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NEWTON’S METHOD FOR SOLVING INCLUSIONS USING
SET-VALUED APPROXIMATIONS∗

SAMIR ADLY† , RADEK CIBULKA‡ , AND HUYNH VAN NGAI§

Abstract. Results on stability of both local and global metric regularity under set-valued
perturbations are presented. As an application, we study (super)linear convergence of a Newton-
type iterative process for solving generalized equations. We investigate several iterative schemes
such as the inexact Newton’s method, the nonsmooth Newton’s method for semismooth functions,
the inexact proximal point algorithm, etc. Moreover, we also cover a forward-backward splitting
algorithm for finding a zero of the sum of two multivalued (not necessarily monotone) operators.
Finally, a globalization of the Newton’s method is discussed.

Key words. generalized equation, metric regularity, semismooth function, Newton’s method,
forward-backward splitting, proximal point method

1. Introduction. Given two real Banach spaces X and Y , and multivalued
mappings Ψ : X ⇒ Y and F : X ⇒ Y , we investigate the convergence properties of
iterative processes for the following problem:

(1.1) Find x ∈ X such that 0 ∈ Ψ(x) + F (x).

Our aim is to derive a computational method to approximate a solution to (1.1).
Namely, we study the following iterative process: Choose a sequence of set-valued
mappings Ak : X × X ⇒ Y and a starting point x0 ∈ X, and generate a sequence
(xk)k∈N in X iteratively by taking xk+1 to be a solution to the auxiliary inclusion

(1.2) 0 ∈ Ak(xk+1, xk) + F (xk+1) for each k ∈ N0 := {0, 1, 2, . . .}.

Instead of considering a general inclusion

find x ∈ X such that 0 ∈ Γ (x), with a given Γ : X ⇒ Y,

we focus on the case when the right-hand side Γ can be split into two parts as in (1.1).
This might be useful in some applications since one can impose different assumptions
on each part. Iterative schemes for solving inclusions with the general Γ can be found,
for example, in [29]. In this paper, each result on convergence of the scheme (1.2)
relies on metric regularity of an appropriate mapping which can be checked by using
the graphical derivative criterion [8, Theorem 5.4.3] or the coderivative criterion [40,
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‡Laboratoire XLIM UMR-CNRS 6172, Université de Limoges, 87060 Limoges, France, and De-
partment of Mathematics, University of West Bohemia, Univerzitńı 8, 306 14 Pilsen, Czech Republic
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Theorem 9.40]. When the mapping Ψ is single-valued, i.e., Ψ = f for a given function
f : X → Y , one obtains a generalized equation, introduced by Robinson in [39], which
reads as follows:

(1.3) Find x ∈ X such that 0 ∈ f(x) + F (x).

This model has been used to describe in a unified way various problems such as
equations (when F ≡ 0), inequalities (when Y = R

n and F ≡ R
n
+), and variational

inequalities (when F is the normal cone mapping corresponding to a closed convex
subset of X or, more broadly, the subdifferential mapping of a convex function on
X). In particular, it covers optimality conditions, complementarity problems, and
multiagent equilibrium problems (see [28] or [12]).

The case of single-valued approximations Ak : X ×X → Y of the function f was
studied in [10, 25, 26] and [12, Section 6C]. It is well known that specific choices of
(Ak)k∈N0 lead to various methods for solving (1.3). Under the assumption that f is
continuously differentiable (with the derivative f ′), taking Ak(x, u) = f(u)+f ′(u)(x−
u), (x, u) ∈ X ×X for each k ∈ N0, the iteration (1.2) becomes the Newton’s scheme:

0 ∈ f(xk) + f ′(xk)(xk+1 − xk) + F (xk+1) whenever k ∈ N0.

When F coincides with the normal cone mapping with a closed convex subset of
X , this scheme is known as the Josephy–Newton algorithm (see [27]). It is well
known that if the starting point x0 is sufficiently close to some regular (in the sense
of Robinson [39]) solution x̄, then the Josephy–Newton method is well defined and
converges superlinearly to x̄.

On the other hand, when X = Y , considering a sequence (λk)k∈N0 in (0,+∞)
and taking Ak(x, u) = λk(x− u)+ f(x), (x, u) ∈ X ×X for each k ∈ N0, one gets the
proximal point method:

0 ∈ λk(xk+1 − xk) + f(xk+1) + F (xk+1) for each k ∈ N0.

In particular, if f ≡ 0 one gets the proximal point algorithm for finding a solution to
the inclusion

0 ∈ F (x).

The convergence properties of more general algorithms were studied in [3] and [4]. To
be more precise, let (gk)k∈N0 be a sequence of functions from X into Y such that each
gk is Lipschitz continuous near the origin and gk(0) = 0. The authors of [3] and [4]
consider the iteration scheme defined for each k ∈ N0 by either

(1.4) 0 ∈ gk(xk+1 − xk) + F (xk+1) or 0 ∈ gk(xk+1 − xk) + F (xk+1)− y,

where y ∈ Y is a given perturbation term nearby 0. Note that these algorithms cover
the so-called Mann’s iteration for solving the inclusion x ∈ T (x) with T : X ⇒ X
considered in [20]. The corresponding iteration schemes are, for each k ∈ N0, defined
by

xk+1 ∈ (1 − λk)xk + λkT (xk+1) and xk+1 ∈ (1− λk)xk + λk(T (xk+1)− y),

respectively, where the sequence (λk)k∈N0 in (0, 1) is nondecreasing and converges to
1, and y ∈ X is a given perturbation term in the vicinity of 0. Indeed, it suffices to
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take Y = X and, for each x ∈ X , set F (x) = T (x) − x and gk(x) = (λk − 1)x/λk,
k ∈ N0 in (1.4).

From a numerical point of view, it is clear that the auxiliary inclusions in each
of the above mentioned iteration schemes cannot be solved exactly because of the
finite precision arithmetic and rounding errors. Hence various inexact methods were
proposed in the literature to handle this issue. In [15], the authors suppose that there
is a (known) sequence of error functions rk : X → Y and a sequence of single-valued
approximations Ak : X×X → Y of f . Given xk ∈ X , the next point xk+1 is required
to be such that

(1.5) 0 ∈ rk(xk) + Ak(xk+1, xk) + F (xk+1).

At least for a solution x̄ ∈ X to (1.3), it is required to have rk(x̄) + Ak(x̄, x̄) = f(x̄)
whenever k ∈ N0 (which implies that rk(x̄) = 0 provided that Ak(x̄, x̄) = f(x̄)).
The inexact Newton’s method proposed in [2], and similarly the inexact Mann-type
iteration in [20], require even to have rk ≡ ek for a given error sequence (ek)k∈N0

in Y converging to 0. The (possibly) set-valued approximations can be used in in-
vestigating even more general error models. In [18], the author considered the local
behavior of Newton-type algorithms for generalized equations with nonisolated so-
lutions. The author used a set-valued approximation. The key assumption is the
calmness of the solution mapping (which is equivalent to metric subregularity of the
inverse mapping) of the perturbed generalized equation f(z) + F (z) + p � 0. In
[26], the authors extended and improved the local convergence analysis of the New-
tonian iterative methods developed earlier in [10, 18] by using both single-valued and
set-valued approximations.

This paper is divided into eight parts. First, in section 2 we recall several notions
from variational analysis. In the third section, we present a result concerning the
stability of metric regularity under set-valued perturbations. In the fourth section,
this statement is applied in the study of (super)linear convergence of a Newton-type
iteration process (1.2). Also, the case when f can be approximated by a bunch of
continuous linear operators around the reference point is investigated. This setting
covers, in particular, the nonsmooth Newton’s method for semismooth mappings be-
tween finite-dimensional spaces. In the fifth section, we discuss a forward-backward
splitting algorithm for finding a zero of the sum of two multivalued operators (none
of them necessarily monotone). In section 6, we investigate a globalization of the
Newton’s method in the sense that for any starting point x0 ∈ X , the algorithm (1.2)
produces a sequence converging to a solution x̄ of (1.3) which lies in a given neigh-
borhood of x0. A commentary and some concluding remarks can be found in sections
7 and 8.

2. Mathematical background. The recent book [12] by Dontchev and Rock-
afellar shows that the study of (equivalent) concepts of nonlinear analysis such as
linear openness, metric regularity, and the inverse Aubin property is of a great im-
portance from both the theoretical and the numerical point of view. We begin this
section by fixing the notation. If we write a := b, we mean that a is defined by b
without explicitly stating this in the text. Given a complete metric space (X, �), we
denote by B[x, r] and B(x, r) the closed and open ball with the center x ∈ X and the
radius r ≥ 0, respectively. We set BX = B[0, 1]. The closure, the interior, and the
diameter of a subset K of X are denoted by K, intK, and diamK, respectively. The
distance function generated by K is d(x,K) := inf {�(x, k) : k ∈ K}, x ∈ X , with the
usual convention d(x, ∅) := +∞.
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If X is a Banach space (always over R), then ‖ · ‖ denotes its norm. By [x, y] we
mean the closed line segment with endpoints x, y ∈ X , and the convex hull of K is
denoted by coK. Given α ∈ R, we put αK = {αk : k ∈ K}. For the sets A and B
in X , the set A+B := {a+ b : a ∈ A, b ∈ B} is the Minkowski sum of A and B (we
write a+B instead of {a}+B). The excess of A beyond B is defined by

e(A,B) = sup
x∈A

d(x,B) = inf{τ > 0 : A ⊂ B + τBX},

with the conventions that e(∅, B) := 0 when B �= ∅ and that e(∅, ∅) := +∞. The
Pompeiu–Hausdorff distance between A and B is then defined by

h(A,B) = max {e(A,B), e(B,A)} = inf{τ > 0 : A ⊂ B + τBX , B ⊂ A+ τBX}.

Note that

(2.1) h(u+A, v+B) ≤ ‖u−v‖+h(A,B) for each u, v ∈ X, A ⊂ X, and B ⊂ X.

Let X and Y be Banach spaces. A set-valued mapping T : X ⇒ Y is a mapping
which assigns to each x ∈ X a (possibly empty) subset of Y . The domain, the
graph, and the range of T are given respectively by dom T = {x ∈ X : T (x) �= ∅},
gph T = {(x, y) ∈ X × Y : y ∈ T (x)}, and rge T =

⋃
x∈X T (x). By T−1 we denote

the inverse of T , i.e., x ∈ T−1(y) if and only if y ∈ T (x). If T (x) is a singleton for
each x ∈ X , we identify the one-point set with its element, g(x) say. Then g : X → Y
denotes a single-valued mapping.

A mapping T : X ⇒ Y is called metrically regular at (x̄, ȳ) ∈ gphT with a
constant κ > 0 on a neighborhood U × V of (x̄, ȳ) in X × Y if

d
(
x, T−1(y)

)
≤ κd(y, T (x)) whenever (x, y) ∈ U × V.

The mapping T is metrically regular at (x̄, ȳ) ∈ gphT if there is a constant κ > 0
along with neighborhoods U of x̄ in X and V of ȳ in Y such that T is metrically
regular at (x̄, ȳ) with the constant κ on the neighborhood U × V . If T is metrically
regular at (x̄, ȳ) and T−1 has a localization at ȳ for x̄ that is nowhere multivalued,
then T is called strongly metrically regular at (x̄, ȳ). In the case of a single-valued
mapping g : X → Y we simply speak about (strong) metric regularity at x̄.

Further, T is (Pompeiu–Hausdorff) upper semicontinuous at x̄ ∈ X if

lim
x→x̄

e(T (·), T (x̄)) = 0.

We say that T is Lipschitz on U ⊂ X provided that there is L > 0 such that

h(T (x), T (y)) ≤ L‖x− y‖ whenever x, y ∈ U.

Note that the previous property means that U ⊂ dom T . A mapping g : domT → Y
is a selection for T provided that g(x) ∈ T (x) for each x ∈ domT .

Finally, L(X,Y ) will denote the space of all continuous linear operators from X
to Y equipped with the supremum norm.

3. Stability of metric regularity under perturbation. In this section, we
prove a result on stability of the metric regularity under multivalued perturbation.
Let X be a complete metric space, and let f : X → R ∪ {+∞} be an extended real-
valued function. As usual, domf := {x ∈ X : f(x) < +∞} denotes the domain of f .
We set

(3.1) S := {x ∈ X : f(x) ≤ 0}.
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Given x ∈ X , the symbol [f(x)]+ denotes max{f(x), 0}. First, we recall [33, Theorem
2.1] which allows us to estimate the distance d(x̄, S) for a given point x̄ /∈ S.

Theorem 3.1. Let (X, �) be a complete metric space, let f : X → R ∪ {+∞} be
a lower semicontinuous function, and let x̄ /∈ S. Then, setting

(3.2) m(x̄) := inf

{
sup

y∈X,y �=x

f(x)− [f(y)]+
�(x, y)

:
�(x, x̄) < d(x̄, S)
f(x) ≤ f(x̄)

}
,

one has

(3.3) m(x̄) d(x̄, S) ≤ f(x̄).

Now, we prove that the sum of a metrically regular mapping and a suitable
multivalued perturbation remains metrically regular.

Theorem 3.2. Given Banach spaces X and Y , let Φ : X ⇒ Y be a set-valued
mapping with closed graph, and let (x̄, ȳ) ∈ gph Φ. Suppose that Φ is metrically regular
at (x̄, ȳ) with a constant κ > 0 on a neighborhood B(x̄, a)× B(ȳ, b) of (x̄, ȳ) for some
a > 0 and b > 0. Let δ > 0 and L ∈ (0, κ−1), and set τ = κ/(1− κL). Let α, β, η be
positive constants satisfying

(3.4) 2α+ η/c+ βτ < min{a, δ/2}, β(τ + κ) < δ, 2(cα+ η) + β(1 + cτ) < b,

with c := max{1, 1/κ}. Then for any set-valued mapping G : X ⇒ Y with closed graph
such that

(i) G is Lipschitz on B(x̄, δ) with the constant L,
(ii) diam G(x̄) ≤ η,

the set-valued mapping Φ+G is metrically regular on B(x̄, α)× B(ȳ + z̄, β), with the
constant τ for any z̄ ∈ G(x̄).

Proof. Let f : X × Y × Y → R be defined by

f(x, z, y) :=

{
lim infu→x d(y, Φ(u) + z) if z ∈ G(x),
+∞ otherwise.

Obviously, f is lower semicontinuous on X × Y × Y. For y ∈ Y, set

S(y) = {(x, z) ∈ X×Y : f(x, z, y) = 0} = {(x, z) ∈ X×Y : z ∈ G(x), y−z ∈ Φ(x)}.

Let ε > 0 be such that

2α+η/c+β(τ +ε) < min{a, δ/2}, β(τ +κ+2ε) < δ, 2(cα+η)+β(1+c(τ +ε)) < b.

Then pick γ ∈ (0, ε) such that

(3.5) 1/(κ+ γ)− L− γ > 1/(τ + ε) and L+ γ < c.

We define the (equivalent) metric � : X × Y → R on X × Y by

�((x1, z1), (x2, z2)) := max{‖x1 − x2‖, ‖z1 − z2‖/c}.

Let y ∈ B(ȳ + z̄, β) be given. One has

f(x̄, z̄, y) ≤ ‖y − ȳ − z̄‖ < β ≤ inf
(x,z)∈X×Y

f((x, z), y) + β.
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By virtue of the Ekeland variational principle [16, Theorem 1.1], we can select a point
(u,w) ∈ X × Y satisfying

�((u,w), (x̄, z̄)) ≤ β(τ + ε) and f(u,w, y) ≤ f(x̄, z̄, y)

such that

(3.6) f(x, z, y) +
1

τ + ε
�((x, z), (u,w)) ≥ f(u,w, y) for all (x, z) ∈ X × Y.

Then w ∈ G(u), and we have

‖u− x̄‖ ≤ β(τ + ε) < a, ‖y−w− ȳ‖ ≤ ‖y− ȳ− z̄‖+ ‖w− z̄‖ < β(1 + c(τ + ε)) < b.

We prove that y − w ∈ Φ(u). Indeed, suppose that this is not the case. Let (un)n∈N

be a sequence in X converging to u such that

(3.7) lim
n→+∞ d(y, Φ(un) + w) = f(u,w, y) > 0.

As Φ has closed graph, going to a subsequence, if necessary, we may assume that
un /∈ Φ−1(y − w) for each n ∈ N. By the metric regularity of Φ on B(x̄, a) × B(ȳ, b),
for each n ∈ N, we can find vn ∈ Φ−1(y − w) such that

‖un − vn‖ < (1 + γ/κ) d(un, Φ
−1(y − w)) ≤ (κ+ γ) d(y − w,Φ(un)).

Then, lim infn→+∞ ‖u − vn‖ > 0. Since (un)n∈N converges to u and f(u,w, y) ≤
f(x̄, z̄, y) < β, neglecting several leading terms, we may assume that un, vn ∈ B(x̄, δ)
for each n ∈ N. According to the Lipschitz property of G on B(x̄, δ) and (3.5), there
exists (wn)n∈N such that

wn ∈ G(vn) and ‖w − wn‖ ≤ (L + γ)‖u− vn‖ < c‖u− vn‖ whenever n ∈ N.

Therefore, �((u,w), (vn, wn)) = ‖u− vn‖ for any n ∈ N. As y−w ∈ Φ(vn), using also
the relations (3.6), (3.7), and (3.5) we infer that

1

τ + ε
≥ lim sup

n→+∞

f(u, w, y)− f(vn, wn, y)

�((u,w), (vn, wn))
≥ lim sup

n→+∞

d(y −w, Φ(un))− d(y − wn, Φ(vn))

‖u− vn‖

≥ lim sup
n→+∞

(κ+ γ)−1‖un − vn‖ − ‖w − wn‖
‖u− vn‖

≥ lim sup
n→+∞

(κ+ γ)−1(‖u− vn‖ − ‖un − u‖)− (L+ γ)‖u− vn‖
‖u− vn‖

= lim
n→+∞

(
1

κ+ γ
− L− γ − ‖un − u‖

‖u− vn‖(κ+ γ)

)
=

1

κ+ γ
− L− γ >

1

τ + ε
,

a contradiction. Thus y − w ∈ Φ(u). Since w ∈ G(u), we get that

(3.8) S(y) ∩
(
B[x̄, β(τ + ε)]× B[z̄, βc(τ + ε)]

)
�= ∅.

Fix any (x, y) ∈ B(x̄, α)× B(ȳ + z̄, β). We will show that

(3.9) d
(
x, (Φ +G)−1(y)

)
≤ τ d

(
y, Φ(x) +G(x)

)
.

Clearly, it suffices to prove the above inequality for the case that y /∈ Φ(x) + G(x).
Pick z ∈ G(x) such that

d(y, Φ(x) + z) < (1 + ε) d(y, Φ(x) +G(x)).
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The Lipschitz property of G on B(x̄, δ) implies that

(3.10) ‖z − z̄‖ ≤ e(G(x), G(x̄)) + diam G(x̄) ≤ L‖x− x̄‖+ η < Lα+ η < cα+ η.

Hence, by (3.8),

(3.11) d((x, z), S(y)) ≤ �((x, z), (x̄, z̄)) + d((x̄, z̄), S(y)) < α+ η/c+ β(τ + ε) < δ/2.

Let us distinguish two cases.
Case 1. d(y, Φ(x) + z) ≥ δ/(2κ). As κ < τ , by relation (3.8), one has

d
(
x, (Φ+G)−1(y)

)
≤ ‖x− x̄‖+ d

(
x̄, (Φ+G)−1(y)

)
< α+ β(τ + ε) < δ/2

≤ κ d(y, Φ(x) + z) < τ(1 + ε) d(y, Φ(x) +G(x)).

Case 2. d(y, Φ(x) + z) < δ/(2κ). Note that (x, z) /∈ S(y). We will show that

m(x, z) := inf

{
sup

(u,w) �=(v,w′)∈X×Y

f(u,w,y)−f(v,w′,y)
�((u,w),(v,w′)) :

�((u, w), (x, z)) < d((x, z), S(y))
f(u, w, y) ≤ f(x, z, y)

}

>
1

τ + ε
.

To see this, let (u,w) ∈ X × Y be such that �((u,w), (x, z)) < d((x, z), S(y)) and
f(u,w, y) ≤ f(x, z, y). Then w ∈ G(u). As (u,w) /∈ S(y), we have u /∈ Φ−1(y − w).
By (3.11), one has

‖u− x̄‖ ≤ ‖u− x‖ + ‖x− x̄‖ ≤ 2α+ η/c+ β(τ + ε) < min{a, δ/2}.

Also, (3.10) and (3.11) imply that

‖y − w − ȳ‖ ≤ ‖y − ȳ − z̄‖+ ‖w − z‖+ ‖z − z̄‖ < 2(cα+ η) + β(1 + c(τ + ε)) < b.

Thus, u ∈ B(x̄, δ/2) and (u, y − w) ∈ B(x̄, a)× B(ȳ, b). Let (un)n∈N be any sequence
in X converging to u such that

(3.12) lim
n→+∞ d(y, Φ(un) + w) = f(u,w, y) > 0.

As Φ has closed graph, going to a subsequence, if necessary, we may assume that
un /∈ Φ−1(y − w) for each n ∈ N. By the metric regularity of Φ on B(x̄, a) × B(ȳ, b)
and (3.12), for each n ∈ N, we can find vn ∈ Φ−1(y − w) such that

‖un − vn‖ ≤ (1 + γ/κ)d(un, Φ
−1(y − w)) ≤ (κ+ γ)d(y − w,Φ(un)) < (κ+ γ)δ/(2κ).

As u ∈ B(x̄, δ/2), we have vn ∈ B(x̄, δ) when n is sufficiently large and γ is sufficiently
small (note that (3.5) remains true). Moreover, lim infn→+∞ ‖u − vn‖ > 0 (because
u /∈ Φ−1(y − w)). By the Lipschitz property of G on B(x̄, δ), there exists (wn)n∈N

such that

wn ∈ G(vn) and ‖w − wn‖ ≤ (L+ γ)‖u− vn‖ < c‖u− vn‖ for each n ∈ N.

Therefore, �((u,w), (vn, wn)) = ‖u − vn‖ for any n ∈ N. As y − w ∈ Φ(vn), using
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(3.12), we obtain

lim sup
n→+∞

f(u,w, y)− f(vn, wn, y)

�((u,w), (vn, wn))
≥ lim sup

n→+∞
d(y − w,Φ(un))− d(y − wn, Φ(vn))

‖u− vn‖

≥ lim sup
n→+∞

(κ+ γ)−1‖un − vn‖ − ‖w − wn‖
‖u− vn‖

≥ lim sup
n→+∞

(κ+ γ)−1(‖u− vn‖ − ‖un − u‖)− (L+ γ)‖u− vn‖
‖u− vn‖

= lim
n→+∞

(
1

κ+ γ
− L− γ − ‖un − u‖

‖u− vn‖(κ+ γ)

)
=

1

κ+ γ
− L− γ >

1

τ + ε
.

By virtue of Theorem 3.1, we derive that

d(x, (Φ +G)−1(y)) ≤ d((x, z), S(y)) ≤ (τ + ε)f(x, z, y) ≤ (τ + ε) d(y, Φ(x) + z)

≤ (τ + ε)(1 + ε) d(y, Φ(x) +G(x)).

Hence, in both cases, taking ε ↓ 0, we get (3.9). The proof is complete.
Remark 3.3.

(i) Theorem 3.2 is valid for any complete metric space (X, d) and any linear metric
space (Y, δ) with a shift-invariant metric, i.e., δ(x + z, y + z) = δ(x, y), for any x, y,
and z ∈ Y .

(ii) The conclusion of Theorem 3.2 fails (see [12, Example 5E.6] and also [9]) when
condition (ii) of Theorem 3.2 on the diameter is omitted.

(iii) A result closely related to Theorem 3.2 was proved in [9], where the authors
concentrate more on the size of the domain of the inverse of the sum. Under stronger
assumptions, they obtained a stronger result: the Lipschitz continuity of (Φ+G)−1.

It turns out that the metric regularity of the resulting sum is not needed in some
applications. Let us present a statement in which we do not insist on the uniform
estimate for all points z̄ ∈ G(x̄). Namely, without the assumption on the diameter of
G(x̄), one has the metric hemiregularity of the sum (see Remark 3.5(i)), given in the
following theorem.

Theorem 3.4. Given Banach spaces X and Y , let Φ : X ⇒ Y be a set-valued
mapping with closed graph, and let (x̄, ȳ) ∈ gph Φ. Suppose that Φ is metrically regular
at (x̄, ȳ) with a constant κ > 0 on a neighborhood B(x̄, a)× B(ȳ, b) of (x̄, ȳ) for some
a > 0 and b > 0. Let δ > 0 and L ∈ (0, κ−1), and set τ = κ/(1 − κL). Let β > 0 be
such that

(3.13) βτ < min{a, δ/2}, β(τ + κ) < δ, β(1 + cτ) < min{b, δ},

with c := max{1, 1/κ}. Then for any set-valued mapping G : X ⇒ Y with closed graph
and a point z̄ ∈ G(x̄) such that

(3.14) e
(
G(x1) ∩ B(z̄, δ), G(x2)

)
≤ L‖x1 − x2‖ whenever x1, x2 ∈ B(x̄, δ),

one has

(3.15) d
(
x̄, (Φ+G)−1(y)

)
≤ τd(y, Φ(x̄) + z̄) for all y ∈ B(ȳ + z̄, β).

Proof. The proof is quite similar to that of Theorem 3.2, and hence we mention
only the needed changes. Let f and S(y), y ∈ Y be as before. Pick ε > 0 such that

β(τ + ε) < min{a, δ/2}, β(τ + κ+ 2ε) < δ, β(1 + c(τ + ε)) < min{b, δ}.
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Fix any y ∈ B(ȳ + z̄, β). Using exactly the same steps, one can prove that (3.8) is
valid (it is only in the construction of (wn)n∈N that one uses (3.14), together with the
facts that w ∈ G(u) ∩ B(z̄, δ) and that (vn)n∈N is in B(x̄, δ) instead of the Lipschitz
property of G). Clearly, it suffices to prove (3.15) for the case that y − z̄ /∈ Φ(x̄). By
(3.8),

(3.16) d((x̄, z̄), S(y)) ≤ β(τ + ε) < δ/2.

Let us distinguish two cases.
Case 1. d(y, Φ(x̄) + z̄) ≥ δ/(2κ). As κ < τ , by relation (3.16), one has

d
(
x̄, (Φ+G)−1(y)

)
< δ/2 ≤ κ d(y, Φ(x̄) + z̄) < τd(y, Φ(x̄) + z̄).

Case 2. d(y, Φ(x̄) + z̄) < δ/(2κ). One repeats exactly the same steps as in Case 2
in the proof of Theorem 3.2 with (x, z) replaced by (x̄, z̄). One uses (3.16) instead of
(3.11) and the same construction of (wn)n∈N mentioned above.

Remark 3.5.

(i) Since ȳ ∈ Φ(x̄), the inequality (3.15) implies that

d
(
x̄, (Φ+G)−1(y)

)
≤ τ ‖y − ȳ − z̄‖ for all y ∈ B(ȳ + z̄, β).

The above property is sometimes called metric hemiregularity [1, Definition 2.4] and
can be viewed as a counterpart to the traditional metric subregularity which means
that

d
(
x, (Φ+G)−1(ȳ)

)
≤ τ d

(
ȳ, (Φ+G)(x)

)
for all x in the vicinity of x̄.

(ii) By setting Φ = −F , problem (1.1) can be formulated as a coincidence problem:

Find ξ ∈ X such that Φ(ξ) ∩Ψ(ξ) �= ∅.

It is possible to obtain the conclusion of Theorem 3.4 from Theorem 2 in [7] by
setting Ψ = −G(.) + y with G Lipschitz. In Theorem 3.4, we assumed G to be
pseudo-Lipschitz/Aubin continuous at the reference point (see conditions (3.14) and
(5.6) for the precise definition), which is a weaker assumption. However, we note that
the functional setting is not the same: we work in Banach spaces while results in [7]
are for metric spaces. Concerning the coincidence points of mappings, we refer to
[5, 6] and references therein.

4. Convergence of Newton’s method. Let (xk)k∈N be a sequence in a Banach
space X which converges to a point x0 ∈ X . Recall that (xk)k∈N converges linearly if

either lim sup
k→+∞

‖xk+1−x0‖
‖xk−x0‖ < 1 when there is k0 ∈ N such that xk �= x0 whenever k > k0,

or there is k0 ∈ N such that xk = x0 for each k > k0. Similarly, we say that (xk)k∈N

converges superlinearly if either lim
k→+∞

‖xk+1−x0‖
‖xk−x0‖ = 0 when there is k0 ∈ N such that

xk �= x0 whenever k > k0, or there is k0 ∈ N such that xk = x0 for each k > k0.
This type of convergence is often called Q-linear (Q-superlinear) in the literature.
Throughout this section we will use the following premise.

Standing assumptions. Let X and Y be Banach spaces, let f : X → Y be a
continuous mapping, and let F : X ⇒ Y be a set-valued mapping with closed graph.
Assume that a point x̄ ∈ X is a solution to (1.3).
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Theorem 3.4 can be used to derive a generalization of [12, Theorem 6C.1] when
the iterative scheme (1.2) is considered.

Theorem 4.1. Suppose that f + F is metrically regular with a constant κ > 0
on a neighborhood B(x̄, a)× B(0, b) of (x̄, 0) for some a > 0 and b > 0. Let sequences
of positive scalars (εk)k∈N0 and (μk)k∈N0 be such that

L := sup
k
μk < κ−1 and s := sup

k

κεk
1− κμk

< 1.

Then there exists a neighborhood U of x̄ such that for any sequence of multifunctions
Ak : X ×X ⇒ Y with closed graph satisfying the properties that

(i) h
(
Ak(x, u)−f(x), Ak(x

′, u)−f(x′)
)
≤ μk‖x−x′‖ whenever x, x′, u ∈ B(x̄, a)

and k ∈ N0; and
(ii) d(f(x̄), Ak(x̄, u)) ≤ εk‖u− x̄‖ for all u ∈ B(x̄, a) and all k ∈ N0,

and for any starting point x0 ∈ U, there exists a sequence (xk)k∈N generated by (1.2),
and this sequence converges at least linearly to x̄. Suppose, in addition, that xk �= x̄
for k large enough and that

(4.1) lim
k→+∞

d(f(x̄), Ak(x̄, xk))

‖xk − x̄‖ = 0;

then (xk)k∈N converges superlinearly to x̄.
Proof. Find β > 0 such that (3.13) in Theorem 3.4 is valid for Φ := f + F and

δ := a. Then take r > 0 and γ ∈ (0, 1) such that

(4.2) r(1 + γ) sup
k
εk < β and s+ γ < 1.

For each k ∈ N0, set κk = κ/(1− μkκ) and then pick any δk ∈ (0, γ/(1 + εkκk)).
Now, set U = B(x̄, r), and let x0 be an arbitrary point in U. Assume that xk ∈ U

for some index k ∈ N0 we will find xk+1 ∈ U , which verifies (1.2). If either xk = x̄
or f(x̄) ∈ Ak(x̄, xk), then xk+1 := x̄ verifies (1.2) (in the first case according to (ii)
because the set Ak(x̄, x̄) is closed, and so it contains f(x̄)). Now, suppose both that
xk �= x̄ and f(x̄) /∈ Ak(x̄, xk). Note that κk > 0 and δk < γ < 1. By (ii) and (4.2),
there exists yk ∈ A(x̄, xk) such that

‖yk − f(x̄)‖ < (1 + δk) d(f(x̄), A(x̄, xk)) ≤ εk(1 + δk)‖x̄− xk‖ < εk(1 + γ)r < β.

Let us apply Theorem 3.4 with ȳ := 0, δ = a, Φ = f + F , and G := Ak(·, xk)− f . By
assumption, the condition (3.14) is satisfied for z̄ := yk−f(x̄) ∈ G(x̄), and L replaced
by μk. Note that (3.13) with τ := κk is also valid, since κ/(1 − κμk) ≤ κ/(1 − κL).
Hence, (3.15) (with τ replaced by κk) holds for the multifunction

(Φ+G)(x) = Ak(x, xk) + F (x), x ∈ X.

Note that κkεk ≤ s and that y := 0 ∈ B(z̄, β). As d(f(x̄), Ak(x̄, xk)) > 0, and
−f(x̄) ∈ F (x̄), relation (3.15) implies that

d
(
x̄,

(
Ak(·, xk) + F (·)

)−1
(0)

)
≤ κk d

(
0, f(x̄) + F (x̄) + (yk − f(x̄))

)
≤ κk ‖yk − f(x̄)‖

< κk(1 + δk) d(f(x̄), A(x̄, xk)) ≤ κkεk(1 + δk)‖xk − x̄‖
<

(
κkεk + δk(1 + κkεk)

)
‖xk − x̄‖ < (s+ γ)‖xk − x̄‖

< r.
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Therefore, there exists xk+1 ∈ B(x̄, r) = U with 0 ∈ Ak(xk+1, xk) + F (xk+1) such
that

(4.3) ‖xk+1 − x̄‖ < κk(1 + δk) d(f(x̄), A(x̄, xk)) < (s+ γ)‖xk − x̄‖.

We defined inductively the sequence (xk)k∈N in U which verifies (4.3) for each
k ∈ N. Since s+ γ < 1, this sequence converges linearly.

If xk �= x̄ for all k ∈ N, then (4.3) implies that

0 ≤ ‖xk+1 − x̄‖
‖xk − x̄‖ < κk(1 + δk)

d(f(x̄), Ak(x̄, xk))

‖xk − x̄‖ whenever k ∈ N.

So (4.1) implies the superlinear convergence of (xk)k∈N.
Remark 4.2. Suppose that f is continuously differentiable at x̄. In [14], the

authors consider an inexact iterative process(
f(xk) + f ′(xk)(xk+1 − xk) + F (xk+1)

)
∩Rk(xk, xk+1) �= ∅, k ∈ N0,

where Rk : X × X ⇒ Y is a sequence of set-valued mappings with closed graphs.
Under the assumption that, for each k ∈ N0, the mapping (u, x) �→ Rk(u, x) is
partially Aubin continuous with respect to x at x̄ for 0 uniformly in u around x̄ with
a constant μ > 0, i.e., there are α > 0 and β > 0 such that

e
(
Rk(u, x1) ∩ B(0, β), Rk(u, x2)

)
≤ μ‖x1 − x2‖ for all u, x1, x2 ∈ B(x̄, α),

it is possible to derive a result similar to [14, Theorem 3.1] ensuring the existence and
(super)linear convergence of some sequence satisfying the above scheme. Indeed, it
suffices to consider

Ak(x, u) := f(u) + f ′(u)(x− u)−Rk(u, x), (x, u) ∈ X ×X, k ∈ N0.

However, whenever 0 ∈ Rk(u, x) for any (u, x) near (x̄, x̄) and any k ∈ N0, this
result would trivially follow from the one on the exact Newton method. But the only
example given in [14] is Rk(xk, xk+1) := B[0, ηk‖f(xk)‖], k ∈ N0, with (ηk)k∈N being
a given sequence of positive scalars.

Now, we are going to explore the iterative schemes when f is Lipschitz continuous
in the vicinity of the reference point. In the previous statement, we assumed that
the mapping f + F is metrically regular at the reference point. For a continuously
differentiable mapping f , this is equivalent to the metric regularity of its “partial
linearization” f(x̄) + f ′(x̄)(· − x̄) + F . However, for a nonsmooth f it can be too
strong (see Remark 4.5(ii)). For F ≡ 0, the relationship between the metric regularity
of all “partial linearizations” and the metric regularity of the original mapping f is
discussed in Remark 4.4(ii). First, let us recall several notions.

Ioffe [21] initiated the use of the strict prederivatives to approximate a nonsmooth
mapping g : X → Y around a reference point. A positively homogeneous set-valued
mapping G : X ⇒ Y (i.e., gph G is a cone in X × Y ) is called the strict prederivative
of g at x0 ∈ X if for each c > 0 there exists δ > 0 such that

(4.4) g(x1) ∈ g(x2) +G(x1 − x2) + c‖x1 − x2‖BY whenever x1, x2 ∈ B(x0, δ).

The strict prederivative is often generated by a family of continuous linear operators
in such a way that there is a subset S of L(X,Y ) such that G(x) = {S(x) : S ∈ S}
for each x ∈ X .
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Let g : Rn → R
m be locally Lipschitz continuous; i.e., for each x ∈ R

n there
are constants Lx > 0 and δx > 0 such that ‖g(u)− g(v)‖ ≤ Lx‖u − v‖ whenever u,
v ∈ B(x, δx). For such a function g denote by Eg the set of points x ∈ R

n at which the
derivative g′(x) exists. By the Rademacher’s theorem, the set Rn \ Eg has Lebesgue
measure zero. The B-subdifferential of g at u ∈ R

n, denoted by ∂Bg(u), is the set{
M ∈ R

m×n : M = lim
k→+∞

g′(uk) for some (uk)k∈N in Eg converging to u

}
.

Then ∂g(u) := co ∂Bg(u) denotes the Clarke generalized Jacobian of g at u (see also
[11]). It is well known that ∂g(u) is a strict prederivative of g at u and x ⇒ ∂g(x)
has convex and compact values (see [21, Corollary 9.11]). On the other hand, x ⇒
∂Bg(x) is only compact-valued in general. However, both the mappings are upper
semicontinuous.

Assumption (A1). In addition to the standing assumptions, suppose that there is
a set-valued mapping H : X ⇒ L(X,Y ) such that
(A1.1) H(x̄) is compact,
(A1.2) the mapping H is upper semicontinuous at x̄ ∈ int(domH),
(A1.3) there is a selection ψ : X → L(X,Y ) for H such that

lim
x̄ �=x→x̄

‖f(x)− f(x̄)− ψ(x)(x − x̄)‖
‖x− x̄‖ = 0.

Recall that a function g : Rn → R
m is called semismooth (see [17, section 7.4])

at u ∈ R
n if it is locally Lipschitz continuous around u, is directionally differentiable

near u, and satisfies the condition

(4.5) lim
0�=v→0

supM∈∂g(u+v) ‖g(u+ v)− g(u)−Mv‖
‖v‖ = 0.

Hence, if f : Rn → R
m is semismooth at x̄, then both ∂f and ∂Bf satisfy Assumption

(A1).
Theorem 4.3. In addition to Assumption (A1), suppose that for each H̄ ∈ H(x̄)

the mapping

ΦH̄(x) := f(x̄) + H̄(x− x̄) + F (x), x ∈ X,

is metrically regular at (x̄, 0). Then there exists a neighborhood U of x̄ such that for
any starting point x0 ∈ U there is a sequence (xk)k∈N generated by

(4.6) 0 ∈ f(xk) +H(xk)(xk+1 − xk) + F (xk+1) for each k ∈ N0,

and this sequence converges superlinearly.
Proof. First, we claim that there are κ > 0, a > 0, and b > 0 such that for

each H̄ ∈ H(x̄) the mapping ΦH̄ is metrically regular at (x̄, 0) with the constant κ on
B(x̄, a)×B(0, b). To see this, we will imitate the steps in the proof of Proposition 2.H3
in [13] which is adopted from [23]. Fix any H̄ ∈ H(x̄). Find τ > 0, α > 0, and β > 0
such that ΦH̄ is metrically regular at (x̄, 0) with the constant τ on B(x̄, α)×B(0, β). Fix
any ε ∈ (0, 1/τ) and any H̄ ′ ∈ H(x̄) with ‖H̄ ′−H̄‖ < ε. Set G(x) := (H̄ ′−H̄)(x− x̄),
x ∈ X . Then ΦH̄′ = ΦH̄ +G. Moreover, G is single-valued and Lipschitz continuous
with the constant ε, and G(x̄) = 0 (in particular diam G(x̄) = 0). Theorem 3.2 says
that there are α′ > 0 and β′ > 0 (independent of H̄ ′) such that ΦH̄′ is metrically
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regular at (x̄, 0) with the constant τ/(1 − τε) on B(x̄, α′) × B(0, β′). We showed
that for any H̄ ∈ H(x̄) there are εH̄ > 0, τH̄ > 0, αH̄ > 0, and βH̄ > 0 such that
ΦH̄′ is metrically regular at (x̄, 0) with the constant τH̄ on B(x̄, αH̄) × B(0, βH̄) for
any H̄ ′ ∈ H(x̄) with ‖H̄ ′ − H̄‖ < εH̄ . By the compactness, from the open covering
∪H̄∈H(x̄)B(H̄, εH̄) of H(x̄), we can choose a finite subcovering; i.e., there are k ∈ N,

H̄i ∈ H(x̄), and εH̄i
> 0 such that H(x̄) is covered with B(H̄i, εH̄i

), i = 1, 2, . . . , k.
Setting κ = maxi τH̄i

, a = mini αH̄i
, and b = mini βH̄i

, one gets the claim.
Fix L ∈ (0, 1/κ). By (A1.2), there is δ > 0 such that

(4.7) H(y) ⊂ H(x̄) + LBL(X,Y ) whenever y ∈ B(x̄, δ) ⊂ domH.

Set η = 0. Find α > 0 and β > 0 such that (3.4) is satisfied and also such that

2κβ

1− κL
< 1.

Finally, use (A1.3) to find r ∈ (0,min{δ, 1}) such that

‖f(y)− f(x̄)− ψ(y)(y − x̄)‖ ≤ β‖y − x̄‖ whenever y ∈ B(x̄, r).

Set U = B(x̄, r). Let x0 be an arbitrary point in U. Assume that xk ∈ U for some
index k ∈ N0. We will find xk+1 ∈ U which verifies (4.6). Set

yk = f(xk)− f(x̄)− ψ(xk)(xk − x̄).

If either xk = x̄ or −yk ∈ f(x̄) + F (x̄), then xk+1 := x̄ does the job. From now on,
suppose that xk �= x̄ and that d(−yk, f(x̄) + F (x̄)) > 0. Since ψ is a selection for H,
it suffices to find xk+1 ∈ U solving

(4.8) 0 ∈ f(xk) + ψ(xk)(x− xk) + F (x).

By (4.7), there is H̄ ∈ H(x̄) and H̃ ∈ BL(X,Y ) such that ψ(xk) = H̄ + LH̃. Set

G(u) := LH̃(u− x̄) + yk, u ∈ X.

Clearly, G is single-valued and Lipschitz continuous with the constant L, and G(x̄) =
yk. Moreover, given x ∈ X , we have that f(xk) + ψ(xk)(x − xk) + F (x) is equal to

f(xk)− f(x̄)− ψ(xk)(xk − x̄) + f(x̄) + ψ(xk)(x − x̄) + F (x)

= yk + f(x̄) + (H̄ + LH̃)(x− x̄) + F (x) = yk + ΦH̄(x) + LH̃(x− x̄) = (ΦH̄ +G) (x).

Theorem 3.2 implies that ΦH̄ +G is metrically regular with the constant κ/(1− κL)
on B(x̄, α)× B(yk, β). Note that 0 ∈ B(yk, β) because

‖yk‖ = ‖f(xk)− f(x̄)− ψ(xk)(xk − x̄)‖ ≤ β‖xk − x̄‖ < βr < β.

As 0 ∈ f(x̄) + F (x̄) = ΦH̄(x̄), we have yk ∈ (ΦH̄ + G)(x̄), and therefore the above
inequality implies that

d
(
x̄,

(
ΦH̄ +G

)−1
(0)

)
≤ κ

1− κL
d
(
0, (ΦH̄ +G)(x̄)

)
≤ κ

1− κL
‖yk‖

<
2κ

1− κL
‖yk‖ ≤ 2κβ

1− κL
‖xk − x̄‖ (< r).
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Therefore, there exists xk+1 ∈ B(x̄, r) = U with 0 ∈ ΦH̄(xk+1) +G(xk+1) such that

(4.9) ‖xk+1 − x̄‖ < 2κ

1− κL
‖yk‖ ≤ 2κβ

1− κL
‖xk − x̄‖.

We defined inductively the sequence (xk)k∈N in U which verifies (4.8) for each
k ∈ N0. By (4.9), it converges (linearly) to x̄. If there is k0 ∈ N such that xk �= x̄ for
each k > k0, (A1.3) implies that

lim
k→+∞

‖yk‖
‖xk − x̄‖ = 0;

hence taking into account (4.9), we get the superlinear convergence of (xk)k∈N.
Remark 4.4.

(i) In the proof of the preceding result, twice we used Theorem 3.2 with a single-
valued perturbation G. This theorem yields not only the stability of the metric
regularity under a Lipschitz single-valued perturbation, which is well known, but also
a uniform estimate on the sizes of the corresponding neighborhoods. Instead of this
statement, one can use [13, Theorem 5G.3].

(ii) In addition to the standing assumptions, suppose that F ≡ 0 and that f has
the strict prederivative at x̄ ∈ X generated by a compact convex subset T of L(X,Y ).
The modulus of (linear) openness of T , denoted by σ(T ), is defined by

σ(T ) = inf {σ(T ) : T ∈ T },

where σ(T ) := sup
{
r > 0 : B[0, r] ⊂ T (BX)

}
is the modulus of (linear) openness

of T . Páles [34] used this quantity to provide a condition guaranteeing the metric
regularity at the reference point. If σ(T ) > 0, then [34, Theorem 2] implies that f
is metrically regular at x̄ with a constant arbitrarily close to 1/σ(T ). If, in addition,
all the elements of T are injective, then f is strongly metrically regular at x̄ by [34,
Theorem 5].

If f : Rn → R
m is semismooth at x̄, then a sufficient condition for the superlinear

convergence of the nonsmooth Newton methods defined, for each k ∈ N0, by either

0 ∈ f(xk) + ∂f(xk)(xk+1 − xk) or 0 ∈ f(xk) + ∂Bf(xk)(xk+1 − xk),

is that all the matrices in ∂f(x̄), respectively in ∂Bf(x̄), have full rank. So we recover
the results in [38, 41, 19] (note that the inexact algorithms therein can be treated
similarly). In the latter two references, one can find also other suitable candidates
for H. From a numerical point of view, when this approximation is larger, one can
compute an element of H(xk) more easily. However, this is contradictory to the
assumption on surjectivity (nonsingularity) of all elements of H(x̄).

Remark 4.5.

(i) Formally, (A1.3) is less restrictive than the assumption that f is semismooth
at the reference point. However, in practice, it is neither possible nor efficient to
choose the “right” matrix in the corresponding subdifferential at each step (we just
take some matrices in the subdifferential). Inspecting the proof of Theorem 4.3, we
see that if (A1.3) is replaced by

lim
x̄�=x→x̄

supH∈H(x) ‖f(x)− f(x̄)−H(x− x̄)‖
‖x− x̄‖ = 0,
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then one can choose any element Hk ∈ H(xk) at each step of (4.6). Indeed, it suffices
to change ψ(xk) to Hk.

(ii) The assumption on metric regularity of all ΦH̄ is less restrictive than to
suppose that f + F is metrically regular (unless H(x̄) is convex and generates the
strict prederivative of f at x̄). Indeed, take f(x) := |x|, x ∈ R, and H := ∂Bf . In
[24], the authors supposed that all ΦH̄ are strongly metrically regular at the reference
point which guarantees that the next iterate xk+1 in (4.6) is unique for each k ∈ N0.
In [30], one can find an outstanding discussion on the attempts to generalize the
Newton’s method for continuous (not locally Lipschitz) functions. One can also use
some generalized derivative to approximate f as [31] shows.

Example 4.1. In order to illustrate the result of this section, let us consider the
following example in one dimension. Let f : R → R and F : R ⇒ R be defined by

f(x)=

{
ln(1+x) if x ≥ 0,
max(x2,−x2 − 2x) if x≤0,

F (x)=

⎧⎪⎪⎨
⎪⎪⎩
∅ if x < −2,
(−∞,−x(2x+1)]∪[x,+∞) ifx∈ [−2,−1],
(−∞, x(2x+ 3)] ∪ [x,+∞) if x ∈ [−1,0],
(−∞,−3x] ∪ [

√
x,+∞) if x ≥ 0.

We note that F−1(0) = [−2, 0] and that the generalized equation f(x)+F (x) � 0 has
two solutions: x̄ = −1 and x̄ = 0 (the graphs of −f and F are plotted in Figure 1). We
observe that the function f is semismooth on R and that f + F is metrically regular
(and not strongly metrically regular) at (−1, 0) and (0, 0). By taking H = ∂Bf , it is
easy to show that for each H̄ ∈ H(x̄) the mapping ΦH̄(x) := f(x̄) + H̄(x− x̄) + F (x)
is metrically regular at (x̄, 0) for x̄ = −1 and x̄ = 0. The assumptions of Theorem 4.3
are satisfied. Hence the semismooth Newton’s method (4.6) generates a superlinearly
convergent sequence when started in a neighborhood of each solution x̄ = 0 or x̄ = −1.
Figures 2 (a) and (c) are a plot of ln(ek) versus k (with ek = |xk − x̄|) for different
choices of the initial point x0, while Figures 2 (b) and (d) are a plot of ln(ek+1)
versus ln(ek). In both cases, we observe that the methods converge superlinearly: an
estimation of the order of convergence p from the slopes of Figures 2 (b) and (d) gives
us p = 1.73 and p = 1.64 for the solutions 0 and −1, respectively. This confirms the
theoretical results of Theorem 4.3. The numerical results are shown in Table 1 for
different starting points.

Table 1

Numerical results for Example 4.1.

x0 = 1 x0 = −2

Iterations xk
ek+1
ek

xk
ek+1
ek

1 1.2876 × 10−1 4.9131 × 10−2 −1.3333 2.0000 × 10−1

2 6.3264 × 10−3 3.1171 × 10−3 −1.0667 5.8824 × 10−2

3 1.9720 × 10−5 9.8596 × 10−6 −1.0039 3.8911 × 10−3

4 1.9443 × 10−10 2.2676 × 10−7 −1.0000 1.5259 × 10−5

5 4.4090 × 10−17 0.0000 −1.0000 0.0000

6 0.0000 − −1 −

5. Forward-backward splitting. In this section, we will use the following
premise.

Assumption (A2). Let X be a Banach space, Y := X , and suppose that
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Fig. 1. The graph of −f and F .
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Fig. 2. Superlinear rate of convergence of the semismooth Newton’s method (4.6) at 0 and −1.

(A2.1) a point x̄ ∈ X is a solution to (1.1), and that ȳ1 ∈ F (x̄) and ȳ2 ∈ Ψ(x̄) are
such that 0 = ȳ1 + ȳ2;

(A2.2) F has closed graph and is metrically regular at (x̄, ȳ1) with a constant κ > 0
on B(x̄, a)× B(ȳ1, b) for some a > 0 and b > 0;

(A2.3) Ψ has closed graph, and there is ε > 0 such that

e(Ψ(x̄), Ψ(u)) ≤ ε‖u− x̄‖ whenever u ∈ B(x̄, a).

Theorem 5.1. In addition to Assumption (A2), suppose that (λk)k∈N0 is a
sequence in (0, 1) such that ε+ 2 supk λk < 1/κ. Then there exists a neighborhood U
of x̄ such that for any starting point x0 ∈ U , there is a sequence (xk)k∈N generated by

(5.1) 0 ∈ λk(xk+1 − xk) + F (xk+1) + Ψ(xk) for each k ∈ N0,

16



and this sequence converges at least linearly to x̄. If, in addition,

(5.2) lim
k→+∞

d
(
ȳ2, λk(x̄ − xk) + Ψ(xk)

)
‖xk − x̄‖ = 0,

then (xk)k∈N converges superlinearly.
Proof. For each k ∈ N0, set Ak(x, u) = λk(x − u) + Ψ(u), (x, u) ∈ X ×X . Let

δ := 2a and fix λ > supk λk such that ε+ 2λ < 1/κ. Find β > 0 such that (3.13) in
Theorem 3.4 for Y := X , Φ := F , L := λ and ȳ := ȳ1 holds. Then take γ ∈ (0, 1) and
r ∈ (0, a) such that

(5.3) ε+ 2λ+ γ < 1/κ and r(λ + ε+ γ) < β.

Fix any ξ ∈ (0, γ/(λ + ε)). Set U = B(x̄, r). Let x0 be an arbitrary point in U.
Assume that xk ∈ U for some index k ∈ N0. We will find xk+1 ∈ U which verifies
(5.1). If either xk = x̄ or ȳ2 ∈ Ak(x̄, xk), then xk+1 := x̄ satisfies (5.1). From now on,
suppose both that xk �= x̄ and ȳ2 /∈ Ak(x̄, xk). Taking into account (5.3), there exists
z̄ ∈ Ak(x̄, xk) such that

‖z̄ − ȳ2‖ < (1 + ξ) d(ȳ2, Ak(x̄, xk)) ≤ (1 + ξ) e
(
Ψ(x̄), λk(x̄− xk) + Ψ(xk)

)
≤ (1 + ξ)

(
λk‖x̄− xk‖+ e(Ψ(x̄), Ψ(xk))

)
< (1 + ξ)(λ + ε)‖x̄− xk‖

< (λ + ε+ γ)‖xk − x̄‖ < β.

Let κk := κ/(1−κλk). Let us check the conditions of Theorem 3.4 with G := Ak(·, xk)
and L := λk. Clearly, (3.13) is valid since κk < κ/(1− κλ). Now, let u1, u2 ∈ B(x̄, δ)
be arbitrary. Then, by (2.1) we have that

h(G(u1), G(u2)) = h
(
λk(u1 − xk) + Ψ(xk), λk(u2 − xk) + Ψ(xk)

)
≤ λk‖u1 − u2‖.

Clearly, the above condition implies (3.14). Noting that ȳ1 = −ȳ2, we get that
y := 0 ∈ B(ȳ1 + z̄, β). So the multifunction

(Φ+G)(x) = Ak(x, xk) + F (x), x ∈ X,

satisfies (3.15) with τ replaced by κk. Since d(ȳ2, Ak(x̄, xk)) > 0, one gets that

d
(
x̄,

(
Ak(·, xk) + F (·)

)−1
(0)

)
≤ κk d(0, F (x̄) + z̄) ≤ κk‖ȳ1 + z̄‖

<
κ

1− κλ
‖z̄ − ȳ2‖ ≤ κ

1− κλ
(1 + ξ) d(ȳ2, Ak(x̄, xk))

<
κ(λ+ ε+ γ)

1− κλ
‖x̄− xk‖.

Note that ν := κ(λ + ε + γ)/(1 − κλ) < 1 by (5.3). Therefore, there exists xk+1 ∈
B(x̄, r) = U with 0 ∈ Ak(xk+1, xk) + F (xk+1) such that

(5.4) ‖xk+1 − x̄‖ < κ

1− κλ
(1 + ξ) d(ȳ2, Ak(x̄, xk)) < ν‖xk − x̄‖.

We defined inductively the sequence (xk)k∈N in U which verifies (5.4) for each k ∈ N,
so it converges linearly. Clearly, (5.2) and (5.4) imply the superlinear convergence of
(xk)k∈N.
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Remark 5.2.

(i) Inspecting the proof, one sees that if limk→+∞ λk = 0 (which implies that λ
can be chosen arbitrarily small), then the conclusion of the theorem remains
true under the assumption that ε < 1/κ.

(ii) Let (xk)k∈N0 be a sequence generated by (5.1) which converges to x̄. Then
(5.2) holds true under the assumption that limk→+∞ λk = 0 and that for each
ε > 0 there is r > 0 such that

e(Ψ(x̄), Ψ(u)) ≤ ε‖u− x̄‖ whenever u ∈ B(x̄, r).

Indeed, let γ > 0 be arbitrary. Find a neighborhood Vγ of x̄ in X such that

e(Ψ(x̄), Ψ(u)) ≤ γ

2
‖u− x̄‖ whenever u ∈ Vγ .

Then there is k0 ∈ N such that λk < γ/2 whenever k > k0. Taking a larger
k0, if necessary, we may assume that xk ∈ Vγ for each k > k0. For any such
point xk we have that

d
(
ȳ2, λk(x̄− xk) + Ψ(xk)

)
≤ e

(
Ψ(x̄), λk(x̄− xk) + Ψ(xk)

)
≤ (λk + γ/2)‖xk − x̄‖ < γ‖xk − x̄‖.

(iii) Suppose that F and Ψ act between two different Banach spaces X and Y ,
and let gk : X → Y be a given sequence of functions with gk(0) = 0 for each
k ∈ N0. Assume that there is a neighborhood W of 0 in X such that all the
functions gk are Lipschitz continuous on W with a constant λk > 0. Then
the conclusion of the previous theorem remains true when one considers the
iterative process

0 ∈ gk(xk+1 − xk) + F (xk+1) + Ψ(xk) for each k ∈ N0.

To conclude this section, let us discuss the relationship between the above theorem
and the results in [36]. Recall that the concept of the strict prederivative can be
generalized to the case of a set-valued mapping S : X ⇒ Y . Namely, given x0 ∈ X ,
one requests the existence of a positively homogeneous mapping H : X ⇒ Y such
that for each c > 0 there exists δ > 0 such that

(5.5) S(x1) ⊂ S(x2) +H(x1 − x2) + c‖x1 − x2‖BY whenever x1, x2 ∈ B(x0, δ).

Such a mapping H is then called the strict prederivative of S at x0. Using terminology
in [35], the mapping S is called strictly H-differentiable at x0. The author also con-
sidered a weaker version of (5.5). Namely, given a positively homogeneous mapping
H : X ⇒ Y , we say that S is pseudostrictly H-differentiable at (x0, y0) ∈ gphS if for
each c > 0 there are δ > 0 and r > 0 such that

S(x1)∩B(y0, r) ⊂ S(x2)+H(x1 −x2)+ c‖x1 − x2‖BY whenever x1, x2 ∈ B(x0, δ).

Clearly, if S is pseudostrictly H-differentiable at (x0, y0) and if there is κ > 0 such
that H(x) ⊂ κ‖x‖BY for each x ∈ X , then for each l > κ there are neighborhoods V
of x0 and W of y0 such that

(5.6) S(x1) ∩W ⊂ S(x2) + l‖x1 − x2‖BY whenever x1, x2 ∈ V.
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A mapping S satisfying the above inclusion for some l > 0, V , andW is called pseudo-
Lipschitz (Lipschitz-like or Aubin continuous) at (x0, y0). It is well known that S is
pseudo-Lipschitz at (x0, y0) if and only if S−1 is metrically regular at (y0, x0).

Our result implies [36, Corollarie 4.4.2]. It was assumed that Ψ(x̄) = {ȳ2} and
that Ψ is outer Lipschitz continuous (calm) at x̄; i.e., there is a constant ε > 0 along
with a neighborhood U of x̄ in X such that U ⊂ domΨ and that

e
(
Ψ(x), Ψ(x̄)

)
≤ ε‖x− x̄‖ whenever x ∈ U.

Indeed, fix any x ∈ U . Let γ > 0 be arbitrary. If Ψ satisfies both the above properties,
then

Ψ(x) ⊂ Ψ(x̄) + (ε+ γ)‖x− x̄‖BX = B[ȳ2, (ε+ γ)‖x− x̄‖].

So, e
(
Ψ(x̄), Ψ(x)

)
= d(ȳ2, Ψ(x)) ≤ (ε + γ)‖x − x̄‖. Therefore the continuity as-

sumption in (A2.3) is satisfied. Further, the assumptions that F−1 is pseudostrictly
H-differentiable at (ȳ1, x̄) and that there is κ > 0 such that H(y) ⊂ κ‖y‖BX for each
y ∈ X imply that F−1 is pseudo-Lipschitz at (ȳ1, x̄), and so F is metrically regular
at (x̄, ȳ1). Hence Theorem 5.1 implies also [36, Théorème 4.4.1].

6. Global convergence. Under the standing assumptions, we investigate the
global convergence of the iterative scheme (1.2) in this section.

Definition 6.1. Given a set-valued mapping Φ : X ⇒ Y , x0 ∈ X, r > 0, and
s > 0, let

V (Φ, x0, r, s) := {(x, y) ∈ X × Y : x ∈ B[x0, r], d(y, Φ(x)) < s} .

We say that Φ is metrically regular on V (Φ, x0, r, s) with a constant κ > 0 if

d(x, Φ−1(y)) ≤ κd(y, Φ(x)) for all (x, y) ∈ V (Φ, x0, r, s).

First, let us present a global version of Theorem 3.2 (see [22] for the stability in
the case that r = +∞).

Theorem 6.2. Let Φ : X ⇒ Y be a set-valued mapping with closed graph, and let
x0 ∈ X, r > 0 , s > 0, and κ > 0 be such that Φ is metrically regular on V (Φ, x0, r, s)
with the constant κ. For L ∈ (0, κ−1), set τ = κ/(1 − κL). Then for any set-valued
mapping G : X ⇒ Y with closed graph such that G is Lipschitz continuous on B[x0, r]
with the constant L and Φ + G has closed graph, the set-valued mapping Φ + G is
metrically regular on V (Φ + G, x0,

r
4 , R), where R = min{s, r

5τ }, with the constant
τ > 0.

Proof. Consider the function f : X × Y → R ∪ {+∞} defined by

f(x, y) = lim inf
u→x

d(y, Φ(u) +G(u)), (x, y) ∈ X × Y.

Obviously, f(·, y) is lower semicontinuous for each y ∈ Y . Since Φ + G has closed
graph,

(Φ+G)−1(y) = {x ∈ X : f(x, y) = 0}, y ∈ Y.

Let (x̄, y) ∈ V (Φ+G, x0,
r
4 , R) with f(x̄, y) > 0 be given. Then

f(x̄, y) < R ≤ inf
(x,z)∈X×Y

f(x, z) +R.
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Fix any ε > 0 with R(τ + ε) < r/4 and then find γ > 0 such that

1

κ+ γ
− L− γ >

1

τ + ε
and κ+ γ < τ.

By the Ekeland variational principle [16, Theorem 1.1], we can select u ∈ X satisfying

‖u− x̄‖ ≤ R(τ + ε) < r/4 and f(u, y) ≤ f(x̄, y) < R

such that

(6.1) f(x, y) +
1

τ + ε
‖x− u‖ ≥ f(u, y) for all x ∈ X.

Then ‖u− x0‖ ≤ ‖x0 − x̄‖+R(τ + ε) < r/2. We claim that y ∈ Φ(u) +G(u). Indeed,
if this fails, find a sequence (un)n∈N in X converging to u and a sequence (wn)n∈N

such that

wn ∈ G(un) for each n ∈ N and lim
n→+∞ d(y, Φ(un) + wn) = f(u, y) > 0.

As R ≤ s, neglecting several starting terms, if necessary, we may assume that 0 <
d(y − wn, Φ(un)) < s and un ∈ B(x̄, r/4) for each n ∈ N. By the metric regularity of
Φ on V (Φ, x0, r, s), for each n ∈ N, we can find vn ∈ Φ−1(y − wn) such that

‖un − vn‖ < (κ+ γ) d(y − wn, Φ(un)).

Hence, without loss of generality, we may assume that vn ∈ B(x̄, r/2) for each n ∈ N.
For any n ∈ N, according to the Lipschitz property of G on B[x0, r], there exists
zn ∈ G(vn) such that

‖wn − zn‖ ≤ (L + γ)‖un − vn‖.

Note that lim infn→+∞ ‖u − vn‖ > 0. Indeed, if there is an infinite set N ⊂ N such
that limN
n→+∞ ‖u− vn‖ = 0, then limN
n→+∞ ‖zn − wn‖ = 0. Since

y − wn + zn ∈ Φ(vn) + zn ⊂ Φ(vn) +G(vn) whenever n ∈ N,

the closeness of the graph of Φ +G would imply that y ∈ Φ(u) +G(u), which is not
the case. Taking into account (6.1), we have

1

τ + ε
≥ lim sup

n→+∞
f(u, y)− f(vn, y)

‖u− vn‖
≥ lim sup

n→+∞
d(y − wn, Φ(un))− d(y − zn, Φ(vn))

‖u− vn‖

≥ lim sup
n→+∞

(κ+ γ)−1‖un − vn‖ − ‖zn − wn‖
‖u− vn‖

≥ lim sup
n→+∞

(κ+ γ)−1‖un − vn‖ − (L+ γ)‖un − vn‖
‖u− vn‖

=
1

κ+ γ
− L− γ >

1

τ + ε
,

a contradiction. The claim is proved.
Consequently,

(6.2) d(x̄, (Φ+G)−1(y)) < r/4.
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According to Theorem 3.1, it suffices to show that m(x̄) ≥ 1/τ , where

m(x̄) := inf

{
sup

z∈X,z �=x

f(x, y)− f(z, y)

‖x− z‖ :
‖x− x̄‖ < d

(
x̄, (Φ+G)−1(y)

)
,

f(x, y) ≤ f(x̄, y)

}
.

Fix any x ∈ X with

‖x− x̄‖ < d
(
x̄, (Φ+G)−1(y)

)
and f(x, y) ≤ f(x̄, y).

Then y /∈ Φ(x) + G(x), and by (6.2), we have (x, y) ∈ V (Φ + G, x0, r/2, R). Take a
sequence (xn)n∈N in B[x0, r] converging to x and a sequence (wn)n∈N with wn ∈ G(xn)
for each n ∈ N such that

lim
n→+∞ d(y, Φ(xn) + wn) = lim

n→+∞ d(y, Φ(xn) +G(xn)) = f(x, y) > 0.

Omitting several starting terms, we may assume that 0 < d(y − wn, Φ(xn)) < R ≤ s
and, consequently, that (xn, y − wn) ∈ V (Φ, x0, r, s) for all n ∈ N. Pick a sequence
(εn)n∈N in (0, 1) converging to 0 such that (κ + εn) d(y − wn, Φ(xn)) < Rκ. By the
metric regularity of Φ on V (Φ, x0, r, s), for each n ∈ N, we can find un ∈ Φ−1(y−wn)
such that

‖xn − un‖ < (κ+ εn) d(y − wn, Φ(xn)) < Rκ < r/2.

Therefore, we may assume that

‖x0 − un‖ ≤ ‖x0 − xn‖+ ‖xn − un‖ < r for each n ∈ N.

By the Lipschitz property of G on B[x0, r], for each n ∈ N, we can find zn ∈ G(un)
such that

‖zn − wn‖ ≤ (L+ εn)‖un − xn‖.

Note that lim infn→+∞ ‖x − un‖ > 0. Indeed, if there is an infinite set N ⊂ N such
that limN
n→+∞ ‖x− un‖ = 0, then limN
n→+∞ ‖zn − wn‖ = 0. Since

y − wn + zn ∈ Φ(un) + zn ⊂ Φ(un) +G(un) whenever n ∈ N,

the closeness of the graph of Φ + G implies that y ∈ Φ(x) + G(x), which is not the
case.

Now, we may estimate that

lim sup
n→+∞

f(x, y)− f(un, y)

‖x− un‖
≥ lim sup

n→+∞
d(y − wn, Φ(xn))− d(y − zn, Φ(un))

‖x− un‖

≥ lim sup
n→+∞

(κ+ εn)
−1‖xn − un‖ − ‖zn − wn‖

‖x− un‖

≥ lim sup
n→+∞

(κ+ εn)
−1‖xn − un‖ − (L + εn)‖xn − un‖

‖x− un‖

≥ lim
n→+∞

(
1

κ+ εn
− L− εn

)
=

1

τ
.
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Hence, we conclude that m(x̄) ≥ 1/τ .
Theorem 6.3. Given r > 0, s > 0, κ > 0, and x0 ∈ X, suppose that f + F is

metrically regular on V (f+F, x0, 5r, s) with the constant κ. Let a sequence of positive
scalars (μk)k∈N0 be such that

(6.3) sup
k
μk < κ−1 and sup

k

3κμk

1− κμk+1
< 1.

Assume that a sequence of multifunctions Ak : X ×X ⇒ Y , such that both Ak and
Ak + F have closed graphs, satisfies the following conditions:

(i) Ak(x, x) = f(x) for all x ∈ B[x0, r] and all k ∈ N0;
(ii) h(Ak(x, u) − f(x), Ak(x

′, u) − f(x′)) ≤ μk‖x − x′‖ whenever x, x′, u ∈
B[x0, 5r] and k ∈ N0;

(iii) d(0, f(x0) + F (x0)) < min{s, r(1− μ0κ)/κ}.
Then there exists a sequence (xk)k∈N generated by (1.2) with the starting point x0
which converges at least linearly to a solution x̄ ∈ B[x0, r].

Proof. For k ∈ N0, set

κk =
κ

1− μkκ
and Rk = min

{
s,

r

κk

}
.

Take a sequence (εk)k∈N0 in (0, 1) converging to 0 such that

(6.4) sup
k∈N0

μk(κk+εk) < 1, α := sup
k∈N

μk−1(κk+εk) <
1

3
, and εk < κk, k ∈ N0.

We claim that there is a sequence (xi)i∈N0 in B[x0, r] with the starting point x0 such
that, for all i ∈ N0, we have

(a) xi+1 ∈ B[xi,
r

2i+1 ],
(b) 0 ∈ Ai(xi+1, xi) + F (xi+1),
(c) d(0, f(xi) + F (xi)) < Ri,
(d) ‖xi+1 − xi‖ ≤ (κi + εi) d(0, f(xi) + F (xi)) ≤ (κi + εi)μi−1‖xi − xi−1‖ when

i ≥ 1.
Clearly, x0 verifies (c) with i = 0. Now, assume that there is k ≥ 1 such that
x0, . . . , xk have already been defined in such a way that they satisfy (a)–(d) for each
0 ≤ i ≤ k − 1, and also (c) with i = k. We will find xk+1. If 0 ∈ f(xk) + F (xk),
i.e., (c) is satisfied with i = k+ 1 for xk+1 := xk, then xk+1 also verifies (a), (b), and
(d) with i = k, since Ak(xk, xk) = f(xk). From now on, suppose 0 /∈ f(xk) + F (xk).
Since (a) is satisfied for all i = 0, . . . , k− 1, we have xk ∈ B[x0, r]. Theorem 6.2, with
Φ := f + F and G := Ak(·, xk) − f, implies that Ak(·, xk) + F is metrically regular
with the constant κk on

Vk := {(x, y) ∈ X × Y : x ∈ B[x0, r], d(y,Ak(x, xk) + F (x)) < Rk} .

As (c) is true for i = k, the assumption (i) implies that (xk, 0) ∈ Vk, and hence

d
(
xk, (Ak(·, xk) + F )−1(0)

)
≤ κk d(0, f(xk) + F (xk)) < r.

Hence, there exists xk+1 ∈ (Ak(·, xk) + F )−1(0) such that

‖xk − xk+1‖ < (κk + εk) d(0, f(xk) + F (xk)).
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So (b) is true with i = k. As 0 ∈ Ak−1(xk, xk−1) + F (xk) and Ak−1(xk−1, xk−1) =
f(xk−1), the condition (ii) implies that

‖xk − xk+1‖ < (κk + εk) d(0, f(xk) + F (xk))
≤ (κk + εk)h(f(xk−1)−Ak−1(xk−1, xk−1), f(xk)−Ak−1(xk, xk−1))
≤ (κk + εk)μk−1‖xk − xk−1‖ ≤ α‖xk − xk−1‖.

Thus (d) and (a) are satisfied with i = k. Now, (b) with i = k implies that

d(0, f(xk+1) + F (xk+1)) ≤ h(0, f(xk+1)−Ak(xk+1, xk)) ≤ μk‖xk+1 − xk‖
≤ μk(κk + εk) d(0, f(xk) + F (xk)).

Since μk(κk + εk) < 1, we have d(0, f(xk+1) + F (xk+1)) ≤ d(0, f(xk) + F (xk)) < s.
Moreover, (6.3) implies that 2κk+1μk < 1, and therefore

d(0, f(xk+1) + F (xk+1)) <
(κk + εk)

2κk+1
d(0, f(xk) + F (xk)) <

r(κk + εk)

2κkκk+1
<

r

κk+1
.

Therefore, (c) is satisfied with i = k + 1. The claim is proved.
Clearly, (xk)k∈N0 is a Cauchy sequence, and therefore it converges to x̄ ∈ B[x0, r],

say. From (d), one obtains that 0 ∈ f(x̄) + F (x̄), and also that, for all k ∈ N0, we
have

‖xk+1− x̄‖ = lim
m→+∞ ‖xk−xk+m‖ ≤ lim

m→+∞

m−1∑
i=0

‖xk+i−xk+i+1‖ ≤ α

1− α
‖xk+1−xk‖.

This implies directly the linear convergence of the sequence (xk)k∈N0 . Indeed, as
α < 1/3, we have ν := α/(1− 2α) < 1. The above estimate yields that

‖xk+1 − x̄‖ ≤ α

1− α
(‖xk+1 − x̄‖+ ‖x̄− xk‖).

So ‖xk+1 − x̄‖ ≤ ν‖xk − x̄‖.
7. Commentary. In this section, we provide a comparison of our results with

the existing literature on the same subject. In [10], Bonnans considered a condition
of semistability to ensure the quadratic convergence of the Newton’s method for vari-
ational inequalities and nonlinear programming. More precisely, he discussed the case
where f is of class C1 and the set-valued part F = NC coincides with the normal
cone to a closed convex set. Under the conditions of semistability and hemistabil-
ity (these two conditions are satisfied if Robinson’s strong regularity holds at the
solution), the author proved the superlinear convergence of the Newton’s method
(quadratic convergence if f is C1,1). We note that these results were generalized by
Izmailov and Solodov [25] and Izmailov and Kurennoy [26] to the case f(x)+F (x) � 0
with a smooth single-valued map f and a set-valued mapping F by using an inexact
Josephy–Newton method. We note that in the papers [10, 25], the authors consid-
ered a single-valued approximation, and that in the current paper we authorized the
approximation to be set-valued. Theorem 4.1 is more general and covers an inexact
iterative process (see Remark 4.2). In [18], the author considered the local behav-
ior of Newton-type algorithms for generalized equations with nonisolated solutions
and used a set-valued approximation. The key assumption in [18] is the calmness
of the solution mapping which assigns to a parameter p a solution of the perturbed
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generalized equation f(z) + F (z) + p � 0. This assumption is equivalent to metric
subregularity of f + F but does not guarantee the needed solvability of the partially
linearized subproblems, which is assumed separately. The calmness assumption with
a condition on the solvability of the auxiliary problem, together with a condition on
the quality of the approximation, is used in [18] to show the superlinear convergence
of the sequence to a solution. We impose the regularity assumption either on f + F
(Theorem 4.1) or on its partial linearization (Theorem 4.3) only. Note that for a non-
smooth f these two assumptions are not equivalent. The metric regularity concept
may be stronger than the calmness but guarantees the solvability of each subproblem
and provides some robustness, especially when dealing with numerical algorithms. In
[26], the authors also used a set-valued approximation and improved some existing
results in the literature [10, 18].

Finally, we note that in [10, 18, 24, 25, 26] all results are stated in finite-dimensional
spaces, while the presented ones are valid in Banach spaces. There has been a num-
ber of developments in the last decade regarding Newton-type methods applied to
nonsmooth equations in infinite-dimensional spaces, e.g., in PDE-constrained opti-
mization; some of them are broadly covered in the recent book by Ulbrich [42].

8. Concluding remarks. The Newton’s method remains one of the most pow-
erful tools used in numerical analysis and optimization for solving systems of non-
linear equations. It was generalized to many settings and has been widely used for
solving nonlinear programming problems, nonlinear complementarity problems, and
variational inequalities. In this paper, we have studied the superlinear, or the linear,
convergence of the Newton-type method for finding the zero of the sum of two set-
valued mappings. Our convergence results were proved by using the stability of the
metric regularity under set-valued perturbation. We have also investigated a global
convergence of this method in the sense that, starting at an arbitrary point, there
exists a sequence which converges at least linearly to a solution of the initial prob-
lem. We have also studied a forward-backward splitting algorithm and proved its
superlinear convergence under appropriate assumptions on the data of the problem.

It would be interesting to test numerically the proposed algorithms, and to com-
pare them with others, on various problems coming from nonlinear programming and
complementarity systems. As pointed out also by one of the referees, it would be
interesting to characterize “good” iterative sequences via reasonable conditions on
proximity to the solutions. As a perspective to this work, we plan to study some
potential applications, in the field of nonregular electrical circuits, with meaningful
algorithmic examples for which metric regularity does not imply strong regularity. We
expect that applying our theorems (and the related analysis) to specific nonsmooth
Newton’s methods in infinite dimensions in the spirit of [42] will provide valuable
contributions to the area. This is beyond the scope of this paper and will be the
subject of forthcoming research.
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