,B′) ∈T . Thus, {Wi : i ∈ J, i 6= j}∪{Wj \Wj′}
satisfies a and b, contrary to our choice to minimize ∑i∈J |Wi|.

The sets {Wi : i ∈ J} are pairwise disjoint. It is possible that they do not satisfy
⋃

i∈J Wi ⊇U , however in
this case, it must be true that for every v ∈U \

⋃
i∈J Wi, we have that |δ (v)|< k by our choice {Wi : i ∈ J}

to contain the center of every k-star with center in U . Thus, {Wi : i ∈ J}∪{{v} : v ∈U \ {Wi : i ∈ J}}
satisfies the statement of the lemma. This completes the proof.

From Lemma 8, it is easy to characterize when a given graph has an X-spider of order k.

Lemma 10. Let G be a graph, X ⊆ V (G), and k ≥ 1 a positive integer. Assume |δ (X)| ≥ 3
2 k. Then G

contains an X-spider of order k if and only if there does not exist a partition U1, . . . ,Um of V (G)\X such
that for all 1≤ i≤ m, |δ (Ui)|< k.
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Proof. Necessity is immediate. In order to see sufficiency, assume G does not contain an X-spider of
order k. Let G′ be obtained from G by consolidating the vertex set X into a single vertex x. Clearly, there
exists an X-spider in G of order k if and only if there exists an x-spider of order k in G′. The set of edges
δG′(x) forms a clique subgraph H of L(G′) of order at least 3

2 k. Let T be the tangle of order k induced
by this model of a clique minor in G′.

We apply Lemma 8 to G′ with the set U =V (G′)−x and the tangle T . Assume, to reach a contradiction,
that there exists a k-star F which is free with respect to T and has center u ∈U . In L(G′) there does not
exist a separation of order < k separating F from V (H). Thus, there exist k pairwise vertex disjoint paths
from F to V (H) = δG′(x) in L(G′), and consequently, there would exist an {x}-spider of order k in G′, a
contradiction.

Thus, by Lemma 8, there exist sets U1, . . . ,Ul in V (G′) satisfying 1.− 3. Observe that no Ui contains
an edge incident to x by the definition of the tangle T , and consequently, no Ui contains the vertex x.
We conclude that U1, . . . ,Ul is a partition of V (G′)− x = V (G) \X . The lemma now follows from the
observation that δG′(Ui) = δG(Ui) for all 1≤ i≤ l.

Note that the proof of Lemma 8 can be replicated to show Lemma 10 eliminating the assumption that
|δ (X)| ≥ 3

2 k.

5 Bounded degree

In this section, we show that a k-edge connected graph contains a vertex with a sufficiently large neigh-
borhood, then we can immerse any graph of maximum degree k. One consequence of this is to charac-
terize when the converse of Lemma 3 holds. Dvorak and Klimosova [7] have recently found a proof of
this statement with better bounds and which lends itself to finding strong immersions as opposed to weak
immersions. We include our proof here, as it illustrates some of the ideas which we will use in the proof
of Theorem 1.

We first define the graph Sl,m to be the graph with m+1 vertices x1, . . . ,xm,y and l parallel edges from xi

to y for all 1≤ i≤ m. See Figure 5. The graphs Sl,m have the useful property that they contain any fixed

x1 x2

x3

y

Figure 2: The graph S3,3.

graph H as a strong immersion for appropriate chosen values l and m. Specifically, let H be a graph of
maximum degree at most k on n vertices for positive integers k and n. Then the graph Sk,n contains H as
a strong immersion. To see this, consider the following. Given the graph H, subdivide each edge of H,
and identify all the new vertices of degree two to a single vertex. The resulting graph is a subgraph of
Sk,n for n = |V (G)| and k equal to the maximum degree of H. Reversing this process shows how to arrive
at H by identifying pairwise edge disjoint paths linking the branch vertices.

Lemma 11. Let k ≥ 1 be a positive integer, let G be a k-edge connected graph, and let H be a graph of
max degree k on n vertices. Let f be the function in Theorem 4. If G has no H-immersion, then for all
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v ∈V (G)

|N(v)| ≤ (2k) f
(

k,k2
(

n−1
k−1

))
+n.

Proof. Assume G does not admit an immersion of H. Thus, G has no immersion of Kn as well. By
the structure theorem (Theorem 2), there exists a tree-cut decomposition (T,X ) of G having adhesion
less than n2 such that for every t ∈ V (T ), the torso Ht of G at the vertex t has (n,n2)-bounded degree.
Assume, to reach a contradiction, that G has a vertex z which satisfies |N(z)| ≥ (2k) f

(
k,k2

(n−1
k−1

))
+n,

and fix t to be the vertex of T such that z∈ Xt . Let Ht be the torso of G at t, and let Z be the set of vertices
of Ht of degree at least n2. Note z ∈ Z.

We apply Theorem 4 to either find many disjoint Z-spiders in G of order k or a bounded size-hitting
set. Assume, as a case, that there exist m pairwise edge-disjoint Z-spiders S1, . . . ,Sm for m = k2

(n−1
k−1

)
=

k
n2 k
(n

k

)
(kn). Note that these spiders may share body vertices, but we argue that there is a large subset of

them with pairwise distinct body vertices. Every vertex v ∈V (G)\Z either has degG(v)< n2 or v /∈ Xt .
Consider a vertex v /∈ Xt . There exists a subset U ⊆V (G)\Z with v ∈U such that |δG(U)| ≤ n2 (as the
adhesion of (T,X ) is less than n2), and consequently there are at most n2/k distinct indices i such that
Si has the vertex v as a center. If instead we consider v ∈ Xt \Z, degG(v) ≤ n2, and again there are at
most n2/k distinct indices i such that Si has v as a body by the bound on the degree of v. We conclude
that there exists a subset I ⊆ {1, . . . ,m} of size at least k

(n
k

)
(kn) that corresponds to spiders with pairwise

distinct bodies. That is, if vi is the body of Si for i ∈ I, then for all i, j ∈ I, i 6= j, vi 6= v j.

We may assume that each Z-spider of order k in our collection contains at most k vertices of Z and each
path in a spider contains exactly one vertex of Z. There are at most k

(n
k

)
different subsets of Z of size at

most k. Thus, there exists a subset Z′ ⊆ Z of size at most k and a subset I′ ⊆ I with |I′| ≥ kn such that
for every i ∈ I′, Z′ =V (Si)∩Z. Pick n distinct indices in I′ and let x1, . . . , xn be the corresponding body
vertices. Let z′ be an arbitrary vertex of Z′. We construct an immersion of Sk,n by finding k paths from
each x j to z′ such that these kn paths are pairwise edge disjoint. We start with the k edge-disjoint paths of
the spider at x j. If one of these paths terminates at a vertex z′′ ∈ Z′ different from z′, then we extend the
path by picking a spider Si, i ∈ I′ not yet used, using one of the paths of Si to go from z′′ to the body of
Si, and then using one of the paths of Si going from the body of Si to z′. (By definition of the set I′, spider
Si does have paths terminating in z′ and in z′′.) Taking into account that the spider at x j has a path going
directly to z′, we have to repeat this rerouting argument at most (k− 1)n times. Thus |I′| ≥ kn implies
that we can pick a different spider Si each time. We conclude that G contains Sk,n as an immersion, and
consequently contains H as an immersion, a contradiction. This concludes the case when there are many
pairwise edge-disjoint spiders.

Thus, we may assume from Theorem 4 that there exists a set F ⊆ E(G) of size at most f
(

k,k2
(n−1

k−1

))
such that G−F does not contain a Z-spider of order k. By Lemma 10, there exists a partition Y1, . . . ,Yp

of V (G−F)−Z =V (G)−Z such that |δG−F(Yi)|< k for some positive integer p.

In the graph G−F , the vertex z has |NG−F(v)| ≥ |NG(v)| − |F | ≥ (2k− 1) f
(

k,k2
(n−1

k−1

))
+ n. Thus, z

has at least (2k− 1) f
(

k,k2
(n−1

k−1

))
distinct neighbors in V (G) \Z in the graph G−F . As z has at most

k−1 neighbors in each set Yi, we conclude that p > 2 f
(

k,k2
(n−1

k−1

))
≥ 2|F |. However, every set Yi must

contain an endpoint of some edge in F by the edge-connectivity of G. This final contradiction completes
the proof.

Recall that Lemma 3 shows that any graph with both bounded tree-width and bounded degree also has
bounded tree-cut width. As we observed in Section 2, the converse is not true. However, if we eliminate
parallel edges and assume a minimal amount of edge connectivity, the converse does hold. The proof
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uses the Grid theorem of Robertson and Seymour. As we will not need these concepts further in the
article, we direct the reader to [5] for additional details.

Theorem 12. Let G be a 3-edge connected simple graph. For all k ≥ 1, there exists a value D = D(k)
such that every graph with tree-cut width at most k has maximum degree at most D and tree-width at
most D.

Proof. Let G be a graph of tree-cut width at most k for some fixed k ≥ 1. Thus, G does not admit
an immersion of a large wall [15]. As a consequence, the tree-width of G must also be bounded, as
sufficiently large tree-width will ensure the existence of a large wall subdivision which forms a large
wall immersion.

Similarly, by Lemma 11, we we know that |N(v)| is bounded for all v ∈ V (G). Given that the graph is
simple, it follows that the maximum degree of G is bounded as well.

6 Proof of Theorem 1

In order to prove Theorem 1, we will make use of several auxiliary results. The first has been shown by
Chudnovsky, Dvorak, Kilmosova and Seymour [2].

Theorem 13 ([2]). Let G be a 4-edge connected graph. Then for all t there exists a W such that either
G has tree-width at most W or the line graph of G contains a Kt-minor.

The second result we will use is due to Robertson and Seymour [12].

Theorem 14 ([12]). Let T = {s1, . . . ,sk, t1, . . . , tk} be a set of 2k distinct vertices in a graph G. Let
X1, . . . ,X3k form a model of a K3k minor. Assume there does not exist a separation (A,B) of order < 2k
and an index i such that T ⊆ A and Xi ⊆ B\A. Then there exist k pairwise vertex disjoint paths P1, . . . ,Pk
such that the endpoints of Pi are si and ti.

The proof of Theorem 1 uses the fact that Lemma 11 essentially bounds the degree of a potential coun-
terexample. However, Lemma 11 only bounds the size of the neighborhood of each vertex; to bound the
degree, we need to eliminate the possibility of large numbers of parallel edges between pairs of vertices.
This is a somewhat annoying technicality. Thus, we effectively split the proof of Theorem 1 into two
parts. The first, stated below as Theorem 15 restricts to the case when there are a bounded number of
parallel edges between any pair of vertices. Then in order to prove Theorem 1, we only need to bound
the number of such parallel edges.

Theorem 15. There exists a function g′ satisfying the following. Let k ≥ 4,n ≥ 1,D ≥ 1 be positive
integers. Let H be a graph with maximum degree k on n vertices. Let G be a k-edge connected graph
such that deg(v)≤D for all v ∈V (G). Then either G admits an immersion of H, or G has tree-cut width
at most g′(k,n,D).

Proof. Let G be k-edge connected but not admit an immersion of H. Let |V (H)| = n. Let L(G) be the
line graph of G. Fix

`=
3
2
(4k+1)(2Dn)k+1.

By Theorem 13, there exists a value W such that either G has tree-width at most W or the line graph
of G contains K` as a minor. We set g′(k,n,D) = (2W + 2)D. If the tree-cut with of G is greater than
g′(k,n,D), then Lemma 3 implies that G has tree-width greater than W , and consequently we may assume
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in the following that L(G) contains K` as a minor. Fix a model K of K` as a minor in L(G). The model K
defines a tangle T of order 4k(2Dn)k+1 + k in L(G).

Let {Xi : i ∈ I} be the set of k-stars in G. We apply Theorem 6 to the tangle T and the sets {Xi : i ∈ I}.
Let I′ ⊆ I be the subset satisfying 1. and 2. in the statement. Let X =

⋃
i∈I′ Xi. Assume, as a case, that

|X | ≥ Dn. As every vertex of G has degree at most D, and the stars Xi for i ∈ I′ are pairwise disjoint,
there exists a subset I′′ ⊆ I′, |I′′| ≥ kn such that for every i, j ∈ I′′, Xi and X j have distinct center vertices.
Assign each Xi for i∈ I′′ to a distinct vertex of H. Let X ′=

⋃
i∈I′′ Xi, and let m= |E(H)|. There is a natural

way to label elements of X ′ by s1, t1,s2, t2, . . . ,sm, tm such that if there exist pairwise vertex disjoint paths
P1, . . . ,Pm (in L(G)) such that the ends of Pi are si and ti, then in the original graph G admits an immersion
of H. Given that X ′ =

⋃
i∈I′′ is free with respect to the tangle T , by Theorem 14, there exist the desired

disjoint paths P1, . . . ,Pm, and we conclude that G contains H as an immersion.

Thus, we may assume |X | < Dn, and consequently, there exists a set Z ⊆ E(G) with |Z| ≤ (2Dn)k+1

satisfying 3. in the statement of Theorem 6. There exists a model K′ of a K4k(2Dn)k+1 minor in L(G−Z)
obtained by simply discarding any branch set of K containing an element of Z. Then K′ induces a
tangle T ′ in L(G− Z) of order 2k(2Dn)k+1. Note that the set of k-stars of G− Z is exactly the set
{Xi : i ∈ I and Xi∩Z = /0}. Thus, by property 3. and the definitions of T and T ′, we see that there does
not exist a k-star in G−Z which is free with respect to T ′.

We conclude by Lemma 8 that there exists a partition U1, . . . ,Us of V (G−Z) that satisfies 1.−3. in the
statement of Lemma 8 for some positive integer s. Note that at most k− 1 distinct branch sets of K′

intersect the edge set EG−Z(Ui)∪ δG−Z(Ui) for all 1 ≤ i ≤ s by property 3. Thus, given the order of the
clique minor S′, we conclude that s > 2(2Dn)k+1. However, for all 1 ≤ i ≤ s, there exists at least one
edge of Z in δG(Ui) by the overall connectivity of the graph. By our bound on s, we see |Z|> (2Dn)k+1,
a contradiction. This completes the proof of the theorem.

We will need several quick observations in order to eliminate the degree bound in the statement of
Theorem 15.

Observation 16. Let G and H be graphs such that G does not admit a (strong) immersion of H. Assume
there exists u,v∈V (G) with at least |E(H)| parallel edges from u to v in G. Let G′ be the graph obtained
from G by consolidating the vertex set {u,v}. Then G′ does not admit a (strong) immersion of H.

To see that Observation 16 holds, let x be the vertex of G′ corresponding to {u,v}. Then if G′ had an
immersion of H, at most |E(H)| distinct composite paths would use an edge of δG′(x). Given the large
number of edges in G linking u and v, we can easily extend such an immersion in G′ to an immersion in
G. Note that if the immersion in G′ is strong, the immersion we construct in the original graph G will be
strong as well.

Observation 17. Let G and H be graphs. Let |V (H)|= n and |E(H)|= m. Assume G is connected and
has at least n vertices. Assume as well that, for every pair of vertices u,v ∈V (G), if u and v are adjacent
then there are at least m parallel edges in G with ends u and v. Then G contains H as an immersion.

Observation 17 can be seen by induction on |E(H)|. If |E(H)|= 0, there is nothing to prove. Otherwise,
fix an injection from V (H) to V (G) and pick an edge uv in H. Pick a path in G linking the vertices of G
corresponding to u and v, delete the edges from G, and apply induction.

We now give the proof of Theorem 1.

Proof. Theorem 1. Assume G does not admit an immersion of H. Let |V (H)|= n. Consider the auxiliary
graph G′ defined on the vertex set V (G) such that two vertices u and v of G′ are adjacent if there exist at
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least kn parallel edges in G from u to v. Let the components of G′ have vertex sets V1,V2, . . . ,Vs for some
positive integer s. By Observation 17, each component of G′ has at most n−1 vertices.

Let G1 be the graph obtained from G by consolidating the vertex sets Vi for 1 ≤ i ≤ s. By Observation
16, the graph G1 does not admit an immersion of H. Let the vertices of G1 be v1, . . . ,vs where each vi

corresponds to the consolidated set Vi of vertices for 1≤ i≤ s. Moreover, between every pair of vertices
v1,v2, there are at most kn3 parallel edges given that each of v1 and v2 correspond to at most n−1 vertices
of G.

By Lemma 11, it now follows that there exists a value D depending only on k and n such that ∆(G1)≤D.
Thus, by Theorem 15, we conclude that the tree-cut width of G1 is at most g′(k,n,D). Let (T,X1) be
a tree-cut decomposition of G1 of minimum width. Let X1 = {X1

t : t ∈ V (G)}. For all t ∈ V (T ), let
Xt =

⋃
i:vi∈X1

t
Vi and let X = {Xt : t ∈ V (T )}. We conclude that (T,X ) is a tree-cut decomposition of

width at most g(k,n) = ng′(k,n,D). This completes the proof of the theorem.

7 Highly connected graphs with no strong immersion of Kt

DeVos et al. have shown that every simple graph with large minimum degree has a strong immersion of
a fixed clique.

Theorem 18 ([3]). Every simple graph with minimum degree at least 200t contains a strong immersion
of Kt .

Trivially, this implies that every simple graph which is 200t-edge connected contains a strong immersion
of Kt . However, if we remove the requirement that the graph be simple, the statement no longer holds.
In fact, the graphs Pk,n form examples of graphs which can be arbitrarily highly edge connected and do
not contain a strong immersion of K4.

In this section, we will see that long paths of parallel edges essentially form the only highly edge con-
nected graphs which do not strongly immerse large cliques. Before proceeding with the theorem, we will
need several easy results. First, we show that even though Pk,n does not contain a strong immersion of
even K4, if there is a single vertex that is adjacent to many vertices of Pk,n, then a strong immersion of Kk
appears.

Lemma 19. Let x1, . . . , xn be vertices in a graph G such that there are at least k edges between xi and
xi+1 for every 1 ≤ i < n− 1. Let y be a vertex having at least k2 neighbors in {x1, . . . ,xn}. Then G
contains a strong immersion of Kk.

Proof. A strong immersion of Sk,k in G can be easily found, where y is the image of the central vertex of
Sk,k and the images of the other k vertices are on the path. As Sk,k contains Kk as a strong immersion, the
claim follows.

We will need a result on graphs which do not contain K1,` as a minor. There has been considerable work
on finding extremal functions on the number of edges or number of vertices of degree at least 3 necessary
to force such a minor. See [6, 10, 1]. The next lemma follows as an easy corollary to a result of Zickfeld
[16], Theorem 4.7. We include a self-contained proof for completeness. Recall that if G is a graph and
X ⊆V (G), N(X) denotes the set of vertices in V (G)\X with a neighbor in X .

Lemma 20. Let G be a connected simple graph and let ` ≥ 2 be an integer. Then either G contains a
K1,` minor or there exists a set X ⊆V (G) such that |X |< 4` and the following holds. There are at most
2` components of G−X and every component of G−X is a path P. Moreover, for every component P of
G−X, N(X)∩V (P) is a subset of the endpoints of P.
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Proof. Assume G does not contain a K1,` minor. Pick a spanning tree T of G to maximize the number of
leaves. The tree T is a subdivision of a tree T̄ which has no vertex of degree two. Note that T̄ is a minor
of G, and thus T̄ has at most `−1 leaves. Since every vertex of T̄ which is not a leaf has degree at least
three, we see that |V (T̄ )| ≤ 2`, and at least half of the edges of T̄ are incident to a leaf of T̄ .

Let Y be the set of vertices of degree at least three in T , and let X = Y ∪NT (Y ). We claim X has at most
4` vertices. For every edge e ∈ E(T̄ ), there exists a corresponding path Pe in T whose ends have degree
not equal to two (in T ) such that every internal vertex of Pe has degree exactly two in T . Each such path
Pe can contain at most two vertices of NT (Y ), and if it contains two such vertices, then it must be the case
that both endpoints of Pe are in Y . Thus, given the bounds on |E(T̄ )| and the fact that at least half the
edges of T̄ are incident to leaves, we conclude that |NT (Y )| ≤ 3`. The bound on |X | now follows.

Assume, to reach a contradiction, that there exists an edge e such that Pe−X has an internal vertex v
of degree at least three in G. Let f be an edge of E(G) \E(T ) incident to v. If f has both endpoints
contained in Pe, it is easy to see that there exists an edge e′ of Pe such that (T ∪{ f})−e′ has strictly more
leaves. Alternatively, f has an endpoint not contained in Pe. Then there exists a subpath P′ of Pe with one
end equal to v and the other end contained in Y such that for every edge e′ of P′, (T ∪{ f})− e′ is a tree.
Moreover, since v is an internal vertex of Pe−X , we see that P′ must have length at least three. It follows
that the edge e′ can be chosen so that (T ∪{ f})− e′ has strictly more leaves that T , a contradiction. We
conclude that there are at most 2` components of G−X , and each component is a path for which every
internal vertex of the path has degree in G equal to two, as desired.

Lemma 21. Let G and H be graphs. Let J be a subgraph of G which is 2|E(H)|-edge connected. Let G′

be the graph obtained from G by contracting V (J) to a single vertex. If G′ contains a strong immersion
of H, then G contains a strong immersion of H.

Proof. Let vJ be the vertex of V (G′)\V (G) corresponding to the contracted set V (J). Fix a strong immer-
sion of H in G′ given by the map π . Let Ḡ be the graph obtained from G′ by deleting the edges incident
to vJ which are not used in the immersion, i.e., we delete the set of edges X = δG′(vJ)\

⋃
f∈E(H) E(π( f )).

The graph Ḡ obviously still admits H as a strong immersion. Moreover, by the edge-connectivity
of J, we observe that there exists a vertex of V (J) with edge-disjoint paths in G to δḠ(vJ) in G as
|δḠ(vJ)| ≤ 2|E(H)|. We conclude that Ḡ is contained as a strong immersion in G, completing the proof
of the lemma.

We now state the kind of decomposition we will encounter in the structure theorem for strong immer-
sions.

Definition. Let G be a graph on n vertices. A linear order of G is simply a labeling of the vertices
v1,v2, . . . ,vn. Fix a linear order v1,v2, . . . ,vn of G. For 2 ≤ i ≤ n− 1, let Ti be the set of edges with
one end in {v1, . . . ,vi−1} and the other end in {vi+1, . . . ,vn}. The hop-width of the order v1, . . . ,vn is
max2≤i≤n−1 |Ti|. The hop-width of G is the minimum hop-width taken over all possible linear orders of
G.

Our definition of hop-width is very similar to the definition of cut-width, but note that here edges in-
cident to vi are not members of Ti. Thus, the path Pk,t has hop-width 0 but cut-width k. As we have
already observed, such paths with many parallel edges are a natural class of graphs which exclude strong
immersions of bounded sized cliques. This is the essential motivation for the definition of hop-width. In
fact, one can see that if a highly edge connected graph has a linear order with bounded hop-width, then
there should be many parallel edges between vi and vi+1 for every i, that is, the graph is close to being a
path with many parallel edges.

We now state the structure theorem for highly edge connected graphs excluding a clique strong immer-
sion. It shows that such graph can be built from a bounded number of parts having bounded hop-width; in
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a sense, this shows that paths with parallel edges are the canonical obstacles for clique strong immersions
in highly edge connected graphs.

Theorem 22. For all t ≥ 1, and let G be a 400t5-edge-connected graph with no strong Kt immersion.
Then there exists a set A⊆V (G) and Z ⊆ E(G) such that

1. |A| ≤ 4t2, |Z| ≤ 6t10, and

2. (G−Z)−A has at most 2t2 distinct components.

Moreover, for every component J of (G−Z)−A with n vertices, J has a linear order v1, . . . ,vn satisfying
the following:

3. the only vertices of J with a neighbor in A (in G−Z) are v1 and vn, and

4. the linear order v1, . . . ,vn has hop-width at most 2t6 in J.

Proof. The statement follows trivially for t ≤ 2. Fix t ≥ 3. We define an auxiliary graph R as follows.
Let V (R) = V (G), and two vertices x and y in are adjacent in R if and only if there exist at least 2t2

parallel edges of G with ends x and y. We define a clump to be a pair (J,X) such that J is an induced
subgraph of G and X ⊆V (J) with X 6= /0 satisfying the following:

a. If |V (J)| 6= 1, then J is 2t2-edge connected;

b. Every component of R is either contained in V (J) or disjoint from V (J);

c. if V (J)\X 6= /0, then for every x ∈ X , there exist at least 2t2 distinct edges with one end equal to x
and other end in V (J)\X ;

d. if |V (J)\X | ≥ 2, then J−X is 2t2-edge connected and |X | ≥ 2;

e. if V (J)\X = /0, then |V (J)|= |X |= 1;

Moreover, if we let compR(J) be the number of components of R contained in V (J), then we have

f. if |V (J)| ≥ 3, then |X | ≥ compR(J)+1.

We first observe that for every component R′ of R, there exists a clump (J,X) such that V (J) = V (R′).
The cases differ slightly, depending on |V (R′)|, however, in each case we will fix J = G[V (R′)]. If
|V (R′)|= 1, then J along with X =V (R′) satisfies the definition. Similarly, if |V (R′)|= 2, then let X be
an arbitrarily chosen vertex of V (J) and (J,X) satisfies the definition of a clump. Finally, if R′ has at
least three vertices, we consider a spanning tree of R′ and let X be two leaves of the spanning tree. Then
(J,X) again satisfies the definition.

Pick clumps (Ji,Xi) for 1 ≤ i ≤ k for some positive k such that V (Ji)∩V (J j) = /0 and V (G) =
⋃k

1V (Ji).
Moreover, pick such clumps to minimize k. By the previous paragraph, it is always possible to find such
a collection of clumps.

We first observe that there does not exist an index i such that |Xi| ≥ t. Otherwise, property c. implies that
after contracting V (J)−X to a single vertex, the contracted graph contains a strong immersion of St,t

(defined in Section 5) and then property d. and Lemma 21 imply that J also contains a strong immersion
of St,t . Given that St,t contains Kt as a strong immersion, we conclude that G contains a strong immersion
of Kt as well, a contradiction.
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Claim 23. For distinct i and j, there are at most 2t4 distinct edges with one end in V (Ji) and one end in
V (J j).

Proof. Assume otherwise and that for i, j, i 6= j, we have 2t4 distinct edges with one end in V (Ji) and one
end in V (J j). Given that |Xi| and |X j| are both at most t−1, it follows that one of the following holds, up
to swapping the indices i and j:

i. there exists xi ∈ Xi and x j ∈ X j with 2t2 parallel edges connecting them, or

ii. there exists xi ∈ Xi with at least 2t2 distinct edges to the set V (J j)\X j, or

iii. there exist at least 2t2 distinct edges, each with one end in V (Ji)\Xi and one end in V (J j)\X j.

It is easy to see that i. cannot occur, as this would imply xi and x j are adjacent in R and no component
of R has vertices in distinct clumps. If iii. occurs, then J̄ = G[V (Ji)∪V (J j)] would form the clump
(J̄,Xi∪X j), contrary to our choice to minimize the number of clumps covering V (G).

Thus, we may assume that ii. holds. Note that V (J j) \X j cannot be a single vertex, lest there exist an
edge of R with ends in distinct clumps. Thus, |V (J j)\X j| ≥ 2 and |V (J j)| ≥ 4. Property f. implies that
|X j| ≥ compR(J j)+ 1. We conclude that (Ji ∪ J j,(Xi ∪X j)− xi) is a clump. Note that f. holds because
|(Xi∪X j)− xi| = |Xi|+ |X j|− 1 ≥ compR(Ji)+ compR(J j)+ 1 = compR(Ji∪ J j)+ 1. We conclude that
if ii. holds, we have a contradiction to our set of clumps to minimize k. This completes the proof of the
claim. y

Claim 24. k = 1 and we have exactly one clump.

Proof. Assume k ≥ 2. Let G1 be the graph obtained by contracting each of the vertex sets Ji to a single
vertex for all 1≤ i≤ k. By property a. and Lemma 21, we see that G1 does not have a strong immersion
of Kt . Assume, to reach a contradiction, that G1 has more than one vertex. By Claim 23, there are at most
2t4 parallel edges connecting any pair of vertices of G1. Let G2 be the simple graph obtained from G1 by
deleting parallel edges. In other words, G2 is the simple graph with V (G2) =V (G1) and two vertices of
G2 are adjacent if and only if they are adjacent in G1. By the edge connectivity of G, we see that G2 has
minimum degree 200t. But by Theorem 18, G2 has a Kt strong immersion, and consequently, G1 does as
well, a contradiction. y

It follows that R has at most t components. Note as well that R does not contain a K1,t minor. Otherwise,
there would exist a 2t2-edge connected subgraph J of G and t distinct vertices of V (G)\V (J) each with
2t2 edges to V (J). Thus, by Lemma 21, we conclude that G would contain a strong immersion of St,t , a
contradiction.

By applying Lemma 20 to each component of R, we see that there exists a subset A ⊆ V (R) = V (G)
with |A| ≤ 4t2 such that R−A has at most 2t2 components, each of which is a path. Moreover, for every
component P of R−A, we have that NR(A)∩V (P) is a subset of the ends of P.

We fix the set A for the remainder of the proof, and we let k be a positive integer with the compo-
nents of R−A labeled P1, . . . ,Pk. For each Pi, we let n(i) = |V (Pi)| and let the vertices of Pi be labeled
vi

1,v
i
2, . . . ,v

i
n(i). Note k ≤ 2t2.

Claim 25. For all 1≤ i < j ≤ k, there are at most 2t6 edges of G with one end in V (Pi) and one end in
V (Pj).

Proof. Assume, to reach a contradiction, that there are indices i and j such that there exist at least 2t6

edges, each with one end in Pi and one end in Pj. Since no pair of vertices x,y with x ∈ V (Pi) and
y ∈ V (Pj) are adjacent in R, we know that there are at most 2t2 parallel edges from x to y in G. Thus,
without loss of generality, we may assume that there are at least t2 distinct vertices of Pi which have a
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neighbor in V (Pj). By contracting V (Pj) to a single vertex and applying Lemmas 21 and 19, we conclude
that G contains a strong immersion of Kt , a contradiction. y

We let Z1 be the set of edges e ∈ E(G) such that e has ends in distinct paths Pi and Pj. By Claim 25 and
the bound on k, we have that |Z1| ≤ 4t10.

Claim 26. Let 1≤ i≤ k. Let x,y be the endpoints of Pi. Then there are at most 8t6 edges of G with one
end in V (P)\{x,y} and one in A.

Proof. Assume, to reach a contradiction, that there exists an index i such that if we let x and y be the
endpoints of Pi, there are at least 8t6 edges of G with one end in A and the other end in V (Pi) \ {x,y}.
By the way A was defined using Lemma 20, there does not exist an edge of R with one end in A and one
end in V (Pi) \ {x,y}. Thus, for every pair of vertices u ∈ A and v ∈ V (Pi) \ {x,y}, there are at most 2t2

parallel edges of G from u to v. By assumption, there exist at least 4t4 ≥ t2|A| distinct internal vertices
of Pi which have a neighbor in A. Thus, there exists a vertex v ∈ A and t2 distinct internal vertices of Pi

which are each adjacent to v. By Lemma 19, we conclude that G contains a strong immersion of Kt , a
contradiction. y

Let Z2 ⊆ E(G) be given by Z2 = {e ∈ E(G) : ∃i such that e∩V (Pi)\{vi
1,v

i
n(i)} 6= /0 and e∩A 6= /0}. In

other words, Z2 is the set of edges with one end in A and one end contained as an internal vertex of some
Pi. By the previous claim, |Z2| ≤ 8t6k ≤ 16t8.

We let Z = Z1 ∪ Z2, and observe that |Z| ≤ 6t10 by the assumption that t ≥ 3. By construction, the
components of (G−Z)−A are exactly the subgraphs of G induced by V (Pi) for 1≤ i≤ k. Thus, we see
that A and Z satisfy 1 and 2 in the statement of the theorem. Moreover, by the fact that Z contains every
edge with one end in A and one end in an internal vertex of Pi, we see that A and Z along with the linear
order vi

1, . . . ,v
i
n(i) of V (Pi) satisfy 3. Thus, to the complete the proof of the theorem, it suffices to show

the following claim.

Claim 27. For every 1≤ i≤ k, the linear order vi
1, . . . ,v

i
n(i) of G[V (Pi)] has hop-width at most 2t6.

Proof. Assume the claim is false, and that there exists an index a such that there are at least 2t6 edges
of G with one end in {vi

1, . . . ,v
i
a−1} and one end in {vi

a+1, . . . ,v
i
n(i)}. Given that vi

1, . . . ,v
i
n(i) form an

induced path in R, for all pairs of vertices u,v with u ∈ {vi
1, . . . ,v

i
a−1} and v ∈ {vi

a+1, . . . ,v
i
n(i)}, there

are at most 2t2 parallel edges of G with ends u and v. Thus, without loss of generality, there exist at
least t2 distinct vertices of {vi

1, . . . ,v
i
a−1} that are adjacent to a vertex of {vi

a+1, . . . ,v
i
n(i)}. By contracting

{vi
a+1, . . . ,v

i
n(i)} (Lemma 21) and invoking Lemma 19, we conclude that G contains a strong immersion

of Kt , a contradiction. y

This final claim shows that conclusion 4. in the statement of the theorem holds, completing the proof.

We conclude with the observation that if a graph G has subsets A and Z satisfying 1-4 in the statement
of Theorem 22 for some value t, then the graph G does not have a strong immersion of K10t10 , indicating
that Theorem 22 is a good characterization of graphs excluding a strong immersion of a clique.
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