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Abstract. We undertake a bifurcation analysis of a velocity coupled system of two classical nonidentical Van
der Pol oscillators to understand the appearance and structure of 1:k parameter regions with syn-
chronized states as we vary the coupling and the frequency mismatch. These regions include multi-
stability of solutions and are formed by classical tongues bordered by curves of limit point bifurcation
of periodic orbits with an isola structure and an additional subregion surrounded by curves of torus
bifurcations and a curve characterized by a geometrical tangency condition. Symmetry arguments
explain the difference between the even and odd k cases.
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1. Introduction. First recognized in 1665 by Huygens, who observed two mechanically
coupled clocks [12], synchronization phenomena are ubiquitous in science, nature, engineering,
and social life. Systems as diverse as singing crickets, cardiac pacemakers, firing neurons, and
applauding audiences exhibit a tendency to operate in synchrony [23]. Loosely speaking,
synchronization could be defined as an adjustment of rhythms of oscillating objects due to
their weak interaction. It is a universal phenomenon and can be understood within a common
framework based on modern nonlinear dynamics [3, 10]. A rather mathematical but unifying
definition of the different types of synchronization can be found in [5].

The Van der Pol oscillator [34, 35] is the canonical example of a planar limit cycle. It
has been extensively studied by the dynamical systems community from both the theoretical
and the numerical point of view and is a necessary character in any textbook on dynamical
systems [10, 18, 30].

The applications of the Van der Pol oscillator start with the classical work by Van der Pol
himself [36], who applied it to an electrical model of the heart [36]. Since then, it has been
used, for instance, in a mathematical model based on interconnected relaxation oscillators for
the slow wave electrical circuit of the gastrointestinal tract [20], in a heuristic model of neuron
interactions [14], in the modeling of circadian rhythms [26], in the rhythm synchronization in
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de la Universidad de Sevilla, Sevilla 41092, Spain (jgv@us.es).

1152

http://www.siam.org/journals/siads/13-3/92660.html
mailto:gpaccosi@yahoo.com
mailto:alejandra.figliola@gmail.com
mailto:jgv@us.es


SYNCHRONIZATION OF COUPLED VAN DER POL OSCILLATORS 1153

a model of the heartbeat [8], in synchronization of electromechanical devices [39], in control of
biped locomotion [13], and as a simplified model of the self-excited vibrations in turbomachine
blades [4].

It is well known that the forced case exhibits complex dynamical behavior, and the cou-
pled version has become the basic model of nonlinear dynamical systems undergoing mutual
synchronization.

The phenomena of synchronization, oscillator suppression, and total oscillator death are
universal phenomena that have already been studied for other systems.

Vance and Ross [37], Aronson, Ermentrout, and Kopell [2], and Taylor and Kevrekidis [33]
have established the generic bifurcation structure for the transition from quasi periodicity and
synchronization to the regime of oscillator suppression as the coupling (or forcing) increases.
They have shown, for instance, how the 1:1 resonance tongue is bounded at the top by a saddle-
node bifurcation curve, how the 1:2 tongue ends with one or more period-doubling bifurcation
curves, and how the 1:3 tongue ends with a loop of its delineating saddle-node bifurcation
curve around the so-called period-3 resonance point on the torus bifurcation curve. This is
the curve that, between the resonance tongues, marks the transition from quasi periodicity
to oscillator suppression. For weak resonances, the delineating saddle-node bifurcation curves
are tangent to the torus bifurcation curve in their respective resonance points.

A similar result was obtained by Sturis et al. [31] in a study of the response of the ultradian
oscillations in human insulin secretion to an oscillatory intravenous glucose infusion. It may
also be worth noting that similar phenomena have been observed in a spatially extended
electronic oscillator [21].

Taylor and Kevrekidis [32] and Ermentrout [9] have considered the transition from oscilla-
tor suppression to total oscillator death. They have observed, for instance, that two different
Hopf bifurcations of the equilibrium point may be involved and that a small region of torus
dynamics may develop from the point of intersection between these two Hopf bifurcation
curves.

The idea of coupling several Van der Pol oscillators has been extensively used in the
literature and started with, to the best of our knowledge, an analytical treatment of two
coupled Van der Pol oscillators in [1]. The corresponding bifurcation behavior was studied
in [11] and [29]. Two weakly coupled identical and detuned Van der Pol oscillators analyzed
by means of perturbative and topological methods can be found in [24]. An indirect coupling
via a bath was analyzed in [6], and multistability of solutions was found in [22]. Natural
extensions of the model by including delay or a nonautonomous term can be found in [19] and
[17], respectively.

A generic trajectory in the case of two nonidentical oscillators would be quasi-periodic,
and the invariant tori and their bifurcation should play a preeminent role in the description
of the global dynamics. For an extensive treatment of tori continuation and their bifurcation
and a review of the related works, we refer the reader to [28] and [25].

In a recent work [16] the case of nonidentical velocity coupled Van der Pol systems was
numerically investigated, and a so-called broadband synchronization region was identified in
which the two oscillators perform periodic orbits with commensurate periods. More precisely,
by means of an appropriate Poincaré three-dimensional section they found that, for an un-
bounded region in the frequency mismatch parameter and moderate values of the coupling,
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one of the subsystems performed one full revolution, while the other completed k full revo-
lutions; i.e., the 1:k synchronized state. We will take this statement as a working definition
of synchronization that implies additionally that the solution under consideration is periodic
and stable. We are aware that this is not the only definition of synchronization [5], but it is
the one considered by the authors of [16], whose results are under analysis. For instance, we
do not require that the flow of the orbit lies on the surface of a torus. This may lead to an
interpretation of our results which seems to be in conflict with previous work. We will recall
this fact whenever appropriate.

The well-known Arnold tongues that emanate from the zero coupling limit act as bridges
toward the broad synchronized region and appear in an ordered and monotonic way in k as we
increase the frequency mismatch parameter. In [16] Kuznetsov and Roman identified, among
other features, the 1:1, 1:3, and 1:5 synchronization tongues that appear with decreasing width
as the classical theory predicts, but did not analyze the case of even k values. In addition,
the border and structure of the upper part of the tongues that overlaps with the main 1:1
broadband region were designated as degraded top for their geometrical shape and were not
completely explained.

In this paper we undertake a bifurcation analysis of this velocity coupled system of two
classical nonidentical Van der Pol oscillators to understand the appearance and structure of
1:k parameter regions with synchronized states as we vary the coupling and the frequency
mismatch. We will show that these regions include multistability of solutions and are formed
by classical tongues bordered by curves of limit point bifurcations of periodic orbits with
an isola structure and an additional area surrounded by curves of torus bifurcations and a
curve characterized by a geometrical tangency condition. We will also show that symmetry
arguments explain the difference between the even and odd k cases.

2. The model. The model under study is formed by two classical Van der Pol oscillators
represented by the following system of second order differential equations:

(2.1)

{
ẍ− (1 + λ− x2)ẋ+ x = μ(ẏ − ẋ),

ÿ − (1− y2)ẏ + (1 + δ)y = μ(ẋ− ẏ).

For the sake of simplicity and to compare with the results of [16] we have considered only
a dissipative coupling (velocity dependent) instead of a reactive one (position dependent) or
a combination of both. An interesting and recent review on the different coupling options,
including a mixing of positions and velocity (conjugate coupling), can be found in [27].

The parameter λ in the first equation controls the appearance of the Hopf bifurcation,
the parameter δ is the frequency mismatch, μ parametrizes the dissipative coupling, and, as
usual, the dot denotes the time derivative.

In the absence of coupling, the two oscillators have a stable limit cycle with, in general,
different frequencies. In addition, it is intuitive to think that, for almost identical oscillators
(small λ and δ), a moderate amount of coupling will bring the system into a synchronized
state. The question of interest is to understand what happens for arbitrary values of the
parameters, i.e., for which value of the parameters these two oscillatory subsystems enter a
synchronized state.

The authors of [16] undertook an extensive numerical investigation of the parameter de-
pendence of the solutions of (2.1) by scanning a fine grid in the δ-μ parameter plane for fixed λ.
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They also performed some asymptotic expansions to understand the structure of the solutions.
They identified regions where no oscillations were present (the so-called death of oscillation
region), as well as regions where the two subsystems were oscillating in a 1:1 synchronized
state. More interestingly, by means of a three-dimensional Poincaré section they were able to
detect parameter values for which one of the subsystems performed k complete oscillations,
whereas the other did only one, a 1:k synchronized state. Furthermore, they completed the
analysis by repeating the computation for different values of λ and by monitoring the evolution
of the different regions.

However, for each pixel in the δ-μ parameter representations of the solutions of equa-
tions (2.1) [16, eqs. (1)], only one state was assigned to the system, precluding the possibility
of multistability, and the transition from one state to another was not completely explained.

We will see that a bifurcation-based approach based on continuation of solutions provides
a complementary point of view that clarifies the representation of the solutions and helps in
completing the puzzle, in particular, in identifying the geometrical mechanism in the upper
part of the synchronization tongues (the so-called degraded top region). As we will see later
(section 3.2), Kuznetsov and Roman overlooked some observable structures associated with
even values of k.

3. Results. The basic tool for our study has been the continuation of the unique equilib-
rium point of the system, which turns out to be the origin. The simplicity of the model allows
some analytical treatment so that the curves of the equilibria bifurcation can be worked out
with standard linear algebra techniques.

In general terms, for any given value of λ, the equilibrium is stable for large values of δ
and large values of μ; i.e., when the two subsystems have very different values of frequencies
or the coupling is very strong, any oscillatory solutions are suppressed.

As we decrease any of these parameters, the equilibrium loses its stability via a Hopf
bifurcation where a pair of complex conjugate eigenvalues crosses the imaginary access with
nonzero velocity and a limit cycle is born. This first bifurcation can be fully characterized by
computing analytically the first Lyapunov coefficient which turns out to be negative, indicating
that the bifurcation is supercritical and, consequently, the emanating periodic orbit is stable.
This Hopf bifurcation condition can be traced in two parameters (δ-μ) to identify the onset of
synchronized states and is presented in Figure 1 for λ = 0.25. It is clear from our definition in
section 1 that any stable periodic orbit corresponds to a synchronized solution, because the
system is oscillating in a periodic and stable condition. A geometrical analysis of the orbit
will tell us whether it is a 1:k synchronized state or something more exotic.

By further decreasing the value of μ, the origin undergoes a second Hopf bifurcation in
which the other pair of complex conjugate eigenvalues crosses the imaginary axis, meaning that
the already unstable equilibrium becomes doubly unstable and a second family of unstable
periodic solutions is born. According to our results, this second bifurcation has no direct
influence in the synchronization phenomenon.

This second curve of Hopf bifurcation in the δ-μ plane is shown in Figure 1 and does not
separate regions of observable different dynamical behavior because the equilibrium before
and after the crossing was already unstable. We should remark that the case λ = 0 is a
special case where the two Hopf curves coincide (in fact, are equal to a horizontal segment at
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Figure 1. Bifurcation diagram of the equilibrium at the origin for λ = 0.25. The yellow region is where
the origin is stable and no oscillations are present (death of oscillation area). The upper green curve is the
first Hopf bifurcation (supercritical), where the origin loses its stability, and the lower one is a second Hopf
bifurcation for the already unstable equilibrium. The red vertical segment is the route that we will take to look
for further structure in the diagram.

μ = 1). The curve in this degenerate case is a curve of double Hopf bifurcation where the two
pairs of eigenvalues cross with nonzero velocity at the same time. In this case, the emanating
solution is a torus if no resonances are present. We will discuss later in this section the role of
tori in the dynamics. For λ �= 0 we have analytically proved that the two Hopf curves do not
intersect and that each bifurcation curve involves the same pair of eigenvalues all the way.

The outcome of this equilibrium analysis is that outside the yellow region in the upper
right corner the system is in a state of oscillatory behavior, but we still have to determine
whether or not we should call it synchronized. In [16] the unbounded horizontal strip below
the first Hopf bifurcation was termed the broadband synchronization region.

The next step in our search for global understanding of the dynamics in this oscillatory
region is to compute the family of periodic solutions that is born at the first Hopf curve as one
of the parameters is varied, and trace its stability and possible bifurcation by monitoring the
Floquet multipliers. This kind of analysis has to rely on numerical algorithms, and we have
made extensive use of AUTO, a well-known and tested continuation code in the dynamical
systems community [7, 15].

We have chosen a value of δ = 10 for the λ = 0.25 diagram, guided by the numerical
evidence along the red segment in Figure 1. The resulting bifurcation diagram for the family
of periodic solutions is shown in Figure 2, where we plot the norm of the solution as a
function of the bifurcation parameter μ. Around μ = 1.25, the origin undergoes the above-
mentioned Hopf bifurcation (HB) and heads toward the low coupling region. Along the way
we have marked several labels (a–d) corresponding to special solutions that will be referred to
throughout the paper. Centered around μ = 1 we find a loop with three changes of stability
along the branch.

The first stability change as we follow the branch is a limit point (LP1) around μ = 0.9,
where the branch turns back and loses stability and the μ parameter begins to increase its
value. The branch is drawn with a dashed line to denote that the corresponding periodic
solution is unstable (and therefore not observable in simulations) until it reaches a second
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Figure 2. One-parameter bifurcation diagram as μ varies along the red segment in Figure 1 for λ = 0.25
and δ = 10. The vertical axis is the norm of the solution. The branch emanates from the origin at a standard
supercritical Hopf bifurcation with its usual local square root shape for the amplitude. Labels a–d are stable
periodic solutions. A first limit point (LP1) is found at μ ∼ 0.9, where the branch loses stability. At a second
limit point (LP2) the stability is recovered only to be lost again later at a torus bifurcation (TR1). In the
interval [LP2, TR1] the system is bistable.

limit point (LP2), where it recovers the stability and turns back again to decreasing values of
μ. The branch of periodic solutions is drawn with a solid line until it reaches a bifurcation
point where the stability is lost again in what is called a torus bifurcation (TR1), where a pair
of Floquet multipliers leaves the unit circle with a nonvanishing imaginary part. The surviving
unstable main branch heads toward the uncoupled limit. Note that, in this case, within the μ
interval [LP2, TR1] the system is bistable. It is important to note that the relative position
of these three bifurcations (two LPs and a TR) varies with δ and really determines the lower
border of the region where stable periodic orbits exist in the δ-μ diagram. In a numerical
simulation (as in [16]), the observed solution would depend on the initial condition and the
basin of attraction of the different solutions. However, if we were aware of this multistability
situation, we could determine the basins of attraction of both stable limit cycles, as shown
in [38].

The next step in our research is to continue in two parameters this special solution, namely
the locus in the δ-μ plane of the two LPs and the TR. We have done this with the help of
AUTO, and the results are three more curves in the bifurcation diagram displayed in panel
(a) of Figure 3. The point of contact of these tongues with the μ = 0 axis could be predicted
just by computing the ratio of the uncoupled periods of the limit cycle of the two Van der Pol
oscillators. The synchronization tongues act as bridges of periodic orbits between the μ = 0
limit and the broadband synchronization region.

We display three tongues of 1:k synchronized states bordered by curves of limit points of
periodic orbits. The leftmost green tongue centered on δ = 0 corresponds to a 1:1 state, the
central blue one is the 1:3 synchronized state explained in Figure 2, and the narrow rightmost
black tongue corresponds to a 1:5 resonance. The solid magenta curve is the locus of torus
bifurcation of periodic orbits. Figures 3(b) and 3(c) zoom in on the upper part of the tongues
to highlight the interaction between the torus bifurcation and the presence of a cusp of limit
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Figure 3. (a) Two-parameter (δ-μ) continuation of the bifurcation of periodic orbits for fixed λ = 0.25.
We display three tongues of 1:k synchronized states bordered by curves of limit points of periodic orbits. The
leftmost green tongue corresponds to a 1:1 state, the central blue tongue is the 1:3 synchronized state explained
in Figure 2, and the narrow rightmost tongue corresponds to a 1:5 resonance. These tongues are only a subset of
the full 1:k synchronization region. The magenta solid curve is the locus of torus bifurcation of periodic orbits.
Subfigures (b) and (c) zoom in close to the upper part of the tongues to highlight the interaction between the
torus bifurcation and the presence of a cusp of limit points of periodic orbits for k = 3 and k = 5, respectively.

points of periodic orbits for k = 3 and k = 5, respectively. We will later show that there is
even finer structure around these bifurcations.

Based on these two parameter continuations, we can identify the borders of the synchro-
nization regions: the upper part of the region is bordered by a supercritical Hopf bifurcation,
and the lower part is bordered by a torus bifurcation except where the 1:k tongues appear
and connect the so-called broadband synchronization with the uncoupled case (μ = 0).

At this point a comment is in order: we are following periodic orbits that, under our
working definition of synchronization, are in the 1:k synchronized state, but as mentioned in
section 1, if we would enforce that the dynamics should take place on the surface of a torus in
the continuation path, we would certainly obtain other regions and shapes of synchronization.
For instance, in our results we would probably include regions where a third harmonic com-
ponent could present in the time evolution of the orbit that an alternative definition would
probably rule out. However, within our definition of synchronization (which agrees with that
of [16] and other authors), the continuation and bifurcation results provide valuable insight
into the different regions in parameter space.

A systematic analysis of the bifurcation behavior of the branch of periodic orbits that
emanates from the Hopf curve reveals further structure within the tongues, namely, the ap-
pearance of isolas of periodic orbits detached from the main branch, as shown in Figure 4.

The panels on the left, i.e., (a), (c), (e), are one-parameter bifurcation diagrams, whereas
those on the right, i.e., (b), (d), (f), are two-parameter bifurcation sets. Panel (a) corresponds
to a bifurcation diagram as μ is varied for fixed δ = 9.492, (c) is for δ = 9.4917, and (e) is for
δ = 9.0. We have included a zoom around the “neck” of the loop to highlight the interaction
among the different curves of bifurcation. In the right-hand panels the curves of saddle nodes
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Figure 4. Formation of an isola of periodic orbits within the synchronization tongues. The panels on the
left ( (a), (c), (e)) are one-parameter bifurcation diagrams, whereas those on the right ( (b), (d), (f)) are two-
parameter bifurcation sets. Panel (a) corresponds to δ = 9.492, (c) is for δ = 9.4917, and (e) is for δ = 9.0.
We have included a zoom around the “neck” of the loop to highlight the interaction among the different curves
of bifurcation. Also note that the curve of tori is connected to a swallow-tail curve of saddle nodes of periodic
orbits (panels (b) and (d)). In the right-hand panels the curves of saddle nodes of periodic orbits inside the
synchronization tongue are depicted in blue and exhibit a swallow-tail shape, the curves of torus bifurcations
are black, and the green lines correspond to the Hopf bifurcation of the equilibrium.

of periodic orbits inside the synchronization tongue are depicted in blue and exhibit a swallow-
tail shape, the curves of torus bifurcations are magenta, and the green lines correspond to
the Hopf bifurcation of the equilibrium. The vertical red lines indicate the position of the
one-parameter bifurcation curves.

As δ is diminished, the isola is born precisely when the two limit points LP2 and LP5 in
the zoom of Figure 4(a) collide and are detected as a branch point (BP) where a branch of
nonsymmetric solutions will be born. In Figure 4(d) this corresponds to the tangency of the
red segment with one of the sides of the swallow tail. For even lower values of δ as in Figure
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−1.5 −0.5 0.5 1.5
x 10−3

−1

0

1

x 10−3

y

y‘

(a)

−0.1 0 0.1

−0.1

0

0.1

y

y‘

(c)

−0.1 0 0.1

−0.1

0

0.1

y

y‘

(b)

−0.1 0 0.1
−0.2

−0.1

0

0.1

0.2

y

y‘

(d)

9 9.5 10 10.5 11

0.8

1

1.2
a
b
c
d

δ

μ

(e)

Figure 5. The onset of the synchronized state reveals the structure of the degraded top. Panel (e) is a zoom
of the partial bifurcation diagram, Figure 3(a), for λ = 0.25, displaying part of the synchronization tongue in
blue, the region of death of oscillations in yellow, the Hopf curves in green, and the curve of torus bifurcations
in magenta. The red segment is the route toward the synchronization region. (a)–(d) are the y-ẏ projections
of orbits along the family of periodic orbits born at the first Hopf bifurcation at a fixed value of δ = 10 and
decreasing values of μ. (a) is a small circular periodic orbit close to the HB (μ = 1.25494), (b) is for μ = 1.9777,
where the lobe is starting to appear, (c) is the onset of 1:3 synchronization for μ = 1.17460, and (d) is inside
the 1:3 synchronization region for μ = 1.13711. The points a–d in panel (e) were also shown in Figure 2.

4(e), the isola is completely detached from the main branch and bordered by two limit points
of periodic orbits (labeled by LP1 and LP2).

The left-hand panel (a) is the one-parameter bifurcation diagram at a slightly lower value
of the frequency mismatch δ = 9.5 before the red segment in Figure 1. The branch of stable
periodic orbits is born at a supercritical Hopf bifurcation (HB), undergoes a torus bifurcation
(TR) where the stability is lost, and recovers the stability again at a torus bifurcation where
the pinching of the loop takes place. If we decrease δ further as in the right-hand panel (b), for
δ = 9.45 the loop completely detaches and we have an isola of periodic orbits with a lower part
of stable periodic orbits (solid line) and an upper part with unstable periodic orbits (dashed
line). The isola is bordered by two limit points, where the stable and unstable subbranches
merge and the whole object can be continued in δ and μ. Note that the isolas are within the
synchronization tongues of Figure 3.

3.1. The degraded top. In the previous section we used the term 1:k synchronized state
without an explicit comment on how to determine or measure the synchronization itself.
We know that at the point where the 1:k tongue emanates from the uncoupled case in the
neighborhood of the μ = 0 contact point, the two oscillators have rhythm adjustment and one
of the subsystems is rotating k times faster than the other, but it is not clear how far we can
get when μ > 0 before this geometrical feature is lost.

In fact, to understand how the system enters in a synchronized state, it is even more
instructive to start at the other end of the tongue, more precisely, at the upper Hopf curve,
and follow the orbit as we proceed toward lower values of μ, i.e., follow the route a-b-c-d in
Figure 2. The shapes of the y-ẏ projections of the orbits at those points are presented in the
left-hand panels of Figure 5. In panel (a) we see a round and small orbit, as predicted by Hopf’s
theorem, that starts to develop a lobe, as shown in (b) for lower values of μ. At label c the
lobe touches tangentially the horizontal axis at ẏ = 0. At a lower value of μ as in panel (d),
the lobe (which is now a loop) drops below the ẏ axis. At this point the subsystem y is
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performing three revolutions, while the subsystem x performs only one revolution (not shown
in the figure); i.e., the coupled system at (d) is in the 1:3 synchronized state, and the tangency
shown in panel (c) can be considered as the onset of 1:3 synchronization. Note that the orbits
cross the ẏ = 0 axis six times (three times in each direction) for a 1:3 synchronized state.

Incidentally, we should remark that all of the solutions along the route exhibit an inversion
orbital symmetry around the origin inherited from the Van der Pol system (2.1) which consists
of the change y → −y and x → −x without altering the time. The coupling term does not
destroy this symmetry if the transformation is performed simultaneously on the x and y
variables.

It is worth noting that all of these geometrical changes still occur far from the proper
synchronization tongues bordered by limit points (see the distance between point d and the
tongue in panel (e)). This means that in the route that starts at the Hopf bifurcation curve
toward the tongue the system enters a 1:k synchronized state from the geometrical point of
view long before reaching the tongue.

If we want to plot a region of synchronization in the δ-μ plane, we have to enlarge the
blue region outside the tongue. This phenomenon was noticed numerically by the authors
of [16] and given the name of degraded top. The origin of that name is that geometrically it
resembles a triangle-shaped hat on top of the tongue.

In fact, we can affirm that with the geometrical definition of synchronization of [16], the
synchronized transition in this region would not be a bifurcation and would not involve a
change of stability or new solutions; it is rather a geometrical feature (the tangency) that
determines the appearance of the synchronized state.

Although synchronization and oscillator suppression may, in many ways, be difficult to
distinguish in practice, they are two very different phenomena. Synchronization arises from the
quasi-periodic state through a saddle-node bifurcation on the surface of a torus and involves
the simultaneous generation of an unstable periodic orbit. Oscillator suppression involves the
unilateral suppression of the weaker oscillator and requires a reverse torus bifurcation in which
the torus disappears completely.

Note that the geometrical condition does not necessarily correlate with the stability. The
system could be entering the synchronized state, but the orbit itself could be unstable, which
would make the transition unobservable.

The lesson we learn is that in order to have a 1:k synchronized observable state, we need
to fulfill two necessary conditions simultaneously: the orbit must be stable, and we must have
crossed the tangency condition curve so that the loop crosses the axis more than twice.

It would be very useful to detect the tangency condition and to be able to trace it in the
δ-μ plane, as this would indicate the border that would limit the synchronized state from above.
Although it is not a bifurcation and no standard test function can be used to characterize it, we
will set up an appropriate boundary value problem that is suitable for numerical continuation
as follows:

(3.1)

⎧⎪⎪⎨
⎪⎪⎩

x′ = Tx1,
y′ = Ty1,
x′1 = T [(1 + λ− x2)x1 − x− μ(x1 − y1)],
y′1 = T [(1− y2)y1 − (1 + δ)y − μ(y1 − x1)],
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Figure 6. Two-parameter curves of tangency conditions that border from above the synchronization regions
for k = 3 (blue) and k = 5 (black). The solid and dashed lines denote stability and instability, respectively.

with the boundary conditions

(3.2)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x(0) = x(1),
x1(0) = x1(1),
y(0) = y(1),
y1(0) = y1(1),
y′(0) = 0,
y′1(0) = 0,

where we have introduced two auxiliary variables x1 = ẋ and y1 = ẏ to write the second
order ODE system (2.1) as a four-dimensional first order system of ODEs, and have scaled
the time so that the period of the solution appears explicitly as a parameter and the time
interval is [0, 1]. The prime denotes the derivative with respect to this scaled time (see [7, 15]
for a complete treatment of the continuation method).

The first four boundary conditions impose periodicity on the solution, whereas the fifth is
just to establish a time origin and ensure that at time zero we have zero velocity and avoid the
phase shift playing a role equivalent to that of the Poincaré phase condition in the standard
continuation of periodic orbits. The last boundary condition is the crucial one and imposes
the geometrical tangency condition of the lobe at the beginning (and at the end due to the
periodicity) of the orbit.

The starting point for the 1:3 tangency threshold continuation is the orbit shown in Figure
5(b).

The boundary value problem (3.1), (3.2) is well posed, and the number of free parameters
is equal to the number of boundary conditions minus the dimension of the system plus one;
in our case, npar = nbc − n+ 1 = 6 − 4 + 1 = 3. These three parameters will be δ, μ, and T ,
which, in general, will change along the curve.

The results of this continuation are shown in Figure 6 for k = 3 (blue curve) and k = 5
(black curve). For the latter case we have followed another route to the synchronization
tongues for δ = 26.2409 and located a second tangency for μ = 1.10433. The solid or dashed
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Figure 7. The structure of the degraded top for k = 3 (a) and k = 5 (b). The blue region corresponds to
the 1:3 resonance, whereas the black one corresponds to the 1:5. The pointed form of the resonance tongue in
Figure 5 is no longer present because it has been enlarged by the degraded top. Note that, as expected, the k = 5
region is narrower than the k = 3 region.

line denotes the stability of the solution and, as discussed above, does not depend on the
tangency but on the fact of having crossed the torus or limit point curves. The points of
contact between the k = 3 and k = 5 curves could be tricky and have to be numerically
analyzed with care.

Above these curves the tangency has still not occurred, and, consequently, the system is
still not in the synchronized state. On the other hand, as soon as we step into the other side
of the curve, the lobe drops below the ẏ = 0 axis and two new crossings appear. Note that if
the orbit is symmetrical, a twin lobe and crossings develop at the other side of the origin.

Figure 7 shows the new synchronization region that we have explained with the boundary
value tangency continuation. The pointed form of the resonance tongue of Figure 5 is no longer
present, as it has been enlarged by the degraded top. For this value of λ it is a triangle-shaped
region not connected to the Hopf curve, surrounded from above by the tangency condition and
from below by a torus bifurcation curve. Precisely where this torus curve develops a cusp-like
structure the synchronization tongue bordered by limit points of periodic orbits penetrates
into the new region. This compound synchronization region is what the authors of [16] called
the degraded top. We have followed this region for different values of λ, and the tangency
border itself develops additional structure; a detailed analysis will be published elsewhere.

The continuation of this tangency condition identifies the upper border of the synchronized
region and the corresponding route to synchronization.

3.2. Even k synchronization tongues. In previous sections we have described and char-
acterized the synchronization tongues corresponding to odd values of k (see Figure 3) that
were born at the μ = 0 line. As this uncoupled case consists of two attracting limit cycles,
the resulting tori are hyperbolic and, generically, persistent under small perturbations. This
means that we would also expect to find even k tongues.
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However, with our numerical procedure that starts with a branch of periodic orbits at the
upper Hopf curve and the location of a limit point bifurcation, or with the extensive numerical
scanning of the authors of [16], initially no traces of them were found.

In this section we present a simple symmetry-based argument that explains why this is the
case if we do not include some symmetry-breaking solutions in our search. We will show how
the combined symmetry of the four-dimensional system (2.1) inherited from the symmetry of
each separate Van der Pol oscillator forces the parity of k to be odd for symmetrical periodic
solutions.

Let us consider two symmetry operators Sx and Sy that actuate only on one of the sub-
systems by changing the sign of the x or y variable, respectively, without altering the time
variable. The combination of both operators is another symmetry, S = SxSy. It is evident
that for μ = 0 the system (2.1) is both Sx and Sy symmetric, and consequently it is also S
symmetric.

The geometrical interpretation of this S operator is that for symmetrical periodic solutions
we can reconstruct the whole orbit by knowing just half of it. If T is the period of the orbit
and u(t) = (x(t), ẋ(t), y(t), ẏ(t)) is the state, then for any time t, the following relation holds:

(3.3) u

(
t+

T

2

)
= Su(t).

Furthermore, for μ = 0 the symmetric solution u(t) = (x(t), ẋ(t), y(t), ẏ(t)) at a p:q reso-
nance (with gcd(p, q) = 1), where the bifurcating in the μ solution performs p full revolutions
in subsystem x, whereas the subsystem y performs q full cycles, satisfies

(3.4) u

(
t+

T

2

)
= Sp

xS
q
yu(t).

However, for μ �= 0 the coupling term mixes the x and y variables, and Sx and Sy acting
independently are not symmetries of the system; only S retains this property in the coupled
region.

The symmetry relation (3.4) can persist for μ �= 0 only in the case that Sp
xS

q
y = S, that

is, when both p and q are odd. For the 1:k resonance this means that k has to be necessarily
odd.

Consequently, a forced symmetry-breaking bifurcation happens as soon as μ �= 0 for even
values of k. This implies that in order to locate the new unsymmetrical synchronization
tongues for even values of k the periodic orbits have to undergo a pitchfork or symmetry-
breaking bifurcation.

If we return our attention to Figure 4(d), we have already found one of those bifurcations
while analyzing the appearance of isolas. From this bifurcation point it is possible to launch
and continue a family of nonsymmetrical periodic solutions that allowed us to locate even k
tongues halfway between any of the two consecutive odd k tongues. In Figure 8 we present the
final bifurcation diagram of the coupled Van der Pol oscillators (2.1) for λ = 0.25, including
the even k tongues. This new structure completes the bifurcation diagram in a consistent
and appealing way. The narrow red tongue between the green symmetric k = 1 and the blue
symmetric k = 3 tongues corresponds to the nonsymmetrical k = 2. The same holds for the
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Figure 8. Complete two-parameter bifurcation diagram including the nonsymmetric even k tongues. The
narrow black tongue corresponds to the nonsymmetrical k = 2, the green region corresponds to symmetric k = 1,
and the blue tongues correspond to symmetric k = 3.

red k = 4 tongue. Note that only the narrowness of the k = 2 and k = 4 tongues is still not
well understood, and, probably, a full theoretical symmetry bifurcation analysis is needed to
understand this nongeneric behavior.

4. Conclusions. We have undertaken a bifurcation analysis of a velocity coupled system of
two classical nonidentical Van der Pol oscillators to understand the appearance and structure
of 1:k parameter regions with synchronized states as we vary the coupling and the frequency
mismatch. These regions include multistability of solutions and are formed by classical tongues
bordered by curves of limit point bifurcation of periodic orbits with isola structure and an
additional subregion surrounded by curves of torus bifurcations and a curve characterized by
a geometrical tangency condition. Symmetry arguments explain the difference between the
even and odd k cases.

The bifurcation approach undertaken in this work could be extended by continuing the
families of tori and their bifurcations with the techniques of [28] to try to further clarify the
interaction between tori and limit points of periodic orbit bifurcations. The extension of this
result to other values of λ and to the negative μ and δ parameters is deferred to future work.
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[22] I. Pastor-Dı́az and A. López-Franguas, Dynamics of two coupled van der Pol oscillators, Phys.

Rev. E, 52 (1995), pp. 1480–1489.
[23] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization, a Universal Concept in Nonlinear

Sciences, Cambridge University Press, New York, 2001.
[24] R. H. Rand and P. J. Holmes, Bifurcation of periodic motions in two weakly coupled van der Pol

oscillators, Internat. J. Non-Linear Mech., 15 (1980), pp. 387–399.
[25] B. Rasmussen, Numerical Methods for the Continuation of Invariant Tori, Ph.D. thesis, School of Math-

ematics, Georgia Institute of Technology, Atlanta, GA, 2003.
[26] K. Rompala and R. Rand, Dynamics of three coupled van der Pol oscillators with application to circa-

dian rhythms, Commun. Nonlinear Sci. Numer. Simul., 12 (2007), pp. 794–803.
[27] G. Saxena, A. Prasad, and R. Ramaswamy, Amplitude death: The emergence of stationarity in

coupled nonlinear systems, Phys. Rep., 521 (2012), pp. 205–228.
[28] F. Schilder, H. M. Osinga, and W. Vogt, Continuation of quasi-periodic invariant tori, SIAM J.

Appl. Dyn. Syst., 4 (2005), pp. 459–488.

http://indy.cs.concordia.ca
http://indy.cs.concordia.ca


SYNCHRONIZATION OF COUPLED VAN DER POL OSCILLATORS 1167

[29] D. W. Storti and R. H. Rand, Dynamics of two strongly coupled van der Pol oscillators, Internat. J.
Non-Linear Mech., 17 (1982), pp. 143–152.

[30] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry,
and Engineering, Perseus Books, Cambridge, MA, 2000.

[31] J. Sturis, C. Knudsen, N. M. O’Meara, J. S. Thomsen, E. Mosekilde, E. Van Cauter, and

K. S. Polonsky, Phase-locking regions in a forced model of slow insulin-glucose oscillations, Chaos,
5 (1995), pp. 193–199.

[32] M. A. Taylor and I. G. Kevrekidis, Some common dynamic features of coupled reacting systems,
Phys. D, 51 (1991), pp. 219–231.

[33] M. A. Taylor and I. G. Kevrekidis, Couple, double, toil and trouble: A computer assisted study of
two coupled CSTRs, Chem. Eng. Sci., 48 (1993), pp. 2129–2149.

[34] B. van der Pol, A theory of the amplitude of free and forced triode vibrations, Radio Rev., 1 (1920),
pp. 701–710.

[35] B. van der Pol and J. van der Mark, Frequency demultiplication, Nature, 120 (1927), pp. 363–364.
[36] B. van der Pol and J. van der Mark, The heartbeat considered as a relaxation oscillation, and an

electrical model of the heart, Phil. Mag. Suppl., 6 (1928), pp. 763–775.
[37] W. Vance and J. Ross, A detailed study of a forced chemical oscillator: Arnol’d tongues and bifurcation

sets, J. Chem. Phys., 91 (1989), pp. 7654–7670.
[38] J. Xu, R. S. Guttalu, and C. S. Hsu, Domains of attraction for multiple limit cycles of coupled van

der Pol equations by simple cell mapping, Internat. J. Non-Linear Mech., 20 (1985), pp. 507–517.
[39] R. Yamapi and P. Woafo, Dynamics and synchronization of coupled self-sustained electromechanical

oscillators, J. Sound Vibration, 285 (2005), pp. 1151–1170.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


