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Abstract

We present and analyze a central cutting surface algorithm for general semi-infinite convex
optimization problems, and use it to develop a novel algorithm for distributionally robust opti-
mization problems in which the uncertainty set consists of probability distributions with given
bounds on their moments. Moments of arbitrary order, as well as non-polynomial moments
can be included in the formulation. We show that this gives rise to a hierarchy of optimization
problems with decreasing levels of risk-aversion, with classic robust optimization at one end of
the spectrum, and stochastic programming at the other. Although our primary motivation is
to solve distributionally robust optimization problems with moment uncertainty, the cutting
surface method for general semi-infinite convex programs is also of independent interest. The
proposed method is applicable to problems with non-differentiable semi-infinite constraints
indexed by an infinite-dimensional index set. Examples comparing the cutting surface algo-
rithm to the central cutting plane algorithm of Kortanek and No demonstrate the potential of
our algorithm even in the solution of traditional semi-infinite convex programming problems,
whose constraints are differentiable, and are indexed by an index set of low dimension. After
the rate of convergence analysis of the cutting surface algorithm, we extend the authors’ mo-
ment matching scenario generation algorithm to a probabilistic algorithm that finds optimal
probability distributions subject to moment constraints. The combination of this distribution
optimization method and the central cutting surface algorithm yields a solution to a family
of distributionally robust optimization problems that are considerably more general than the
ones proposed to date.

Keywords: semi-infinite programming, robust optimization, distributionally robust optimiza-
tion, stochastic programming, moment matching, column generation, cutting surface methods,
cutting plane methods, moment problem

1 Introduction

We present a novel cutting surface algorithm for general semi-infinite convex optimization problems
(SICPs) that is applicable under milder than usual assumptions on the problem formulation,
extending an algorithm of Kortanek and No (1993). Our primary motivation is to solve a large
class of distributionally robust optimization problems that can be posed as SICPs with convex
but not necessarily differentiable constraints indexed by an uncountably infinite dimensional set
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of probability distributions. In the remainder of this section we introduce the SICPs considered;
the connection to robust optimization is discussed in Section 2.
We consider a general semi-infinite convex optimization problem of the following form:

minimize xp
subject to g¢(z,t) <0 VteT (SICP)
reX

with respect to the decision variables x (whose first coordinate is denoted by x(), where the sets
X and T, and the function g: X x T + R satisfy the following conditions:

Assumption 1.
1. the set X C R"™ is convex, closed and bounded;
2. there exists a Slater point T and n > 0 satisfying € X and ¢(z,t) < —n for every t € T}

3. the function g¢(-,t) is convex and subdifferentiable for every ¢ € T'; moreover, these subdif-
ferentials are uniformly bounded: there exists a B > 0 such that for every z € X and t € T,
every subgradient d € g, (x,t) satisfies ||d|| < B.

Note that having one of the components of the variable vector xz as an objective instead of a
general convex objective function is without loss of generality; we opted for this form because it
simplifies both the description of our algorithm and the convergence analysis. Similarly, we can
assume without loss of generality that 7 = 1 in the assumption; otherwise we can simply replace
g by g/n. (This will, of course, change the value of B as well.) We also remark that T is not
required to be either convex or finite dimensional, nor is the differentiability of g, or the convexity
or concavity of g in its second argument necessary.

The minimum of (SICP) is attained, since its feasible set is closed, nonempty, and bounded,
and its objective function is continuous. Our aim is to find an optimal solution to (SICP) within
€ accuracy, by which we mean the following.

We say that z € X is e-feasible if g(x,t) < € for every t € T, and we say that a point 2} € X
is an e-optimal solution to (SICP) if it is e-feasible and

(xX)o < xf e min{zg |z € X, g(z,t) <0Vt e T}.

We make one final assumption, on our ability to detect the approximate infeasibility of candi-
date solutions to (SICP) within a prescribed error € > 0.

Assumption 2. For every point € X that is not e-feasible, we can find in finite time a t € T
satisfying g(z,t) > 0.

It is not required that we can find the most violated inequality g(z,¢) > 0 or the corresponding
argmax,cr{g(x,t)} for any . We only stipulate that we shall be able to find a violated inequality,
provided that some inequality is violated by more than .

Assumption 2 is slightly weaker than the more “natural” assumption of having an oracle that
either returns a ¢t € T satisfying g(z,t) > € or concludes that g(z,t) < € for all t € T for some
fixed € > 0. Our form is motivated by the moment robust optimization application. As we shall
see in Section 5, the cut generation oracle for moment robust optimization needs to solve an
(infinite dimensional) distribution optimization problem that is difficult to solve exactly; however,
the method presented in that section guarantees that if a sufficiently violated constraint exists,
then some violated constraint is found in a priori bounded time.



Several algorithms have been proposed to solve semi-infinite linear and semi-infinite convex pro-
gramming problems, including cutting plane methods, local reduction methods, exchange meth-
ods, and homotopy methods. See, for example, (Lépez and Still, 2007) for a recent review on
semi-infinite convex programming, including an overview on numerical methods with plenty of
references. Most existing algorithms consider only linear problems, appealing to the fact that the
general convex problem (SICP) is equivalent to the semi-infinite linear programming problem

minimize xq

subject to u'x —gf(u) <0 Vte T and u € dom g} (SILP)

z € X,

where g7 denotes the conjugate function of ¢(-,t). We contend, however, that this transformation
is usually very ineffective, because if X is n-dimensional, T is d-dimensional, and (as it is very
often the case) d < n, then the index set in the semi-infinite constraint set increases from d to the
considerably higher d+n. Also, the set T and the function g might have special properties that allow
us to find violated inequalities g(z,t) < 0 relatively easily; a property that may not be inherited
by the set {(t,u)|t € T,u € domg;} and the conjugate function ¢* in the inequality constraints
of (SILP). This is also the case in our motivating application. For such problems, the use of
non-linear convex cuts (sometimes called cutting surfaces) generated directly from the original
convex problem (SICP) is preferred to the use of cutting planes generated from the equivalent
linear formulation (SILP).

Another family of semi-infinite convex problems where the use of cutting surfaces is more
attractive than the use of cutting planes consists of problems where X is a high-dimensional non-
polyhedral set, whose polyhedral approximation to X is expensive to construct. In this case,
any advantage gained from the linear reformulation of the semi-infinite constraints disappears, as
(SILP) still remains a nonlinear convex program. Even if X is polyhedral, and only the constraints g
are non-linear, cutting surfaces can be attractive in the high-dimensional case, where a cutting plane
method may require a large number of cuts to obtain a sufficiently good polyhedral approximation
of the non-linear constraints in the vicinity of the optimum. The trade-off between having to solve
a large number of linear master problems versus having to solve a small number of non-linear
convex master problems is not clear, but rather problem-dependent. Example 3 (in Section 6)
presents a case where the cutting surface method scales well with the increasing dimensionality of
the optimization problem, whereas the cutting plane method breaks down.

Our algorithm is motivated by the “central cutting plane” algorithm of (Kortanek and No,
1993) for convex problems, which in turn is an extension of Gribik’s algorithm (Gribik, 1979).
Gribik’s algorithm has been the prototype of several cutting plane algorithms in the field, and
has been improved in various ways, such as in the “accelerated central cutting plane” method of
(Betro, 2004). Our algorithm can also be viewed as a modification of a traditional convex constraint
generation method, in which the restricted master problem attempts to drive its optimal solutions
towards the center of the current outer approximation of the feasible set. The traditional constraint
generation method is a special case of our algorithm with all centering parameters set to zero.

Our main contribution from the perspective of semi-infinite programming is that we extend
the central cutting plane algorithm to a cutting surface algorithm allowing non-linear convex cuts.
The possibility of dropping cuts is retained, although in our numerical examples we always found
optimal solutions very quickly, before dropping cuts was necessary for efficiency.

The outline of the paper is as follows. Distributionally robust optimization is reviewed in
Section 2, where we also give a semi-infinite convex formulation of this problem, and state our
result on the convergence of the optimum objective value of the moment robust problems to that
of stochastic programs. We proceed by describing our cutting surface algorithm for semi-infinite
convex programming in Section 3, and proving its correctness and analyzing its rate of convergence
in Section 4. The application of this method to distributionally robust optimization requires a



specialized column generation method, which is introduced in Section 5. Computational results,
which include both standard semi-infinite convex benchmark problems and distributionally robust
utility maximization problems, follow in Section 6; with concluding remarks in Section 7.

2 Distributionally robust and moment robust optimization

Stochastic optimization and robust optimization are two families of optimization models introduced
to tackle decision making problems with uncertain data. Broadly speaking, robust optimization
handles the uncertainty by optimizing for the worst case within a prescribed set of scenarios,
whereas stochastic optimization assumes that the uncertain data follows a specified probability
distribution. Distributionally robust optimization, introduced in (Scarf, 1957), can be seen as a
combination of these approaches, where the optimal decisions are sought for the worst case within
a prescribed set of probability distributions that the data might follow. The term robust stochastic
programming is also often used to describe optimization models of the same form.

Formally, let the uncertain data be described by a random variable supported on a set = C R?,
following an unknown distribution P from a set of probability distributions 3. Then a general
distributionally robust optimization problem is an optimization model of the form

min max Ep[H(z)], or (equivalently) Ll Roins /ﬁeE h(z,&)P(dE), (DRO)

where H is a random cost or disutility function we seek to minimize in expectation, h is the
corresponding weight function in the equivalent integral form; the argument x of H and h is our
decision vector. We assume that all expectations (integrals) exist and that the minima and maxima
are well-defined. We shall also assume for the rest of the paper that the support set = is closed
and bounded.

With the above notation, a general stochastic optimization problem is simply (DRO) with a
singleton B, while a standard robust optimization problem is (DRO) with a set 3 that consists of
all probability distributions supported on a point in =.

One can also view the general distributionally robust optimization problem not only as a com-
mon generalization of robust and stochastic optimization, but also as an optimization model with
an adjustable level of risk-aversion. To see this, consider a nested sequence of sets of probability

distributions By 2 P1 D -+, where Py is the set of all probability distributions supported on

=, and Poo def N2, P, is a singleton set. In the corresponding sequence of problems (DRO), the

first one is the classic robust optimization problem, which is the most conservative (risk-averse)
of all, optimizing against the worst case, and the last one is the classic stochastic optimization
problem, where the optimization is against a fixed distribution. At the intermediate levels the
models correspond to decreasing levels of risk-aversion.

Such a sequence of problems can be constructed in many natural ways; we shall only focus on
the case when the sequence of 3;’s is defined by constraining an increasing number of moments of
the underlying probability distribution. In this case the (DRO) problem is called moment robust
optimization problem. Theorem 1 below establishes the “convergence” of this sequence of moment-
robust optimization problems to a stochastic optimization problem for closed and bounded domains

—
—.

Theorem 1. Let h and X as above, assume that = is closed and bounded, and that h is continuous.
Let P be a probability distribution supported on Z, with moments my(P) def fE fl ke P(dE).
For each i = 0,1,..., let B; denote the set of probability distributions Q supported on = whose
moments mg(Q) satisfy mi(Q) = my(P) for every multi-index k with 0 < ki + -+ + k, < 4.



Finally, for each i =0,1,... define the moment-robust optimization problem (DRO;) as follows:

min max/g :h(x,é)Q(df). (DROy)

zeX QeP;

Then the sequence of the optimal objective function values of (DRO;) converges to the optimal
objective function value of the stochastic program

min/ h(zx, &) P(dE). (SP)
reX ¢e=

The proof is given in the Appendix.

It is interesting to note that in the above theorem the function h(x,-) could be replaced by any
continuous function f: =+ R that does not depend on z, proving that

lim F(6)Qi(de) = fF(E)P(dS)

i200 Jeem cex

for every continuous function f:Z — R; in other words, the sequence of measures Qg, Q1,. ..
converges weakly to P, and so does every other sequence of measures in which the moments of
the ith measure agree with the moments of P up to order i. Therefore, Theorem 1 can be seen
as a generalization of the well-known theorem that the moments of a probability distribution with
compact support uniquely determine the distribution. For distributions with unbounded support,
a statement similar to Theorem 1 can only be made if the moments in question uniquely determine
the probability distribution P. A collection of sufficient conditions under which infinite moment
sequences determine a distribution can be found in the recent review article (Kleiber and Stoyanov,
2013).

In a more realistic, data-driven setting, bounds on the moments of uncertain data can be ob-
tained by computing confidence intervals around the sample moments of the empirical distribution,
and by application-specific considerations, such as a measurement or other error having mean zero.

2.1 Past work

In most applications since Scarf’s pioneering work (Scarf, 1957), the set of distributions 9 is de-
fined by setting bounds on the moments of P; recent examples include (Delage and Ye, 2010),
(Bertsimas et al., 2010), and (Mehrotra and Zhang, 2013). Simple lower and upper bounds (con-
fidence intervals and ellipsoids) on moments of arbitrary order are easily obtained using standard
statistical methods; (Delage and Ye, 2010) describes an alternative method to derive bounds on
the first and second moments. However, to the best of our knowledge, no algorithm has been
proposed until now to solve (DRO) with sets 3 defined by constraints on moments of order higher
than two.

Recent research has focused on conditions under which (DRO) with moment constraints can
be solved in polynomial time. Delage and Ye (2010) consider an uncertainty set defined via
a novel type of confidence set around the mean vector and covariance matrix, and show that
(DRO) with uncertainty sets of this type can be solved in polynomial time (using the ellipsoid
method) for a class of probility mass functions h that are convex in & but concave in £. Mehrotra
and Zhang (2013) extend this result by providing polynomial time methods (using semidefinite
programming) for least squares problems, which are convex in both  and £. The uncertainty sets
in their formulation are defined through bounds on the measure, bounds on the distance from a
reference measure, and moment constraints of the same form as considered in (Delage and Ye,
2010). Bertsimas et al. (2010) consider two-stage robust stochastic models in which risk aversion
is modeled in a moment robust framework using first and second order moments.



Our method is not polynomial time, but it can be applied to problems where bounds of moments
of arbitrary order (and possibly bounds on non-polynomial moments) are available. This allows
the decision maker to shape the distributions in B better. Moments up to order 4 are easily
interpretable and have been used to strengthen the formulation of stochastic programming models.
(Hoyland et al., 2003) provides a heuristic to improve stochastic programming models using first
and second order moments as well as marginal moments up to order 4.

Our approach is based on a semi-infinite convex reformulation of (DRO), which is discussed
next.

2.2 Distributionally robust optimization as a semi-infinite convex pro-
gram

Consider the second (integral) form of (DRO) with a function h that is convex in x for every &.
If Z and X are bounded sets, the optimal objective function value can be bracketed in an interval
[2min, Zmax), and the problem can be written as a semi-infinite convex optimization problem

minimize z

subject to — z —|—/ h(z,§)P(dE) <0 VP eP (1)

(Z,JL‘) S [Zmitn Zmax] X X;

which is a problem of the form (SICP); the set 3 plays the role of T; z plays the role of zg.
Note that in the above problem the index set of the constraints is not a low-dimensional set, as
it is common in semi-infinite convex programming, but an infinite dimensional set. Therefore,
we cannot assume without further justification that violated inequalities in (SICP) can be easily
found.

It can be verified, however, that this problem satisfies Assumption 1 as long as h has bounded
subdifferentials on the boundary of =. Assumption 2 for (1) means that for the current best
estimate z(¥) of the optimal z given by the algorithm, we can find a P such that J= h(x, &) P(dE) >
2(%) provided that there is a P for which J= Wz, §)P(dE) > 2(F) . As 2(F) approaches the optimal
value of the integral, Assumption 2 gradually translates to being able to find

- / W, €)P(dE) (@)

pPep

(in which x is a parameter) within a prescribed € > 0 error. We shall concentrate on this problem
in the context of moment robust optimization in Section 5.

In the moment-robust formulation of (DRO) the set P is defined via bounds on some (not
necessarily polynomial) moments: given continuous Z — R basis functions fi,..., fn, and a lower
and upper bound vector £ and u on the corresponding moments, we set

‘13_{P‘/Efi(f)P(dﬁ)e[&,ui},i—l,...,N}. (3)

In typical applications the f; form a basis of low-degree polynomials. For example, if we wish to
optimize for the worst-case distribution among distributions having prescribed mean vector and
covariance matrix, then f; can be the n-variate monomials up to degree two (including the constant
1 function), and ¢ = w is the vector of prescribed moments (including the “zeroth moment”, 1).



3 A central cutting surface algorithm for semi-infinite con-
vex programming

The pseudo-code of our cutting surface algorithm is given in Algorithm 1. A few remarks are in
order before we proceed to proving its correctness.

First, we assume that the instance of (SICP) that we wish to solve satisfies Assumptions 1 and 2.
The algorithm also applies to the semi-infinite formulation (1) of distributionally robust optimiza-
tion. In that context, Assumption 1 is satisfied as long as h has bounded subdifferentials on the
boundary of =. As discussed in the previous section, Assumption 2 translates to being able to find
g-optimal solutions to problems of the form (2).

Second, by correctness of Algorithm 1 it is meant that the algorithm computes an e-optimal
solution to (SICP) as long as Assumption 2 is satisfied with the same ¢.

Throughout the algorithm, y(*~1) is the best e-feasible solution found so far (or the initial

vector y(©)), and its first coordinate, yékil) is an upper bound on the objective function value of

the best e-feasible point. The initial value of yéo) is an arbitrary upper bound U on this optimum;
the other components of y(°) may be initialized arbitrarily.

In Step 2 of the algorithm we attempt to improve on the current upper bound by as much as
possible and identify a “central” point z(¥) that satisfies all the added inequalities with a large
slack. The algorithm stops in Step 3 when no such improvement is possible.

In each iteration k, either a new cut is added in Step 5 that cuts off the last, infeasible, a(
(a feasibility cut), or it is found that ) is an e-feasible solution, and the best found e-feasible
solution y*) is updated in Step 6 (an optimality cut). In either case, some inactive cuts are dropped
in the optional Step 7. The parameter 5 adjusts how aggressively cuts are dropped; setting 8 = oo
is equivalent to skipping this step altogether.

In Step 5 of every iteration k a centering parameter s*) needs to be chosen. To ensure con-
vergence of the method, it is sufficient that this parameter is bounded away from zero, and that
it is bounded from above: spin < %) < B for every k, with some sp;, > 0. (It is without loss
of generality that we use the same upper bound as we used for the subgradient norms.) Another
strategy that ensures convergence is to find a subgradient d € 9,g(z*),¢t(*)) and set s*) = a||d||
with an arbitrary « € (0, 1], which will give positive values for the centering parameter, but is not
necessarily bounded away from zero. Below we prove that Algorithm 1 converges in all of these
cases.

k)

(k

4 Correctness and rate of convergence

We show the correctness of the algorithm by proving the following theorems. We tacitly assume
that the centering parameters s(*) are chosen in Step 5 according to one of the two strategies
mentioned above.

Theorem 2. Suppose that Algorithm 1 terminates in the kth iteration. Then y*=1) is an e-optimal
solution to (SICP).

Theorem 3. Suppose that Algorithm 1 does not terminate. Then there exists an index k such
that the sequence (y(k”))i:l,z,,., consists entirely of e-feasible solutions.

Theorem 4. Suppose that Algorithm 1 does not terminate. Then the sequence (y(k))k:LQ"” has
an accumulation point, and each accumulation point is an e-optimal solution to (SICP).

Therefore, the algorithm either finds an e-optimal solution after finitely many iterations, or ap-
proaches one in the limit. Even in the second case, the e-optimal solution is approached through
a sequence of (eventually) e-feasible solutions.



Algorithm 1 (Central cutting surface algorithm).

Parameters: a strict upper bound U on the optimal objective function value of (SICP);
a B > 0 for which Assumption 1 holds; a tolerance ¢ > 0 for which Assumption 2
holds; and an arbitrary 8 > 1 specifying how aggressively cuts are dropped.

Step 1. (Initialization.) Set k = 1, y(*) = (U,0,...,0) € R*, and J© = ().

Step 2. (Solve master problem.) Determine the optimal solution (z*),0(®)) of the opti-
mization problem

maximize o

subject to zg+ 0o < y(()k_l)

g(z,tV) + s <0 vje JED
r e X.

Step 3. (Optimal solution?) If o(*) = 0, stop and return y*=1).

Step 4. (Feasible solution?) Find a t*) € T satisfying g(z*®),t(*)) > 0 if possible.
If no such t* is found, go to Step 6.

Step 5. (Feasibility cut.) Set J*) = J*=1 U {k} and y® = y*~1; choose a centering
parameter sy, < s¥) < B. (See the text for different strategies.)
Go to Step 7.

Step 6. (Optimality cut; update best known e-feasible solution.) Set JF) = jt=1)
and y®) = z(*),

Step 7. (Drop cuts.) Let D = {j| o\ > po® and g(z®)) + 05 < 0}, and set J*) =
JEIN\ D.

Step 8. Increase k by one, and go to Step 2.

We start the proof by a series of simple observations.

Lemma 5. If y(’%) is e-feasible solution to (SICP) for some k, then for every k > k, y*) is also
e-feasible.

Proof. If the point #®) found in Step 2 is not e-feasible, then a feasibility cut is found, and in
Step 5 y*) is set to be the last e-feasible solution found. Otherwise y*) = z(*)_ set in Step 6, is
e-feasible. O

Lemma 6. Suppose that in the beginning of the kth iteration we have § Lef y(()k_l) —xg > 0, where

x* is an optimal solution of (SICP). Then there exists a o9 = 0¢(6) > 0 (a function of only §, but
not of k), such that in the optimal solution of (4) in Step 2 we have

o®) > 54(8) > 0.

Proof. Let T be the Slater point whose existence is required by Assumption 1, and consider the
points z) = AZ + (1 — A)z* for A € (0,1]. Multiplying the constraints involving g by 1/, we can
assume without loss of generality that = satisfies g(z,t) < —1 for every t € T. Because of the



Slater property of Z and the feasibility of 2*, x is a feasible solution of (4) in every iteration for
every A € (0,1], and it satisfies the inequalities
_ AL . .
9w, 1) + s <Ag(@, 1) + (1= N)g(a”, 1) + A
= Mg(@,tD) + 1) + (1 = Ng(a", 1)
<0 foralljeJOUJ®y...,

using the convexity of g and s/) < B in the first inequality and the Slater condition in the second.

In the kth iteration, if y(()kfl) —axf =06 > 0, then z, also satisfies the inequality

wo ! = ()0 = (5 +6) = (o + (1= N)zg) = 6 = Ao — ) > 6/2
for every A > 0 sufficiently small to satisfy 0 < \(Zg — z)) < §/2.
Denoting by Ao such a sufficiently small value of A, and letting
o0 < min(Ao/B,5/2),

we conclude that the pair (zy,,00) is a feasible solution to (4), hence the optimal solution to (4)
also satisfies (%) > oo > 0. O

Our final lemma is required only for the proof of Theorem 4.

Lemma 7. Suppose that Algorithm 1 does not terminate. Then the sequence (U(k))k=1,2,,,_ de-

. k . .
creases monotonically to zero, and the sequence (y(() ))k:]_’g’m s also monotone decreasing.

Proof. For every k, o®) > 0, because the pair (z,0) = (z*,0) is a feasible solution in each iteration.

From this, and the first inequality of (4), the monotonicity of (y(()k))kzl,z,m follows.

Since (yék))kzl,g’m is monotone decreasing and only inactive cuts are dropped from (4) in Step

7, the sequence (¢(*));—1 > . is monotone non-increasing. Therefore (0(®));_; 5 is convergent.
Let us assume (by contradiction) that ¢(*) \, oo > 0. Then for a sufficiently large k, c®) < 0
for every k > l%, implying that no cuts are dropped in Step 7 beyond the kth iteration. Consider
the optimal (/) and x(*) obtained in Step 2 of the jth and kth iteration, with k& > j > k. There
are two cases, based on whether a feasibility cut g(z(),t0)) > 0 is found in Step 4 of the jth
iteration or not.
If a feasibility cut is not found in the jth iteration, then

xék) _ y(()kfl) — o < yéj) _ ok — xéj) _ "

follows from the first constraint of (4) in the kth iteration, therefore

Hff(k) — m(j)” > o) > 4.
If a feasibility cut is found in the jth iteration, then on one hand we have
g(:r(j),t(j)) >0,

and because this cut is not dropped later on, from (4) in the kth iteration we also have
g(z® 1) 4 oM 50) <.

From these two inequalities we obtain

0 < ogs?) < c®Wgl) <« g(x(j),t(j)) _ g(l‘(k),t(j)) < _(d(j))T(z(k) _ x(j)) < ||d(j)|| . ||x(k) _ fc(j)H



for every d\) € d,g(z), V), using the convexity of g(-,tU)) and the Cauchy-Schwarz inequality.
Note that the strict inequality implies d¥) # 0. Comparing the left and right-hand sides we obtain

Uos(j)/Hd(j)H < ||x(k) — x(j)H'

From this inequality it follows that as long as the centering parameters s(/) are bounded away
from zero and ||d7)|| is bounded (as assumed), we have a o > 0 independent of j and k satisfying
o1 < ||lz®) — 2.

In summary, regardless of whether we add a feasibility or an optimality cut in iteration j, we
have that for every k > j > k,

||x(k) — x(j)H > min(og,01) > 0,

contradicting the assumption that the sequence (x(k))k:1,27.__ is bounded, and therefore has an
accumulation point. O

With these lemmas, we are ready to prove our main theorems.

Proof of Theorem 2. Suppose that the algorithm terminates in the kth iteration. First assume
by contradiction that y*~1) is not an e-feasible solution to (SICP). Then by Lemma 5, none of
the points y(©, ..., y(*=2) are e-feasible, therefore the upper bound in the first constraint of (4)
is y(()kfl) = U (a strict upper bound on the optimum) in every iteration. Hence, by Lemma 6,
o) > 0, contradicting the assumption that the algorithm terminated. Therefore y*—1) is e-
feasible.

Now suppose that y*~1) is e-feasible, but it is not e-optimal, that is, y*~1 > zg. Then
by Lemma 6 we have o) > 0 for every k, contradicting the assumption that the algorithm
terminated. O

Proof of Theorem 3. Using Lemma 5 it is sufficient to show that at least one y(®) is e-feasible.
Suppose otherwise, then no z*) or y*) obtained throughout the algorithm is e-feasible. Therefore,
the upper bound on the first constraint of (4) remains y*~1) = U (a strict upper bound on the
optimum) in every iteration. Invoking Lemma 6 we have that o(®) > oo(U — ) > 0, contradicting
Lemma 7. O

Proof of Theorem 4. The compactness of the feasible set of (SICP) implies that if the algorithm
does not terminate, then the sequence (;E(k)) k=1,2,... has at least one accumulation point, and so does
its subsequence (y(k))k:m,m. From Theorem 3 we also know that this sequence eventually consists
entirely of e-feasible points, therefore every accumulation point of the sequence (y(k)) k=1,2,... is also
e-feasible (using that the set of e-feasible solutions is also compact).

Let ¢ be one of the accumulation points, and suppose by contradiction that g is not e-optimal,
that is, go > x§. Let § = (go — x3)/2, where z* denotes, as before, an optimal solution to (SICP).
Using Lemma 5 and the assumption & > 0, there exists a sufficiently large k such that for every
k> k, y*) is an e-feasible solution to (SICP), and y(()kfl) > z§+6. Invoking Lemma 6 we find that
in this case there exists a oy > 0 such that ¢(®¥) > o for every k > l%, contradicting Lemma 7. [

4.1 Rate of convergence

Recall that throughout the cutting surface algorithm, the sequence o(®) decreases monotonically,
and converges to zero (Lemma 7). In this section we show that the method converges linearly
between feasibility cuts, beyond the first iteration k that satisfies c(®) < n/B. This matches the
rate of convergence of similar cutting plane methods. Interestingly, the analysis can be done in a
considerably simpler manner than for the (Kortanek-No) central cutting plane method.
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Theorem 8. Algorithm 1 converges linearly in objective function value between consecutive feasi-
bility cuts, beyond the first iteration k that satisfies o'®) < n/B.

Proof. Consider the master problem (4) and its dual in iteration k. Let ,u(()k) be the optimal value

of the dual variable associated with the first constraint, and let ,ug-k)

dual variable associated with the constraint corresponding to the index j € J

Without loss of generality it can be assumed that g, the objective of (SICP), is only bounded
explicitly from below by constraints in (SICP), and therefore the first constraint in the master
problem (4) is always active at the optimum:

be the optimal value of the
(k=1)

k— k
o) = ylF=1) _ y ), (5)

The dual constraint corresponding to the primal variable o gives
D Y s =1 (6)
jeJk=1)

Using this equation and the optimality of the primal and dual solutions we have that for every
z € X and every o,

U(k) >0 — M(()k) (CCO +o— (k—l) ZM(’“) x t(]) 4 O'S(j)) (7a)
= " (95" - Z i g, 1) (7b)

k k—
> 1 (" = o). (7c)

Suppose now that in this iteration the master problem yields an e-feasible solution z*). Then
y*) = z(®) and Eq. (5) together with (7) yields
k— k k— k k), (k—
o =t = =t = o™ 2 Y (Y — o)

for every z € X, and specifically for the optimal x*,

k—1 k k—1 " " k k), (k—1 "
vo =y = (8" — ) + (a5 — ") 2 g (5" — ).
Since that y(()kfl) was not yet optimal, we can divide by yékil) — x4 > 0, which leads to
(k) =
o k)
o < 1-ag (8)
Yo )

From this inequality we immediately have linear convergence in the objective value (between
(k)

feasibility cuts) prov1ded that we can bound p’ away from zero.

To bound ,uo ) from below, let us use the notation M*) = Zje‘](;ﬁn u§k), and recall (6) and
s\9) < B. These inequalities imply

D VLT S TR T ®
jeJ(k—l) jGJ(k 1)

Another lower bound can be obtained by substituting the Slater point Z into (7b), and using
g(z,t0)) < —n:

k (k— _ k k—
o) > 8 (Y — zg Zu > 6wy = 30) +uM® > Y (a5 — o) + M P,
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which yields
nM®*) — gk)

k
s >
ZTo — Ty

(10)

Taking a linear combination of (9) and (10) with coefficients n > 0 and B(Zo — x) > 0 eliminates

M®) from the lower bound: )

k n— Bo

5)2—3_7*~ (11)
n+ B(Zo — xp)

The denumerator on the right is always positive. Since, by assumption, the numerator is bounded

away from zero beyond iteration k, so is the sequence ,uék), which is what we needed in the inequality

(8) to complete the proof. O

Cutting methods in general, and our central cutting surface method in particular, update the
best feasible (or in our case, e-feasible) solution found only in those iterations that add an optimality
cut to the master problem, while in the remaining iterations, when a feasibility cut is found, it is
the feasible set that gets updated. Therefore, it is difficult to compare the rate of convergence of
these methods to the rate of convergence of feasible methods, where the best feasible solution is
updated in every iteration, and the rate of convergence of the sequence of objective values can be
directly studied.

5 Applying the central cutting surface algorithm to moment
robust optimization

Our aim in this section is to show that Algorithm 1, in combination with a randomized column
generation method, is applicable to solving (DRO) for every objective h that is convex in x (for
every ¢ € E) as long as the set X is convex and bounded, and 3 is defined by (3), through lower and
upper bounds (¢;,u;) on some (not necessarily polynomial) moments [ f;(§)P(d€) of P. Bounds
can be imposed on moments of arbitrary order, not only on the first and second moments. The
randomized column generation method, presented in Section 5.2, is an extension of the authors’
earlier scenario generation algorithm for stochastic programming (Mehrotra and Papp, 2013).

We might also consider optimization problems with robust stochastic constraints, that is, con-
straints of the form

Ep(G(x) <0 YPep

with some convex function G. The algorithm presented in this section is applicable verbatim to
such problems, but to keep the presentation simple, we consider only the simpler form, (DRO).
However, we provide a numerical example of our method applied to robust stochastic constraints
in Example 4.

Without loss of generality we shall assume that f; is the constant one function, and ¢; = u; = 1.
We will also use the shorthand f for the vector-valued function (fi,..., fx)T.

Our first observation is that while searching for an e-optimal P in (2), it is sufficient to consider
finitely supported distributions.

Theorem 9. For everye > 0, the optimization problem (2) has an e-optimal distribution supported
on not more than N + 2 points.

Proof. For every z € R, the set

LZ:{(v,w)ERNxR‘HP:v:/f(§)P(d§),w= <v<

T

h(z,§)P(dE), ¢ <v <wu,w > z}

12



is an (N + 1)-dimensional convex set contained in the convex hull of the points

{(fl(g)v e ,fN(g)a h(x7£))T |£ € E}

Therefore by Carathéodory’s theorem, as long as there exists a (v, w) € L., there also exist N + 2

points &1,...,&n4+2 in 2 and nonnegative weights wy, ..., wy1o satisfying
N+2 N+2
v = Z wi f(&) and w = Z wih(x, ). O
k=1 k=1

A result of (Mehrotra and Papp, 2013) is that whenever the set P of distributions is defined
as in (3), a column generation algorithm using randomly sampled columns can be used to find a
distribution P € 3 supported on at most N points. In other words, a feasible solution to (2) can be
found using a randomized column generation algorithm. In Section 5.2 we generalize this result to
show that (2) can also be solved to optimality within a prescribed ¢ > 0 accuracy using randomized
column generation. The formal description of the complete algorithm is given in Algorithm 2. In
the remainder of this section we provide a short informal description and the proof of correctness.

If = is a finite set, then the optimization problem (2) is a linear program whose decision variables
are the weights w; that the distribution P assigns to each point & € =. In an analogous fashion,
(2) in the general case can be written as a semi-infinite linear programming problem with a weight
function w: = — Rar as the variable. The corresponding column generation algorithm for the
solution of (2) is then the following.

We start with a finite candidate scenario set {i,...,&x} that supports a feasible solution.
Such points can be obtained (for instance) using Algorithm 1 in (Mehrotra and Papp, 2013).

At each iteration we take our current candidate scenario set and solve the auxiliary linear
program

K K
Inax {Zwkh(x,ﬁk) <Y wef (&) Su,w > 0} (12)
k=1 k=1

and its dual problem

(p+,p—)ERZN
Note that by construction of the initial node set, the primal problem is always feasible, and since
it is also bounded, both the primal and dual optimal solutions exist.

Let @ and (p4,p—) be the obtained primal and dual optimal solutions; the reduced cost of a
point £ € =2 is then

def R R
(&) = h(z,€) — (h+ —p-)" f(§). (14)

As for every (finite or semi-infinite) linear program, if every £ € = has 7(§) < 0, then the current
primal-dual pair is optimal, that is, the discrete probability distribution corresponding to the
points & and weights Wy, is an optimal solution to (2). Moreover, for problem (2) we have the
following, stronger, fact.

Theorem 10. Let &1,...,¢k, W, and 7 be defined as above, and let € > 0 be given. If n(§) < e for
every € € =, then the distribution defined by the support points &1, ...,k and weights w1, ..., Wk
is an e-optimal feasible solution to problem (2).

Proof. The feasibility of the defined distribution follows from the definition of the auxiliary linear
program (12), only the e-optimality needs proof.
If the inequality (&) < € holds for every £ € =, then by integration we also have

J SCEEY

_ (h(a,&) = )P = [ b P(dE) ~ 2 (15)
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for every probability distribution P. In particular, consider an optimal solution P* to (2) with
m* & Jeez F(€)P*(d€). Naturally, ¢ < m* < u, and so we have

Wph(z, &) = pru—pil> (py —p_)"m* =

M=

ES
I

1

— [04=p "1 OP' @) 2 [ 0P () ~e.
using strong duality for the primal-dual pair (12)-(13) in the first step, £ < m™ < w and the sign
constraints on the dual variables in the second step, and inequality (15) in the last step. The
inequality between the left- and right-hand sides of the above chain of inequalities is our claim. [

5.1 Column generation using polynomial optimization

If we can find a £ with positive reduced cost, we can add it as £ 41 to the candidate support set, and
recurse. Unfortunately, finding the point £ with the highest reduced cost, or even deciding whether
there exists a & € 2 with positive reduced cost is NP-hard, even in the case when = = [0, 1]d, h
is constant zero, and the f; are the monomials of degree at most two; this follows from the NP-
hardness of quadratic optimization over the unit cube.

The only non-trivial special case that is polynomial time solvable is the one where 7 is a polyno-
mial of degree two, and = is an ellipsoid. Then finding max¢cg m(£) is equivalent to the trust region
subproblem of non-linear programming. In other cases, sum-of-squares approximations to polyno-
mial optimization, which lead to tractable semidefinite programming relaxations (Parrilo, 2003),
could in principle be employed. (Mehrotra and Papp, 2013, Secs. 4-5) summarizes the experience
with two existing implementations, GloptiPoly (Henrion and Lasserre, 2003) and SparsePOP (Waki
et al., 2006), in the context of moment matching scenario generation, where a column generation
approach similar to the one proposed in this paper leads to pricing problems that are special cases
of the ones obtained while solving (DRO). In those problems, the largest problems that could be
solved using the semidefinite programming approach were three-dimensional problems involving
moments up to order 5.

In order to find a point £ where 7(£) > 0 (or prove that such points do not exist) in polynomial
time, the global maximum of 7 need not be found; it would be sufficient to have a polynomial
time approximation algorithm with a positive approximation ratio. However, the only applicable
positive result known in this direction is that when = is a simplex, there exists a polynomial time
approximation scheme (PTAS) for every fixed degree (de Klerk et al., 2006). Additionally, in low
dimensions, the approximation scheme from (de Loera et al., 2008), which is fully polynomial time
in fixed dimensions, might be useful.

When = is the unit cube and 7 is a multilinear polynomial of degree 2, there is no applicable
approximation algorithm unless NP = ZPP. When E is the unit sphere and the 7 is a multilinear
polynomial of degree 3, there is no applicable approximation algorithm unless P = NP. For
simple proofs of these results, see the survey (de Klerk, 2008); for the best known approximation
algorithms for a large number of additional cases we refer to the recent PhD thesis (Li, 2011).

In conclusion, the available tools for polynomial optimization do not appear to be useful in
solving our column generation subproblems. In the next subsection we propose an alternative,
practical approach that is also applicable in the non-polynomial setting.

5.2 Randomized column generation

Now we show that a column with negative reduced cost can be found with high probability us-
ing random sampling. This result does not require the basis functions f; or the objective h to
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be polynomials. The randomized column generation method, Algorithm 2, uses the method in
(Mehrotra and Papp, 2013) in its phase one to generate an initial (feasible, but not necessarily
optimal) scenario set and probabilities.

The key observation is that if the functions h(z, -) and f; are continuously differentiable over the
bounded E, then the reduced cost function (14) (as a function of £) also has bounded derivatives.
Therefore, sufficiently many independent uniform random samples §; € = that result in 7(§;) <0
will help us conclude that 7w(€) < ¢ for every £ € Z with high probability. In the following theorem
B(c,r) denotes the (Euclidean, d-dimensional) ball centered at ¢ with radius 7.

Theorem 11. Suppose the functions h(x,-) and f; are continuously differentiable over the closed

and bounded 2, and let C be an upper bound on the gradient of the reduced cost function: maxeez |V (§)| <
C. Furthermore, assume that a particular é € = satisfies 7r(§~) > e. Then a uniformly randomly
chosen & € E satisfies m(§) < 0 with probability at most 1 — p, where

p= IgléélVOl(E N B(&,e/C))/vol(Z) > 0.

In particular, if £ C R? is a convex set satisfying B(c1,r) C E C B(ca, R) with some centers c;
and co and radit r and R we have

~1/2 ﬁ)d

p>(@nd+2) (=) .

Proof. If w(f) > ¢, then 7(§) > 0 for every £ in its neighborhood Z N B(g, ¢/C). Therefore, the
assertion holds with p(e, C') = mingez vol(2 N B(€,e/C))/ vol(Z). This minimum exists, because
= is closed and bounded; and it is positive, because the intersection is a non-empty closed convex
set for every center &.

To obtain the lower bound on p, we need to bound from below the volume of the intersection
ENB(&,e/C). Consider the right circular cone with apex & whose base is the (d — 1)-dimensional
intersection of B(cy,r) and the hyperplane orthogonal to the line connecting ¢; and £. This cone
is contained within =, and all of its points are at distance 2R or less from . Shrinking this cone
with respect to the center £ with ratio e/(2RC') yields a cone contained in =N B(§,e/C). Using
the volume of this cone as a lower bound on vol(Z N B(&,e/C)) and the notation Vy(r) for the
volume of the d-dimensional ball of radius r, we get

vol(EN B(€,¢/C))

vol(E)

. (d+ 1)~ Wy 1(r)r ( £ )d _ (w(d_l)/QF((d+2)/2)) ( er )d

Va(R) 2RC d+ 1)m@2T((d +1)/2) \2RC

1 T(d+2)/2) er \4 _1/2 10 ( €T \4
- /2F((d+3)/2) (23(1) >a 2 2d )7 (%) )

with some lengthy (but straightforward) arithmetic in the last inequality, using the log-convexity
of the gamma function. O

Theorem 11, along with Theorem 10, allows us to bound the number of uniform random samples
¢ € Z we need to draw to be able to conclude with a fixed low error probability, that the optimal
solution of (12) is an e-optimal solution to (2). This is an explicit, although very conservative,
bound: with p given in each iteration, and known global bounds on the gradients of i and the
components of f, an upper bound C on ||[V7(:)|| can be easily computed in every iteration. (A
global bound, valid in every iteration, can also be obtained whenever the dual variables p can be
bounded a priori.) This provides the (probabilistic) stopping criterion for the column generation
for Algorithm 2. Note that the € used in Theorems 10 and 11 is the same € used in the termination
criteria for solving (1) using Algorithm 2.
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In order to use Theorem 11, we need an efficient algorithm to sample uniformly from the set =.
This is obvious if Z has a very simple geometry, for instance, when Z is a d-dimensional rectangular
box, simplex, or ellipsoid. Uniform random samples can also be generated efficiently from general
polyhedral sets given by their facet-defining inequalities and also from convex sets, using random
walks with polynomial mixing times. See, for example, the survey (Vempala, 2005) for uniform
sampling methods in polyhedra. A strongly polynomial method for polyhedra was found more
recently in (Kannan and Narayanan, 2012); a weakly polynomial method for convex sets appears
in (Lovédsz and Vempala, 2006). (Huang and Mehrotra, 2013) also gives a detailed and up-to-date
list of references on uniform sampling on convex sets.

We can now conclude that the semi-infinite convex program formulation of (DRO) can be
solved using Algorithm 1, with Algorithm 2 and an efficient uniform sampling method serving as
a probabilistic version of the oracle required by Assumption 2.

Algorithm 2 (Randomized column generation method to solve (2)-(3)).

Parameters: M, the maximum number of random samples per iteration. (See the
text for details on choosing this parameter.)

Step 1. Find a finitely supported feasible distribution to (2) using Algorithm 1 in (Mehrotra
and Papp, 2013). Let S = {&,...,zx} be its support.

Step 2. Solve the primal-dual pair (12)-(13) for the optimal w, p4, and p_.

Step 3. Sample uniform random points £ € = until one with positive reduced cost h(x,§) —
(py — p_)T f(€) is found or the maximum number of samples M is reached.

Step 4. If in the previous step a £ with positive reduced cost was found, add it to .S, increase
K, and return to Step 2. Otherwise stop.

6 Numerical results

6.1 Semi-infinite convex optimization problems

Most standard benchmark problems in the semi-infinite programming literature are linear. When
the problem (SICP) is linear, Algorithm 1 reduces to the central cutting plane algorithm (except for
our more general centering); therefore we only consider convex non-linear test problems from the
literature. The results in this section are based on an implementation of the central cutting plane
and central cutting surface algorithms using the AMPL modeling language and the MOSEK and
CPLEX convex optimization software. The comparison between the algorithms is based solely on
the number of iterations. The running times for all the examples were comparable in all instances,
and were less than 5 seconds on a standard desktop computer, except for the 20- and 40-dimensional
instances of Example 3, where the central cutting plane method needed considerably more time to
converge than Algorithm 1.

We start by an illustrative example comparing the central cutting plane algorithm of Kortanek
and No (1993) and our central cutting surface algorithm.

Example 1 (Tichatschke and Nebeling 1988).
minimize (1 — 2)? + (22 — 0.2)?
subject to  (5sin(mvt)/(1+t2))x? —2o <0 Vt€[0,1] (16)
x1 € [—1,1], 22 €[0,0.2].

16



cutting surface cutting plane

feasibility —optimality relative feasibility optimality relative

cuts cuts error cuts cuts error
10~* 1 23 10—4283 7 24 10—4-856
10°° 1 29 1072413 7 29 107208
10-6 1 34 10—6-356 7 37 10—6-157
10=7 1 39 10—7-304 8 43 10-7-174

Table 1: Comparison of the central cutting surface and central cutting plane algorithms in Example
1, with centering parameters s*¥) = 1. ¢ for the cutting plane algorithm is an identical measure
of the distance from the optimal solutions as in Algorithm 1; both algorithms were terminated
upon reaching o < 10~7. The relative error columns show the relative error from the true optimal
objective function value. Both algorithms clearly exhibit linear convergence, but the cutting surface
algorithm needs only a single cut and fewer iterations.

The example is originally from (Tichatschke and Nebeling, 1988), and it is used frequently in
the literature since. (In the original paper the problem appears with ¢ € [0, 8] in place of t € [0, 1]
in the infinite constraint set. We suspect that this is a typographic error: not only is that a less
natural choice, but it also renders the problem non-convex.)

The optimal solution is = (0.20523677,0.2). This problem is particularly simple, as only
one cut is active at the optimal solution (it corresponds to # ~ 0.2134), and this is also the most
violated inequality for every x.

We initialized both algorithms with the trivial upper bound 5 on the minimum, corresponding to
the feasible solution (0, 0). Thl. 1 shows the progress of the two algorithms (using constant centering
parameter s(*) = 1 in both algorithms), demonstrating that both algorithms have an empirical
linear rate of convergence. The central cutting plane method generates more cuts (including
multiple feasibility cuts at the point £). On the other hand, the cutting surface algorithm generates
only a single cut at £ in the first iteration, and then proceeds by iterating through central feasible
solutions until optimality is established.

Example 2 (Smallest enclosing sphere). The classic smallest enclosing ball and the smallest
enclosing ellipsoid problems ask for the sphere or ellipsoid of minimum volume that contains a
finite set of given points. Both of them admit well-known second order cone programming and
semidefinite programming formulations. A natural generalization is the following: given a closed
parametric surface p(t), t € T (with some given T' C R™), find the sphere or ellipsoid of minimum
volume that contains all points of the surface. These problems also have a semi-infinite convex
programming formulation. The smallest enclosing sphere, centered at x with radius r, is given by
the optimal solution of

minimize r subject to ||z — p(t)|| <r, VteT,
whereas the smallest enclosing ellipsoid is determined by
maximize (det A)/™  subject to A =0 and |z — Ap(t)|| <1, YteT.

In the latter formulation A = 0 denotes that the matrix A is positive semidefinite. The objective
function log(det(A)) could also be used in place of det(A4)*/"; the two formulations are equivalent.

It was shown in (Papp and Alizadeh, 2011) that these problems also admit a semidefinite pro-
gramming (SDP) formulation whenever every component of p is a polynomial or a trigonometric
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Figure 1: The parametric curves (17) and (18), and their smallest enclosing circles.

polynomial of a single variable. This yields a polynomial time solution, but the formulation might
suffer from ill-conditioning whenever the degrees of the polynomials (or trigonometric polynomials)
involved is too large. Additionally, the sum-of-squares representations of nonnegative (trigonomet-
ric) polynomials that the SDP formulation hinges on do not generalize to multivariate polynomials.
The central surface cutting algorithm does not have comparable running time guarantees to those
of semidefinite programming algorithms, but it is applicable in a more general setting (including
multi-dimensional index sets T' corresponding to multivariate polynomials), and does not suffer
from ill-conditioning.
We give two examples of different complexity. First, consider the two-dimensional parametric
curve
p(t) = (ccos(t) — cos(ct), esin(t) — sin(ct)), c=4.5,t € [0,4n]. (17)

This symmetric curve has a smallest enclosing circle centered at the origin, touching the curve at
7 points. (Fig. 1(a).)

Thl. 2 shows the rate of convergence of the two algorithms (using constant centering parameter
5(®) = 1 in both algorithms). The initial upper bound on the minimum was set to 2(c41)?, obtained
by a simple term-by-term bound on the objective. In this example, the number of optimality cuts is
approximately the same for the two algorithms, but there is a difference in the number of feasibility
cuts, and consequently in the total number of iterations.

Now consider an asymmetric, high-degree variant of the previous problem, depicted on Fig. 1(b):

p(t) = (ccos(t) — cos(ct),sin(20t) + csin(t) —sin(ct)), ¢ =40, t € [0, 27]. (18)

The center is no longer at the origin, and a closed form description of the circle is difficult to
obtain. The semidefinite programming based solution of (Papp and Alizadeh, 2011) is theoretically
possible, but practically not viable, owing to the high degree of the trigonometric polynomials
involved. Tbl. 3 shows the rate of convergence of the two algorithms (using constant centering
parameter s(*) = 1 in the cutting surface algorithm).

In our next example we consider a generalization of the above problems, a problem with second
order cone constraints of dimension higher than two, and investigate the hypothesis that cutting
surfaces may be particularly advantageous in higher dimensions, when a polyhedral approximation
of the feasible set is expensive to build.
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cutting surface cutting plane

feasibility —optimality relative feasibility optimality relative

cuts cuts error cuts cuts error
10-* 6 16 105-267 12 16 1075705
107° 6 20 106-845 13 18 < 10710
10-¢ 6 23 < 10710 14 22 < 10710
10~7 6 26 < 10710 14 27 < 10710
108 6 28 < 10710 14 28 < 10710

Table 2: Comparison of the central cutting surface and central cutting plane algorithms on the
first curve of Example 2, with centering parameters s*) = 1. ¢ for the cutting plane algorithm is
an identical measure of the distance from the optimal solutions as in Algorithm 1; both algorithms
were terminated upon reaching o < 1078,

cutting surface cutting plane

feasibility —optimality relative feasibility optimality relative

cuts cuts error cuts cuts error
1074 6 23 107517 15 21 105321
107° 6 26 108463 15 24 108463
106 6 29 < 10710 17 27 < 10710
1077 6 32 < 10710 17 30 < 10710
1078 7 35 < 10710 17 34 < 10710

Table 3: Comparison of the central cutting surface and central cutting plane algorithms on the
second curve of Example 2, with centering parameters s*) = 1. ¢ for the cutting plane algorithm is
an identical measure of the distance from the optimal solutions as in Algorithm 1; both algorithms
were terminated upon reaching o < 1078. The relative error columns show the relative error from
the true optimal objective function value.

Example 3. Consider the SICP

n

min max iz; —i/n — sin(2nt +0))2.
i, e 3 (i = i/ = sin(2r +9)

It is easy to see that the optimal solution is = (1/n,1/n,...,1/n).

The initial upper bound U = 4n on the minimum can be obtained by taking a term-by-term
upper bound of the objective at z = 0. We used this bound to initialize the central cutting surface
and central cutting plane algorithms. As in the above examples, we used the centering parameter
s(®) =1 in both algorithms.

Thbl. 4 shows the number of feasibility cuts and the number of optimality cuts necessary until
the stopping condition o < 107¢ is satisfied for different values of n.

It is clear that in this example the number of feasibility cuts (and the total number of cuts)
in the cutting plane algorithm grows much more rapidly with dimension than in the cutting
surface algorithm. This is consistent with the fact that, unless strong centering is applied, a
good polyhedral approximation (for cutting planes) or conic approximation (for cutting surfaces)
of the feasible set needs to be built, which requires considerably more planar cuts than surface
cuts. In the next section we consider the effect of centering further.
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n = ) 10 20 40

cutting surface 13+19 16417 15419 15422
cutting plane 93+14 290+15 1179+15 >10000

Table 4: Comparison of the central cutting surface and central cutting plane algorithms on Example
3, for different values of n (the number of decision variables). Each entry in the table is in the
format the number of feasibility cuts + the number of optimality cuts, obtained with the centering
parameter s(*¥) = 1. Both algorithms were terminated upon reaching o < 10~ or after 10000 cuts.

6.1.1 The effect of the centering parameter

The fact in Examples 1 and 2 most generated cuts are optimality cuts, not feasibility cuts, suggests
that our default setting of the centering parameter, s(*) = 1 in each iteration k, might not be
optimal. At the other extreme, s(*) = 0 is expected to yield infeasible solutions in all iterations
but the last. Another natural choice for the centering parameter, as discussed in Section 3, is
the gradient of the norm of the violated inequality, which is suggested by Kortanek and No in
their central cutting plane algorithm. Finally, our convergence proof shows that one can also use a
constant fraction of this gradient norm. Example 3 also suggests that the centering parameter that
keeps a balance between feasibility and optimality cuts might be different for the two algorithms,
and that centering might be less important for cutting surfaces than for cutting planes (which must
avoid building expensive polyhedral approximations of the feasible set around points that are far
from the optimum). In this section we further examine (empirically) the effect of the centering
parameter.

The smallest examples above solved by the cutting surface algorithm with no centering in only
two iterations; for instance, in Example 1, the cutting surface algorithm generates one feasibility
cut (at the same point £ as the cutting surface algorithm with centering), and then one optimality
cut, after which the optimality is proven.

For a non-trivial example, consider the second instance of the smallest enclosing sphere problems
in Example 2, with the parametric curve defined in (18), and solve again the corresponding SICP
problem using Algorithm 1, as well as the central cutting plane algorithm of Kortanek and No,
using different constant centering parameters s(*). Tbls. 5 and 6 show the number of feasibility
and optimality cuts for different values of this parameter. (The stopping criterion was o < 1078.)

sk 1072 1077 107° 107% 1072 107' 1. 10 102
cutting surfaces

feasibility cuts 9 8 7 7 7 T 9 10
optimality cuts 2 2 3 4 6 11 35 190 1496
cutting planes

feasibility cuts 18 18 16 16 16 17 17 23 27
optimality cuts 2 2 3 4 6 11 34 195 1827

Table 5: The effect of centering on the number of cuts in the central cutting surface and central
cutting plane algorithms using a constant centering parameter.

It is interesting to note that the original central cutting plane algorithm, as proposed in (Ko-
rtanek and No, 1993), which uses the gradient norm as the centering parameter, performs partic-
ularly poorly in this example. (See the last column of Table 6.) Even this method benefits from
adjusting (in this case, lowering) the centering parameter.

Now let us consider Example 3, and solve it again with choices for of the centering parameter.
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s®/|Vg(z® ¢ 1072 1077 107> 1073 1072 107! 1.

cutting surfaces

feasibility cuts 7 7 7 7 7 9 10
optimality cuts 2 3 4 11 33 183 1379
cutting planes

feasibility cuts 18 18 16 16 16 26 22
optimality cuts 2 3 6 10 30 155 1524

Table 6: The effect of centering on the number of cuts in the central cutting surface and central
cutting plane algorithms using a constant fraction of the gradient norm as centering parameter. The
italic numbers in the last column indicate the original central cutting plane algorithm as proposed
in (Kortanek and No, 1993). Even the central cutting plane algorithm benefits considerably from
adjusting the centering parameter.

Tbl. 4 in the previous section shows the results for s(¥) = 1. Tbl. 7 shows what happens with
no centering, while Thls. 8-10 show results with centering using different fractions of the gradient
norm.

n= 5 10 20 40
cutting surface 14+1  17+1 2241 22+1
cutting plane 9441 40241 497241 >10000

Table 7: Results from Example 3 using s(*) = 0 (no centering). Each entry in the table shows the
number of feasibility cuts + the number of optimality cuts. The stopping criterion o < 1076,

n= 5 10 20 40
cutting surface 1348 15411 16420 11447
cutting plane 87+6 30449 1139+16 4510+34

Table 8: Results from Example 3 using s*) = 1072||V||. Each entry in the table shows the number
of feasibility cuts + the number of optimality cuts. The stopping criterion o < 1076,

n= 5 10 20 40
cutting surface 15+24 14448 134123 104-369
cutting plane 99418 279436 922487 3483+232

Table 9: Results from Example 3 using s*) = 107!||V||. Each entry in the table shows the number
of feasibility cuts + the number of optimality cuts. The stopping criterion o < 1076,

The results exhibit some interesting phenomena. First, the cutting surface algorithm benefits
less from strong centering than cutting planes, although it does benefit from some centering. It
is also apparent that cutting planes require higher values for the centering parameter before the
intermediate solutions become central (feasible). In the extreme case, with no centering (Table
7), both methods generate infeasible points throughout the algorithm, until an e-feasible point is
found. In this case, the algorithm ends with an optimality cut in the last iteration.
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n= 5 10 20 40

cutting surface 124175 124383 114886 8+3115
cutting plane 924102 2504247 823+705 299041971

Table 10: Results from Example 3 using s(¥) = ||V||. Each entry in the table shows the number of
feasibility cuts + the number of optimality cuts.

The results also indicate that the central cutting plane algorithm is more sensitive to the choice
of the centering parameter than the cutting surface algorithm.

Finally, it appears that in the high-dimensional instances cutting planes cannot compete with
even the plain, uncentered, cutting surfaces, regardless of the type of centering used in the cutting
plane method. This is explained by the fact that the high-dimensional convex feasible set cannot
be approximated well by a small number of planar cuts. This is one setting where we expect the
cutting surface method to be superior to cutting planes in general.

6.2 Robust, distributionally robust, and stochastic optimization

To illustrate the use of the central cutting surface algorithm in moment robust optimization (Sec-
tion 2), we return to Example 1, and turn it into a problem with robust stochastic constraints:

Example 4.
minimize (1 — 2)? + (22 — 0.2)?

subject to  Ep[(5sin(m/€)/(14&2))a? — 23] <0 VP € P (19)
X1 € [—1,1],1‘2 S [0,0.2]7

where B, is a set of probability distributions supported on = = [0, 1] with prescribed polynomial
moments up to order m:

def

P =

Setting m = 0 in the above formulation gives the classic robust optimization version of the
problem, which is equivalent to the original Example 1.

At the other extreme, P contains only the uniform distribution supported on [0, 1]. Therefore,
solving (19) for m = oo amounts to solving a stochastic programming problem with a continuous
scenario set. (Recall Theorem 1.) We solved a highly accurate deterministic approximation of this
problem by replacing the continuous scenario set with a discrete one, corresponding to the 256-
point Gaussian rule for numerical integration; this case, therefore, does not require the solution of
a SICP.

The solutions to problem (19) for increasing values of m correspond to less and less conservative
(or risk-averse) solutions. It is instructive to see how the solutions of these problems evolve as
we impose more and more moment constraints, moving from the robust optimization solution to
the stochastic programming solution. In particular, this simple problem illustrates the value of
moment information beyond the first and second moments. Interestingly, at the same time, there
is no increase in the number of cuts necessary to find the optimum.

The results are summarized in Thl. 11. Note the rather large difference between the optimal
values of £ and the objective function upon the addition of the first few moment constraints.

{P|Ep[¢]=1/(i+1),i=0,...,m}.

22



m  optimality cuts feasibility cuts 1 To z

0 4 3 0.20527 0.2 3.2211
1 5 3 0.24654 0.2 3.0746
2 5 2 0.24712 0.2 3.0726
3 5 2 0.26242 0.2 3.0192
4 5 2 0.26797 0.2 2.9999
5 5 2 0.26978 0.2 2.9937
6 4 2 0.27042 0.2 2.9914
00 n/a n/a 0.27181 0.2 2.9866

Table 11: Comparison of the solutions of problem (19) with different moment constraints. m = 0
is conventional robust optimization, m = oo corresponds to conventional stochastic programming.
Intermediate values of m yield solutions at different levels of risk-aversion. The solutions were
obtained using Algorithm 1, with constant centering s(*) = 10~3, and stopping condition o < 1078,
except for m = oo (see text).

6.2.1 A portfolio optimization example

We illustrate the use of Algorithms 1 and 2 for the solution of (DRO) using a portfolio optimization
example motivated by (Delage and Ye, 2010). In our experiments we randomly chose three assets
from the 30 Dow Jones assets, and tracked for a year the performance of a dynamically allocated
portfolio that was rebalanced daily. Each day the 30-day history of the assets were used to estimate
the moments of the return distribution, and reallocate the portfolio according to following the
optimal moment-robust distribution.

We split the results into two parts: we carried out the simulation using both 2008 and 2009
data to study the properties of the optimal portfolios under very different market conditions (hectic
and generally downward in 2008, versus strongly increasing in 2009). In both cases we looked at
portfolios optimized using different moment constraints (or, using the notation of Example 4, we
used different sets 9B,,). We tracked a portfolio optimized using only first and second moment
constraints, and one where the third and fourth marginal moments were also constrained. Sample
plots are shown in Fig. 2, where the selected assets were AXP, HPQ, and IBM.

The results show the anticipated trends: the more conservative portfolio (optimized for the
worst case among all return distributions compatible with the observed first and second moments)
invests generally less, and avoids big losses better than the second portfolio (which is optimized
for the worse case among a smaller set of distributions), at the price of missing out on a larger
possible return.

The algorithm was implemented in Matlab R2012a (Windows 7 64-bit), using the interior-point
solver IPOPT 3.10.2 for the solution of the master problems and the linear programming solver
CPLEX 12.5 for the cut generation oracle subproblems, and was run on a desktop computer with
an Intel Xeon 3.06GHz CPU. Tbls. 12 and 13 show the summary statistics of the algorithms per-
formance, separately for the instances with up to second moment constraints and for the instances
with moment constraints of order up to 4. The stopping criterion for the cutting surface algorithm
was o < 1073,

As expected, the bottleneck of the algorithm is the randomized cut generation oracle: Algorithm
2 takes considerably longer time to find a distribution whose corresponding constraint is violated
than it takes to solve the master problems, which are very small convex optimization problems.
Nevertheless, the cutting surface algorithm achieved very fast convergence (requiring less then 5
iterations for most instances), and therefore most problems were solvable within one minute.
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Figure 2: The performance of two moment-robust portfolios rebalanced daily, compared to market
performance. The market (solid, green) is the Dow Jones index scaled to have value 1 at the start
of the experiment (day 31). The red dashed line shows the value of a portfolio optimized using the
first and second moment information of the last 30 days’ return. (Hence the curve starts at day
31.) The blue dot-dashed line shows the value of a portfolio optimized using the same moments
and also the third and fourth marginal moments of the last 30 days’ return. As expected, the first,
more conservative portfolio outperforms the second one whenever the market conditions are bad,
and only then. Both robust portfolios avoid the sharp drop in 2008 by not investing.

min 25% median  75% max
master problem time [sec] 0.1708 0.52 0.77 1.14 2.05
master problem iterations 2 2 4 5 10
subproblem time [sec] 0.0140 1.47 21.28 43.77  180.77
subproblem iterations 1 27 54 87.25 186

total wall-clock time [sec] 9.4851 19.854 75.089  109.81 312

Table 12: Summary statistics of the moment robust optimization algorithm on the portfolio opti-
mization example with moment constraints up to order 2. Each problem instance corresponds to
one day in year 2008 or 2009; the table shows iteration count and timing results per instance.

min 25% median  75% max
master problem time [sec] 0.2049 0.412 0.602 0.775  1.04
master problem iterations 2 2 2 2 5
subproblem time [sec] 0.0182 9.551  15.1 28.1 88.2
subproblem iterations 1 3 43 87 986

total wall-clock time [sec] 9.6945 11.192 17.666  29.738 136.87

Table 13: Summary statistics of the moment robust optimization algorithm on the portfolio opti-
mization example with moment constraints up to order 4.

7 Conclusion
The convergence of the central cutting surface algorithm was proven under very mild assumptions,

which are essential to keep the problem at hand convex, with a non-empty interior. The possibility
of using non-differentiable functions in the constraints whose subgradients may not be available,
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as well as using an infinite dimensional constraint set, may extend the applicability of semi-infinite
programming to new territories. We found that the number of surface cuts can be considerably
lower than the number of linear cuts in cutting plane algorithms, which compensates for having to
solve a convex optimization problem in each iteration instead of a linear programming problem.
We also found the choice of the centering parameter to be less important for the cutting surface
algorithm; both cutting surface and cutting plane algorithms benefit from the more general analysis
of our paper, which allows different choices for this parameter from the gradient norm proposed
by Kortanek and No.

Our main motivation was distributionally robust optimization, but we hope that other appli-
cations involving constraints on probability distributions, and other problems involving a high-
dimensional index set T', will be forthcoming.

Distributionally robust optimization with multivariate distributions is a relatively recent area,
where not even the correct algorithmic framework to handle the arising problems can yet be
agreed upon. Methods proposed in the most recent literature include interior point methods for
semidefinite programming and the ellipsoid method, but these are not applicable in the presence
of moment constraints of order higher than two. Our algorithm is completely novel in the sense
that it is the first semi-infinite programming approach to distributionally robust optimization, and
it is also the most generally applicable algorithm proposed to date.

Although it can hardly be expected that the semi-infinite programming based approach will be
as efficient as the polynomial time methods proposed for the special cases, further research into
moment matching scenario generation and distribution optimization algorithms may improve on
the efficiency of our method. Simple heuristics might also be beneficial. For example, if several
cuts (corresponding to probability distributions P, ..., Py) have already been found and added to
the master problem, then before searching for the next cut among distributions supported on the
whole domain =, we can first search among distributions supported on the union of the support of
the distributions Pi, ..., P;. This is a considerably cheaper step, which requires only the solution
of a (finite) linear program, whose solution can be further accelerated by warmstarting.

Since without third and fourth moment information the overall shape of a distribution cannot
be determined even approximately, we expect that future successful algorithms in distributionally
robust optimization will also have the ability of including higher order moment information in the
definition of the uncertainty sets.
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Appendix: Proof of Theorem 1
Proof. Let z; denote the optimal objective function value of (DRO;) for every 4, and let zgp denote

the optimal objective function value of (SP); we want to show that lim; o z; = zgp.
The sequence (2;)i=0,1,... is convergent because it is monotone decreasing (since Py 2 Py D
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- DN P;) and it is bounded from below by zgp:

z; = min max h(z,£)Q(d€) > max min h(z,£)Q(dE)

zeX QeP; ce= QeP,; zeX = (20)
> min/ h(z,&)P(d) = zgp.
reX ce=

Consider now the stochastic programming problem (SP). Denote by Z one of its optimal
solutions, and let

% = max - h(z, §)Q(dE).

Obviously, z; < z; for every 4. In view of (20), it suffices to show that z; — zgp.

For every i, choose an arbitrary ); € arg maxgecq;, ffeE h(z,€)Q(d¢). Since the moments of Q;
and P agree up to order i, we have that

/ P(€)0:(de) = / p(€) P(de) (21)
IS £e=

for every polynomial p of total degree at most 1.

By assumption, the function h(Z, -) is continuous on the closed and bounded set Z. Let p; denote
its best uniform polynomial approximation of total degree j; by the Weierstrass approximation
theorem we have that for every ¢ > 0 there exists a degree j(¢) such that maxecs |h(Z,&) —
Pjce)(&)] < €, and therefore,

@0 @@ << and [ b6 —po@lP@ <= (2

£eE

With this j(e), every i > j(e) satisfies the inequalities

|Zi — zsp| =‘ - Wz, €)Qq(dE) — - h(m,ﬁ)P(df)‘ <
< M:e: h(x,f)Qi(dﬁ)—/&Epj(s)(f)Qi(d@’+‘/€eapj(s)(§)62i(df)—/£ea h(m)p(d@‘ _
- Vg (h(@:6) = s (&) Qz(df)' + ‘ /5 P (€ Pe) - /€ _ h(zfz,s)p(ds)‘ <
3/ _’h(jvg)_pj(s)(f)|Qi(df)+/ |1(3.€) — pje) (€)] P(de) < 2¢,
tes ¢es

using the triangle inequality, (21), (22), and the triangle inequality again. From the inequality
between the left- and the right-hand side it immediately follows that lim;_, ., Z; = zsp, as claimed.
O
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