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Abstract

This paper presents a theoretical and numerical investigation of the following practical ques-
tion: Should the time difference quotients of the snapshots be used to generate the proper or-
thogonal decomposition basis functions? The answer to this question is important, since some
published numerical studies use the time difference quotients, whereas other numerical studies
do not. The criterion used in this paper to answer this question is the rate of convergence of the
error of the reduced order model with respect to the number of proper orthogonal decomposition
basis functions. Two cases are considered: the no DQ case, in which the snapshot difference
quotients are not used, and the DQ case, in which the snapshot difference quotients are used.
The error estimates suggest that the convergence rates in the C0(L2)-norm and in the C0(H1)-
norm are optimal for the DQ case, but suboptimal for the no DQ case. The convergence rates
in the L2(H1)-norm are optimal for both the DQ case and the no DQ case. Numerical tests are
conducted on the heat equation and on the Burgers equation. The numerical results support the
conclusions drawn from the theoretical error estimates. Overall, the theoretical and numerical
results strongly suggest that, in order to achieve optimal pointwise in time rates of convergence
with respect to the number of proper orthogonal decomposition basis functions, one should use
the snapshot difference quotients.

Keywords: proper orthogonal decomposition, reduced order modeling, error analysis

1 Introduction

This paper addresses the following question: “Should the time difference quotients (DQs) of the
snapshots be used in the generation of the Proper Orthogonal Decomposition (POD) basis func-
tions?”

We emphasize that this is an important question. There are two schools of thought: one uses
the DQs (see, e.g. [23, 24, 12, 11]), the other does not (see, e.g. [27, 28, 10, 33]).

To our knowledge, the first instance in which the snapshot DQs were incorporated in the gen-
eration of the POD basis functions was the pioneering paper of Kunisch and Volkwein [23]. In
that report, the authors considered two types of errors for a general parabolic equation: the time
discretization errors and the POD truncation errors. They argued that one needs to include the
temporal difference quotients in the set of snapshots; otherwise, the error will be suboptimal,
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DIFFERENCE QUOTIENTS IN PROPER ORTHOGONAL DECOMPOSITION 2

containing an extra 1
∆t2

factor (see Remark 1 in [23]). Thus, the motivation for using the tempo-
ral difference quotients was purely theoretical. In numerical investigations, however, the authors
reported contradictory findings: in [23], the use of the DQs did not improve the quality of the
reduced-order model; in [17], however, it did. Kunisch and Volkwein used again the snapshot DQs
when they considered the Navier-Stokes equations [24].

The snapshot DQs were also used in the Discrete Empirical Interpolation Method (DEIM)
of Chaturantabut and Sorensen [12, 11] (which is a discrete variant of the Empirical Interpolation
Method (EIM) [5]). The motivation in [12, 11], however, was different from that in [23]. Indeed, the
authors considered in [12, 11] a general, nonlinear system of equations of the form y′ = f(y, t). In
the set of snapshots, they included not only the state variables y, but also the nonlinear snapshots
f(y, t). They further noted (see page 48 in [11]) that, since f(y, t) = y′ and (yn+1 − yn)/∆t ∼ y′,
this is similar to including the temporal difference quotients, as done in [23, 24].

To our knowledge, the first reports on POD analysis in which the DQs were not used were [27]
for the heat equation and [28] for the Navier-Stokes equations. Chapelle et al. [10] used a different
approach that did not use the DQs either. This approach employed the L2 projection instead of
the standard H1 projection used in, e.g., [23, 24]. Further improvements to the approach used
in [10] (as well as that used in [23, 24]) were made by Singler in [33].

From the above discussion, it is clear that the question whether the snapshot DQs should be
included or not in the set of snapshots is important. To our knowledge, this question is still open.
This report represents a first step in answering this question. All our discussion will be centered
around the heat equation, although most (if not all) of it could be extended to general parabolic
equations in a straightforward manner.

From a theoretical point of view, the only motivation for using the snapshot DQs was given
in Remark 1 in [23]. The main point of this remark is the following: In the error analysis of the
evolution equation, to approximate ut(t

n), the time derivative of the exact solution u evaluated

at time tn, one usually uses the DQ ∂u(tn) := u(tn+1)−u(tn)
∆t

. To approximate the DQ ∂u(tn) in

the POD space, one naturally uses the POD DQ ∂ur(t
n) := ur(tn+1)−ur(tn)

∆t
, where ur is the POD

reduced order model approximation. We assume that ur(t
n+1) is an optimal approximation for

u(tn+1) and that ur(t
n) is an optimal approximation for u(tn), where the optimality is with respect

to r and ∆t. Then, it would appear that, with respect to ∆t, ∂ur(t
n) is a suboptimal approximation

for ∂u(tn), because of the ∆t in the denominator of the two difference quotients.
Although the argument above, used in Remark 1 in [23] to motivate the inclusion of the snapshot

DQs in the derivation of the POD basis, seems natural, we point out that this issue should be treated
more carefully. Indeed, in the finite element approximation of parabolic equations, it is well known

that the DQs ∂uh(t
n) := uh(t

n+1)−uh(t
n)

∆t
are actually optimal (with respect to ∆t) approximations

of the DQs ∂u(tn) (see, e.g., [25, 32]). Thus, since the POD and finite element approximations
are similar (both use a Galerkin projection in the spatial discretization), one could question the
validity of the argument used in Remark 1 in [23]. We emphasize that we are not claiming that the
above argument is not valid in a POD setting; we are merely pointing out that a rigorous numerical
analysis is needed before drawing any conclusions.

Our preliminary numerical studies indicate that not using the DQs does not yield suboptimal
(with respect to ∆t) error estimates. For the heat equation (see Section 4 for details regarding
the numerical simulation), we monitor the rates of convergence with respect to ∆t for the POD
reduced order model. We consider two cases: when the DQs are used in the generation of the
POD basis (the corresponding results are denoted by DQ), and when the DQs are not used in the
generation of the POD basis (the corresponding results are denoted by no-DQ). The errors (defined
in Section 4) are listed in Table 1 and plotted in Figure 1 with associated linear regressions (LR).
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Figure 1: Heat equation. Plots of the errors in the L2(L2)-norm with respect to the time step ∆t
when the DQs are used (denoted by DQ) and when the DQs are not used (denoted by no-DQ).

Both no-DQ and DQ approaches yield an optimal approximation order O(∆t2) in the L2-norm.

Table 1: Errors of the no DQ and DQ approaches when ∆t varies.

∆t
no DQ DQ

r EL2(L2) EL2(H1) r EL2(L2) EL2(H1)

2.00e-01 6 3.71e-02 9.26e-01 6 3.71e-02 9.26e-01
1.00e-01 11 1.27e-02 5.81e-01 11 1.27e-02 5.81e-01
5.00e-02 21 2.99e-03 1.97e-01 21 2.99e-03 1.97e-01
2.50e-02 41 6.53e-04 3.81e-02 41 6.53e-04 3.81e-02
1.00e-02 59 1.03e-04 1.15e-02 88 1.03e-04 1.15e-02

The rest of the paper is organized as follows: In Section 2, we sketch the derivation of the POD
reduced order model. In Section 3, we carefully derive the error estimates for the POD reduced
order model. We focus on the rates of convergence with respect to r, the number of POD basis
functions. In Section 4, we present numerical results for two test problems: the heat equation and
the Burgers equation. Finally, in Section 5, we draw several conclusions.

2 Proper Orthogonal Decomposition Reduced Order Modeling

In this section, we sketch the derivation of the standard POD Galerkin reduced order model for
the heat equation. For a detailed presentation of reduced order modeling in general settings, the
reader is referred to, e.g., [16, 22, 34, 7, 2, 6, 39, 4].

For clarity, we will denote by C a generic constant that can depend on all the parameters in the
system, except on M (the number of snapshots), d (the dimension of the set of snapshots, V ), and
r (the number of POD modes used in the POD reduced order model). Let X := H1

0 (Ω), where Ω is
the computational domain. Let u(·, t) ∈ X, t ∈ [0, T ] be the weak solution of the weak formulation
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of the heat equation:

(ut, v) + ν (∇u,∇v) = (f, v) ∀v ∈ X. (1)

Given the time instances t1, . . . , tN ∈ [0, T ], we consider the following two ensembles of snapshots:

V no DQ := span {u(·, t0), . . . , u(·, tN )} , (2)

V DQ := span
{

u(·, t0), . . . , u(·, tN ), ∂u(·, t1), . . . , ∂u(·, tN )
}

, (3)

where ∂u(tn) := u(tn)−u(tn−1)
∆t

, n = 1, . . . , N are the time difference quotients (DQs). The two
ensembles of snapshots correspond to the two cases investigated in this paper: (i) with the DQs
not included in the snapshots (i.e., V no DQ); and (ii) with the DQs included in the snapshots (i.e.,
V DQ). As pointed out in Remark 1 in [23], the ensemble of snapshots V no DQ and V DQ yield
different POD bases. This is clearly illustrated by Figures 2-3, which display POD basis functions
for the heat equation and the Burgers equation, respectively (see Section 4 for details regarding
the numerical simulations).
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Figure 2: Heat equation. Plots of the POD basis functions when the DQs are used (denoted by
DQ) and when the DQs are not used (denoted by no-DQ).

To simplify the presentation, we denote both sets of snapshots (i.e., V no DQ and V DQ) by

V = span {s1, s2, . . . , sM} ,

where M = N + 1 when V no DQ is considered and M = 2N + 1 when V DQ is considered. We use
the specific notation (i.e., V no DQ or V DQ) only when this is necessary. Let dim V = d. The POD
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Figure 3: Burgers equation. Plots of the POD basis functions when the DQs are used (denoted by
DQ) and when the DQs are not used (denoted by no-DQ).

seeks a low-dimensional basis {ϕ1, . . . , ϕr}, with r ≤ d, which optimally approximates the input
collection. Specifically, the POD basis satisfies

min
1

M

M
∑

i=1

∥

∥

∥

∥

∥

∥

si −
r
∑

j=1

(

si , ϕj(·)
)

L2 ϕj(·)

∥

∥

∥

∥

∥

∥

2

L2

, (4)

subject to the conditions that (ϕi, ϕj)L2 = δij , 1 ≤ i, j ≤ r.
In order to solve (4), we consider the eigenvalue problem

K v = λ v , (5)

where K ∈ R
M×M , with Kij =

1

M
(sj, si)L2 , is the snapshot correlation matrix, λ1 ≥ λ2 ≥ . . . ≥

λd > 0 are the positive eigenvalues, and vk, k = 1, . . . , d, are the associated eigenvectors. It can
then be shown (see, e.g., [16, 22]), that the solution of (4) is given by

ϕk(·) =
1√
λk

M
∑

j=1

(vk)j sj, 1 ≤ k ≤ r, (6)

where (vk)j is the j-th component of the eigenvector vk.

Definition 2.1 The term

ηinterp(x, t) := u(x, t)−
r
∑

j=1

(

u(x, t) , ϕj(x)
)

L2 ϕj(x) (7)
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will be denoted as the POD interpolation error.

Remark 2.1 Note that the H1-norm can also be used to generate the POD basis [23, 33]. In this
case, ‖ηinterp‖L2 ∼ ‖∇ηinterp‖L2 . Thus, the two cases considered in this paper (i.e., V = V no DQ

and V = V DQ) yield error estimates that have the same convergence rates with respect to r.

It can also be shown [23] that the following POD approximation property holds:

1

N + 1

N
∑

i=0

∥

∥

∥

∥

∥

∥

u(·, ti)−
r
∑

j=1

(

u(·, ti) , ϕj(·)
)

L2 ϕj(·)

∥

∥

∥

∥

∥

∥

2

L2

=

d
∑

j=r+1

λj if V = V no DQ , (8)

1

2N + 1

N
∑

i=0

∥

∥

∥

∥

∥

∥

u(·, ti)−
r
∑

j=1

(

u(·, ti) , ϕj(·)
)

L2 ϕj(·)

∥

∥

∥

∥

∥

∥

2

L2

(9)

+
1

2N + 1

N
∑

i=1

∥

∥

∥

∥

∥

∥

∂u(·, ti)−
r
∑

j=1

(

∂u(·, ti) , ϕj(·)
)

L2 ϕj(·)

∥

∥

∥

∥

∥

∥

2

L2

=

d
∑

j=r+1

λj if V = V DQ .

The approximation property (8)-(9) represents the relationship between the average of the square
of the L2-norm of the interpolation error and the sum of the eigenvalues of the POD modes that
are not included in the POD reduced order model.

In order to be able to prove pointwise in time error estimates in Section 3, we also make the
following assumption:

Assumption 2.1 We assume that, for i = 1, . . . , N , the interpolation error satisfies the the fol-
lowing estimates:

∥

∥

∥

∥

∥

∥

u(·, ti)−
r
∑

j=1

(

u(·, ti) , ϕj(·)
)

L2 ϕj(·)

∥

∥

∥

∥

∥

∥

2

L2

≤ C
d
∑

j=r+1

λj if V = V no DQ , (10)

∥

∥

∥

∥

∥

∥

u(·, ti)−
r
∑

j=1

(

u(·, ti) , ϕj(·)
)

L2 ϕj(·)

∥

∥

∥

∥

∥

∥

2

L2

+

∥

∥

∥

∥

∥

∥

∂u(·, ti)−
r
∑

j=1

(

∂u(·, ti) , ϕj(·)
)

L2 ϕj(·)

∥

∥

∥

∥

∥

∥

2

L2

≤ C
d
∑

j=r+1

λj if V = V DQ . (11)

Remark 2.2 Assumption 2.1 is natural. It simply says that in the sums in (8) and (9) no indi-
vidual term is much larger than the other terms in this sum. We also note that Assumption 2.1
does not play an essential role in the error analysis in Section 3, since we will exclusively consider
the continuous in time formulation.

We mention that Assumption 2.1 would follow directly from the POD approximation property
(8)–(9) if we dropped the 1

M
factor in the snapshot correlation matrix K. In fact, this approach is

used in, e.g., [24, 38]. We note, however, that this would most likely increase the magnitudes of
the eigenvalues on the RHS of the POD approximation property (8)–(9).
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In what follows, we will use the notation Xr = span{ϕ1, ϕ2, . . . , ϕr} . To derive the POD
reduced-order model for the heat equation (1), we employ the Galerkin truncation, which yields
the following approximation ur ∈ Xr of u:

ur(x, t) :=

r
∑

j=1

aj(t)ϕj(x). (12)

Plugging (12) into (1) and multiplying by test functions in Xr ⊂ X yields the POD Galerkin
reduced order model (POD-G-ROM):

(ur,t, vr) + ν (∇ur,∇vr) = (f, vr) ∀ vr ∈ Xr. (13)

The main advantage of the POD-G-ROM (13) over a straightforward finite element discretization
of (1) is clear – the computational cost of the former is dramatically lower than that of the latter.

3 Error Estimates

In this section, we prove estimates for the error u − ur, where u is the solution of the weak
formulation of the heat equation (1) and ur is the solution of the POD-G-ROM (13). Error
estimates for the POD reduced order modeling of general systems were derived in, e.g., [23, 24, 37,
18, 27, 30, 21, 13, 36, 1, 31, 15] In our theoretical analysis, we consider two cases, depending on the
type of snapshots used in the derivation of the POD basis: Case I: V = V DQ (i.e., with the DQs);
and Case II: V = V no DQ (i.e., without the DQs). The main goal of this paper is to investigate
whether Case I, Case II, or both Case I and Case II, yield error estimates that are optimal
with respect to r. The optimality with respect to r is given by the following error estimates:

‖u− ur‖ ≤ C ‖ηinterp‖ , (14)

‖∇(u− ur)‖ ≤ C ‖∇ηinterp‖ , (15)

where ηinterp is the POD interpolation error defined in (7).
We emphasize that ‖ηinterp‖ and ‖∇ηinterp‖ scale differently with respect to r: The scaling of

‖ηinterp‖ is given by the POD approximation property (10)–(11) in Assumption 2.1. The scaling
of ‖∇ηinterp‖ is not given by the POD approximation property (10)–(11) in Assumption 2.1. To
derive such an estimate, we use the fact that the interpolation error lives in a finite dimensional
space, i.e., the space spanned by the snapshots. Using an inverse estimate similar to that presented
in Lemma 3.1 but for the entire space of snapshots (of dimension d), we get the following estimate:

‖∇ηinterp‖L2 ≤ Cinv(d) ‖ηinterp‖L2 , (16)

where Cinv(d) is the constant in the inverse estimate in Lemma 3.1. Following the discussion in
Remark 3.1, we conclude that the scaling of ‖∇ηinterp‖ is of lower order with respect to r than the
scaling of ‖ηinterp‖. Thus, if the error analysis yields estimates of the form

‖u− ur‖ ≤ C ‖∇ηinterp‖ , (17)

these estimates will be called suboptimal with respect to r.
In this section, we investigate the optimality question from a theoretical point of view, by

monitoring the dependency of the error estimates on r. In Section 4, we investigate the same
question from a numerical point of view.
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We note that we perform the error analysis only for the semidiscretization of the POD-G-
ROM (13). In fact, in this semidiscretization, we only consider the error component corresponding
to the POD truncation. Of course, in practical numerical simulations, the semidiscretization also
has a spatial component (e.g., due to the finite element discretization – see Section 4). Furthermore,
when considering the full discretization, the error also has a time discretization component (e.g.,
due to the time stepping algorithm – see Section 4). All these error components should be included
in a rigorous error analysis of the discretization of the POD-G-ROM (13) (see, e.g., [27, 19, 20]).
For clarity of presentation, however, we only consider the error component corresponding to the
POD truncation. In what follows, we will show that this is sufficient for answering the question
asked in the title of this paper.

We start by introducing some notation and we list several results that will be used throughout
this section.

We note that, since the POD basis is computed in the L2-norm (see (4)), the POD mass matrix
Mr ∈ R

r×r with Mij = (ϕj , ϕi) is the identity matrix. Thus, the POD inverse estimate that was
proven in [19] (see also Lemma 2 and Remark 2 in [23]) becomes:

Lemma 3.1 (POD Inverse Estimate) Let Sr ∈ R
r×r with Sij = (∇ϕj ,∇ϕi) be the POD stiff-

ness matrix and let ‖ · ‖2 denote the matrix 2-norm. Then, for all vr ∈ Xr, the following POD
inverse estimate holds:

‖∇vr‖L2 ≤ Cinv(r) ‖vr‖L2 , (18)

where Cinv(r) :=
√

‖Sr‖2.

Remark 3.1 (POD Inverse Estimate Scalings) Since the r dependency of the error estimates
presented in this section will be carefully monitored, we try to get some insight into the scalings of
the constant Cinv(r) in (18), i.e., the scalings of ‖Sr‖2 with respect to r, the dimension of the POD
basis. We note that, since the POD basis significantly varies from test case to test case, it would
be difficult to derive a general scaling of ‖Sr‖2. We emphasize, however, that when the underlying
system is homogeneous (i.e., invariant to spatial translations), the POD basis is identical to the
Fourier basis (see, e.g., [16]). In this case, it is easy to derive the scalings of ‖Sr‖2 with respect to
r. Without loss of generality, we assume that the computational domain is [0, 1] ⊂ R

1 and that the
boundary conditions are homogeneous Dirichlet. In this case, the Fourier basis functions are given
by the following formula: ϕj(x) = sin(j π x). It is a simple calculation to show that the matrix Sr

is diagonal and that its diagonal entries are given by the following formula:

Sjj =

∫ 1

0
(j π)2 sin2(j π x) dx =

1

2
(j π)2 . (19)

It is easy to see that, in the n-dimensional case, formula (19) becomes

Sjj =

∫

Ω
(j π)2n sin2(j π x) dx =

1

2
(j π)2n . (20)

Since the POD stiffness matrix Sr is symmetric, its matrix 2-norm is given by ‖Sr‖2 = λmax,
where λmax is the largest eigenvalue of Sr. Thus, in the n-dimensional case, we have

‖Sr‖2 =
1

2
(r π)2n = O(r2n) . (21)

Thus, we conclude that, when the underlying system is homogeneous, the 2-norm of the POD
stiffness matrix Sr scales as O(r2n), where n is the spatial dimension.
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As mentioned at the beginning of the remark, for general (non-homogeneous) systems is would
be hard to derive theoretical scalings. The numerical tests in Section 4, however, seem to confirm
the theoretical scaling in (21).

For the heat equation and the Burgers equation (see Section 4 for details regarding the numerical
simulations), we monitor the scaling of ‖Sr‖2 with respect to r for the POD-G-ROM (13). We
consider two cases: when the DQs are used in the generation of the POD basis (the corresponding
results are denoted by DQ), and when the DQs are not used in the generation of the POD basis
(the corresponding results are denoted by no-DQ). The scalings are plotted in Figure 4. It is seen
that both no-DQ and DQ approaches yields scalings that are similar to the theoretical scaling (21)
predicted for the homogeneous flow fields (i.e., when the POD basis reduces to the Fourier basis).
The only exception seems to be for the Burgers equation in the DQ case. In all cases, however, the
scaling ‖Sr‖2 = O(rα), where α is a positive constant, seems to be valid.
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Figure 4: Heat equation (left); Burgers equation (right). Plots of the scalings of ‖Sr‖2 with respect
to r when the DQs are used (denoted by DQ) and when the DQs are not used (denoted by no-DQ).

After these preliminaries, we are ready to derive the error estimates. The error analysis will
proceed along the same lines as the error analysis of the finite element semidiscretization [14, 26, 35].
The main difference between the finite element and the POD settings is that the finite element
approximation property is global [14, 26], whereas the POD approximation property is local, i.e.,
it is only valid at the time instances at which the snapshots were taken (see (8)-(11)). Thus,
in order to be able to use the POD approximation property (8)-(11), in what follows we assume
that the final error estimates for the semidiscretization are considered only at the time instances
ti, i = 1, . . . , N .

We start by considering the error equation:

(et, vr) + ν (∇e,∇vr) = 0 ∀ vr ∈ Xr, (22)

where e := u− ur is the error. The error is split into two parts:

e = u− ur = (u− wr)− (ur − wr) = η − φr, (23)

where wr is an arbitrary function in Xr, η := u−wr, and φr := ur −wr. Using this decomposition
in the error equation (22), we get

(φr,t, vr) + ν (∇φr,∇vr) = (ηt, vr) + ν (∇η,∇vr). (24)
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The analysis proceeds by using (24) to show that

‖φr‖ ≤ C ‖η‖. (25)

Using the triangle inequality, one then gets

‖e‖ ≤ ‖η‖+ ‖φr‖ ≤ (1 + C) ‖η‖. (26)

Since wr was chosen arbitrarily and since the LHS does not depend on wr, we can take the infimum
over wr in (26) and get the following error estimate:

‖e‖ ≤ (1 + C) inf
wr∈Xr

‖u− wr‖. (27)

At this stage, one invokes the approximability property of the space Xr in (27) and concludes that
the error estimate (27) is optimal with respect to r. That is, the error in (27) is, up to a constant,
the interpolation error in Xr.

There are a lot of variations of the error analysis sketched above, but most of the existing
error analyses follow the above path. The main variations are the following: (i) the choice of the
arbitrary function wr ∈ Xr; (ii) the norm ‖ · ‖ used above; and (iii) the choice of the test function
used in the error equation to get (25) [35].

In the remainder of this section, we investigate whether error estimates that are optimal with
respect to r can be obtained with or without including the DQs in the set of snapshots. To this
end, in Section 3.1 we consider the case in which the DQs are included in the set of snapshots (i.e.,
V = V DQ). Then, in Section 3.2 we consider the case in which the DQs are not included in the
set of snapshots (i.e., V = V no DQ).

3.1 Case I (V = V
DQ)

The standard approach used to prove error estimates in this case is to use the Ritz projection [23,
24, 19, 20]. We note that this is the standard approach used in the finite element context [14, 26].
As pointed out in [35], the Ritz projection was first used by Wheeler in [40] to obtain optimal error
estimates for the finite element discretization of parabolic problems.

We start by choosing wr := Rr(u) in (23), where Rr(u) is the Ritz projection of u, given by:
(

∇(u−Rr(u)),∇vr
)

= 0 ∀ vr ∈ Xr. (28)

To emphasize that we are using the Ritz projection, in the remainder of Section 3.1 we will use the
notation η = u−Rr(u) = ηRitz .

Using (28), (24) becomes

(φr,t, vr) + ν (∇φr,∇vr) = (ηRitz
t , vr) + ν

✘
✘
✘
✘
✘
✘
✘✘✿0

(∇ηRitz ,∇vr). (29)

It is the cancelation of the last term on the RHS of (29) that yields optimal error estimates. We
let vr := φr in (29), and then we apply the Cauchy-Schwarz inequality to the remaining term on
the RHS:

1

2

d

dt
‖φr‖2 + ν ‖∇φr‖2 ≤ ‖ηRitz

t ‖ ‖φr‖. (30)

We rewrite the first term on the LHS of (30) as

1

2

d

dt
‖φr‖2 = ‖φr‖

d

dt
‖φr‖. (31)
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We apply the Poincare-Friedrichs inequality to the second term on the LHS of (30):

ν ‖∇φr‖2 ≥ C ν ‖φr‖2. (32)

We note that the Poincare-Friedrichs inequality C‖v‖2 ≤ ‖∇v‖2 holds for every function v in the
continuous space H1

0 (Ω), and, in particular, for φr ∈ Xr ⊂ X = H1
0 (Ω) (see equation (3) in [23]).

Thus, the constant C in (32) does not depend on r. Using (31) and (32) in (30), we get

1

2

d

dt
‖φr‖+ C ν ‖φr‖ ≤ ‖ηRitz

t ‖. (33)

Using Gronwall’s lemma in (33), we get for 0 < t ≤ T

‖φr(t)‖ ≤ e−2C ν t ‖φr(0)‖ + 2

∫ t

0
e−2C ν (t−s) ‖ηRitz

t (s)‖ ds. (34)

Using (26), the first term on the RHS of (34) can be estimated as follows:

‖φr(0)‖ ≤ ‖e(0)‖ + ‖ηRitz(0)‖. (35)

Thus, (34) becomes

‖φr(t)‖ ≤ e−2C ν t

(

‖e(0)‖ + ‖ηRitz(0)‖
)

+ 2

∫ t

0
e−2C ν (t−s) ‖ηRitz

t (s)‖ ds. (36)

Applying the triangle inequality, just as in (26), we get

‖e(t)‖ ≤ ‖ηRitz(t)‖+ e−2C ν t

(

‖e(0)‖ + ‖ηRitz(0)‖
)

+ 2

∫ t

0
e−2C ν (t−s) ‖ηRitz

t (s)‖ ds.

(37)

Estimate (37) shows that, as long as the Ritz projection (28) yields estimates for ‖ηRitz(t)‖ (in-
cluding for t = 0) and ‖ηRitz

t (t)‖ that are optimal with respect to r, the estimates for the POD
error e are also optimal with respect to r.

Remark 3.2 (POD Ritz Projection) In the finite element context, both ‖ηRitz‖ and ‖ηRitz
t ‖

are optimal with respect to the mesh size h. In the POD context, however, this is not that clear.
To the best of the authors’ knowledge, the state-of-the-art regarding the Ritz projection in a POD
context is given in the pioneering paper of Kunisch and Volkwein [23]. Since the Ritz projection
plays such an important role in this paper, we summarize below the results in [23].

The main result in [23] regarding the Ritz projection is Lemma 3 (see also (10) and (11) in
[23]), which, in our notation, states the following:

‖∇ηRitz‖2 ≤ ‖Sd‖2
d
∑

j=r+1

λj . (38)

For clarity of presentation, we have not included in (38) the constants that do not depend on r.
Thus, the following relationship between the Ritz projection error and the POD interpolation error
holds:

‖∇ηRitz‖ ≤ C
√

‖Sd‖2 ‖ηinterp‖ . (39)
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The scaling in (39) suggests that the Ritz projection yields optimal error estimates with respect to
r in the H1-seminorm (see (16)).

We emphasize that Lemma 3 in [23] does not include any bounds for the L2-norm of ηRitz, i.e.,
for ‖ηRitz‖. This is in clear contrast with the finite element context, in which ‖ηRitz‖ is estimated by
the usual duality argument (the Aubin-Nitsche “trick,” see, e.g., [35]). Using a duality argument,
however, is challenging in the POD context, since any auxiliary dual problem would not necessarily
inherit the POD approximation property (8)–(11). To the best of the authors’ knowledge, such a
duality argument has never been used in a POD context.

We emphasize that not being able to use a duality argument in the Ritz projection to get er-
ror estimates that are optimal with respect to r has significant consequences in the error analysis.
Indeed, in the proof of Theorem 7 in [23] (the error estimate for the backward Euler time dis-
cretization), to estimate the ‖ηRitz‖ error component in equations (27a) and (27b), the authors use
the ‖∇ηRitz‖ estimate given in Lemma 3 and the Poincare-Friedrichs inequality given in equation
(3). Since the Poincare-Friedrichs constant does not depend on r, we conclude that ‖ηRitz‖ and
‖∇ηRitz‖ have the same order. This, in turn, suggests that ‖ηRitz‖ is suboptimal with respect to
r. We note that the same approach (i.e., Lemma 4 and the Poincare-Friedrichs inequality) is used
in [23] to estimate the DQ approximation of ‖ηRitz

t ‖ (see the two inequalities above equation (29a)).
Thus, the analysis in [23] suggests that the estimates for ‖ηRitz‖ and ‖ηRitz

t ‖ are suboptimal with
respect to r. The numerical tests in Section 4 of this report, however, suggest that these estimates
are actually optimal, just as in the finite element case. In the analysis that follows, we will use the
insight from the numerical results in Section 4 and make the following assumption:

Assumption 3.1 We assume that the POD Ritz projection error ηRitz satisfies optimal error
estimates with respect to r in the L2-norm:

‖ηRitz‖ ≤ C ‖ηinterp‖ , (40)

‖ηRitz
t ‖ ≤ C ‖ηinterp‖ . (41)

3.2 Case II (V = V
no DQ)

This approach was used in [10, 33]. The motivation for this approach is the following: In Case I
(V = V DQ), the first term on the RHS of (29), (ηt, vr), yields a term ‖ηt‖ that stays in all the
subsequent inequalities, including the final error estimate (37). Chapelle et al. proposed in [10] a
different approach that eliminated the (ηt, vr) term in (29). Their approach was straightforward:
Instead of using the Ritz projection (as in Case I), they used the L2 projection. That is, they chose
wr := Pr(u), where Pr(u) is the L2 projection of u, given by

(

u− Pr(u), vr
)

= 0 ∀ vr ∈ Xr. (42)

To emphasize that we are using the L2 projection, in the remainder of Section 3.2 we will use the
notation η = u− Pr(u) = ηL

2

.
We note that the POD L2 projection error ηL

2

is exactly the POD interpolation error defined
in (7):

ηL
2

= ηinterp . (43)

Next, we show how the error analysis in Case I changes with wr = Pr(u) as in [10] (see also
[33]).
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Using (42), (24) becomes

(φr,t, vr) + ν (∇φr,∇vr) =✘
✘
✘
✘✘✿

0
(ηL

2

t , vr) + ν (∇ηL
2

,∇vr). (44)

We emphasize that it is the cancelation of the first term on the RHS of (44) that yields error
estimates that do not require the DQs. We let vr := φr in (44) and we apply Cauchy-Schwarz
inequality to the remaining term on the RHS:

1

2

d

dt
‖φr‖2 + ν ‖∇φr‖2 ≤ ν ‖∇ηL

2‖ ‖∇φr‖. (45)

The error analysis can then proceed in several directions.

3.2.1 Approach II.A

One approach is to use Young’s inequality in (45) to get

1

2

d

dt
‖φr‖2 + ν ‖∇φr‖2 ≤

ν

2
‖∇ηL

2‖2 + ν

2
‖∇φr‖2, (46)

which implies

1

2

d

dt
‖φr‖2 +

ν

2
‖∇φr‖2 ≤ ν

2
‖∇ηL

2‖2. (47)

Noticing that the second term on the LHS of (47) is positive, we get

d

dt
‖φr‖2 ≤ ν ‖∇ηL

2‖2. (48)

Using (43) and (17), we conclude that Approach II.A will yield error estimates that are suboptimal
with respect to r. We also note in passing that estimate (48) suggests that Approach II.A will
yield error estimates that are suboptimal with respect to h as well.

3.2.2 Approach II.B

The other way of continuing from (45) is to apply the POD inverse estimate (18):

‖∇φr‖ ≤ Cinv(r) ‖φr‖, (49)

where Cinv(r) :=
√

‖Sr‖2. Using (49) in (45) yields

1

2

d

dt
‖φr‖2 + ν ‖∇φr‖2 ≤ Cinv(r) ν ‖∇ηL

2‖ ‖φr‖. (50)

Dropping ν ‖∇φr‖2 in (50) and simplifying the resulting inequality by ‖φr‖ (as we did in (34)), we
get

1

2

d

dt
‖φr‖ ≤ Cinv(r) ν ‖∇ηL

2‖. (51)

Comparing estimate (51) with estimate (48) in Approach II.A, we note that both estimates have
‖∇η‖ on the RHS. In addition, estimate (51) has Cinv(r) on the RHS, which increases the subopti-
mality with respect to r (see Remark 3.1). Thus, estimate (51) suggests that Approach II.B yields
estimates that are suboptimal with respect to r (and h), just as Approach II.A.
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3.2.3 Approach II.C

Since both Approach II.A and Approach II.B yield error estimates that are suboptimal with respect
to r in the L2-norm, one can try instead to prove optimal error estimates in the H1-seminorm. To
this end, we use the approach in [35] and, instead of choosing vr := φr in (44), we choose vr := φr,t:

‖φr,t‖2 +
ν

2

d

dt
‖∇φr‖2 ≤ ν ‖∇ηL

2‖ ‖∇φr,t‖. (52)

Applying Young’s inequality and the POD inverse estimate (49) in (52), we get

‖φr,t‖2 +
ν

2

d

dt
‖∇φr‖2 ≤ ν ‖∇ηL

2‖ ‖∇φr,t‖

≤ ν2

2
Cinv(r)

2 ‖∇ηL
2‖2 + 1

2Cinv(r)2
‖∇φr,t‖2

(49)

≤ ν2

2
Cinv(r)

2 ‖∇ηL
2‖2 + 1

2
‖φr,t‖2, (53)

which implies

d

dt
‖∇φr‖2 ≤ ν Cinv(r)

2 ‖∇ηL
2‖2. (54)

In contrast with estimate (48) in Approach II.A and estimate (51) in Approach II.B, estimate (54)
seems to yield error estimates that are optimal with respect to r. As in estimates (48) and (54),
estimate (54) contains the term ‖∇ηL

2‖ on the RHS. We note, however, that this term does not
cause any problems, since now we are considering the H1-seminorm of the error. The factor
Cinv(r)

2 in (54), however, increases the suboptimality with respect to r (see Remark 3.1). Thus,
estimate (54) suggests that Approach II.C yields estimates that are suboptimal with respect to r,
just as Approaches II.A and II.B.

Since for Case I (V = V DQ) in Section 3.1, we did not prove error estimates in the H1-norm,
for a fair comparison with Approach II.C, we prove these error estimates below. To this end, we
let vr := φr,t in (29):

(φr,t, φr,t) + ν (∇φr,∇φr,t) = (ηRitz
t , φr,t). (55)

Applying Young’s inequality on the RHS of (55), we get

‖φr,t‖2 +
ν

2

d

dt
‖∇φr‖2 ≤ ‖ηRitz

t ‖ ‖φr,t‖

≤ 1

2
‖ηRitz

t ‖2 + 1

2
‖φr,t‖2, (56)

which implies

d

dt
‖∇φr‖2 ≤

1

ν
‖ηRitz

t ‖2. (57)

Comparing (57) with (54) in Approach II.C, we note that the latter does not contain the factor
Cinv(r)

2. Thus, Case I (V = V DQ) in Section 3.1 yields optimal error estimates with respect to
r, as opposed to Approach II.C.

We also note that, at first glance, estimate (57) suggests that one can get superconvergence
in the H1-seminorm. As mentioned in [35], however, when applying the triangle inequality one
obtains the expected convergence rate:

‖∇e‖ ≤ ‖∇ηRitz‖+ ‖∇φr‖. (58)
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3.2.4 Approach II.D

Approaches II.A, II.B, and II.C suggest that the pointwise in time (i.e., in the C0(0, T ;L2(Ω))-norm
and the C0(0, T ;H1(Ω))-norm) error estimates are suboptimal with respect to r. Thus, we derive
error estimates in the solution norm (i.e., in the L2(0, T ;H1(Ω))-norm). Integrating (47) from 0
to T , we get

‖φr(T )‖2 +
ν

2

∫ T

0
‖∇φr(s)‖2 ds ≤ ‖φr(0)‖2 +

ν

2

∫ T

0
‖∇ηL

2

(s)‖2 ds. (59)

Using (43), (14), and (15), we conclude that estimate in (59) is optimal with respect to r. We note
that Proposition 3.3 in [10] yields a similar estimate.

Case II (i.e., V = V no DQ) yields the following general conclusions when the L2 projection is
used instead of the standard Ritz projection: If the error is computed pointwise in time (i.e., in
the C0(0, T ;L2(Ω))-norm and the C0(0, T ;H1(Ω))-norm), then the error estimates are suboptimal
with respect to r. This is the main message of Approaches II.A, II.B, and II.C. If, however, the
error is computed in the solution norm (i.e., in the L2(0, T ;H1(Ω))-norm), then the error estimates
are optimal with respect to r. This is the main message of Approach II.D.

4 Numerical Results

The main goal of this section is to numerically investigate the rates of convergence with respect to
r of the POD-G-ROM (13) in the two cases considered in Section 3: Case I (V = V DQ) and Case
II (V = V no DQ). Although the error analysis in Section 3 has been centered around the (linear)
heat equation, in this section we consider both the heat equation (Section 4.1) and the nonlinear
Burgers equation (Section 4.2).

To measure the errors in the two cases (i.e., V = V DQ and V = V no DQ), the same norms
as those used in Section 3 are used in this section. Denoting the error at time tj by ej :=
urh(·, tj) − u(·, tj), the following norms are considered: the error in the C0(0, T ;L2(Ω))-norm,
approximated by EC0(L2) = max

0≤j≤N
‖ej‖L2(Ω); the error in the C0(0, T ;H1(Ω))-norm, approxi-

mated by EC0(H1) = max
0≤j≤N

‖ej‖H1(Ω); and the error in the L2(0, T ;H1(Ω))-norm, approximated by

EL2(H1) =
√

1
N+1

∑

0≤j≤N

‖ej‖2H1(Ω)
. For clarity, we also use the following notation: Λr =

√

d
∑

j=r+1
λj .

As mentioned at the beginning of Section 3, the POD-G-ROM (13) error estimates are optimal
if the following statements hold:

(i) The L2-norm of the error scales as L2-norm of the POD interpolation error. Using (14) and
(8)–(11), this statement is equivalent to

EC0(L2) = O





√

√

√

√

d
∑

j=r+1

λj



 , (60)

(ii) The H1-norm of the error scales as H1-norm of the POD interpolation error. Using (15),
(16), and (8)–(11), this statement is equivalent to

EC0(H1) ∼ EL2(H1) = O





√

√

√

√‖Sd‖2
d
∑

j=r+1

λj



 , (61)
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Based on the error analysis in Section 3, we expect the following convergence rates with respect
to r:

Table 2: Theoretical convergence rates for the no DQ and the DQ cases.

no DQ DQ

EC0(L2) suboptimal optimal

(48); (51) (37)

EC0(H1) suboptimal optimal

(54) (58)

EL2(H1) optimal optimal

(59)

4.1 Heat Equation

We consider the one-dimensional heat equation (1) with a known exact solution that represents
the propagation in time of a steep front:

u(x, t) = sin(πx)

[

1

π
arctan

(

c

25
− c

(

x− t

2

)2
)

+
1

2

]

, (62)

where x ∈ [0, 1] and t ∈ [0, 1]. The constant c in (62) controls the steepness of the front. In all the
numerical tests in this section, we used the value c = 100. The value of the diffusion coefficient
used in the heat equation (1) is ν = 10−2. Piecewise linear finite elements are used to generate
snapshots for the POD-G-ROM (13). A mesh size h = 1/1024 and the Crank-Nicolson scheme
with a time step ∆t = 10−3 are employed for the spatial and temporal discretizations. The time
evolution of the finite element solution is shown in Figure 5. In total, 1001 snapshots are collected
and used for generating POD basis functions in the L2 space. The same numerical solver as that
used in the finite element approximation is utilized in the POD-G-ROM.

By varying r, the number of basis functions used in the POD-G-ROM, we check the rates of
convergence with respect to r for the no DQ and the DQ cases. The errors are listed in Table 3
(in the no DQ case) and in Table 4 (in the DQ case). To visualize the rates of convergence with
respect to r, these errors with their linear regression plots are drawn in Figure 6. The convergence
rate of the error in the C0(L2)-norm, EC0(L2), is superoptimal in the DQ case and suboptimal
in the no DQ case. This supports the theoretical rates of convergence in Table 2, although the
suboptimality in the no DQ case is mild. The convergence rate of the error in the C0(H1)-norm,
EC0(H1), is slightly superoptimal in the DQ case and strongly suboptimal in the no DQ case. This
again supports the theoretical rates of convergence in Table 2. The convergence rate of the error
in the L2(H1)-norm, EL2(H1), is optimal in the DQ case and strongly suboptimal in the no DQ
case. This supports the theoretical rates of convergence in Table 2 for the DQ case, but not for
the no DQ case.

Overall, the numerical results support the theoretical rates of convergence proved in Section 3
and summarized in Table 2. We also emphasize that the convergence rates in the DQ case in
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Figure 5: Heat equation. Fine resolution finite element solution used to generate the snapshots.

all three norms are much higher than (and almost twice as high as) the corresponding rates of
convergence in the no DQ case.

Table 3: Heat equation. Errors in the no DQ case.

r Λr EC0(L2) EC0(H1) EL2(H1)

3 5.72e-02 9.46e-02 2.30e+00 1.59e+00
5 2.71e-02 4.70e-02 1.58e+00 1.14e+00
7 1.58e-02 3.69e-02 1.38e+00 8.22e-01
10 7.34e-03 1.57e-02 8.54e-01 5.31e-01
13 3.84e-03 7.78e-03 5.84e-01 3.50e-01

Table 4: Heat equation. Errors in the DQ case.

r Λr EC0(L2) EC0(H1) EL2(H1)

19 5.49e-02 7.15e-03 4.96e-01 3.19e-01
23 2.95e-02 2.03e-03 1.98e-01 1.19e-01
28 1.41e-02 6.52e-04 7.97e-02 4.91e-02
33 6.75e-03 2.41e-04 3.68e-02 2.80e-02
37 3.76e-03 8.60e-05 2.67e-02 2.29e-02

4.2 Burgers Equation

In this section, we consider the one-dimensional Burgers equation. As mentioned at the beginning
of Section 4, the error estimates proved in Section 3 are valid for the (linear) heat equation, but not
necessarily valid for the nonlinear Burgers equation. Nevertheless, to gain some insight into the
range of validity of the theoretical development in Section 3, we investigate the rates of convergence
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Figure 6: Heat equation. Plots of errors in C0(L2)-norm (top, left), C0(H1)-norm (top, right), and
L2(H1)-norm (bottom).

with respect to r in the no DQ and the DQ cases for the nonlinear Burgers equation:







ut − ν uxx + uux = f in Ω× (0, T ] ,
u(x, 0) = u0(x) in Ω ,
u(x, t) = g(x, t) on ∂Ω× (0, T ] .

(63)

The initial condition is

u0(x) =







1 if x ∈
(

0, 12
]

0 if x ∈
(

1
2 , 1
)

,
(64)

which is similar to that used in [23]. The diffusion parameter is ν = 10−2, the forcing term is
f = 0, Ω = [0, 1], and T = 1. The boundary conditions are homogeneous Dirichlet, that is,
u(0, t) = u(1, t) = 0 for all t ∈ [0, 1].

To generate snapshots, we use piecewise linear finite elements with mesh size h = 1/1024 and
the backward Euler method with a time step ∆t = 10−4, and save data at each time instance. The
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Figure 7: Burgers equation. Fine resolution finite element solution used to generate the snapshots.

time evolution of the finite element solution is shown in Figure 7. All snapshots are used for the
POD basis generation and the same numerical solver is used in the POD-G-ROM.

By varying r, we check the rates of convergence with respect to r for the no DQ and the DQ
cases. Since the exact solution of the Burgers equation (63) with the initial condition (64) is not
known, we consider the errors between the POD-G-ROM results and the snapshots. The errors
are listed in Table 5 (in the no DQ case) and in Table 6 (in the DQ case). These errors with their
linear regression plots are drawn in Figure 8. The convergence rate of the error in the C0(L2)-
norm, EC0(L2), is superoptimal in the DQ case and strongly suboptimal in the no DQ case. This
clearly supports the theoretical rates of convergence in Table 2. The convergence rate of the error
in the C0(H1)-norm, EC0(H1), is superoptimal in the DQ case and extremely suboptimal in the
no DQ case. This strongly supports the theoretical rates of convergence in Table 2. Finally, the
convergence rate of the error in the L2(H1)-norm, EL2(H1), is optimal in the DQ case and strongly
suboptimal in the no DQ case. This supports the theoretical rates of convergence in Table 2 for
the DQ case, but not for the no DQ case.

Overall, the numerical results clearly support the theoretical rates of convergence proved in
Section 3 and summarized in Table 2. We also emphasize that the convergence rates in the DQ
case in all three norms are much higher than (and at least twice as high as) the corresponding rates
of convergence in the no DQ case.

Table 5: Burgers equation. Errors in the no DQ approach.

r Λr EC0(L2) EC0(H1) EL2(H1)

3 8.74e-02 2.38e-01 4.48e+01 2.34e+00
5 3.95e-02 1.60e-01 4.44e+01 1.76e+00
7 1.97e-02 1.17e-01 4.37e+01 1.24e+00
9 1.02e-02 9.05e-02 4.28e+01 8.94e-01
11 5.47e-03 7.01e-02 4.14e+01 6.84e-01
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Table 6: Burgers equation. Errors in the DQ approach.

r Λr EC0(L2) EC0(H1) EL2(H1)

18 8.55e-02 6.83e-03 5.60e-01 2.82e-01
21 4.56e-02 2.99e-03 2.49e-01 1.37e-01
24 2.39e-02 1.31e-03 1.23e-01 6.72e-02
28 9.81e-03 4.29e-04 4.73e-02 2.57e-02
31 4.97e-03 1.88e-04 2.28e-02 1.25e-02

5 Conclusions

The effect of using or not the snapshot DQs in the generation of the POD basis (the DQ and the
no DQ cases, respectively) was investigated theoretically and numerically. The criterion used in
this theoretical and numerical investigation was the rate of convergence with respect to r of the
POD-G-ROM solution to the exact solution, where r is the number of POD basis functions used
in the POD-G-ROM.

The error estimates in Section 3 yielded the following conclusions: In the DQ case, the conver-
gence rates were optimal in all three norms considered (the C0(L2)-norm, the C0(H1)-norm and
the L2(H1)-norm. In the no DQ case, the convergence rates were suboptimal in the C0(L2)-norm
and in the C0(H1)-norm, and optimal in the L2(H1)-norm.

The numerical results in Section 4 for the (linear) heat equation and the (nonlinear) Burgers
equation confirmed the conclusions suggested by the theoretical error estimates in Section 3: In
the DQ case, the convergence rates were superoptimal in the C0(L2)-norm, the C0(H1)-norm, and
the L2(H1)-norm. In the no DQ case, the convergence rates were suboptimal in the C0(L2)-norm,
the C0(H1)-norm, and the L2(H1)-norm. The only departure from the theoretical conclusions was
that, in the no DQ case, the convergence rate in the L2(H1)-norm was suboptimal. We emphasize
that, for both the heat equation and the Burgers equation, the convergence rates in the DQ case
in all three norms were much higher than (and usually at least twice as high as) the corresponding
rates of convergence in the no DQ case.

The theoretical error estimates in Section 3 and the numerical results in Section 4 strongly
suggest the following conjecture: “The snapshot DQs should be used in the generation of the POD
basis in order to achieve optimal rates of convergence with respect to r, the number of POD basis
functions utilized in the POD-G-ROM. We also conjecture that using the snapshot DQs in the
generation of the POD basis could alleviate some of the degrading of convergence with respect to
r seen in, e.g., [29, 9, 3, 8]. We intend to investigate this conjecture in a future study.
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