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SPONTANEOUS OSCILLATIONS IN SIMPLE FLUID NETWORKS

NATHANIEL J. KARST*, BRIAN D. STOREY!, AND JOHN B. GEDDES!

Abstract. Nonlinear phenomena including multiple equilibria and spontaneous oscillations are
common in fluid networks containing either multiple phases or constituent flows. In many systems,
such behavior might be attributed to the complicated geometry of the network, the complex rheology
of the constituent fluids, or, in the case of microvascular blood flow, biological control. In this paper
we investigate two examples of a simple three-node fluid network containing two miscible Newtonian
fluids of differing viscosities, the first modeling microvascular blood flow and the second modeling
stratified laminar flow. We use a combination of analytic and numerical techniques to identify
and track saddle-node and Hopf bifurcations through the large parameter space. In both models,
we document sustained spontaneous oscillations and, for an experimentally relevant example of
parameter analysis, investigate the sensitivity of these oscillations to changes in the viscosity contrast
between the constituent fluids and the inlet flow rates. For the case of stratified laminar flow, we
detail a physically realizable set of network parameters that exhibit rich dynamics. The tools and
results developed here are general and could be applied to other physical systems.

1. Introduction. A classic problem in the field of hydraulics is determining
the distribution of flow rates and pressures inside a given piping network for fixed
inlet conditions. Many practical fluid networks such as municipal water delivery
have turbulent flow and thus a nonlinear resistance making their analytical solution
difficult. In 1936, a structural engineer named Hardy Cross revolutionized the analysis
of hydraulic networks by developing a systematic iterative method by which one could
reliably solve nonlinear network problems by hand calculation [7].

While analysis of such hydraulic networks is now considered routine with com-
puter techniques, the problem can once again become intractable if one considers net-
works filled with a fluid comprised of multiple phases or constituents. Analysis of such
networks is of interest because in a number of application it has been observed that the
phase distribution within the network may exhibit unsteady or non-unique flow. Such
heterogeneous distribution of phase within network flows has been studied at a vari-
ety of scales. At the micro-scale, the flow of droplets or bubbles through microfluidic
networks can demonstrate bistabilty and spontaneous oscillations [21] [35] 12 311, [19].
These nonlinearities have been exploited by researchers who have demonstrated mi-
crofluidic memory, logic, and control devices [12] B1], 19]. On the macro-scale, models
of magma flow with either temperature-dependent viscosity [I7] or volatile-dependent
viscosity [38] have shown the existence of multiple solutions on the pressure-flow curve
which can lead to spontaneous oscillations.

Another network that can exhibit complex behavior is microvascular blood flow.
Nobel prize winner August Krogh noted the heterogeneity of blood flow in the webbed
feet of frogs in the early 1920’s [25]. In the Anatomy and Physiology of Capillaries he
wrote [26]

In single capillaries the flow may become retarded or accelerated from

no visible cause; in capillary anastomoses the direction of flow may

change from time to time.
Numerous researchers have confirmed these observations over the years. The hetero-
geneous distribution of red blood cells in microvascular blood flow is often interpreted
as evidence of biological control. If the flow in a branch increases, it is assumed that
the diameter of the branch responds in order to auto-regulate the flow. Vasomotion
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has often been assumed to be the cause for oscillations in the micro-circulation [34].
While the importance of vasomotion cannot be denied, there is significant evidence
that fluctuations in cell distributions in microvascular networks can be due to inherent
instabilities [23] [5].

There are two fundamental phenomena in two-phase flow networks which differ
from their single phase counterparts and lead to complicated behavior. The first effect
is that the effective viscosity or flow resistance in a single pipe is often a nonlinear
function of the fraction of the different fluids in the pipe. The second effect is that in
two fluid systems, it is commonly observed that the phase fraction after a diverging
node is different in the two downstream branches. In 2007 we (JBG and NJK) proved
that if the viscosity is a nonlinear function of fluid fraction then multiple stable equi-
librium states may exist [14]. Further we proved that both phase separation at a
node and nonlinear viscosity can lead to the emergence of spontaneous oscillations.
In recent experiments, we (JBG and BDS) have demonstrated some of these predic-
tions experimentally in simple networks involving two Newtonian fluids of different
viscosity [15], [22]. In one set of experiments we demonstrated bistability via nonlinear
resistance [I5] and in the other bistability via phase separation [22]. These exper-
iments showed that multiple equilibria in networks is possible without fluids with
complex rheology.

While our experiments involve simple fluids in a controlled laboratory setting,
it is expected that these results may be generalized and found in numerous natural
and man-made systems. Phase separation at a single node exists in numerous fluid
systems and has been widely studied in different contexts. In microvascular blood
flow, Krogh introduced the term “plasma skimming” in order to explain the dispro-
portionate distribution of red blood cells observed at single branch bifurcations in
vivo [25]. Numerous authors have demonstrated plasma skimming in vitro and in
vivo and developed simple empirical models to describe the effect [4] [6], @] [T0] 24, [32].
Another widely studied example of phase distribution at a single node is gas-liquid
two-phase flow which has important technological applications in power and process
industries. In many process applications phase maldistribution can have detrimental
consequences for downstream equipment [27], while in some cases the phenomenon
is exploited to build simple phase separators [I]. Extensive experimental work on
gas-liquid flow has been conducted over the past 50 years [2 B, 27]. In applications
for the process and petroleum industry, phase separation in liquid-liquid flows are less
well-studied though several recent papers have emerged [40, [39, 37]. The impact of
phase maldistribution in two-phase flow has been shown to impact network flows in
refrigeration systems [I8] and solar power systems [28].

While the behavior at a single node has been well-studied experimentally in the
applications noted above, systematic analysis of networks with two-phase flow have
received less attention. The most widely studied network is the microvascular one for
which the first modeling effort for dynamics was conducted by Kiani et al. [23]. In
1994 they conducted a direct simulation of 400 vessels and found oscillations in the
flow. In 2000 Carr and Lecoin found oscillations in networks with fifteen vessels [5].
They found evidence of Hopf bifurcations and limit cycles, but were unable to deter-
mine which parameters controlled the dynamics. In an attempt to understand the
parameters that lead to spontaneous oscillations in microvascular flows, Geddes et al.
performed a complete analysis of the flow-driven 2-node network (one inlet, a loop,
and one outlet) in 2007 [I4]. While this network can exhibit oscillations in theory,
they do not exist for realistic physical parameters. Several other groups have since
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studied the problem of oscillations in microvascular networks, and a coherent picture
is beginning to emerge [29, [11], [36] §].

In the context of microvascular flow we now know that networks with 2 vessels
can exhibit spontaneous oscillations for unrealistic physical parameters while networks
with 15 vessels can oscillate for realistic parameters [, [14]. It is unknown at what
level of network complexity oscillations can emerge and what parameters govern their
existence. While the 2-node network has been fully characterized theoretically, full
descriptions of more complicated networks becomes difficult. While we have studied
the equilibrium properties of the 3-node network (two inlets, a loop, and one outlet)
theoretically and experimentally in prior work [I5] 22], we had no systematic method
to understand the stability other than through direct simulation. While we did not
predict the existence of oscillations for the parameters relevant to our experiments,
with no systematic method to analyze the stability and the large number of parameters
it is impossible to rule out the emergence of spontaneous oscillations.

In this paper we develop a methodology for finding and tracking Hopf bifurca-
tions through continuation. This development is critical due to the large parameter
space of the problem. We find that our analytical methods are in perfect agreement
with direct numerical simulations, validating the methodology. Using our methods we
develop phase diagrams that show a rich set of dynamics including multiple frequency
oscillations and co-existing limit cycles. The details of these predictions depend sen-
sitively on the constitutive laws for the fluids in the network and the phase separation
at a single diverging node. However, our methodology is general and may be applied
to any two-phase flow network system.

2. Three node model. The physical setup is shown in Figure 21l The network
has two flow controlled inlets, each of which contains a fluid comprised of two separate
phases, @ and 3. The two phases are two fluids which have different viscosities and
remain distinct at least up to the inlet of the network. Without loss of generality,
we assume that S is the more viscous fluid. Locally at a point along the tube we
define the local volume fraction as ® = Qg/(Qa + @), where Q is the volumetric
flow rate of each phase. In an experiment the volume fraction in the two inlets would
be set upstream by flow controlled pumps attached to reservoirs of fluids « and S.
In the case of blood flow the o phase is plasma, the 8 phase is red blood cells and
the volume fraction is the hematocrit. While blood is not really comprised of two
continuous fluid phases, such a model is commonly used in numerical simulations or
laboratory experiments [30].

The basic network model based on fundamental conservation principles will be
developed in the next section. However, to close the model we require two constitutive
laws which depend on the details of the fluid system and the network geometry; i) the
effective viscosity as a function of volume fraction and ii) the phase separation rule
for a single node. The details encoded in these two constitutive laws play a dramatic
role in the eventual behavior of the network [22].

We assume laminar flow in cylindrical tubes where the hydraulic resistance is
proportional to the viscosity of the fluid mixture. Since we have have a two-phase
flow we can compute an effective viscosity, p, which is a function of not only the two
fluids involved but their geometrical arrangement in the tube. The effective viscosity
can be expressed in terms of the viscosity of the less-viscous phase, i, and a relative
viscosity; p = papirel- Simple Newtonian fluids approximately follow a nonlinear
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Fic. 2.1. Schematic of a configuration of the three node network. Inlet 1 and inlet 2 supply
fluids of volume fraction ®1 and ®2 at controlled flow rates Q1 and Q2. While the flow in vessels A
and B is always from left to right in this figure, the flow in vessel C' can be up or down depending
on the state of the network, with Q¢ > 0 representing downward flow and Q¢ < 0 representing
upward flow.

Arrhenhius law when they are well mixed,

Hrel = (Z_i)é' (2.1)

Here pq and pg are the viscosities of the individual phases, and pg/ i is the viscosity
contrast.

Different viscosity laws exist for different physical manifestations rather than
complete mixing. For Newtonian fluids that remain stratified in a circular tube as
separate phases, the relative viscosity follows a relationship which can be readily
computed though no simple analytical form exists [15] [I6]. Another common physical
configuration is a core annular flow where the viscous fluid assumes a cylindrical core
which is lubricated by an annulus of less viscous fluid in a cylindrical tube [20]. For
the example of microvascular blood flow the rheology is more complicated, however
Pries et al. [33] compiled a database of viscosity measurements in tubes with a range
of diameters and hematocrits. While the exact form of the above viscosity laws
all differ, the important fact is that they are all nonlinear functions of the volume
fraction which is a key feature for networks to exhibit multiple equilibrium states and
spontaneous oscillations [I4]. Throughout this work we will assume for convenience
that the effective viscosity is determined by Equation 211

The phase separation rule for each node is a complex function which depends
sensitively on the fluid system, the node geometry, and the inlet flow rate. The phase
separation rule relates the downstream volume fractions in two daughter branches to
the inlet flow state. For this work we explore the consequences of two different separa-
tion functions which are valid for 1) microvascular blood flow and 2) stratified laminar
flow of two Newtonian fluids. For microvascular blood flow, numerous authors have
demonstrated this separation of red blood cells from plasma (i.e., plasma skimming)
and developed simple empirical models to describe the effect [4 @, @ 10, 24, [32].
These empirical relations become part of the network model. In our previous work
on networks with stratified laminar flow where the fluids remain as distinct phases,
we measured the separation function for this system, demonstrated that we could
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Fic. 2.2. Two examples of phase separation functions at a single node. Notation is for the
upper node in Figure [2] when Qc > 0. The normalized volume fraction in vessels A and C of the
node is plotted as a function of the flow in vessel C' normalized by the inlet flow. The dotted line
denotes the case with no phase separation. a) Empirical function for microvascular blood flow as
defined by Equation[23 and b) empirical function for stratified laminar flow as defined by Equation
z3

compute the functions via 3D Navier-Stokes simulations, and developed an approxi-
mate one-parameter model for use in network modeling [22]. In that work gravity was
normal to the plane of the network flow. It has been shown that, unlike the effective
viscosity model, the exact form of the separation function has a dramatic effect on
the types of equilibrium and dynamic behavior that may be observed [14, 22]. The
two sample empirical separation functions we use in this work are show in Figure

It is important to realize that phase separation at a single network node is a
common phenomena in many two fluid systems and that many other types of behaviors
exist as noted in Section I. In network modeling, it is common to use simple empirical
functions with a single fit parameter which can be tuned to approximately model
experimental data. It is recognized that such simple functions are limited in their
accuracy, but they are useful in allowing for easy incorporation into analysis and
providing some insight into expected experimental behavior. For example, a common
fit function for microvascular flows is

oE)e-w e

where Q¢ /@1 is the normalized flow in branch C shown in the schematic of Figure

We selected p = 2 in Figure [Z2h; a typical value used in prior studies [24]. For
stratified flow a simple fit function which represents the basic form of the experimental

data is,
Qo (1 Qo) _,(Qc
o= 7(1 Ql) _f(Q1>, (2.3)

where in Figure we selected v = 1, which is observed in typical experimental
data [22]. In both cases the fit parameters p and v depend on many of the other
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physical parameters in the system. We use the generic function f to represent the
phase separation constitutive law, whatever the physical system. For any function f,
the volume fraction in vessel A is connected to the function f through conservation,
Q1P =QaP s+ Qc P, which can be expressed as,

Q Q
o, 1-I(E)E

B Q
¢y 1- &

(2.4)

A few remarks are worth making about the phase separation functions shown in
Figure Note that the phase separation function for microvascular blood flow is
symmetric under the exchange Q1 <+— 1— (@1, i.e., it does not matter how we arrange
the downstream vessels. The same is not true for the phase separation function of
stratified flow; different arrangements of the downstream vessels results in different
phase separation. In both cases we note that the volume fraction entering vessel C
is zero when Q¢ = 0, but this condition does not hold in any general sense. For all
phase separation functions f(1) = 1 must hold.

2.1. Governing equations. We now develop a general network model based
on conservation laws. We treat the viscosity function and phase separation function
as constitutive laws which we must select in order to make concrete calculations of
a real physical system. For all cases we use the viscosity law for mixed Newtonian
fluids, Equation21l In our network model we assume that the function f is known by
some means, either experiments or computational fluid dynamics. While we confine
our results to Equations and 2.3] the methods we develop are general and can be
applied to any C'-smooth constitutive law for the physical system of interest.

We assume the volume fraction ®;(x;,t) in vessel i = A, B, C' is governed by the
first order wave equation

o0, | 0%
8t vi 8$Z

=0, 0<z<4¥, 0<ft, (2.5)

where ¢; is length of vessel i. The propagation velocity v;(¢) in vessel i is proportional
to the volumetric flow rate Q;(t) in the vessel,

_4Qu(t)

2 b)
md;

(3 (t)

(2.6)

where d; is the diameter of the vessel. At each node in the network the inlet flow rates
equal the outlet flow rates, namely Qc = Q1 — Q4 and Qp = Q1 + Q2 — Q4 where
positive Q¢ is assumed to go from inlet 1 to 2. The flow rates may vary in time, but
each is constant throughout the vessel. In this work we consider steady boundary
conditions, thus @1, ®1, @2, and @5 are constants.

To solve Equation we need boundary conditions at the entrance of the three
vessels. The boundary conditions are supplied by the conservation of each constituent
at the node, namely,

01Q1 — 2c(0,1)Qc(t)

200 = = e

D2Q2 + P (le, 1)Qc(t)
Q2+ Qc(t) '
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The third required boundary condition depends upon the direction of Q. When
the flow is such that Q¢ is positive, the boundary condition for vessel C' is given by
D (0,t) = D1 f(Qc/Q1); see Figure2Z2b. When the flow is such that Q¢ is negative,
the boundary condition in vessel C'is ®¢ (Lo, t) = P2 f(—Qc/Q2). Once the direction
is established and the inlet volume fraction to vessel C is determined by the phase
separation function, Equations 2.7 and 2.8 provide the inlet volume fractions to vessels
A and B.

The pressure drop across any vessel is given as AP; = Q; R;. In laminar flow, the
hydraulic resistance of branch i, R;, is a function of the spatially averaged viscosity,

£;
fi(t) = I w(®i(z, t))dx, (2.9)
0

through Poiseuille’s law,

1280i(t)

Rit) = —5 (2.10)

Kirchoff’s potential law applied around the network loop, i.e., APy = AP + AP,
provides an equation for the flow in C,

Qc(t) = Q1RA(t) — Q2Rp(1)

= Bl + Ral) + Ro(®)’ 2.11)

The above formulation is a closed problem for the 1D wave propagation of volume
fraction in the connected vessels of our network. It is worth noting that the model is
symmetric under the exchange Q¢ +— —Q¢, Q1 +— Q2, P71 +— Po, and (vessel
A) +— (vessel B).

2.2. Dimensionless formulation. A dimensionless version of the governing
equations can be derived by scaling space and time according to

O S 7 e T _ Q@
o Va+Ve+ Ve’ Q1+ Q2

so that each vessel’s spatial dimension is normalized to its length, time is scaled
by the ratio of the total volumetric flow rate in the network to the total volume
V = Va + Vp + Ve of the network, and flow rates are normalized to the total flow.
The dimensionless governing equation for vessel 7 is

Qi = (2.12)

o0, . V0D,

0, 0<# <1, 0<t (2.13)

The boundary conditions become,

1Q1 — 0 (0,1)Qc(t)

D4(0,1) = i Oot) (2.14)
_By(1— Q1) + Pc(1,1)Qc(t)
dp(0,t) = 0,000 , (2.15)
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with the phase separation function at the appropriate node providing the final third
boundary condition,

c(0,t) = dy f (QC> when Q¢ > 0, (2.16)
1
Do(1,t) = Bof —Qc when Q¢ < 0. (2.17)
-

In dimensionless terms, the flow equation becomes

. rafia — (1 =0 i
Oc — eréMA ( g Ql)TE_:uB, (2.18)
TAplA +TBUB + TClC

where r; = 128u,¢;/ 7del is the nominal resistance in vessel ¢, and f; is the average
relative viscosity in vessel ¢ as defined by Equation 2.1

There are 8 dimensionless parameters that enter the problem. The network geom-
etry introduces four parameters. Two of these are defined by the ratio of the nominal
resistances, 4 /r¢ and rp/ro. The other two are defined by the ratio of the volume
of the vessels, V4 /Ve and Vi /Ve. In addition, there are three inlet parameters we
are free to control, Ql, ®q, and ®5. The fluid system chosen determines the viscosity
function, and the contrast between the two phases, pg/ i, supplies another param-
eter. Finally, the phase separation function f is critical to the behavior, though the
function is set by the physical system and is not something we can easily control in a
given physical experiment. The parameter space is quite large, thus direct numerical
solution of the problem is not practical for spanning parameter space and motivates
us to find a reliable method for tracking regions of stability and instability.

In what follows we use the dimensionless formulation, and for convenience we
drop the “hat” notation.

3. Equilibria. At equilibrium, the volume fraction ®;(x;,t) in branch ¢ is con-
stant throughout the branch and equal to the entrance volume fraction, ®;(0,t).
Equations 2.14H2.1§| are sufficient to solve for the equilibrium flows and volume frac-
tions. The viscosity functions and in turn hydraulic resistances can each be written as
functions of the equilibrium flow rate Q¢. Equation 2.8 therefore defines a nonlinear
equation in Q¢, and multiple solutions are possible. The parameter space is still large
and consists of ra/rc, ra/re, Q1, ®1, P2, and pg/fia.

We have explored the equilibrium problem for the 3-node network in prior pub-
lications. Gardner et al. [I3] theoretically studied the problem in the context of
microvascular blood flow and demonstrated that multiple equilibrium states were in-
deed possible. The observation that multiple equilibria were possible in regimes where
no phase separation takes place motivated us to design a table-top experiment using
water and sucrose solution [I5]. In this work we derived a simple condition for the on-
set of multiple equilibria, and confirmed the predictions in the laboratory [15]. More
recently, Karst et al. [22] designed an experiment using fluids undergoing laminar
stratified flow to attempt to mimic the phase separation effect in microvascular blood
flow. In that work we predicted and observed multiple equilibria and derived a simple
criteria for its onset. In this current paper, we focus on the problem of stability and
dynamics. However, for completeness we synthesize prior results on equilibria here
using our current models and terminology. We refer the interested reader to the above
publications for more details.
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Fic. 3.1. (a) Equilibrium curves for viscosity contrast of 2, 10, and 30 in the microvascular
blood flow model. The equilibrium curve is single-valued when the viscosity contrast is 2. Multiple
equilibria are created via a saddle-node bifurcation at (Q1,Qf) = (0.5,0). When the wiscosity
contrast is set to 10, we observe a small window of multiple equilibria about Q1 = 0.5, and as the
viscosity contrast is increased to 30, this window widens. (b) Phase diagram in the Q1 X (ug/pa)
parameter space. In the gray region (i), there exists a single equilibrium. In the orange region (ii),
there exist multiple equilibria. Regions (i) and (i) are delineated by the saddle-node bifurcation
curve (black) which emerges from (0.5,8.4).

In Figure[B.Ih we show three sample equilibrium curves in the (Q1, Qf) plane. We
have chosen 74/rc = 4(2.5)4/3 ~ 52.1, ra/rg = 1, ®; = &3 = 0.82, and the three
curves correspond to viscosity contrast pug/p. = 2,10, and 30. Here we are using
Equation 2.2 for the phase separation function f from microvascular blood flow. The
parameters selected here are relevant later in our analysis of the dynamics. There exist
multiple equilibria if for any given value of )1 there exist multiple values of Q. For
the chosen parameter values, there is a single equilibrium for a viscosity contrast of 2,
but multiple equilibria for contrasts of 10 and 30. The window of multiple equilibria
grows with increasing viscosity contrast.

While the width of the multiple equilibria window involves an in-depth calculation,
the onset point is relatively straight-forward to calculate. Notice from FigureB.Ih that
multiple equilibria are born in a saddle-node bifurcation when the equilibrium curve
folds over at Q@ = 0. A condition for onset can therefore be obtained by setting
dQ1/dQE = 0, which yields,

Rs+ Rp+ Rc=1In (5—[3) (RA(q)l —(I)c)+RB((I)2—(I)C)). (3.1)

(o3

Recall that R4 = rajia, where r4 depends only upon the geometry (d4 and £4) of
vessel A while R4 depends upon the phase distribution within the network. Thus to
evaluate the hydraulic resistances R; we must know the network geometry and the
phase distribution inside the network when Q¢ = 0. If the inlets are not equal fluids
we must be careful to consider the above criteria as Q% — 01 and QF — 0.

We can simplify the multiple equilibrium criteria for the two cases considered in
this paper. First, we limit our study to cases where we drive the network with identical
inlet fluids, ®; = ®5, and we do not need to consider the direction with which we
approach QF — 0. Second, for the two-phase separation functions examined in this
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paper, the volume fraction in vessel C'is zero when Q¢ = 0; f(0) = 0 in both empirical
phase separation functions given by Equations and 2.3l In this particular case,
the condition for multiple equilibrium becomes

Ra+Rp+Rc=In <Z—") (R + Rp) ®;. (3.2)

(63

Since at Qf, =0, ®4 = ®p = &1 and $¢ = 0, the criteria can be further reduced to

(1 + iL) ~In (“—ﬂ> Oy =In (1), (3.3)

ILL1’I”A+TB Mo

where 171 is the relative viscosity of the inlet fluid. For the network geometry used
in Figure BIh, r¢ < ra + rp, thus the criteria for multiple equilibria approximately
reduces to Injuy = 1, or jug/pe = e'/®1 ~ 3.4.

In Figure BIb we show the region of multiple equilibria in the Q1 X (ug/pa)
plane for the parameters previously discussed. Notice that the onset point agrees with
the above calculation and occurs at (0.5,3.4). As the viscosity contrast is increased
the width of the window increases. Changing the network geometry and inlet fluids
changes the details of the multiple equilibria window but not its existence. In the rest
of this paper, we consider the stability of the equilibrium solutions and the resulting
nonlinear dynamics.

4. Linearization and the characteristic equation. We assume that the net-
work is initially in equilibrium, i.e., Q;(t) = QF, ®;(z;,t) = ®; for all t < 0 and
i = A, B,C. We introduce perturbations beginning at time ¢ = 0 on the flow rates
Q;(t) and volume fraction profiles ®;(x;,t) so that

Qi(t) = Qi (1 + AQ(t)). (42)

Substituting Equations 1] and into the appropriate governing equations and
retaining only the linear terms results in a first order wave equation describing the
propagation of the volume fraction perturbation in each branch,

0 1 0
—AD, + ——AD;, =0, 4.
ot + Ti 6:51- 0 ( 3)

where 7, = QFV/V; is the dimensionless steady state transit time in branch i. An
expression for the flow perturbation can be computed by expanding the flow equation
about the equilibrium,

_ QURGARA() — QpREARB(L) — Qe REARG(1)
Qe B
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Relative perturbations to the resistance in each branch is determined by

1
128¢;
Ri(t) = 7Td4 //J,i (@:(1+A‘I’l($z,t))) d:vi
"o
128¢ 1 d
— i (B Fi | &5 A®. (i, .
= /uz(<1>1)+ 5. *@ZA(I)Z(xl,t)dxz
0
dn(us)| |
— p* 4 pror S . ,
=R + R;®; 05, */Asz(xl,t)dxl
0
dl /
A *O

Finally, perturbations to the boundary conditions are required. Without loss of gen-
erality we assume that the flow in C' is from inlet 1 to inlet 2 and the perturbation to
the volume fraction entering C' is then

el01) oy (2L 200D

_ (I)*C"r (‘I)IQCf/>

o
Qo [
Qlf) AQe(), (4.6)

B
where f’ is the derivative of the plasma skimming function f. The perturbations to
the volume fraction entering A and B are given by mass fraction. For vessel A we
have

AQC (t)

*

= ADc(0,t) = (

QuPUALA(0,1) = Qe (D) — P0)AQC () — Qe e APC(0,1), (4.7)
and for vessel B we have
QpPpAPE(0,1) = Qe(Pc — P5)AQc () + RePcAPC(1,1). (4.8)

Equations [£3] - constitute the linearized equations. We assume traveling wave
solutions of the form

AQc(t) = Agoe (4.9)
AD; (25, 1) = ApyeETiw) (4.10)

which automatically satisfy Equation L3l Substituting into Equation and inte-
grating gives

AR;(t) = Agijue. (4.11)

where

(4.12)



Further substitution into Equation 4] results in
_ RyQhualda — REQpupAgp — RpQpucAgce

Agq, 4.13
c Qs 1
Substituting into Equation results in
Qe f ’>
Ape = | == Aqc. 4.14
oo = (G5 )| 2 (114)
Finally, substitution into Equations 4.7 and 4.8 gives
QaP%UAGs = Qe (P — 26)Age — QePrAde (4.15)
and
Qp®pA¢p = QL(PE — 25)Ade + QEPEAdce . (4.16)

Equations ([@I3)-(4I0]) constitute 4 linear equations in the 4 unknowns Aga, Aga, Adp,
and A¢c. Non-trivial solutions exist if and only if the following characteristic equa-
tion has roots,

Y\ =a (ﬁ) + (b de=>T0) (1 - GMB> te (1 - em) ~ 1, (4.17)

AT A ATB ATe

where the coefficients are given by

B Qc f'\ Ra dln(pa)
B Qc f' Ro dn(uc)
S TSR e )
- RB dln(uB)
b=—(Pc - (I)B)Ei R dop (4.20)
d= _%@f_’ ftp_dIn(up) (4.21)

Qi f>,Ri d®p

and we have dropped the * for convenience.

The characteristic equation has three delay times, but is composed of linear com-
binations of four transcendental functions. Two of these arise from the propagation
delay in vessel A and vessel C (coefficients “a” and “c”). A third term arises due
to perturbations in the flow entering vessel B (coefficient “b”). The last contribu-
tion arises due to perturbations to the volume fraction in vessel C' which propagate
into and through vessel B (coefficient “d”). It is worth noting that in the absence
of nonlinear viscosity, all of the coefficients are zero and the equilibrium is stable.
Furthermore, no plasma skimming would imply f’ = 0 and ®¢ = ®4 so that only
the “b” coeflicient would remain. It is straightforward to show that only real roots
exist and thus oscillatory dynamics are ruled out. Nonlinear viscosity and plasma
skimming are therefore necessary for the emergence of oscillatory behavior.

A root A = 0 4 iw of the characteristic equation satisfies the relations

R(o,w) =R(x(c +iw)) =0 (4.22)
I(o,w) = S(x(o + iw)) = 0. (4.23)
We will see that these relations are useful for identifying Hopf bifurcations that can

be used as starting points for numerical continuation through the large parameter
space of the system.
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F1G. 5.1. Zero contours of Equation[{.2Z (blue) and Equation [{.23| (orange) with o =0 and a
viscosity contrast of 50 in the microvascular blood flow model. Each intersection (black dot) indicates
a Hopf bifurcation of frequency w occurs at the (QF,, Q1) pair associated with the continuation indez.

5. Results. The network model includes 8 dimensionless parameters as well as
the constitutive laws for viscosity and phase separation. It is difficult to make general
predictions without selecting a set of constitutive laws since these relations critically
determine the system behavior. Since general statements about any arbitrary system
are difficult to make, we present two physically realistic systems to demonstrate the
methodology for analyzing stability. In Example 1 we take the well-studied problem
of microvascular blood flow, and in Example 2 we take stratified laminar flow of two
Newtonian fluids, a system for which we have conducted prior equilibrium experiments
[22].

5.1. Example 1: Microvascular blood flow. For our first example, we use
the phase separation model for microvascular flow, Equation with p = 2. We
use the simple Arrhenius law for viscosity in the vessels after the initial splitting at
the inlets, Equation 2.1l The Arrhenius law has the basic functional form as the
empirical laws for blood viscosity [14]. For the network we use parameters &1 = &5 =
0.82; dy = dp = 1,dc = 2.5; by = fg = 1,4c = 0.75 unless otherwise noted. In
dimensionless terms r4/rc = 52.1, ra/rg =1, V4 /Ve =0.213, and V /Vp = 1.

The traditional approach to detect Hopf bifurcations is to monitor the test func-
tion defined by the product of the imaginary components of the eigenvalues along
the continuation of an equilibrium. In the systems with transcendental characteristic
equations in which the eigenvalues can not be directly computed, a more powerful tool
can be applied by monitoring the test function det(2J ® I,,), where J is the Jacobian
of the equilibrium relation and @ denotes the bialternate product. Here, we employ
a more specialized approach in order to simultaneously detect a Hopf bifurcation and
determine its frequency.

At equilibrium, the hydraulic resistances in each branch are functions of the equi-
librium flow rate Q. We can therefore rewrite Equation 211l as Qf = ¥(Qg). To
track an equilibrium through parameter space, we parameterize ¥ by ()1 and perform
numerical continuation on the equilibrium relation

FE(Q&‘?Ql):w(QE’?QI)_Qzﬁ (5'1)
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forming a parametric equilibrium curve §(s) in the Q1 x QF plane. Hopf bifurcations
can be identified along the equilibrium curve by monitoring the relation defined by
substituting o = 0 in Equations and 23] Since the values of a,b, ¢, d, and the
steady state transit times 7; are fixed at each (Q1, Q¢ ) pair along the continuation
B(s), we can define R(s,w) and I(s,w) to be the left sides of Equations and
with o = 0, respectively, without loss of generality. Then any intersection of
the zero contours of R(s,w) and I(s,w) indicates a Hopf bifurcation of frequency
w occurs at the (Q1,QF) pair associated with index s. We see an implementation
of this methodology with a viscosity contrast of 50 in Figure 5.1l This figure is
horizontally symmetric because the underlying network is geometrically symmetric.
We observe a collection of low frequency Hopf bifurcations that occur near the saddle-
node bifurcations located at indices 886 and 1515 in Figure B.Il We also observe
pairs of higher frequency Hopf bifurcations that occur away from the saddle-node
bifurcations. As the viscosity contrast is increased, additional bands of instability
appear, and these bands grow to encompass the entirety of the upper and lower
branches of the equilibrium curve.

We can confirm that Figure[5.Ilaccurately predicts the presence of sustained oscil-
lations through direct numerical simulation. As an example, we choose the equilibrium
pair (Q1,Q%) = (0.5, —0.19) which is located in the left-most band of instability in
Figure[5.1l The eigenvalue-based prediction is shown in Figure[5.2h. Here we plot the
zero contours of Equations and in the o x w plane so that an intersection
of the contours at some (o,w) pair indicates that A\ = ¢ + iw is a solution to the
Equation ET7 Note the dominant eigenvalue has positive real part and imaginery
part w = 9.16. We then perform a direct numerical simulation of Equation 213 (with
appropriate boundary conditions) at the same parameters. We initialize the simu-
lation to the equilibrium state and provide a small numerical perturbation. A limit
cycle grows from the unstable equilibrium solution as seen in Figure (.2b. When the
system reaches a periodic steady state the limit cycle has period T ~ 0.717, which
corresponds to a dimensionless angular frequency w = 27/T ~ 8.84, in good agree-
ment with our linear prediction. If we check the frequency in the simulation earlier
when the amplitude is infinitesimal the frequency matches the linear analysis exactly.
We also confirm that our predicted growth rate matches the simulation.

We can begin to form intuition about the presence and location of Hopf bifurca-
tions by varying the viscosity contrast for a fixed geometry and tracking the associated
bands of instability. An example is shown in Figure Here we plot the equilibrium
curve in the @ x QF plane at three values of the viscosity contrast. This is the
same figure and parameters as Figure B.Th with the stability information superim-
posed. These curves are experimentally relevant as one can build a fixed network and
then adjust the relative flow of the two inlets to move left and right along the z-axis
[22]. Experimentally we can adjust the inlet fluids to adjust to viscosity, here the
three curves represent the equilibrium solution for viscosity contrasts of 2, 10, and 30.
When the viscosity contrast is 2, the equilibrium curves are single-valued and there
are no Hopf bifurcations. At a viscosity contrast of 10, the equilibrium curve becomes
multi-valued over a small range around )7 = 0.5. For this range of 7 there are two
possible states, one with positive and negative Q.. We also see a region of instability
emerges right at the location where the curves fold over. This Hopf bifurcation is at
low frequency and in numerical simulations we find that there is no stable limit cycle.
The amplitude of oscillation grows until the system flips to the other stable state on
the equilibrium curve.
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FIG. 5.2. (a) Associated zero contours of Equation [{-2g (blue) and Equation [{-23 (orange) in
the microvascular blood flow model. Each intersection (black dot) indicates a solution A = o+ iw to
the characteristic equation[{.17 Note the sole eigenvalue with positive real part is A ~ 0.04 4 9.163.
(b) Limit cycle about equilibrium (Q1,Q%) = (0.5, —0.19) computed from direct simulation. The
period of the oscillation agrees with the analysis.

As we increase the viscosity contrast to 30 the region of multiple equilibrium grows
and a new region of instability emerges along the equilibrium curve. This region is
a high frequency oscillation which results in a stable limit cycle as seen in Figure
[B2b. For the viscosity contrast of 30, the picture is that as we experimentally move
continuously from @1 = 0 to Q1 = 1 we would start by observing a single, stable,
equilibrium flow state with negative Q. As we increase ()1 we would see a limit
cycle oscillation emerge around @7 = 0.286 which would persist until @7 ~ 0.397.
Since this limit cycle exists outside the region of bistability, there is no other state
for the system to move toward. After @) is increased beyond 0.37 the limit cycle
disappears and the system returns to a single stable equilibrium state with negative
Q. At Q1 ~ 0.575 the large amplitude oscillation emerges and kicks the system
to the other stable equilibrium state with positive Q¢. As we continue to increase
@1 the oscillations would emerge again at ()1 ~ 0.603, this time with positive Q.
Finally at @1 ~ 0.714 we would return to a single, stable equilibrium with positive
Q¢ In this example the curves are symmetric about @1 = 0.5 because the network
geometry is symmetric.

The region of instability changes as we increase the viscosity contrast. Generally,
the window with multiple equilibrium states and the regions of instability increase
with viscosity contrast. This behavior is demonstrated in the phase diagram of Figure
B4l which is an expansion of the phase diagram shown previously in Figure 3.Ib. Here
we have identified both saddle-node and Hopf bifurcations in Figure 5.1l and used the
relations

v-Q; v
FS(QI;QE;/MUJ): d_w_l ) FH(QIuQE’?M?“): R(va) )
Q0 1(0,w)

to track the saddle-node and Hopf bifurcations, respectively, through parameter space.
Note that this phase diagram is symmetric about Q; = 0.5 due to the symmetry of
the network geometry.
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Fic. 5.3. FEquilibrium curves of the microvascular blood flow model for viscosity contrasts of
2, 10, and 30. Solid regions of the equilibrium curve represent stable equilibria, while dotted region
represent unstable equilibria. Dashed regions indicate the existence of a limit cycle.
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Fic. 5.4. Phase diagram in Q1 X (ug/pe) parameter space for the microvascular blood flow
model. In the gray region (1), the system exhibits a unique equilibrium state. In the orange region
(ii), two stable equilibrium states exist. The yellow region (iii) represents parameters which support
one unstable oscillation and one stable state. The dark blue region (iv) represents configurations in
which have a single oscillatory state. Networks in the light blue region (v) support two oscillatory
states. The regions are separated by curves marking saddle-node bifurcations (black curves), the
lowest frequency Hopf bifurcation (blue curve), and higher frequency Hopf bifurcations (red/gray
curves). At high viscosity contrasts the instability is comprised of multiple frequencies.

The Hopf and saddle-node continuation curves delineate several regions of be-
havior. If we start with a low viscosity contrast, i.e., less than 3.4, we have single
valued equilibrium curve for any Q1. As we increase the viscosity contrast, mul-
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tiple equilibrium behavior emerges from @7 = 0.5 (point a). As soon as multiple
equilibrium exists, a small window of instability emerges right at the point that the
equilibrium curves fold over. This is a narrow region of a low frequency, large ampli-
tude oscillation which will generally kick the system to the stable part of the multiple
equilibrium curve. Recall the behavior for a viscosity contrast of 10 from Figure (5.3l
As we increase the viscosity contrast to 27.8, a small region of high frequency insta-
bility emerges at Q1 ~ 0.33 and Q1 =~ 1 — 0.33 = 0.67 (point b). This first region of
high frequency instability represent the emergence of a single frequency limit cycle.
The emergence of this instability occurs outside the multiple equilibrium region, thus
the system must oscillate around the equilibrium point. This behavior was seen at a
viscosity contrast of 30 in Figure

As we increase the viscosity contrast to 30.7, the instability curve crosses into the
region of multiple equilibria (point ¢). In this region, we find that the system may
tend to the oscillatory solution with positive (negative) Q¢ or the stable solution with
negative (positive) Qf,, depending on the initial condition. As the viscosity contrast
is increased to 35.5, the Hopf bifurcation curves associated with the positive and
negative Q¢ cross at Q1 = 0.5. At this point we have the co-existing limit cycles at
@1 = 0.5 (point d); the system has two possible limit cycles one with positive and
another with negative Q7. We also see that at this viscosity value we have multiple
frequency components meaning more complex dynamics are expected. Finally, as we
increase the viscosity contrast to 352, the region of instability reaches the boundary
where @1 = 0 and Q1 = 1 (point e); thus instability encompasses the entire range of
inlet flow rates. All values of ()1 are expected to be unstable and if we are inside the
multiple equilibrium region we expect to always find co-existing limit cycles.

The presence of Hopf bifurcations is strongly dependent on the viscosity contrast
18/ ha, and it not surprising that tuning this parameter also affects the amplitude and
frequency of the associated oscillations. We saw in Figure [5.4] that at high viscosity
contrast we could have coexisting limit cycles and oscillations with multiple frequency
components. In these cases our linear analysis can not tell us the complete dynamics
so we use direct numerical simulation of Equation 2.13] to explore the final dynamics.
In Figure we plot three time series of the flow in the middle branch Qc(t). As
viscosity contrast is increased from 50 to 500 to 1500, the amplitude of the limit cycle
grows considerably.

5.2. Example 2: Stratified laminar flow. For example 2, we use the phase
separation model for stratified laminar flow, Equation 2.3 with v = 1. We again use
the simple Arrhenius law for viscosity in the vessels after the initial splitting at the
inlet. This viscosity law could be realized in experiments if mixing was induced after
the initial inlet split or if the tubes A, B, and C were long enough to allow molecular
diffusion to mix the two phases. For the network we use similar parameters as the
previous example &1 = &5 =0.8; dy = 1,dg = 0.5,dc =2.5; 4 =¥l =1,0c =0.75
unless otherwise noted. In dimensionless terms, r4/r¢c = 52.1, 74 /15 = %6, Va/Veo =
0.213 and V4 /Vp = 4. Note that in comparison to the microvascular example we have
broken the symmetry of the diameters in vessels A and B. While we have no definite
proof, we have been unable to detect any Hopf bifurcations in a symmetric network
subject to stratified laminar flow.

We apply the same technique discussed in Example 1 to detect Hopf bifurcations.
The zero contours of R(s,w) and I(s,w) with a viscosity contrast of 50 are shown in
Figure As before, each intersection of these curves indicates a Hopf bifurcation
of frequency w occurs at the (Q1, QF) pair associated with index s. This figure is not
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Fic. 5.5. Time series and associated phase plot from the direct numerical simulation of the
microvascular blood flow model for different values of viscosity contrast, 50, 500, and 1500 from top
to bottom. In the upper two plots we see coexisting limit cycles with increasing amplitude. In each
phase plot the equilibrium solution is shown as the dot.

symmetric because the underlying network is not. All the intersections are on the
right side of the figure indicating that oscillations will occur when @) is greater than
Q2. Unlike Figure Bl here there is no differentiation between low frequency Hopf
bifurcations that emerge near the saddle-node bifurcation and higher Hopf bifurcations
that emerge away from it. All Hopf bifurcations in Figure[5.6 emerge near the saddle-
node bifurcation and grow towards the ;1 = 1 boundary. At a viscosity contrast of
50 the @1 = 1 boundary has been destabilized. This fact is experimentally relevant,
as oscillations would be observed with inlet 2 in Figure 2] shut off, leading to a
simplified experimental design. As the viscosity contrast is increased, additional bands
of instability appear and grow from the saddle-node bifurcation towards the @1 = 1
boundary.

In Figure 5.7 we vary the viscosity contrast for a fixed geometry and track the
associated bands of instability along the equilibrium curves. In this figure we plot the
equilibrium curve in the @1 x Q¢ plane at four values of the viscosity contrast. These
curves are experimentally relevant as one can build a fixed network, change the inlet
fluids to adjust the viscosity contrast and adjust the relative flow of the two inlets
to move left and right along the z-axis [22]. Note that all the curves pass through
the point Q¢ = 0 when @1 = 16/17. This trivial point is determined by noting that
when Q¢ = 0 all the flow from inlet 1 goes through branch A and all the flow from
inlet 2 goes through branch B. Since there is no flow in C, the pressure drop across

18



O
g %\\

3 10r

e

o

800 1000
Continuation index

0 200 400 600

1200

1400 1600

F1G. 5.6. Zero contours of Equation[{.2Z (blue) and Equation [{.23| (orange) with 0 =0 and a
viscosity contrast of 50 in the stratified laminar flow model. Each intersection (black dot) indicates
a Hopf bifurcation of frequency w occurs at the (Q1, Q) pair associated with the continuation indexz.

A and B must be the same. Thus, the trivial point is given by

TBHU2
TRl +TAML

Q1=

For our example p1 = po and €4 = €, thus Q1 = d% /(d} +d%) = 16/17.
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Fia. 5.7. Equilibrium curves of the stratified laminar flow model for viscosity contrast of 2,
10, 20, and 30. Solid regions of the equilibrium curve represent stable equilibria, while dotted
regions represent unstable equilibria. Dashed regions indicate the existence of a limit cycle. Hopf
bifurcations emerge from the points at which the equilibrium curves fold over. As the viscosity
contrast is increased, the region of instability with QF > 0 grow towards the Q1 = 1 boundary.

The four curves shown in Figure[B.7lrepresent the equilibrium solution for viscosity
contrasts of 2, 10, 20, and 30. When the viscosity contrast is 2, the equilibrium curves
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are single-valued and there are no Hopf bifurcations. At a viscosity contrast of 10,
the equilibrium curve becomes multi-valued over a small range around @ = 16/17.
For this range of ()1 there are two possible states, one with positive and negative Q.
We also see a region of instability emerges at the locations where the curves fold over.
The instability band with positive Q¢ is much wider than the one with negative Q.
As we increase the viscosity contrast to 20 the region of multiple equilibrium grows as
does the band of instability. This behavior is different than the microvascular example
in that the band of instability grows out of the point where the equilibrium curves
fold over. We see that only the band with positive Qf grows significantly in size.
When we increase the viscosity contrast to 30 the instability band encompasses the
whole branch of the positive Q¢ equilibrium curve.

We construct the phase diagram shown in Figure 0.8 to demonstrate the differ-
ent possible states of the system. If we start with a low viscosity contrast, i.e., less
than 3.5, we have a single equilibrium state for any Q). As we increase the viscosity
contrast, multiple equilibrium behavior emerges from @1 = 16/17 when the viscosity
contrast is 3.49 (point a). As soon as multiple equilibrium exists, a Hopf bifurcation
(denoted by the red curve) emerges from the multiple equilibrium point. This insta-
bility occurs on the branch where QF, > 0; recall the behavior for a viscosity contrast
of 10 from Figure[5.7 As we increase the viscosity contrast to 13.9, this region insta-
bility grows and eventually leaves the multiple equilibria region (point b). After this
viscosity contrast is exceeded we may have branches of the equilibrium curve that are
unstable via Hopf bifurcation, and there is no other possible stable equilibrium state.
As we increase the viscosity contrast to 27.6, the the region of instability reaches the
boundary where Q1 = 1 (point ¢); thus instability encompasses the entire branch of
the equilibrium curve where Q¢ > 0.
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F1G. 5.8. Phase diagram in Q1 X (ug/pa) parameter space for the stratified laminar flow model.
In the gray region (i), the system exhibits a single unique equilibrium state. In the orange region (i),
two stable equilibrium states exist. The yellow region (iii) represents parameters which support an
unstable oscillation and one stable equilibrium state. The dark blue region (iv) represents parameters
with a single oscillatory state. The regions are separated by curves marking saddle-node bifurcations
(black curves) and Hopf bifurcations (red/gray curves).
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A very narrow band of instability also grows along the right edge of the multiple
equilibrium boundary. This band corresponds to the instability region seen for nega-
tive Q¢ at the fold in the equilibrium curve in Figure 5.7 This region is so narrow
and only exists right the multiple equilibrium boundary that is likely of little practical
interest and not observable. Due to the broken symmetry for this parameter set, we
only see significant instability for cases where @, > 0. Thus unlike the example with
microvascular blood flow, here we do not find co-existing limit cycles.

As in Example 1, while the linear analysis can provide some insight into the types
of behaviors we may see, we must resort to full numerical simulation in order to see the
complete dynamics. In Figure we show some sample dynamics for the stratified
flow model with Q; = 1. With the viscosity contrast set to 30, we observe a relatively
sinusoidal oscillation in Q¢ (t). As the viscosity contrast is increased, Figure
shows that higher frequency bands of instability grow towards the @1 = 1 boundary.
With the viscosity contrast set to 50, for instance, there are 3 distinct bands of
instability that have crossed the ;1 = 1 boundary. These additional frequencies lead
to richer temporal dynamics in the flow Q¢(t) as seen in the middle pane of Figure
As the viscosity contrast is increased to 500, progressively higher frequency Hopf
bifurcations have crossed the @1 = 1 boundary. This broader spectrum manifests as
abrupt changes in the flow rate Q¢ (t) as seen in the bottom pane of Figure
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Fic. 5.9. Time series and associated phase plot from the direct numerical simulation of the
stratified flow model with Q1 = 1 for different values of viscosity contrast, 30, 50, and 500 from top
to bottom. In each phase plot the equilibrium solution is shown as the dot. As the viscosity contrast
in increased, progressively higher frequency bands of instability reach the Q1 = 1 boundary in Figure
The presence of these higher frequencies result in richer temporal dynamics in Q¢ (t) at higher
viscosity contrasts.
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6. Conclusions. We have demonstrated a rich set of dynamics which emerge
from simple fluid networks with practical and experimental relevance. We have pre-
sented a method for analyzing these fluid networks which has a large number of im-
portant free parameters. Through direct numerical simulation, the parameter space
is too large to span in a systematic way. We find large ranges of parameter space in
which equilibrium solutions to the phase and flow distribution within a network are
unstable and spontaneous oscillations may emerge. We also find complex nonlinear
dynamics for large viscosity contrasts.

While we have presented our results in a manner which is experimentally rele-
vant, the details of the constitutive laws are such that they are critical to the exact
predictions of stability and are difficult to experimentally control. Thus while our
laws for viscosity and phase separation at a node are realistic for blood flow, the vis-
cosity contrast of blood (contrast between plasma and red cell rich fluid) is limited to
approximately 10, thus the contrast of 30 or 50 to see oscillations is probably still out
of experimental range. However, through careful selection of the network parameters
it may be possible to find examples which occur in realistic experimental systems.
Further, the range of parameters where spontaneous oscillations exist for this net-
work is much broader and more realistic than the equivalent 2-node network [14],
thus adding an additional network branch might be sufficient to bring the dynamics
into experimental space.

On the other hand, the predictions for the stratified network model are well
within the range of what is possible experimentally [22]. The stratified system has the
advantage that viscosity is a more easily controlled parameter through the selection
of the fluids and the flow state is a natural consequence of buoyancy effects. On going
work is aimed at direct observation of these predictions.
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