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INTEGRAL CAYLEY GRAPHS AND GROUPS

AZHVAN AHMADY, JASON P. BELL, AND BOJAN MOHAR

Abstract. We solve two open problems regarding the classification of certain
classes of Cayley graphs with integer eigenvalues. We first classify all finite
groups that have a “non-trivial” Cayley graph with integer eigenvalues, thus
solving a problem proposed by Abdollahi and Jazaeri. The notion of Cayley
integral groups was introduced by Klotz and Sander. These are groups for
which every Cayley graph has only integer eigenvalues. In the second part of
the paper, all Cayley integral groups are determined.

1. Introduction

A graph X is said to be integral if all eigenvalues of the adjacency matrix of
X are integers. This property was first defined by Harary and Schwenk [9] who
suggested the problem of classifying integral graphs. This problem ignited a signifi-
cant investigation among algebraic graph theorists, trying to construct and classify
integral graphs. Although this problem is easy to state, it turns out to be extremely
hard. It has been attacked by many mathematicians during the last forty years and
it is still wide open.

Since the general problem of classifying integral graphs seems too difficult, graph
theorists started to investigate special classes of graphs, including trees, graphs of
bounded degree, regular graphs and Cayley graphs. What proves so interesting
about this problem is that no one can yet identify what the integral trees are or
which 5-regular graphs are integral.

The notion of CIS groups, that is, groups admitting no integral Cayley graphs
besides complete multipartite graphs, was introduced by Abdollahi and Jazaeri [1],
who classified all abelian CIS groups. The question of which non-abelian groups
are CIS remained open, however. A similar but more intriguing notion of Cayley
integral groups was introduced by Klotz and Sander in [10]. These are finite groups
G with the property that whenever S is a symmetric generating set for G, the
Cayley graph of G with respect to the generating set S is an integral graph. Klotz
and Sander classified all such groups in the abelian group case, while the general
case was left open.

The main results in this paper are Theorems 3.2 and 4.2 in which we respectively
classify all CIS groups and all Cayley integral groups. Although the first of these
two results is not very hard to prove, we find it interesting enough since it shows,
in particular, that every finite non-abelian group admits a non-trivial Cayley graph
whose eigenvalues are all integral. The classification of Cayley integral groups is
more difficult and requires new methods. In this case we are able to give a complete
list of all Cayley integral groups up to isomorphism, with the conclusion being that,
aside from a few sporadic examples, all such groups are either abelian or isomorphic
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to the direct product of the quaternion group of order 8 with an elementary abelian
2-group.

As the setting of integral Cayley graphs suggests, all groups in this paper will
be finite.

2. Group representations and eigenvalues of Cayley graphs

We require some definitions and notation from representation theory, graph the-
ory and group theory. We will use the standard notation, for a more detailed
account the reader is referred to [7, 8, 12]. All groups considered are finite (written
multiplicatively), and all fields are subfields of the complex numbers. For two ma-
trices A and B we denote their Kronecker product by A⊗B. For an integer k ≥ 1,
Ik denotes the k× k identity matrix and Jk represents the k× k matrix of all ones.
For a symmetric (self-inverse) subset S of G, we define the Cayley graph of G over
S, denoted Cay(G,S), to be the graph with vertex set G and x, y ∈ G adjacent
if xy−1 ∈ S. A group G is called perfect if it is equal to its derived subgroup, i.e.
G = G′. We denote the group algebra of G over the field F by FG. That is, FG
is the vector space over F with basis G and multiplication defined by extending
the group multiplication linearly. Identifying

∑

g∈G agg with the function g 7→ ag,
we can view the vector space FG as the space of all F-valued functions on G. We
sometimes identify a subset S of G with the element

∑

s∈S

s of the group algebra CG.

Let V be an n-dimensional vector space over C. A complex representation (or
simply a representation) of G on V is a group homomorphism ρ : G → GL(V ),
where GL(V ) denotes the group of invertible endomorphism of V . The degree of ρ
is the dimension of V . Two representations ρ1 and ρ2 ofG on V1 and V2, respectively,
are equivalent (written ρ1 ∼= ρ2) if there is a linear isomorphism T : V1 → V2 such
that for every g ∈ G we have Tρ1(g) = ρ2(g)T .

If ρ is a representation of G then the character χρ afforded by ρ, is the linear
functional χρ : CG → C defined by

χρ(g) = tr(ρ(g)), g ∈ G,

and extended by linearity to CG (the trace tr(α) of a linear map α is the trace of
any matrix representing α according to some basis). The degree of the character
χρ is the degree of ρ, and is equal to χρ(1). A character of degree one is called a
linear character. The index [G : G′] of derived subgroup G′, is equal to the number
of linear characters of G. The character χ which assigns 1 to every element of a
group G is called the principal character of G and is denoted by 1G.

The |G|-dimensional representation ρreg : G → GL(CG) defined by ρreg(g)(x) =
gx (g ∈ G, x ∈ CG)) is called the left-regular representation. Choosing G as a basis
for CG, we see that for every g ∈ G, [ρreg(g)]G (the matrix representing the linear
map ρreg(g) according to the basis G) is the (|G| × |G|)-matrix, indexed with the
elements of G, such that for every k, h ∈ G

([ρreg(g)]G)h,k =

{

1 if h = gk
0 otherwise.

This gives a natural link to Cayley graphs since the adjacency matrix of a Cayley
graph Cay(G,S) can be written as

(2.1) A =
∑

s∈S

[ρreg(s)]G.

Let ρ : G → GL(V ) be a representation. A subspace W of V is said to be ρ-
invariant, if ρ(g)w ∈ W for every g ∈ G and w ∈ W . If W is a ρ-invariant subspace
of V , then the restriction of ρ to W , that is ρ|W : G → GL(W ), is a representation
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of G on W . If V has no non-trivial ρ-invariant subspaces, then ρ is said to be an
irreducible representation for G and the corresponding character χρ an irreducible
character for G.

If G is abelian, then every irreducible representation ρ of G is 1-dimensional and
thus it can be identified with its character χρ.

A result of Diaconis and Shahshahani [6] shows a link between the representation
theory and spectral theory of Cayley graphs. Let ρ1, . . . , ρk be a complete set of
irreducible representations of a group G, and suppose that S is a symmetric subset
of G. For t = 1, . . . , k, let dt be the degree of ρt, and let Λt be the (multi-)set of
eigenvalues of the matrix ρt(S) =

∑

s∈S

ρt(s). Then the following holds:

(1) The (multi-)set of eigenvalues of Cay(G,S) equals ∪k
t=1Λt.

(2) If the eigenvalue λ occurs with multiplicity mt(λ) in ρt(S) (1 ≤ t ≤ k),

then the multiplicity of λ in Cay(G,S) is
∑k

t=1 dtmt(λ).

If G is a group and χ a character of G, then the character values are all algebraic
integers and thus they are rational if and only if they are integral. Observe that ev-
ery representation of G (and in particular the left-regular representation) is a direct
sum of some copies of irreducible representations. This fact and the aforementioned
result of Diaconis and Shahshahani yield the following criterion for integrality of
Cayley graphs that will be used throughout the paper.

Proposition 2.1. A connected Cayley graph Cay(G,S) is integral if and only if
for every representation ρ of G, ρ(S) is integral.

3. Cayley integral simple groups

In this section, we answer a question of Abdollahi and Jazaeri [1] concerning
Cayley integral simple groups. Abdollahi and Jazaeri defined a Cayley integral
simple group (CIS group for short) to be a group G with the property that the
only connected integral Cayley graphs of G are complete multipartite graphs. In
addition to this, they noticed that given a symmetric generating subset S of G,
Cay(G,S) is a complete multipartite graph if and only if S is the complement of a
subgroup of G. Thus a simpler definition of a CIS group is that it is a group G with
the property that for a symmetric generating set S of G, we have that Cay(G,S)
is an integral graph if and only if S is the complement of a subgroup of G.

As part of their study of CIS groups, Abdollahi and Jazaeri gave a complete
characterization of abelian CIS groups, which we state now.

Theorem 3.1 (Abdollahi and Jazaeri [1]). Let G be an abelian group. Then G is
a CIS group if and only if G ∼= Zp2 ,Zp for some prime number p, or G ∼= Z2 × Z2.

In addition to this, they posed the following question.

Question 1. Which finite non-abelian groups are CIS groups?

We answer their question with the perhaps surprising answer that non-abelian
finite CIS groups do not exist. More formally, we show the following result.

Theorem 3.2. Let G be a CIS group. Then G is abelian and in particular is iso-
morphic to either a cyclic group of order p or p2 for some prime p, or is isomorphic
to Z2

2.

Our proof of Theorem 3.2 is essentially an induction argument on the order of
the group and to make the argument work we need the following result.

Theorem 3.3 (Miller and Moreno [11]). Let G be a non-abelian group with the
property that every proper subgroup is abelian. Then |G| has at most two prime
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divisors and there is some prime p dividing the order of G such that the Sylow
p-subgroup of G is normal.

We will also need a basic result showing that the CIS property is closed under
the process of taking subgroups and homomorphic images.

Lemma 3.4. Let G be a CIS group. Then every subgroup and every homomorphic
image of G is also a CIS group.

Proof. Let us assume H is a subgroup of G. We will show that H is a CIS group.
Suppose, towards a contradiction, that H is not a CIS group. Then there is a
self-inverse generating subset S of H such that 1 6∈ S, H \ S is not a subgroup
of H , and such that Cay(H,S) is an integral graph. We take T = S ∪ (G \ H).
Then T generates G, 1 6∈ T , and G \ T = H \ S is not a subgroup of G. Then
the adjacency matrix of Cay(G, T ) is given by B := AS ⊗ Ik + Jn ⊗ (Jk − Ik),
where AS is the adjacency matrix of Cay(H,S), n = |H |, k = [G : H ]. Since AS is
Hermitian, it is unitarily diagonalizable. In particular, we can find an orthogonal
basis of eigenvectors of AS , {w1, . . . ,wn}. We may assume that w1 = j, the vector
whose coordinates are all equal to one. Thus there are integers |S| = λ1, . . . , λn

such that ASwi = λiwi for i = 1, . . . , n. Notice that since Jn has each of its
columns equal to j = w1, we have Jnw1 = nw1 and Jnwi = 0 for i ≥ 2. Since
Jk is symmetric and of rank 1, it has eigenvectors u1, . . . ,uk with Jkui = kδ1,iui.
Then S = {wi ⊗ uj | 1 ≤ i ≤ n, 1 ≤ j ≤ k} is a basis of Cn ⊗ Ck. Observe that
B(wi ⊗ uj) = (λi + δ1,in(kδ1,j − 1))wi ⊗ uj . In particular, S is a complete set of
eigenvectors of B and thus every eigenvalue of B is an integer. Thus G is not a CIS
group, a contradiction.

For the second part, let us assume N is a proper normal subgroup of G. We
show, using a proof by contradiction, that G/N is a CIS group. If G/N is not a
CIS group, then there exists a self-inverse generating subset S̄ of G/N such that
N 6∈ S̄, G/N \ S̄ is not a subgroup of G/N and Cay(G/N, S̄) is an integral graph.
Let us assume S̄ = {Ns | s ∈ S}, where the set S is symmetric in G. We have
S ∩N = ∅. If we define T = ∪s∈S Ns, then clearly T is a self-inverse subset of G
such that 1 6∈ T . Since G/N \ S̄ is not a subgroup of G/N , there are g1 and g2 in G
such that Ng1 and Ng2 do not belong to S̄ but Ng1g2 ∈ S̄. Thus, we get g1g2 ∈ T
and {g1, g2}∩T = ∅. This proves that G\T is not a subgroup of G. It is easy to see
that the adjacency matrix of Cay(G, T ) is Jk ⊗AG/N , where k = |N | and AG/N is

the adjacency matrix of Cay(G/N, S̄). Since Jk has eigenvalues 0 with multiplicity
k− 1 and k with multiplicity 1, we deduce that Cay(G, T ) is an integral graph and
thus G is not a CIS group which contradicts our assumption. Therefore, G/N is a
CIS group. �

For the sake of completeness, we present a rather short proof of Theorem 3.1
based on above result.

Proof of Theorem 3.1. It is easy to see that Z2 × Z2, Zp2 , and Zp (where p is a
prime) are CIS groups. To prove that there are no other abelian CIS groups, let us
assume that G is an abelian CIS group of minimum order that is not isomorphic to
Z2 × Z2, Zp2 , Zp.

Suppose first that G = A × Zm, where m > 2 and |A| ≥ 2. Let S1 = A \ {0},
S2 = Zm \ {0} and S = S1 ∪ S2. We notice that the Cayley graph Cay(G,S) is
isomorphic to the Cartesian product Cay(A,S1)� Cay(Zm, S2). Since Cay(A,S1)
and Cay(Zm, S2) are complete graphs and therefore integral, their Cartesian prod-
uct Cay(G,S) is also integral. Since G\S is not a subgroup of G, we conclude that
G is not a CIS group.
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Since every abelian group is a direct product of cyclic subgroups whose orders
are powers of primes, we conclude from the above that G is either isomorphic to
Zpn or to Zn

2 for some n > 2. Since subgroup of CIS groups are CIS, and since Zpn

(Zn
2 ) contains Zpn−1 (Zn−1

2 ) as a subgroup, we may assume that n = 3. However,
Zp3 and Z3

2 are not CIS as evidenced by the following generating sets. For Z3
2 we

take S = {(0, 0, 1), (0, 1, 0), (1, 0, 0)} whose Cayley graph is the 3-cube having only

integral eigenvalues. For Zp3 = 〈a | ap3

= 1〉, we let Y = {atp | t = 0, 1, . . . , p2 − 1}
and Z = {atp2 | t = 0, 1, . . . , p−1}. Now, take S = Zp3 \ (Y \Z) whose complement

contains ap but not ap
2

, and is therefore not a subgroup. The corresponding Cayley
graph is easily seen to be integral. This completes the proof. �

Our inductive proof of Theorem 3.2 requires considering a few base cases, which
are covered by the following lemma.

Lemma 3.5. Suppose that G is one of the following groups: D4, Q8, A4, or a
non-abelian semi-direct product of two cyclic groups of prime order. Then G is not
a CIS group.

Proof. We write D4 = 〈x, y | x4 = y2 = 1, yxy = x−1〉. Then S = {x, x3, y} is a
symmetric generating set whose complement is not a subgroup of D4. The Cayley
graph Cay(D4, S) is isomorphic to the graph of the 3-cube which is integral. Thus
D4 is not a CIS group.

Let us now consider the group of quaternions, Q8 = {±i,±j,±k,±1}. We let
S = {±i,±j,−1}. Then S is a symmetric generating set and its complement is
not a subgroup. If θ is the element of the group algebra of Q8 corresponding to S
then θ is sent to −I in the irreducible 2-dimensional representation of Q8; in the
one-dimensional representations it is sent to an element in {−3, 1, 5}. This implies
that Cay(Q8, S) is integral, and that Q8 is not a CIS group.

We next consider A4. We take S = {(12)(34), (123), (132), (124), (142), (234),
(243), (134), (143)} ⊆ A4. The complement is not a subgroup since (13)(24) and
(14)(23) are in the complement and their product is in S. Let θ denote the element

(12)(34) + (123) + (132) + (124) + (142) + (234) + (243) + (134) + (143)

of the group algebra of A4 corresponding to S. Since the sum of all three-cycles,
which we call z, is central in A4, we have that ρ(z) is a scalar multiple of the
identity for every irreducible representation ρ of A4. Since all characters of A4 are
integer-valued, we see that ρ(z) must be an integral multiple of the identity. Thus
ρ(θ) has eigenvalues equal to the eigenvalues of ρ((12)(34)) shifted by an integer.
The eigenvalues of ρ((12)(34)) are in {±1}, since (12)(34) has order 2. This shows
that all eigenvalues of ρ(θ) are integers. Thus A4 is not a CIS group.

Finally, let G be a non-abelian semidirect product of two groups of prime order.
Since every semidirect product of Zp with Zp and every semidirect product of Z2

with Zp is abelian, we may assume that G = 〈x | xp = 1〉 ⋊ 〈y | yq = 1〉, where
2 < p < q are distinct primes. Let S = {x, x2, . . . , xp−1, y, y2, . . . , yq−1}. Then S is
symmetric and generates G. Since p > 2, |G\S| = pq−p− q+2 does not divide pq,
thus G\S is not a group. Notice that the element z = x+x2+ · · ·+xp−1 is central
in the group algebra of G. It follows that if φ is any irreducible representation of G
then φ(z) is a scalar multiple of the identity. In fact, since x has order p, all of the
eigenvalues of φ(x) are p-th roots of unity and hence φ(z) = (p− 1)I (if φ(x) = 1),
or φ(z) = −I (when φ(x) 6= 1). Thus, φ(z) has eigenvalues in {−1, p− 1}.Similarly,
since the eigenvalues of φ(y) are q-th roots of unity, we conclude that φ(y)+φ(y2)+
· · ·+φ(yq−1) has eigenvalues in {−1, q−1}. Thus z+y+ · · ·+yq−1 has eigenvalues
in {−2, q − 2, p − 2, p + q − 2}. This implies that Cay(G,S) is an integral graph.
Thus G is not a CIS group. �



6 AZHVAN AHMADY, JASON P. BELL, AND BOJAN MOHAR

Proof of Theorem 3.2. Suppose, towards a contradiction, that there exists a non-
abelian CIS group. We pick such a CIS group G of minimum order. By Lemma 3.4,
every subgroup of G is a CIS group. Thus, by minimality of G, we have that G is
a non-abelian group with the property that every proper subgroup of G is abelian.

By Theorem 3.3, G is either a p-group or there exist distinct primes p and q such
that |G| = paqb for some positive integers a and b and the Sylow p-subgroup of G
is normal. We consider these cases separately.

Case I. G is a p-group.

Suppose that |G| = pk. Since G is non-abelian, we have k ≥ 3. Let us first
assume that k = 3. Every p-group has a non-trivial center. Since G is not abelian,
G/Z(G) can not be cyclic. This implies that |Z(G)| = p and G/Z(G) ∼= Zp×Zp. If
G is a CIS group, then Zp × Zp should be a CIS group as well (Lemma 3.4). Thus
by Theorem 3.1 we have p = 2. Thus G ∼= Q8 or D4, but according to Lemma 3.5,
Q8 and D4 are not CIS groups. Thus no p-group of order p3 is a CIS group. If G
is a non-abelian p-group of order greater than p3 then G has a subgroup of order
p3 and thus it is not a CIS group.

Case II. G has order paqb, where p and q are distinct primes, a, b ≥ 1, and G has a
normal Sylow p-subgroup.

In this case the Sylow p- and Sylow q-subgroups are proper and hence must be
abelian by the minimality assumption on the order of G. Let P and Q denote the
Sylow p- and the Sylow q-subgroup of G, respectively. Then G ∼= P ⋊ Q. We
consider the case that p = 2 and p 6= 2 separately.

Subcase I: p is odd.

Since P is an abelian CIS group, we have P ∼= Zp or P ∼= Zp2 . Since Zp2 has a
characteristic subgroup of size p we see that G has a subgroup that is isomorphic
to Zp ⋊Q. Also, Q has a subgroup isomorphic to Zq and since this normalizes the
copy of Zp we see that G has a subgroup isomorphic to Zp ⋊ Zq. Since there are
no abelian CIS groups of order pq we see that Zp ⋊ Zq is non-abelian and so by
minimality of G we have G ∼= Zp ⋊ Zq. Since G is non-abelian we have the result
from Lemma 3.5.

Subcase II: p = 2.

In this case, |P | ∈ {2, 4}. If P is cyclic then P has a characteristic subgroup
isomorphic to Z2 and thus G contains a copy of Z2 ⋊ Q. Notice that Z2 has only
the trivial automorphism and so Z2 ⋊Q ∼= Z2 ×Q, which is not a CIS group since
all abelian CIS groups have order a power of a prime. Thus P ∼= Z2 × Z2. Notice
that Aut(P ) ∼= Z3 and so P ⋊ Q is abelian unless q = 3. Since G is non-abelian,
we conclude that q = 3 and that Q ∼= Z3 or Z9. Notice that in either case, Q has
a subgroup of size 3 that normalizes P and so G contains a subgroup isomorphic
to (Z2)

2 ⋊ Z3. Since this group is necessarily a CIS group and since there are no
abelian CIS groups of order 12, we see that (Z2)

2 ⋊Z3 is a non-abelian semi-direct
product and hence isomorphic to A4. But A4 is not a CIS group by Lemma 3.5
(iii). Thus we see that we cannot have p = 2.

We have obtained a contradiction in each case and so we conclude that every
CIS group is abelian. �

4. Cayley Integral Groups

Klotz and Sander [10] introduced the notion of a Cayley integral group. This is
a group G with the property that for every symmetric subset S of G, Cay(G,S) is
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an integral graph. One of their results was a characterization of abelian integral
groups.

Theorem 4.1 (Klotz and Sander [10]). The only abelian Cayley integral groups are

Zn
2 × Zm

3 , and Zn
2 × Zm

4 ,

where m and n are arbitrary non-negative integers.

The main result of this paper is a complete characterization of Cayley integral
groups, which we now state.

Theorem 4.2. The only Cayley integral groups are

Zn
2 × Zm

3 , Zn
2 × Zm

4 , Q8 × Zn
2 , S3, and Dic12,

where m,n are arbitrary non-negative integers, Q8 is the quaternion group of order
8, and Dic12 is the dicyclic group of order 12.

We note that the dicyclic group of order 12 can be described as the non-abelian
semi-direct product Z3 ⋊ Z4. One of the interesting features is that it has S3 as a
homomorphic image. We also point out that S3 and Dic12 are the only non-nilpotent
groups on the list.

Let us first describe some basic properties of Cayley integral groups.

Lemma 4.3. Let G be a Cayley integral group. Then every subgroup and every
homomorphic image of G is also Cayley integral.

Proof. The claim for subgroups is obvious since for a subset S of a subgroupH ≤ G,
The Cayley graph Cay(G,S) consists of [G : H ] copies of Cay(H,S).

Next, suppose that K is a homomorphic image of G. Let π : G → K be a
surjective homomorphism and let S be a symmetric subset of K. Let T = π−1(S).
Then T is a symmetric subset of G. We let AG denote the adjacency matrix of
Cay(G, T ). Then AG = AH ⊗ Jk, where AH is the adjacency matrix of Cay(H,S),
k = |G|/|K|, and Jk is the k × k matrix with every entry equal to one. If w is
an eigenvector of AH corresponding to an eigenvalue λ and if j is the k × 1 matrix
whose entries are all 1, then AG(w⊗ j) = kλ(w⊗ j). Since λ is an algebraic integer,
it must indeed be an integer. This implies that K is a Cayley integral group. �

We now show that the property of being Cayley integral is equivalent to a weaker
property.

Proposition 4.4. A group G is Cayley integral if and only if every connected
Cayley graph of G is integral.

Proof. One direction is obvious. Suppose now that every connected Cayley graph
of G is integral, but there is a subset S of G such that Cay(G,S) is not integral.
Let T = G \ (S ∪ {1}). Note that Cay(G,S) is disconnected, thus its complemen-
tary graph, which is equal to Cay(G, T ) is connected. Thus, by the assumption,
Cay(G, T ) is integral. It is well-known that the complement of a regular integral
graph is also integral. This contradicts our assumption that Cay(G,S) has non-
integral eigenvalues. �

We note that the only Cayley integral cyclic groups are Zm withm ∈ {1, 2, 3, 4, 6}.
Thus if G is a Cayley integral group, then since subgroups of G are also Cayley
integral, G can not have any elements of order p where p is a prime greater than 3.
In particular, Cauchy’s theorem gives that G is a (2, 3)-group; i.e., the order of G
is the product of a power of 2 and a power of 3. A theorem of Burnside then gives
that G is necessarily a solvable group.

We summarize the important points obtained so far in the following remark.
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Remark 4.5. Let G be a group. Then:

(1) G is a Cayley integral group if and only if Cay(G,S) is an integral graph
for every symmetric generating sets S of G;

(2) if G is a Cayley integral group then so are subgroups and homomorphic
images of G;

(3) if G is a Cayley integral group then its order is a product of a power of 2
and a power of 3 and all elements of G have order in {1, 2, 3, 4, 6};

(4) G is a solvable group.

We will make use of this remark often without referring to it directly.
We next give a result that will be used to characterize Cayley integral groups. It

shows, roughly speaking, that if a group G has a symmetric generating set S such
that Cay(G,S) is an integral graph, then |G| cannot be too large compared to |S|.
Proposition 4.6. Let G be a finite group and let S be a symmetric generating
set of G. If Cay(G,S) is an integral Cayley graph, then the order of G divides
2(2|S| − 1)!. If, in addition, G is perfect or S has an element of odd order, then
|G| divides (2|S| − 1)!.

Proof. Let AS denote the adjacency matrix of Cay(G,S). For each group element
g ∈ G, we let Ag denote the permutation matrix (associated with the left-regular
representation of G) of g. We then have that AS =

∑

s∈S As. Let k = |S|. Since
S is a symmetric generating subset of G, Cay(G,S) is a k-regular connected graph.
Therefore all eigenvalues of AS are in the set {−k, . . . , k − 1, k}. A well-known
consequence of the Perron-Frobenius Theorem is that the eigenspaces of the eigen-
values k and −k are at most 1-dimensional since the graph is connected. Moreover,
−k is an eigenvalue if and only if the graph is bipartite. We now look at the cases
corresponding to whether Cay(G,S) is bipartite or not.

Case I. Cay(G,S) is not bipartite.

In this case −k is not an eigenvalue of AS . Since AS is a symmetric matrix, it is
diagonalizable and therefore the minimal polynomial of AS divides

(x− k)

k−1
∏

i=−k+1

(x− i).

If we take Φ(x) =
∏k−1

i=−k+1(x− i), then B := Φ(AS) will be nonzero, since AS has
k as an eigenvalue. Let j be the vector whose coordinates are all equal to one. This
spans the kernel of AS − kI. Since B is nonzero, there is some i such that Bei is
nonzero, where ei is the vector with a one as its i-th coordinate and zeros in every
other coordinate. Moreover, (AS − kI)B = 0 and so Bei = c j for some c ∈ Z \ {0}.
Then jTB = jT

∏k−1
i=−k+1(AS − iI) = (2k − 1)! jT . Hence,

(2k − 1)! = (2k − 1)! jT · ei = jTBei = c jT · j = c|G|.
It follows that |G| divides (2k − 1)! in this case. Notice that this case necessarily
occurs if S contains an element of odd order. It also occurs when G is perfect. To
see this, note that Cay(G,S) being bipartite implies that there is a homomorphism
φ from G to Z2 which sends each element in S (and all elements in the bipartite
class containing S) to 1. The kernel of φ must contain G′ since the image is abelian,
and so if G is perfect then φ would need to be trivial.

Case II. Cay(G,S) is bipartite.

We let u be a nonzero integer vector with ASu = −ku. We can take u to be the
vector whose coordinates are all in {±1}, where we have a 1 in the g-th coordinate
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if and only if g is in the kernel of the homomorphism from G to Z2 that sends each
element of S to 1.

As before we let B = Φ(AS), where Φ is the polynomial described in Case I.
Then (A − kI)(A + kI)B = 0 and so the range of B is contained in the span of j
and u. Moreover, B is nonzero since k and −k occur as eigenvalues of |A|. Thus
there is some i such that Bei = c j + du for some c, d ∈ Q, not both zero, with
c j+ du a vector with integer coordinates. Notice that this implies that c+ d and
c− d are integers.

Since AS is Hermitian and u and j are eigenvectors from distinct eigenspaces,
we see that u and j are orthogonal. As before, we have

jTB = Φ(k) jT = (2k − 1)! jT and uTB = Φ(−k)uT = −(2k − 1)!u.

Thus

(4.2) (2k − 1)! = (2k − 1)! jT · ei = jTBei = c jT · j = c|G|
and

(4.3) − (2k − 1)! = −(2k − 1)!uT · ei = duT · u = d|G|.
By summing up (4.2) and (4.3), we see that (c+ d)|G| = 0, thus d = −c. By taking
the difference, we obtain 2c|G| = 2(2k − 1)!. Since 2c = c − d is an integer, we
conclude that |G| divides 2(2k − 1)!. �

We now classify all Cayley integral groups. During the course of giving our
classification, it will be useful to understand whether some groups of small order
are Cayley integral or not.

Lemma 4.7. The following groups are Cayley integral groups:

(a) S3,
(b) the dicyclic group Dic12 (the non-trivial semi-direct product Z3 ⋊ Z4),
(c) Q8 × Zd

2 for every d ≥ 0.

Proof. Notice that (a) follows from (b) since Dic12 has S3 as homomorphic image.
We note that Dic12 has 〈x, y | x3 = y4 = 1, yxy−1 = x−1〉 as a presentation. Any
symmetric subset S of Dic12 is a union of sets from {1}, {x, x2}, {y, y3}, {y2},
{xy, xy3}, {x2y, x2y3}, and {xy2, x2y2}. Moreover, y2 is central and hence gets
mapped to either the identity or to the negative of the identity by any irreducible
representation. We consider these cases separately. If y2 is sent to −I then each
of y + y3, xy + xy3, and x2y + x2y3 is sent to zero; and each of xy2 + x2y2, y2,
x + x2, and 1 is sent to an integer scalar matrix. Thus each symmetric set S has
the property that the corresponding element of the group algebra is sent to an
integer scalar multiple of the identity and hence has integer eigenvalues. If, on the
other hand, y2 is sent to I then our representation factors through Dic12/〈y2〉 ∼= S3.
Notice that if we let π denote the isomorphism from Dic12/〈y2〉 to S3, in which
the image of x is sent to (123) and the image of y is sent to (12), then we see that
the symmetric set S becomes a multi-set in which we have at most two copies of
{id}, at most three copies of {(123), (132)}, and either zero or two copies of each
of {(12)}, {(13)}, and {(23)}.

Both id and (123)+(132) are central in the group algebra and since the characters
of S3 are integer-valued we see that these elements are sent to integer multiples of
the identity in any irreducible representation of S3. Thus these sets have no affect
on whether we obtain a matrix with integer eigenvalues. Thus we may assume
that the multi-set is a union consisting of either 0 or 2 copies of each of {(12)},
{(13)}, {(23)}. Notice that these elements each have order 2 and so if the multi-
set has size 2 (i.e., we have two copies of a single transposition) then we obtain a
matrix with eigenvalues in {±2}. Next, observe that (12) + (13) + (23) is central
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and since the characters of S3 are integer-valued, we see that if S has size 6 then
we again obtain a matrix with integer eigenvalues. Finally, if our multi-set has
size 4 then by applying an inner automorphism we may assume that it is given by
{(12), (12), (13), (13)}. Then (12)+ (13) maps to 2 under the trivial representation;
to −2 under the alternating representation; and has the same image as −(23) in
the irreducible 2-dimensional representation of S3. Thus we see that in each case
we obtain a matrix with integer eigenvalues. This establishes (a) and (b).

To show (c), let G = Q8 × Zd
2 and let z be the central element of order 2 in

Q8. If φ is an irreducible representation of G then z must either be sent to the
identity or to the negative of the identity. If z is sent to the identity then φ in
fact factors through G/〈z〉, which is an elementary abelian 2-group and thus φ is
one-dimensional and clearly any symmetric set will be sent to an integer. If, on the
other hand, φ(z) = −I, then notice that if u is an element of order 4 then u2 = z
and so the natural extension of φ to the group algebra of G sends u+u−1 = u(1+z)
to 0. Consequently, we only need to consider symmetric sets consisting of elements
of order 2. But all elements of order 2 are central in G and hence are mapped to
either I or −I by φ. It follows that Cay(G,S) is an integer Cayley graph for each
symmetric subset S of G, giving (c). �

Lemma 4.8. The following groups are not Cayley integral groups:

(1) any dihedral group Dn with n ≥ 4;
(2) any non-abelian group of order 12 that is not isomorphic to Dic12;
(3) any non-abelian group of order 18;
(4) any non-abelian group of order 24;
(5) Q8 × Z4.

Proof. We first show (1). If n ≥ 4 and n 6∈ {4, 6} then Dn contains an element that
is of order r /∈ {1, 2, 3, 4, 6} and thus Dn is not Cayley integral (since the subgroup
isomorphic to Zr is not). Thus we only need to worry about n ∈ {4, 6}. Notice that
Dn has the presentation 〈x, y | x2 = yn = 1, xyx = y−1〉. We have a 2-dimensional
representation θ of Dn given by

x 7→
(

0 1
1 0

)

, y 7→
(

ωn 0
0 ω−1

n

)

,

where ωn is the primitive n-th root of unity. Then if we use the symmetric gener-
ating set S = {x, xy} we see that θ(x) + θ(xy) is given by

(

0 1 + ωn

1 + ω−1
n 0

)

,

which has eigenvalues ±
√

2 + ωn + ω−1
n . We note that if n = 4 then this gives

eigenvalues ±
√
2 and if n = 6 this gives eigenvalues ±

√
3. Thus we have (1).

We now consider (2). Notice that the only non-abelian groups of order 12 are,
up to isomorphism, Dic12, A4, and D6. By (1), we only need to consider A4.
For A4 notice that if we use the 4-dimensional representation ρ which associates
to a permutation in A4 its corresponding permutation matrix and if we use the
symmetric set S = {(13)(24), (14)(23), (123), (132)}, then by extending ρ to the
group algebra of A4 via linearity, we see that (13)(24)+ (14)(23)+ (123)+ (132) is
represented by the matrix









0 1 2 1
1 0 2 1
2 2 0 0
1 1 0 2









,

which has eigenvalues 4,−1, −1±
√
17

2
. Thus A4 is not Cayley integral.
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To prove (3), we note that up to isomorphism there are only three non-abelian
groups of order 18: D9, S3 ×Z3, and the group E9

∼= Z2
3 ⋊θ Z2, where θ is the map

that sends every element of Z2
3 to its inverse. The groupD9 is not Cayley integral by

(1). For S3 × 〈x | x3 = 1〉, we take the representation that sends (σ, xj) 7→ ωjP (σ),
where ω is the primitive third-root of unity and P is the (reducible) 3-dimensional
representation of S3 that associates to σ ∈ S3 the 3×3 permutation matrix P (σ) of
σ. If we extend this to the group algebra via linearity, then the symmetric element
((12), x) + ((12), x2) + ((13), 1) is represented by the matrix





0 −1 1
−1 1 0
1 0 −1



 ,

which has eigenvalues 0, ±
√
3. Thus S3 ×Z3 is not Cayley integral. The group E9

has presentation 〈x, y | x3 = y3 = [x, y] = 1〉⋊〈z | z2 = 1〉, where the automorphism
of 〈x, y〉 determining the semidirect product is x 7→ x−1, y 7→ y−1. Notice that
xz, yz, and z all have order 2. Thus we may consider the symmetric set S =
{xz, z, yz}. We claim that the element xz + z + yz in the group algebra has some
representation with eigenvalues that are not all integers. To see this, observe that
〈x〉 is a normal subgroup of E9 and when we mod out by this group we have a group
isomorphic to S3 with isomorphism given by ȳ 7→ (123), z̄ 7→ (12). Then the image
of xz + z + yz in the group algebra of S3 under the composition of maps described
above is 2(12)+ (13). Notice that the 3-dimensional permutation representation of
S3 sends this element to





0 2 1
2 1 0
1 0 2



 ,

which has eigenvalues {3,±
√
3}. Notice that this representation lifts to a represen-

tation of E9 and thus we see that E9 is not Cayley integral.
To prove (4), we note that up to isomorphism there are 15 groups of order 24,

3 of which are abelian. Of the remaining 12 there are only two that do not have
any elements of order 8 or 12, do not contain a copy of D4, and do not contain a
copy of a non-abelian group of order 12 that is not isomorphic to Dic12. (These
are necessary properties to be Cayley integral by (1) and (2).) These two groups
are SL2(Z3) and Dic12 × Z2, up to isomorphism. Notice that S3 is a homomorphic
image of Dic12 and so S3×Z2 is a homomorphic image of Dic12×Z2. But S3×Z2 is
not Cayley integral by (2) and so neither is Dic12 ×Z2. Note that A4 is isomorphic
to PSL2(Z3) and hence A4 is a homomorphic image of PSL2(Z3). This shows that
PSL2(Z3) is not Cayley integral by (2). This establishes (4).

Finally, to prove (5), we note that Q8 = 〈x, y, z | x2 = y2 = [x, y] = z, z2 = 1〉
has a representation π determined by

x 7→
(

i 0
0 −i

)

, y 7→
(

0 1
−1 0

)

.

Thus Q8 × 〈t | t4 = 1〉 has a 2-dimensional representation ρ given by ρ((a, tj)) =
ijπ(a) for a ∈ Q8 and j ∈ Z, where i is a primitive fourth root of unity. If we use
the symmetric set S = {(x, t), (x−1, t−1), (y, t), (y−1, t−1)}, we see that ρ sends the
element (x, t) + (x−1, t−1) + (y, t) + (y−1, t−1) from the group algebra to

(

−2 2i
−2i 2

)

,

which has eigenvalues ±2
√
2 and hence Q8 × Z4 is not Cayley integral, giving us

(5). �
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Corollary 4.9. Let H ≤ S4 be a Cayley integral subgroup of S4 that acts transitively
on {1, 2, 3, 4}. Then H has order 4.

Proof. We note that if H has order in {8, 12, 24} then H is isomorphic to one of
D4, A4, or S4 and hence is not Cayley integral by Lemma 4.8 (1), (2), and (4).
Each subgroup of order 6 is equal to the set of permutations that fix some element
i ∈ {1, 2, 3, 4} and hence does not act transitively on {1, 2, 3, 4}. Thus H has order
in {1, 2, 3, 4}. It is straightforward to check that a subgroup of order 1, 2, or 3
cannot act transitively on {1, 2, 3, 4} and thus H has order 4. �

We now start the classification of Cayley integral groups by first classifying the
Cayley integral 2-groups.

Lemma 4.10. Let Q be a Cayley integral 2-group. Then the following statements
hold:

(i) Every element of order 2 is central.
(ii) If Q is non-abelian then any two elements that do not commute generate a

subgroup that is isomorphic to Q8.

Proof. Let N denote the set of elements in Q of order at most 2. We claim that
N is a group. To see this, it is sufficient to show that if x, y ∈ N then xy = yx
since this implies that (xy)2 = x2y2 = 1. This will show that the set of elements of
order at most 2 is closed under multiplication and hence forms a group. Moreover,
it follows that N is abelian. Let x, y ∈ N and let E denote the subgroup of N
generated by x and y. Then E is a Cayley integral group and applying Proposition
4.6 to the symmetric set S = {x, y}, we see that |E| divides 12. Since E is in Q and
Q is a 2-group, we see that E has order at most 4 and thus is abelian. This means
that x and y commute and since they were arbitrary elements of N , we thus have
that N is an abelian group as claimed. We note that N is normal, since the set of
elements of order at most 2 is closed under conjugation.

To complete the proof of (i), we must show that N is a central subgroup of
Q. Suppose, towards a contradiction, that N is not central. Then there is some
u ∈ Q such that conjugation by u induces a non-trivial automorphism of N . Note
that every element of Q has order dividing 4. Therefore u2 ∈ N and so this
automorphism must have order 2. Hence there are x, y ∈ N with x 6= y such that
uxu−1 = y and uyu−1 = x. Let Q1 denote the subgroup of Q generated by x, y,
and u. Then Q1 in non-abelian and has order 8 or 16. Notice that Q1 has at
least four elements of order 4 and hence must be isomorphic to D4 if it has order
8; but D4 is not Cayley integral by Lemma 4.8 and so we see Q1 must have order
16. In particular, u has order 4 and 〈u〉 intersects 〈x, y〉 trivially. Thus Q1/〈u2〉
is a Cayley integral group of order 8 and, as before, we see that it is isomorphic
to D4, a contradiction. It follows that each element of N is indeed central, which
establishes (i).

We now prove (ii). Suppose that x, y ∈ Q and that they do not commute. By
(i), x and y must both have order at least 4. But since 〈x〉 and 〈y〉 are Cayley
integral, their order is equal to 4. Notice that since the square of every element is
central, Q/N is elementary abelian and so Q′ ⊆ N . In particular, [x, y] = z, where
z ∈ Q is a central element of order 2. We claim that x2 = y2 = z. To see this,
suppose that x2 6= z and let H denote the subgroup of Q generated by x and y.
Then E := H/〈x2〉 is a Cayley integral 2-group and the image of x in E now has
order 2 and so it must be central. But the image of [x, y] = z in E is non-trivial,
a contradiction since by (i) we have that every element of order 2 in E is central.
It follows that x2 = y2 = z and so H is a non-abelian homomorphic image of the
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group with presentation

〈s, t, u | s4 = t4 = u2 = 1, s2 = t2 = [s, t] = u, [s, u] = [t, u] = 1〉.
We note that this is just a presentation of Q8 and since H is non-abelian, we see
that H ∼= Q8. �

Proposition 4.11. Let Q be a non-abelian Cayley integral 2-group. Then Q ∼=
Q8 × Zd

2 for some d ≥ 0.

Proof. By Lemma 4.10, every element of order 2 in Q is central and any pair
of non-commuting elements of Q generate a subgroup that is isomorphic to Q8.
Moreover, every element is of order 1, 2, or 4. Let u, v be elements of order 4
that generate a copy of Q8. Then there is a central element z of order 2 such that
u2 = v2 = [u, v] = z. We claim that if w is another element of order 4 then w2 = z.
To see this, note that if w2 6= z then w and u must commute since otherwise by
Lemma 4.10 (ii) they generate a copy of Q8 with w2 = [u,w] = u2 = z. Similarly,
[w, v] = 1 and since w2 is central and not in {1, u2}, we see that the group generated
by u, v, and w is isomorphic to Q8 × Z4, which is not Cayley integral by Lemma
4.8 (5). It follows that all elements of order 4 in Q have the same square.

Let Z denote the central subgroup of Q consisting of elements of order at most
2. By assumption, there exist u and v that do not commute and hence there is
some z ∈ Z such that u2 = v2 = [u, v] = z. We claim that Q is generated by u,
v, and Z. To see this, let Q0 denote the subgroup of Q generated by u, v, and Z
and suppose that there is some w ∈ Q \ Q0. Then w has order 4 and so w2 = z.
If u and w commute then (uw)2 = u2w2 = z2 = 1 and so uw ∈ Z, which gives
that w ∈ Q0, a contradiction. Thus u and w do not commute, which gives that
u2 = w2 = [u,w] = z by Lemma 4.10 (ii). Similarly, we have v2 = w2 = [v, w] = z.
Notice that (uvw)2 = 1 and so uvw ∈ Z, which gives that w ∈ v−1u−1Z ⊆ Q0, a
contradiction. Thus Q = Q0 and so Q is generated by u, v and Z. Now let H be the
subgroup of Q generated by u and v. Then H ∼= Q8 and H ∩ Z = 〈z〉. Note that
Z is an elementary abelian 2-group and so there is an elementary abelian subgroup
Z1 such that Z1 ⊕ 〈z〉 = Z. Then we see that Q ∼= H × Z1

∼= Q8 × Zd
2 for some

d ≥ 0. �

We now classify Cayley integral 3-groups. As it turns out, the classification in
this case is simpler.

Proposition 4.12. Every Cayley integral 3-group is elementary abelian.

Proof. Let x and y be two elements of a Cayley integral group P and let P0 denote
the subgroup of P generated by x and y. Then P0 is Cayley integral and so applying
Proposition 4.6 to the symmetric set S = {x, x−1, y, y−1} gives that the order of
P0 divides 7!. Since P0 is a 3-group, we see that |P0| divides 9. In particular P0 is
abelian and so x and y commute. Since all elements of P commute, we see that P is
abelian. Since every element of P has order 1 or 3, we see that P is an elementary
abelian 3-group. �

Corollary 4.13. Let G be a nilpotent Cayley integral group. Then G is either
abelian or G ∼= Q8 × Zd

2 for some d ≥ 0.

Proof. If G is nilpotent then G must be a direct product of a Cayley integral 2-
group and a Cayley integral 3-group. Thus by Propositions 4.11 and 4.12, if G is
non-abelian then G ∼= (Q8 × Zd

2)× Ze
3 for some d, e ≥ 0. Note that if e ≥ 1 then G

contains a copy of Q8 × Z3 which is not Cayley integral by Lemma 4.8 (4). Hence
e = 0 and the result follows. �
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We now begin to study non-nilpotent Cayley integral groups. We first show that
such groups necessarily have a unique Sylow 3-subgroup. To do this, we first require
a few lemmas.

Lemma 4.14. Let G be a Cayley integral group. If G has a normal Sylow 2-
subgroup then G is nilpotent.

Proof. Suppose that this is not the case. Then we can pick a non-nilpotent Cay-
ley integral group G of smallest order with respect to having a normal Sylow 2-
subgroup.

Let Q denote the Sylow 2-subgroup of G and let Z denote the center of Q. Let
P be a Sylow 3-subgroup of G. Then G is a semi-direct product P ⋊ Q. Since Z
is a characteristic subgroup of Q and Q is normal in G, we see that if x ∈ P then
xZx−1 = Z. Pick z ∈ Z of order 2. We claim that z commutes with every element
of P . To see this, suppose towards a contradiction, that there is some x ∈ P such
that xz 6= zx. Then z1 := xzx−1 and z2 := x2zx−2 have the property that the
subgroup of Z generated by z, z1, z2 is an elementary abelian 2-group of order either
4 or 8 and hence the group generated by x and z must have order 12 or 24. By
Lemma 4.8, the only non-abelian Cayley integral group of order either 12 or 24 is
isomorphic to the dicyclic group of order 12, but this one does not have a normal
Sylow 2-subgroup, a contradiction.

Thus we see that xz = zx for every z ∈ Z and x ∈ P . This means that the
centralizer of z contains both P and Q and thus must contain all of G. Notice that
H := G/〈z〉 is a Cayley integral group with the property that it has a normal Sylow
2-subgroup. By minimality of the order of G we see that H is nilpotent. It follows
that G is nilpotent, since we obtained H by taking the quotient of G with a central
subgroup. �

Lemma 4.15. Let G be a Cayley integral group generated by two elements of order
3. Then G is isomorphic to Z3 or to Z3 × Z3.

Proof. Let x and y be elements of order 3 in G that generate G as a group. Notice
that the set S = {x, x−1, y, y−1} has size 4 and since x has odd order we see from
Proposition 4.6 that the order of G divides 7!. Since G is a (2, 3)-group, we see that
the order of G in fact divides 144.

We let n3 denote the number of Sylow 3-subgroups of H . It is known that n3 ≡ 1
(mod 3) and that n3 divides the index of the Sylow subgroup in G. Since |G| divides
144, the index is 2t, where 0 ≤ t ≤ 4, thus n3 ∈ {1, 4, 16}.

If n3 = 1, then G has a unique Sylow 3-subgroup, which is elementary abelian
by 4.12. Hence x and y commute and so they generate a group of order 3 or 9. This
yields the conclusion of the lemma.

In the rest of the proof we argue by contradiction, considering the cases n3 = 4
and n3 = 16 separately.

Suppose that n3 = 4. Then G acts on the Sylow 3-subgroups by conjugation,
which gives us a non-trivial homomorphism π from G to S4. Let G0 denote the
image of G under π. Since the collection of Cayley integral groups is closed under
the process of taking subgroups and homomorphic images, G0 is a Cayley integral
subgroup of S4. Moreover, by construction G0 acts transitively on {1, 2, 3, 4} since
G acts transitively on the set of Sylow 3-subgroups under conjugation. By Corollary
4.9, G0 has order 4. Let N denote the kernel of π. Then N has order dividing 36
and by construction it contains all Sylow 3-subgroups and in particular contains
x and y. But this means that the group generated by x, y is contained in N , a
contradiction since N is a proper subgroup of G. We conclude that n3 = 4 cannot
occur.



INTEGRAL CAYLEY GRAPHS AND GROUPS 15

Suppose next that n3 = 16. Suppose first that |G| 6= 144. Since n3 = 16, we
know that 16 divides the order of G and since G is a proper divisor of 144 and 3
divides the order of G, we see that |G| = 48. Then each pair of distinct Sylow 3-
subgroups must intersect trivially since they are all cyclic groups of order 3. Thus
there are 16 · 2 = 32 elements of order 3. This leaves 16 unaccounted elements,
which necessarily make up a normal Sylow 2-subgroup. By Lemma 4.14, we see
that G is nilpotent and thus n3 = 1, a contradiction.

Suppose now that |G| = 144. If each pair of distinct Sylow 3-subgroups intersect
trivially then G has 8 · n3 = 128 elements of order 3. This leaves 16 unaccounted
for elements in G, which must make up a normal Sylow 2-subgroup. By Lemma
4.14, G is nilpotent, which gives that n3 = 1, a contradiction.

Thus G has distinct Sylow 3-subgroups P and Q such that P ∩ Q = 〈u〉 is a
group of order 3. Notice that P and Q both have order 9 and hence are abelian.
It follows that CG(u), the centralizer of u in G, contains the groups P and Q. It
follows that its order is a multiple of 9 and since it contains two distinct Sylow
3-subgroups it must have at least four Sylow subgroups and so its order must in
fact be in {36, 72, 144}.

Our next step is to show that CG(u) is normal in G. If CG(u) has order 72 or 144,
this is automatic, so we may assume that |CG(u)| = 36. Then G acts on the left
cosets of CG(u), giving a homomorphism ρ to S4. Let E denote the image of ρ in
S4. By assumption the image of ρ is a Cayley integral group that acts transitively
on {1, 2, 3, 4} and hence E must have order 4 by Corollary 4.9. Thus the kernel of
ρ has size 36 and since the kernel of ρ is contained in CG(u), we see that CG(u) is
normal in this case.

We now show that CG(u) = G. Since G is generated by x and y, it is sufficient to
show that u commutes with y. Let Z1 denote the Sylow 3-subgroup of the center of
CG(u). Note that Z1 is characteristic in CG(u) and hence normal inG. Moreover, Z1

is non-trivial since u ∈ Z1. Notice that if Z1 has order 9 then it is a Sylow subgroup
of G and since all Sylow subgroups are conjugate and CG(u) is normal we see that x
and y are in CG(u), which gives that G = CG(u) since x and y are generators of G.
Thus Z1 = 〈u〉. Notice that xZ1x

−1 = Z1 and so xux−1 ∈ {u, u−1}. If xu = u−1x
then u = x3u = u−1x3 = u−1, a contradiction. Thus xu = ux. Similarly, yu = uy,
which gives that x, y ∈ CG(u) and so CG(u) = G.

Now H := G/〈u〉 = CG(u)/〈u〉 is a Cayley integral group of order 48 and is
generated by two elements of order 3. Since we already proved the lemma for
groups whose order is less than 144, we can apply the lemma to the group H . It
follows that H has order 3 or 9. This gives a contradiction and completes the proof
by showing that n3 6= 16 when |G| = 144. �

Proposition 4.16. Let G be a Cayley integral group. Then G has a normal abelian
Sylow 3-subgroup.

Proof. By Lemma 4.15 any two elements of order 3 generate a group of order 3 or
9. Since groups of orders 3 and 9 are abelian, it follows that any two elements of
order 3 commute. Thus the product of two elements of order 3 has order 1 or 3.
This shows that elements of order dividing 3 are closed under multiplication in G
and hence form a group. This group is necessarily the unique Sylow 3-subgroup of
G and so G has a normal Sylow 3-subgroup. By Proposition 4.12, this group must
be abelian. �

Corollary 4.17. Let G be a non-nilpotent Cayley integral group. Then G is iso-
morphic to either S3 or Dic12.

Proof. By Proposition 4.16, G has a normal Sylow 3-subgroup, P ∼= Zd
3. Moreover,

d ≥ 1 since G is not nilpotent. Let Q be a Sylow 2-subgroup of G. Then G = P ⋊Q.
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We first claim that if x ∈ P and if y ∈ Q has order 2, then yxy−1 ∈ {x, x−1}.
To see this, suppose that yxy−1 = u 6∈ {x, x−1}. Then u is of order 3 and x and
u generate a group of order 9 by Lemma 4.15. Consequently, x, y, u generate a
non-abelian subgroup of G of order 18. But this contradicts Lemma 4.8 (3), since
a non-abelian group of order 18 cannot be Cayley integral.

We next claim that if |P | ≥ 9 and if y ∈ Q has order 2, then yx = xy for every
x ∈ P . To see this suppose that there is some x ∈ P such that yx 6= xy. As shown
above, we have yxy−1 = x−1. Let u ∈ P be such that 〈x, u〉 has order 9. Then
since yuy−1 ∈ {u, u−1}, we see that u, x, y generate a non-abelian group of order 18.
But this is a contradiction, since Lemma 4.8 says that no such group can be Cayley
integral. Thus we have shown that either |P | = 3 or we have yx = xy whenever
y ∈ Q has order 2 and x ∈ P .

We next claim that if |P | ≥ 9 and w ∈ Q then wxw−1 ∈ {x, x−1} for every x ∈ P .
To see this, suppose that this is not the case. Then wxw−1 = u 6∈ {x, x−1}. By the
above, the order of w is greater than 2 and since G is Cayley integral and w ∈ Q,
its order must be 4. Thus w2 has order 2 and hence w2x = xw2. This implies that
wuw−1 = x and so the group generated by u, x, w is a non-abelian group of order
36 and w2 is central. Notice that the quotient of the group generated by u, x, w by
〈w2〉 is a non-abelian group of order 18 and hence it cannot be Cayley integral by
Lemma 4.8 (3). This is a contradiction and so we conclude that if |P | ≥ 9 then
whenever x ∈ P we have that 〈x〉 is normal in G since its normalizer contains both
P and Q.

We now claim that |P | ≤ 3. If |P | ≥ 9, then notice that P cannot be central
in G since G is not nilpotent. Thus there is some y ∈ Q and some x ∈ P such
that xy 6= yx. We have just shown that we must have yxy−1 = x−1. Pick u ∈ P
such that u and x generate a subgroup of P of order 9. Then 〈u, x〉 is normal in
G, the group E generated by y, u, x has order 36, and y2 is central in E. But by
construction, E/〈y2〉 is a non-abelian group of order 18 and hence cannot be Cayley
integral. It follows that |P | ≤ 3, as claimed. Moreover, since G is not nilpotent,
|P | = 3.

We next claim that Q is abelian. If not, then Q contains a copy of Q8. Then G
contains a copy of P ⋊ Q8, which is not Cayley integral by Lemma 4.8 (4), since
P ⋊Q8 is a non-abelian group of order 24. Thus Q is abelian.

Finally, we claim that Q has order at most 4. To see this, suppose that |Q| ≥ 8.
By assumption, G is non-nilpotent and so there is some u ∈ Q such that conjugation
by u induces a non-trivial automorphism of P . Since Q is an abelian 2-group of
order at least 8, there is a subgroup Q0 of Q of order 8 that contains u. Then
P ⋊Q0 is a non-abelian group of order 24 and so by Lemma 4.8 (4) is not Cayley
integral, a contradiction. Thus Q has order at most 4 and since G is not nilpotent
it must have order at least 2. Hence G = P ⋊Q has order 6 or 12. Since G is not
nilpotent, we see by Lemma 4.8 that G ∼= S3 if |G| = 6, and G ∼= Dic12 if |G| = 12.
This completes the proof. �

We are now ready to give the proof of the classification result for Cayley integral
groups.

Proof of Theorem 4.2. If G is not nilpotent, then by Corollary 4.17 we have that
G ∼= Dic12 or G ∼= S3. If G is nilpotent and non-abelian then by Corollary 4.13 we
see that G ∼= Q8 ×Zd

2 for some d ≥ 0. If G is abelian then by Theorem 4.1 we have
that G ∼= Zd

3 × Ze
2 or G ∼= Zd

2 × Ze
4 for some d, e ≥ 0. By Lemma 4.7 all of these

groups are Cayley integral. �
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