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Abstract

Complex computer codes are widely used in science and engineering to model physical phe-
nomena. Furthermore, it is common that they have a large number of input parameters.
Global sensitivity analysis aims to identify those which have the most important impact on
the output. Sobol indices are a popular tool to perform such analysis. However, their es-
timations require an important number of simulations and often cannot be processed under
reasonable time constraint. To handle this problem, a Gaussian process regression model is
built to surrogate the computer code and the Sobol indices are estimated through it. The
aim of this paper is to provide a methodology to estimate the Sobol indices through a sur-
rogate model taking into account both the estimation errors and the surrogate model errors.
In particular, it allows us to derive non-asymptotic confidence intervals for the Sobol index
estimations. Furthermore, we extend the suggested strategy to the case of multi-fidelity com-
puter codes which can be run at different levels of accuracy. For such simulators, we use an
extension of Gaussian process regression models for multivariate outputs.

Keywords: Sensitivity analysis, Gaussian process regression, multi-fidelity model, complex
computer codes, Sobol index, Bayesian analysis.

1 Introduction

Complex computer codes commonly have a large number of input parameters for which we
want to measure their importance on the model response. We focus on the Sobol indices
[26], [23] and [27] which are variance-based importance measures coming from the Hoeffding-
Sobol decomposition [8]. We note that the presented sensitivity analysis holds when the input
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parameters are independent. For an analysis with dependent inputs, the reader is referred to
the articles [16] and [2].

A widely used method to estimate the Sobol indices are the Monte-Carlo based methods.
They allow for quantifying the errors due to numerical integrations (with a Bootstrap proce-
dure in a non-asymptotic case [1] and [12] or thanks to asymptotic normality properties in
an asymptotic case [11]). However, the estimation of the Sobol indices by sampling methods
requires a large number of simulations that are sometimes too costly and time-consuming. A
popular method to overcome this difficulty is to build a mathematical approximation of the
code input/output relation [18] and [9].

We deal in this paper with the use of kriging and multi-fidelity co-kriging models to
surrogate the computer code. The reader is referred to the books [28], [24] and [21] for an
overview of kriging methods for computer experiments. A pioneering article dealing with the
kriging approach to perform global sensitivity analysis is the one of Oakley and O’Hagan [19].
Their method is also investigated in [17]. The strength of the suggested approach is that it
allows for inferring from the surrogate model uncertainty about the Sobol index estimations.
However, it does not use Monte-Carlo integrations and it does not take into account the
numerical errors due to the numerical integrations. Furthermore, the implementation of the
method is complex for general covariance kernels. Another flaw of the method presented in
[19] and [17] is that it is not based on the exact definition of Sobol indices (it uses the ratio
of two expectations instead of the expectation of a ratio).We note that a bootstrap procedure
can also be used to evaluate the impact of the surrogate model uncertainty on the Sobol
index estimates as presented in [29]. However, this approach only focuses on the parameter
estimation errors.

On the other hand, a method giving confidence intervals for the Sobol index estimations
and taking into account both the meta-model uncertainty and the numerical integration errors
is suggested in [12]. They consider Monte-Carlo integrations to estimate the Sobol indices (see
[26], [25] and [11]) instead of numerical integrations and they infer from the sampling errors
thanks to a bootstrap procedure. Furthermore, to deal with the meta-model error, they
consider an upper bound on it. In the kriging case they use the kriging variance up to a
multiplicative constant as upper bound. Nevertheless, this is a rough upper bound which
considers the worst error on a test sample. Furthermore, this method does not allow for
inferring from the meta-model uncertainty about the Sobol index estimations.

We propose in this paper a method combining the approaches presented in [19] and [12].
As in [19] we consider the code as a realization of a Gaussian process. Furthermore, we use
the method suggested in [12] to estimate the Sobol indices with Monte-Carlo integrations.
Therefore, we can use the bootstrap method presented in [1] to infer from the sampling error
on the Sobol index estimations. Furthermore, contrary to [19] and [17] we deal with the exact
definition of Sobol indices. Consequently, we introduce non-asymptotic certified Sobol index
estimations, i.e. with confidence intervals which take into account both the surrogate model
error and the numerical integration errors.

Finally, the suggested approach is extended to a multi-fidelity co-kriging model. It allows
for approximating a computer code using fast and coarse versions of it. The suggested multi-
fidelity models is derived from the original one proposed in [13]. We note that the use of
co-kriging model to deal with multi-fidelity codes have been largely investigated during this
last decade (see [14], [7], [22] and [20]). A definition of Sobol indices for multi-fidelity computer
codes is presented in [10]. However, their approach is based on tabulated biases between fine
and coarse codes and does not allow for inferring from the meta-model uncertainty. The co-
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kriging model fixes these weakness since it allows for considering general forms for the biases
and for inferring from the surrogate model error.

This paper is organized as follows. First we introduce in Section 2 the so-called Sobol
indices. Then, we present in Section 3 the kriging-based sensitivity analysis suggested by [19].
Our approach is developed in Section 4. In particular, we give an important result allowing
for effectively sampling with respect to the kriging predictive distribution in Subsection 4.3.
Finally, we extend in Section 5 the presented approaches to multi-fidelity co-kriging models.
We highlight that we present in Subsection 5.2 a method to sampling with respect to the
multi-fidelity predictive distribution. In this case the predictive distribution is not anymore
Gaussian. Numerical tests are performed in Section 6 and an industrial example is considered
in Section 7. A conclusion synthesizes this work in the last section.

2 Global sensitivity analysis: the method of Sobol

We present in this section the method of Sobol for global sensitivity analysis [26]. It is inspired
by the book of [23] giving an overview of classical sensitivity analysis methods.

2.1 Sobol variance-based sensitivity analysis

Let us consider the input parameter space Q ⊂ R
d such that (Q,B(Q)) is a measurable product

space of the form:
(Q,B(Q)) = (Q1 × · · · ×Qd,B(Q1 × · · · ×Qd))

where B is the Borelian σ-algebra and Qi ⊂ R is a nonempty open set, for i = 1, . . . , d.
Furthermore, we consider a probability measure µ on (Q,B(Q)), with values in R and of the
form

µ(x) = µ1(x
1)⊗ · · · ⊗ µd(x

d)

The Hoeffding-Sobol decomposition (see [8]) states that any function z(x) ∈ L2
µ(R

d) can be
decomposed into summands of increasing dimensionality in such way:

z(x) = z0 +
d∑

i=1

zi(x
i) +

∑

1≤i<j≤k

zij(x
i, xj) + · · ·+ z1,2,...,d(x

1, . . . , xd) =
∑

u∈P

zu(x
u) (1)

where P is the collection of all subsets of {1, . . . , d} and xu is a group of variables such that
xu = (xi)i∈u. Furthermore, the decomposition is unique if we consider the following property
for every summand u = (u1, . . . , uk)1≤k≤d, 1 ≤ ui ≤ d:

∫
zu(x

u) dµui
(xui) = 0, ∀i = 1, . . . , k. (2)

Now, let us suppose that the inputs are a random vector X = (X1, . . . ,Xd) defined on the
probability space (ΩX ,FX ,PX) and with measure µ. Sobol [26] showed that the decomposition
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(1) can be interpreted as conditional expectations as follows:

z0 = EX [z(X)]

zi(X
i) = EX

[
z(X)|Xi

]
− z0

zij(X
i,Xj) = EX

[
z(X)|Xi,Xj

]
− zi(X

i)− zj(X
j)− z0

...

zu(X
u) = EX [z(X)|Xu]−

∑

v⊂u

zv(X
v)

with u ∈ P. From this scheme, we can naturally develop the variance-based sensitivity indices
of Sobol. First, let us consider the total variance D of z(x):

D = varX (z(X)) (3)

By squaring and integrating the decomposition (1), we obtain

D =

d∑

i=1

Di +
∑

1≤i<j≤d

Dij + · · ·+D1,2,...,d =
∑

u∈P

Du. (4)

with Du = varX (EX [z(X)|Xu]) −
∑

v⊂u varX (EX [z(X)|Xv ]) . Finally, the Sobol sensitivity
indices are given by

Su =
Du

D
(5)

where u ∈ P. We note that we have the following useful equality which allows for easily
interpreting Su as the part of variance of z(x) due to xu and not explained by xv with v ⊂ u.

1 =
d∑

i=1

Si +
∑

1≤i<j≤d

Sij + · · ·+ S1,2,...,d =
∑

u∈P

Su. (6)

In particular, Si is called the first-order sensitivity index for variable xi. It measures the
main effect of xi on the output, i.e. the part of variance of z(x) explained by the factor
xi. Furthermore, Sij for i 6= j is the second-order sensitivity index. It measures the part of
variance of z(x) due to xi and xj and not explained by the individual effects of xi and xj.

2.2 Monte-Carlo Based estimations of Sobol indices

Now, let us denote by Qd1 = Qi1 × · · · × Qid1
, d1 ≤ d, {i1, . . . , id1} ∈ P and Qd2 =

Qj1 × · · · × Qjd2
such that {j1, . . . , jd2} = {1, . . . , d} \ {i1, . . . , id1}. Analogously, we use

the notation Xd1 = (Xi)i∈{i1,...,id1}
, Xd2 = (Xj)j∈{j1,...,jd2}

, µd1 =
(⊗

i∈{i1,...,id1}
µi

)
and

µd2 =
(⊗

j∈{j1,...,jd2}
µj

)
where µd1 and µd2 are probability measures on (Qd1 ,B(Qd1)) and

(Qd2 ,B(Qd2)). Consequently, we have the equalities µ = µd1 ⊗ µd2 , Q = Qd1 × Qd2 and
X = (Xd1 ,Xd2) with d = d1 + d2.

We are interested in evaluating the closed sensitivity index:

SXd1

=
V Xd1

V
=

varX
(
EX

[
z(X)|Xd1

])

varX (z(X))
(7)
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A first method would be to use d-dimensional numerical integrations to approximate the
numerator and denominator of (7) as presented in [19] and [17]. Nonetheless, since d is large
in general, this method leads to numerical issues and is computationally expensive. A second
approach is to take advantage of the probabilistic interpretation of the Sobol indices and to use
a Monte-Carlo procedure to evaluate the different integrals as presented in the forthcoming
developments.

Proposition 1. Let us consider the random vectors (X, X̃) with X = (Xd1 ,Xd2) and X̃ =
(Xd1 , X̃d2) where Xd1 is a random vector with measure µd1 on Qd1 , Xd2 and X̃d2 are random
vectors with measure µd2 on Qd2 and Xd2 ⊥ X̃d2 . We have the following equality:

varX

(
EX

[
z(X)|Xd1

])
= covX

(
z(X), z(X̃)

)
(8)

SXd1 in equation (7) can thus be estimated by considering two random vectors (Xi)i=1,...,m

and (X̃i)i=1,...,m, m ∈ N
∗ lying in (ΩX ,FX ,PX) such that Xi

L
= X and X̃i

L
= X̃ (

L
= stands for

an equality in distribution) and by using an estimator for the covariance covX

(
z(X), z(X̃)

)
.

Following this principle, Sobol [26] suggests the following estimator for the ratio in equation
(7):

V Xd1

m

Vm
=

1
m

∑m
i=1 z(Xi)z(X̃i)−

1
m

∑m
i=1 z(Xi)

1
m

∑m
i=1 z(X̃i)

1
m

∑m
i=1 z(Xi)2 −

(
1
m

∑m
i=1 z(Xi)

)2 (9)

This estimation is improved by [11] who propose the following estimator:

V Xd1

m

Vm
=

1
m

∑m
i=1 z(Xi)z(X̃i)−

(
1
2m

∑m
i=1 z(Xi) + z(X̃i)

)2

1
m

∑m
i=1 z(Xi)2 −

(
1
2m

∑m
i=1 z(Xi) + z(X̃i)

)2 (10)

In particular they demonstrate that the asymptotic variance in (10) is better than the one in
(9) and they show that the estimator (10) is asymptotically efficient for the first order indices.
The main weakness of the estimators (9) and (10) is that they are sometimes not accurate for

small values of V Xd1/V in (7). To tackle this issue, [25] propose the following estimator

V Xd1

m

Vm
=

1
m

∑m
i=1 z(Xi)z(X̃i)−

1
m

∑m
i=1 z(Xi)z(

˜̃Xi)

1
m

∑m
i=1 z(Xi)2 −

(
1
m

∑m
i=1 z(Xi)

)2 (11)

where ˜̃X = (X̃d1 , X̃d2), X̃d1 L
= Xd1 , X̃d1 ⊥ Xd1 and ( ˜̃Xi)i=1,...,m is such that ˜̃Xi

L
= ˜̃X for all

i = 1, . . . ,m.

3 Kriging-based sensitivity analysis: a first approach

We present in this Section the approach suggested in [19] and [17] to perform global sensitivity
analysis using kriging surrogate models. Then, we present an alternative method that allows
for avoiding complex numerical integrations. Nevertheless, we will see that this approach does
not provide a correct representations of the Sobol indices. We handle this problem in the next
section.
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3.1 A short introduction to kriging model

The principle of the kriging model is to consider that our prior knowledge about the code
z(x) can be modelled by a Gaussian process Z(x) with mean f

′(x)β and covariance kernel
σ2r(x, x̃) (see for example [24]). Then, the code z(x) is approximated by a Gaussian process
Zn(x) having the predictive distribution [Z(x)|Z(D) = z

n, σ2] where z
n are the known values

of z(x) at points in the experimental design set D = {x1, . . . , xn}, xi ∈ Q, and σ2 is the
variance parameter:

Zn(x) ∼ GP
(
mn(x), s

2
n(x, x̃)

)
(12)

where the mean mn(x) and the variance s2n(x, x̃) are given by:

mn(x) = f
′(x)β̂ + r

′(x)R−1
(
z
n − Fβ̂

)

where R = [r(xi, xj)]i,j=1,...,n, r′(x) = [r(x, xi)]i=1,...,n, F = [f ′(xi)]i=1,...,n and

s2n(x, x̃) = σ2

(
1−

(
f
′(x) r

′(x)
)(0 F

′

F R

)−1(
f(x̃)
r(x̃)

))

where β̂ =
(
F
′
R

−1
F
)−1

F
′
R

−1
z
n. The variance parameter σ2 can be estimated with a re-

stricted maximum likelihood method, i.e. σ̂2 = (zn − β̂F)′R−1(zn − β̂F)/(n − p) where p is
the size of β.

3.2 Kriging-based Sobol index

The idea suggested in [19] and [17] is to substitute z(x) with Zn(x) in equation (7):

SXd1

n =
V Xd1

n

Vn
=

varX
(
EX

[
Zn(X)|Xd1

])

varX (Zn(X))
(13)

Therefore, if we denote by (ΩZ ,FZ ,PZ) the probability space where the Gaussian process

Z(x) lies, then the estimator SXd1

n lies in (ΩZ ,FZ ,PZ) (it is hence random). We note that
Zn(X) is defined on the product probability space (ΩX × ΩZ , σ(FX ×FZ),PX ⊗ PZ).

Nevertheless, the distribution of SXd1

n is intractable and [19] and [17] focus on its mean
and variance. More precisely, in order to derive analytically the Sobol index estimations they
consider the following quantity:

S̃Xd1

n =
EZ

[
varX

(
EX

[
Zn(X)|Xd1

])]

EZ [varX (Zn(X))]
(14)

where EZ [.] stands for the expectation in the probability space (ΩZ ,FZ ,PZ). Furthermore,

the uncertainty on S̃Xd1

n is evaluated with the following quantity:

σ2(S̃Xd1

n ) =
varZ

(
varX

(
EX

[
Zn(X)|Xd1

]))

EZ [varX (Zn(X))]2
(15)

As shown in [19] and [17], the equations (14) and (15) can be derived analytically through
multi-dimensional integrals for the cases d1 = i, i = 1, . . . , d, i.e. for the first-order in-
dices. Furthermore, with some particular formulations of f(x), µ(x) and r(x, x̃), these multi-
dimensional integrals can be written as product of one-dimensional ones. We note that a
method is suggested in [17] to generate samples of the numerator varX

(
EX

[
Zn(X)|Xd1

])
in

(13). It allows for estimating the uncertainty of S̃Xd1

n in (14) without processing the complex
numerical integrations involved in (15).
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Discussions: The method suggested in [19] and [17] provides an interesting tool to perform
sensitivity analysis of complex models. Nevertheless, in our opinion it suffers from the following
flaws:

1. For general choice of f(x), µ(x) and r(x, x̃), the numerical evaluations of (14) and (15)
can be very complex since it requires multi-dimensional integrals.

2. The method is derived for first-order sensitivity indices and cannot easily be extended
to higher order indices.

3. The method allows for inferring from the surrogate model uncertainty about the sensi-
tivity indices but does not allow for taking into account the numerical errors due to the
multi-dimensional integral estimations.

4. The considered index expectation and deviation do not correspond to the real Sobol
index ones since we obviously have

EZ

[
varX

(
EX

[
Zn(X)|Xd1

])]

EZ [varX (Zn(X))]
6= EZ

[
varX

(
EX

[
Zn(X)|Xd1

])

varX (Zn(X))

]

and
varZ

(
varX

(
EX

[
Zn(X)|Xd1

]))

EZ [varX (Zn(X))]2
6= varZ

(
varX

(
EX

[
Zn(X)|Xd1

])

varX (Zn(X))

)

In the next subsection, we deal with the points 1, 2 and 3 by suggesting a Monte-Carlo
sampling method to evaluate (14) and (15) instead of quadrature integrations. Nonetheless,
we do not tackle the issue of point 4. To handle it, we suggest another method in Section 4.

3.3 Monte-Carlo estimations for the first approach

We present in this Subsection, another approach to deal with the evaluation of S̃Xd1

n in (14). Its
principle simply consists in using the estimation methods suggested in Subsection 2.2 instead
of quadrature integrations to compute EZ

[
varX

(
EX

[
Zn(X)|Xd1

])]
and EZ [varX (Zn(X))].

We present the method with the estimator presented in [26]. The extension to those presented
in [12] and [25] is straightforward. Let us substitute in the estimator presented in equation
(9) the code z(x) by the Gaussian process Zn(x):

V Xd1

m,n

Vm,n
=

1
m

∑m
i=1 Zn(Xi)Zn(X̃i)−

1
m

∑m
i=1 Zn(Xi)

1
m

∑m
i=1 Zn(X̃i)

1
m

∑m
i=1 Zn(Xi)2 −

(
1
m

∑m
i=1 Zn(Xi)

)2 (16)

where the samples (Xi)i=1,...,m and (X̃i)i=1,...,m are those introduced in Subsection 2.2. There-

fore, V Xd1

m,n /Vm,n is an estimator of V Xd1/V (7) when we replace the true function z(x) by its
approximation Zn(x) built from n observations zn of z(x) and when we estimate the variances
and the expectation involved in (7) by a Monte-Carlo method with m particles. To be clear
in the remainder of this paper, we name as Monte-Carlo error the one due to the Monte-Carlo
estimation and we name as meta-model error the one due to the substitution of z(x) by a
surrogate model. Furthermore, m will always denote the number of Monte-Carlo particles
and n the number of observations used to build the surrogate model.
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The strength of this formulation is that it gives closed form formulas for the evaluation of
(14) for any choice of f(x), µ(x) and r(x, x̃) contrary to [19] and [17]. Furthermore, this method
can directly be used for any order of Sobol indices which contrasts with the one presented
in Subsection (3.2). Finally, unlike quadrature integrations, Monte-Carlo integrations allow
for taking into account the numerical errors due to the integral evaluations. In particular, as
presented in [1], the bootstrap method can be directly used to obtain confidence intervals on
the Sobol indices.

We give in the following equation the Monte-Carlo estimation of S̃Xd1

n (14) corresponding
to the kriging-based sensitivity indices presented in [19] and [17].

S̃Xd1

m,n =
EZ

[
V Xd1

m,n

]

EZ [Vm,n]

=
1
m

∑m
i=1 s

2
n(Xi, X̃i) +mn(Xi)mn(X̃i)−

1
m2

∑m
i,j=1 s

2
n(Xi, X̃j) +mn(Xi)mn(X̃j)

1
m

∑m
i=1 s

2
n(Xi,Xi) +mn(Xi)mn(Xi)−

1
m2

∑m
i,j=1 s

2
n(Xi,Xj) +mn(Xi)mn(Xj)

(17)

We note that the expression of S̃Xd1

m,n is different from the one obtained by estimating

V Xd1

m /Vm in (9) by replacing z(x) by the predictive mean mn(x). In S̃Xd1

m,n we take into

account the kriging predictive covariance through the terms s2n(Xi, X̃j) and s2n(Xi,Xj).

4 Kriging-based sensitivity analysis: a second approach

We have highlighted at the end of Subsection 3.2 that one of the main flaws of the method
presented by [19] is that it does not care about the exact definition of Sobol indices. We
present in Subsection 4.1 another approach which deals with this issue. Then, in Subsection
4.3 we present an efficient method to compute it.

4.1 Kriging-based Sobol index estimation

First of all, in the previous section we have considered the variance of the main effects V Xd1

and the total variance V separately in equation (7). That is why the ratio of the expectations
is considered as a sensitivity index in equation (14). In fact, in a Sobol index framework, we

are interested in the ratio between V Xd1 and V . Therefore, we suggest to deal directly with
the following estimator (see equation (16)):

SXd1

m,n =
V Xd1

m,n

Vm,n
(18)

which corresponds to the ratio V Xd1/V after substituting the code z(x) by the Gaussian
process Zn(x) and estimating the terms varX

(
EX

[
Zn(X)|Xd1

])
and varX (Zn(X)) with a

Monte-Carlo procedure as presented in [26]. We note that we can naturally adapt the presented
estimator with the ones suggested by [25] and [11]. Nevertheless, we cannot obtain closed
form expressions for the mean or the variance of this estimator. We thus have to numerically
estimate them. We present in Algorithm 1 the suggested method to compute the distribution
of SXd1

m,n .
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Algorithm 1 Evaluation of the distribution of SXd1

m,n .

1: Build Zn(x) from the n observations z
n of z(x) at points in D (see equation (12)).

2: Generate two samples (xi)i=1,...,m and (x̃i)i=1,...,m of the random vectors (Xi)i=1,...,m and
(X̃i)i=1,...,m with respect to the probability measure µ (see Proposition 1).

3: Set NZ the number of samples for Zn(x) and B the number of bootstrap samples for
evaluating the uncertainty due to Monte-Carlo integrations.

4: for k = 1, . . . , NZ do

5: Sample a realization zn(x) of Zn(x) with x = {(xi)i=1,...,m, (x̃i)i=1,...,m}

6: Compute ŜXd1

m,n,k,1 thanks to the equation (16) from zn(x).
7: for l=2,. . . ,B do

8: Sample with replacements two samples u and ũ from {(xi)i=1,...,m} and
{(x̃i)i=1,...,m}.

9: Compute ŜXd1

m,n,k,l from zn(x
B) with x

B = {u, ũ}.
10: end for

11: end for

return
(
ŜXd1

m,n,k,l

)
k=1,...,NZ

l=1,...,B

The output
(
ŜXd1

m,n,k,l

)
k=1,...,NZ

l=1,...,B

of Algorithm 1 is a sample of size NZ ×B of SXd1

m,n defined

on (ΩX ×ΩZ , σ(FX ×FZ),PX ×PZ) (i.e. SXd1

m,n takes both into account the uncertainty of the
metamodel and the one of the Monte-Carlo integrations). Then, we can deduce the following

estimate S̄Xd1

m,n for SXd1

m,n :

S̄Xd1

m,n =
1

NZB

∑

k=1,...,NZ

l=1,...,B

ŜXd1

m,n,k,l (19)

Furthermore, we can estimate the variance of SXd1

m,n with

σ̂2(SXd1

m,n ) =
1

NZB − 1

∑

k=1,...,NZ

l=1,...,B

(
ŜXd1

m,n,k,l − S̄Xd1

m,n

)2
(20)

We note that the computational limitation of the algorithm is the sampling of the Gaus-
sian process Zn(x) on x = {(xi)i=1,...,m, (x̃i)i=1,...,m}. For that reason, we use a bootstrap
procedure to evaluate the uncertainty of the Monte-Carlo integrations instead of sampling
different realizations of the random vectors (Xi)i=1,...,m and (X̃i)i=1,...,m. Furthermore, the
same bootstrap samples are used for the NZ realizations of Zn(x).

Nevertheless, the number of Monte-Carlo particles m is very large in general - it is often
around m = 5000d - and it thus can be an issue to compute realizations of Zn(x) on x. We
present in the Subsection 4.3 an efficient method to deal with this point for any choice of
µ(x), f(x) and r(x, x̃) and any index order. The idea to carry out an estimation of (18) from
realizations of conditional Gaussian processes has already been suggested in [6]. The main
contribution of this section is the procedure to balance the Monte-Carlo and the meta-model
errors (see Subsection 4.2).
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4.2 Determining the minimal number of Monte-Carlo particles m

We are interested here in quantifying the uncertainty of the considered estimator SXd1

m,n (18).
This estimator integrates two sources of uncertainty, the first one is related to the meta-model
approximation and the second one is related to the Monte-Carlo integration. Therefore, we
can decompose the variance of SXd1

m,n as follows:

var
(
SXd1

m,n

)
= varZ

(
EX

[
SXd1

m,n

∣∣Zn(x)
])

+ varX

(
EZ

[
SXd1

m,n

∣∣(Xi, X̃i)i=1,...,m

])

where varZ

(
EX

[
SXd1

m,n

∣∣Zn(x)
])

is the contribution of the meta-model on the variability of

SXd1

m,n and varX

(
EZ

[
SXd1

m,n

∣∣(Xi, X̃i)i=1,...,m

])
is the one of the Monte-Carlo integration. Fur-

thermore, we have the following equalities:




varZ

(
EX

[
SXd1

m,n

∣∣Zn(x)
])

= EX

[
varZ

(
SXd1

m,n

∣∣(Xi, X̃i)i=1,...,m

)]

varX

(
EZ

[
SXd1

m,n

∣∣(Xi, X̃i)i=1,...,m

])
= EZ

[
varX

(
SXd1

m,n

∣∣Zn(x)
)]

Therefore, from the sample
(
ŜXd1

m,n,k,l

)
k=1,...,NZ

l=1,...,B

we can estimate the part of variance of the

estimator SXd1

m,n related to the meta-modelling as follows:

σ̂2
Zn

(SXd1

m,n ) =
1

B

B∑

l=1

1

NZ − 1

NZ∑

k=1

(
ŜXd1

m,n,k,l −
¯̂
SXd1

m,n,l

)2
(21)

where
¯̂
SXd1

m,n,l =
(∑NZ

i=1 S
Xd1

m,n,i,l

)
/NZ . Furthermore, we can evaluate the part of variance of

SXd1

m,n related to the Monte-Carlo integrations as follows:

σ̂2
MC(S

Xd1

m,n ) =
1

NZ

NZ∑

i=1

1

B − 1

B∑

i=1

(
ŜXd1

m,n,k,i −
¯̂̄
SXd1

m,n,k

)2
(22)

where
¯̂̄
SXd1

m,n,k =
(∑B

i=1 S
Xd1

m,n,k,i

)
/B.

Therefore, we have three different cases:

1. σ̂2
Zn

(SXd1

m,n ) ≫ σ̂2
MC(S

Xd1

m,n ): the estimation error of SXd1

m,n is essentially due to the meta-
model error.

2. σ̂2
Zn

(SXd1

m,n ) ≪ σ̂2
MC(S

Xd1

m,n ): the estimation error of SXd1

m,n is essentially due to the Monte-
Carlo error.

3. σ̂2
Zn

(SXd1

m,n ) ≈ σ̂2
MC(S

Xd1

m,n ): the metamodel and the Monte-Carlo errors have the same

contribution on the estimation error of SXd1

m,n .

Considering that the number of observations n is fixed, the minimal number of Monte-Carlo
particles m is the one such that σ̂2

Zn
(SXd1

m,n ) ≈ σ̂2
MC(S

Xd1

m,n ). We call it “minimal” since it is
the one from which the Monte-Carlo error no longer dominates. Therefore, it should be the
minimum number of required particles in practical applications. In practice, to determine
it, we start with a small value of m and we increase it while the inequality σ̂2

Zn
(SXd1

m,n ) >

σ̂2
MC(S

Xd1

m,n ) is true.
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4.3 Sampling with respect to the kriging predictive distribution on large

data sets

We saw in the previous subsection in Algorithm 1 that in a kriging framework, we can assess
the distribution of the Sobol index estimators from realizations of the conditional Gaussian
process Zn(x) at points in x. Nevertheless, the size of the corresponding random vector
could be important since it equals twice the number of Monte-Carlo particles m. Therefore,
computing such realizations could lead to numerical issues such as ill-conditioned matrix or
huge computational cost, especially if we use a Cholesky decomposition. Indeed, Cholesky
decomposition complexity is O((2m)3) and it often leads to ill-conditioned matrix since the
predictive variance of Zn(x) is close to zero around the experimental design points.

Let us introduce the following unconditioned Gaussian process:

Z̃(x) ∼ GP(0, σ2r(x, x̃)) (23)

We have the following proposition [3]:

Proposition 2 (Sampling Zn(x) by kriging conditioning). Let us consider the following Gaus-
sian process:

Z̃n(x) = mn(x)− m̃n(x) + Z̃(x) (24)

where mn(x) is the predictive mean of Zn(x) (12),

m̃n(x) = f
′(x)β̃ + r

′(x)R−1
(
Z̃(D)− Fβ̃

)
(25)

and β̃ =
(
F
′
R

−1
F
)−1

F
′
R

−1Z̃(D). Then, we have

Z̃n(x)
L
= Zn(x)

where Zn(x) has the distribution of the Gaussian process Z(x) of mean f
′(x)β and covariance

kernel σ2r(x, x̃) conditioned by z
n at points in D (12). We note that we are in a Universal

kriging case, i.e. we infer from the parameter β. In a simple kriging case, the proposition
remains true by setting β̃ = 0.

The strength of Proposition 2 is that it allows for sampling with respect to the distribution
of Zn(x) by sampling an unconditioned Gaussian process Z̃(x). The first consequence is that
the conditioning of the covariance matrix is better since the variance of Z̃(x) is not close
to zero around points in D. The second important consequence is that it allows for using
efficient algorithms to compute realizations of Z̃(x). For example, if r(x, x̃) is a stationary
kernel, one can use the Bochner’s theorem ([28] p.29) and the Fourier representation of Z̃(x)
to compute realizations of Z̃(x) as presented in [28]. Furthermore, another efficient method is
to use the Mercer’s representation of r(x, x̃) (see [15] and [5]) and the Nyström procedure to
approximate the Karhunen-Loeve decomposition of Z̃(x) as presented in [21] p.98. One of the
main advantage of the Karhunen-Loeve decomposition of Z(x) is that it allows for sequentially
adding new points to x without re-estimating the decomposition. Therefore, we can easily
obtain the values of a given realization zn(x) of Zn(x) at new points not in x. This interesting
property will allow us to efficiently estimate the number m of Monte-Carlo particles such that
the metamodel error and the Monte-Carlo estimation one are equivalent (see Subsection 4.2).
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5 Multi-fidelity co-kriging based sensitivity analysis

Now let us suppose that we have s levels of code (zt(x))t=1,...,s from the less accurate one z1(x)
to the most accurate one zs(x) and that we want to perform a Global sensitivity analysis for
zs(x). We consider that, conditioning on the model parameters, (zt(x))t=1,...,s are realizations
of Gaussian processes (Zt(x))t=1,...,s. Furthermore, we consider the following multi-fidelity
model t = 2, . . . , s:





Zt(x) = ρt−1Z
∗
t−1(x) + δt(x)

Z∗
t−1(x) ⊥ δt(x)

Z∗
t−1(x) ∼ [Zt−1(x)|Z

(t−1) = z
(t−1),β,ρ,σ2]

(26)

where β = (βt)t=1,...,s, ρ = (ρt−1)t=2,...,s, σ
2 = (σ2

t )t=1,...,s, Z
(l−1) = (Z1(D1), . . . , Zt−1(Dt−1)),

z
(t−1) = (z1(D1), . . . , zt−1(Dt−1)) and (Dt)t=1,...,s are the experimental design sets at level t

with nt points and such that Ds ⊆ Ds−1 ⊆ · · · ⊆ D1. Further, conditioning on βt and σ2
t ,

δt(x) is a Gaussian process of mean f
′
t(x)βt and covariance σ2

t rt(x, x̃) and we use the conven-
tion Z1(x) = δ1(x). This model is analogous to the one presented in [13] except that Z∗

t−1(x)
has a conditional distribution.

We propose a Bayesian formulation of the model which allows to consider non-informative
prior distributions for the the regression parameters β = (βt)t=1,...,s and the adjustment pa-
rameters ρ = (ρt−1)t=2,...,s. This leads to the following predictive distribution which integrates
the posterior distributions of the parameters β = (βt)t=1,...,s and ρ = (ρt−1)t=2,...,s.

[Zs(x)|Z
(s) = z

(s),σ2] (27)

The predictive distribution (27) is not Gaussian. Nevertheless, we can have closed form
expressions for its mean µs

ns
(x) and covariance ksns

(x, x̃):

µs
ns
(x) = ρ̂s−1µ

s−1
ns−1

(x) + µδs(x) (28)

and:
ksns

(x, x̃) = ρ̂2s−1k
s−1
ns−1

(x, x̃) + kδs(x, x̃) (29)

where for t = 1, . . . , s,

(
ρ̂t−1

β̂t

)
= (H′

tR
−1
t Ht)

−1
H

′
tR

−1
t zt, Ht = [zt−1(Dt) Ft], Ft = f

′
t(Dt),

ρ̂0 = 0, H1 = F1, ρ̂2t−1 = ρ̂2t−1 +
[
(H′

tR
−1
t Ht)

−1
]
[1,1]

, ρ̂20 = 0,

µδt(x) = f
′
t(x)β̂t + r

′
t(x)R

−1
t (zt − Ftβ̂t − ρ̂t−1zt−1(D

t)) (30)

and

kδt(x, x̃) = σ2
t

(
rt(x, x̃)−

(
h
′
t(x) r

′
t(x)

)( 0 H
′
t

Ht Rt

)−1(
ht(x̃)
rt(x̃)

))
(31)

with h
′
t(x) = [µt−1

nt−1
(x) f

′
t(x)] and h

′
1(x) = f

′
1(x). We note that, in the mean of the predictive

distribution, the regression and adjustment parameters have been replaced by their posterior
means. Furthermore, the predictive variance integrates the uncertainty due to the regression
and adjustment parameters.

We note that for each t = 1, . . . , s, the variance parameter σ2
t is estimated with a restricted

maximum likelihood method. Thus, its estimation is given by σ̂2
t = (zt − Htβ̂t)

′
R

−1
t (zt −

Htβ̂t)/(nt − pt − 1) where pt is the size of βt.
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We present in Subsection 5.1 the extension in a multi-fidelity framework of the first kriging-
based Sobol index estimations presented in [19]. Then, we present in Subsection 5.2 the
extension of our approach to perform co-kriging-based multi-fidelity sensitivity analysis.

5.1 Extension of the first approach for multi-fidelity co-kriging models

Let us denote by S̃Xd1

m,s the estimation of V Xd1/V when we substitute zs(x) by Zn,s(x) ∼

[Zs(x)|Z
(s) = z

(s), σ2] and when we use the Sobol procedure to perform Monte-Carlo estima-
tions (see [26] and Subsection 2.2). Then, the estimator suggested in [19] and [17] becomes in
a multi-fidelity framework:

S̃Xd1

m,s =
1

m

∑m

i=1
ksns

(Xi, X̃i) + µs
ns
(Xi)µ

s
ns
(X̃i)−

1

m2

∑m

i,j=1
ksns

(Xi, X̃j) + µs
ns
(Xi)µ

s
ns
(X̃j)

1

m

∑m

i=1
ksns

(Xi, Xi) + µs
ns
(Xi)µs

ns
(Xi)−

1

m2

∑m

i,j=1
ksns

(Xi, Xj) + µs
ns
(Xi)µs

ns
(Xj)

=
U

D

where

U =
1

m

m∑

i=1




s∑

t=1




s−1∏

j=t

ρ̂2j


 kδt(Xi, X̃i) +

s∑

t,t̃=1




s−1∏

j=t

ρ̂j






s−1∏

j=t̃

ρ̂j


µδt(Xi)µδ

t̃
(X̃i)




−
1

m2

m∑

i,j=1




s∑

t=1




s−1∏

j=t

ρ̂2j


 kδt(Xi, X̃j) +

s∑

t,t̃=1




s−1∏

j=t

ρ̂j






s−1∏

j=t̃

ρ̂j


µδt(Xi)µδ

t̃
(X̃j)




D =
1

m

m∑

i=1




s∑

t=1




s−1∏

j=t

ρ̂2j


 kδt(Xi,Xi) +

s∑

t,t̃=1




s−1∏

j=t

ρ̂j






s−1∏

j=t̃

ρ̂j


µδt(Xi)µδ

t̃
(Xi)




−
1

m2

m∑

i,j=1




s∑

t=1




s−1∏

j=t

ρ̂2j


 kδt(Xi,Xj) +

s∑

t,t̃=1




s−1∏

j=t

ρ̂j






s−1∏

j=t̃

ρ̂j


µδt(Xi)µδ

t̃
(Xj)




and with the conventions ρ̂0 = 0,
∏s−1

i=s ρ̂i = 1, ρ̂20 = 0,
∏s−1

i=s ρ̂
2
i = 1, µδ1(x) = µ1

n1
(x) and

kδ1(x, x̃) = k1n1
(x, x̃).

We note that S̃Xd1

m,s is the analogous of S̃Xd1

m,n presented in Subsection 3.3. Furthermore,

the developed expression of S̃Xd1

m,s allows for identifying the contribution of each code level t
to the sensitivity index and the one of the covariance between the bias and the code at level t.
We note that the covariance here is with respect to the distribution of the input parameters
X. Nevertheless, as pointed out in previous sections, this estimator is based on a ratio of
expectations and thus does not correspond to the true Sobol indices.

5.2 Extension of the second approach for multi-fidelity co-kriging models

We present here the extension of the approach presented in Section 4 to the multi-fidelity
co-kriging model. Therefore, we aim to sample with respect to the distribution of

SXd1

m,s =
1
m

∑m
i=1 Zn,s(Xi)Zn,s(X̃i)−

1
m

∑m
i=1 Zn,s(Xi)

1
m

∑m
i=1 Zn,s(X̃i)

1
m

∑m
i=1 Zn,s(Xi)2 −

(
1
m

∑m
i=1 Zn,s(Xi)

)2 (32)
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which is the analog of SXd1

m,n (16) in an univariate case when we substitute z(x) with Zn,s(x) ∼

[Zs(x)|Z
(s) = z

(s), σ2]. In fact, we can directly use Algorithm 1 by sampling realizations of
Zn,s(x) instead of Zn(x). Moreover, the procedure presented in Subsection 4.2 to determine
the optimal number of Monte-Carlo particles m is straightforward.

However, the distribution of Zn,s(x) is not Gaussian and thus the method presented in
Subsection 4.3 cannot be used directly. In order to handle this problem, we consider the
conditional distribution [Zs(x)|Z

(s) = z
(s),σ2,ρ,β], with σ2 = (σ2

t )t=1,...,s, β = (βt)t=2,...,s

and ρ = (ρt−1)t=2,...,s which is Gaussian (note that we infer from β1). It corresponds to the
distribution (27) conditioning by β and ρ. Furthermore, the Bayesian estimation of (ρt−1,βt)
gives us for all t = 2, . . . , s:

(
ρt−1

βt

)
∼ N

(
(H′

tR
−1
t Ht)

−1
H

′
tR

−1
t zt, σ

2
t (H

′
tR

−1
t Ht)

−1
)

(33)

From the recursive formulation given in (26), we can define the following Gaussian process
having the desired distribution [Zs(x)|Z

(s) = z
(s),σ2,ρ,β]:

Zn,s,ρ,β(x) =




s−1∏

j=1

ρj


Zn,1(x) +

s−1∑

t=2




s−1∏

j=t

ρj


 δt,ρt−1,βt

(x) + δs,ρs−1,βs
(x) (34)

where (see equations (30) and (31)):

Zn,1(x) ∼ GP(µδ1(x), kδ1(x, x̃)) (35)

and for t = 2, . . . , s:

δt,ρt−1,βt
(x) ∼ GP

(
µt,ρt−1,βt

(x), kt,ρt−1,βt
(x, x̃)

)
(36)

with µt,ρt−1,βt
(x) = r

′
t(x)R

−1
t (zt −Ftβt − ρt−1zt−1(D

t)),
(
(δt,ρt−1,βt

(x))t=2,...,s, Zn,1(x)
)

inde-
pendent and

kt,ρt−1,βt
(x, x̃) = σ2

t

(
rt(x, x̃)− r

′
t(x)R

−1
t rt(x̃)

)
.

Therefore, we can deduce the following algorithm to compute a realization zn,s(x) of Zn,s(x) ∼
[Zs(x)|Z

(s) = z
(s),σ2].

Algorithm 2 provides an efficient tool to sample with respect to the distribution [Zs(x)|Z
(s) =

z
(s), σ2]. Then, from each sample we can estimate the Sobol indices with a Monte-Carlo proce-

dure. Naturally, we can easily use a bootstrap procedure to take into account the uncertainty
due to the Monte-Carlo scheme. Furthermore, we see in Algorithm 2 that once a sample
of [Zs(x)|Z

(s) = z
(s), σ2] is available, a sample for each distribution [Zt(x)|Z

(t) = z
(t), σ2],

t = 1, . . . , s − 1 is also available. Therefore, we can directly quantify the difference between
the Sobol indices at a level t and the ones at another level t̃.

6 Numerical illustrations on an academic example

We illustrate here the kriging-based sensitivity analysis suggested in Section 4. We remind
that the aim of this approach is to perform a sensitivity index taking into account both
the uncertainty related to the surrogate modeling and the one related to the Monte-Carlo
integrations. Let us consider the Ishigami function:

z(x1, x2, x3) = sin(x1) + 7sin(x2)
2 + 0.1x43sin(x1),
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Algorithm 2 Sampling with respect to the predictive distribution [Zs(x)|Z
(s) = z

(s), σ2].

1: Generate a sample zn,1(x) with respect to (35) thanks to the method presented in Propo-
sition 2 in the universal kriging case.

2: Set zn,s(x) = zn,1(x).
3: for t=2,. . . ,s do

4: Generate a sample

(
ρ∗t−1

β∗
t

)
with respect to (33).

5: Conditionally to

(
ρ∗t−1

β∗
t

)
, generate a sample δ∗

t,ρ∗
t−1

,β∗

t

(x) with respect to (36) thanks

to the method presented in Proposition 2 in the simple kriging case.
6: Set zn,s(x) = ρ∗t−1zn,s(x) + µ∗

t,ρ∗
t−1

,β∗

t

(x).

7: end for

return zn,s(x).

where µi is uniform on [−π, π], i = 1, 2, 3. We are interested in the first order sensitivity
indices theoretically given by

(S1, S2, S3) = (0.314, 0.442, 0).

This section is organized as follows. First, in Subsection 6.1 we compare the Sobol index
estimator ŜXd1

m,n (17) proposed by [19], the suggested one given by the mean of SXd1

m,n (18)
and the usual one which consists in substituting z(x) by the predictive mean mn(x) (12) in
(10). Then, in sections 6.3, 6.4 and 6.5 we deal with the approach presented in Section 4. In
particular, we show that this approach is relevant to perform an uncertainty quantification
taking into account both the uncertainty of the meta-modeling and the one of the Monte-Carlo
integrations. We note that the construction of the surrogate models used in sections 6.3, 6.4
and 6.5 is presented in Section 6.2.

6.1 Comparison between the different methods

The aim of this subsection is to perform a numerical comparison between S̃Xd1

m,n (17), the

empirical mean of SXd1

m,n given in Equation (19) and the following estimator (see (10)):

ŠXd1

m,n =

1
m

∑m
i=1 mn(Xi)mn(X̃i)−

(
1
2m

∑m
i=1mn(Xi) +mn(X̃i)

)2

1
m

∑m
i=1 mn(Xi)2 −

(
1
2m

∑m
i=1 mn(Xi) +mn(X̃i)

)2 . (37)

We note that the empirical mean S̄Xd1

m,n of SXd1

m,n is evaluated thanks to Algorithm 1, with
NZ = 500 and B = 1:

S̄Xd1

m,n =
1

NZ

∑

k=1,...,NZ

ŜXd1

m,n,k,1,

and for S̃Xd1

m,n and SXd1

m,n we use the Monte-Carlo estimator (10) suggested in [11] (it is the one
used in (37). Then for the comparison, different sizes of the learning sample are considered
(n = 40, 50, 60, 70, 90, 120, 150, 200 observations) and we randomly build 100 Latin Hypercube
Samples (LHS) for each size of the learning sample. From these experimental design sets, we
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build kriging models with a constant trend β and a tensorised 5/2-Matérn kernel. Furthermore,
the characteristic length scales (θi)i=1,2,3 are estimated with a maximum likelihood procedure
for each design set. The Nash-Sutcliffe model efficiency coefficient (sometimes called the
predictivity coefficient Q2),

Eff n = 1−

∑
x∈T (mn(x)− z(x))2∑
x∈T (mn(x)− z̄(x))2

, z̄(x) =
1

#T

∑

x∈T

z(x),

of the different kriging models are evaluated on a test set T composed of 1,000 points uniformly
spread on the input parameter space [−π, π]3. The values of Eff n are presented in Figure 1.
The closer Eff is to 1, the more accurate is the model mn(x).
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Figure 1: Convergence of the model efficiency when the number n of observations increases.
100 LHS are randomly sampled for each number of observations n.

Figure 2 illustrates the Sobol index estimates obtained with the three methods. We see
in Figure 2 that the suggested estimator S̄Xd1

m,n performs as well as the usual estimator ŠXd1

m,n

(37). In fact, as we will see in the next subsections, the strength of the suggested estimator
is to provide more relevant uncertainty quantification. Finally, we see in Figure 2c that the
estimator S̃Xd1

m,n (17) suggested in [19] seems to systematically underestimate the true value of
the Sobol index for non-negligible index and when the model efficiency is low.

6.2 Model building and Monte-Carlo based estimator

For the numerical illustrations in sections 6.3 and 6.4, we use different kriging models built from
different experimental design sets (optimized-LHS with respect to the centered L2-discrepancy
criterion, [4]) of size n = 30, . . . , 200. Furthermore, for all kriging models, we consider a
constant trend β and a tensorised 5/2-Matérn kernel (see [21]).

The characteristic length scales (θi)i=1,2,3 are estimated for each experimental design set
by maximizing the marginal likelihood. Furthermore, the variance parameter σ2 and the
trend parameter β are estimated with a maximum likelihood method for each experimental

16



−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

So
bo

l

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

40 60 90 120 150 200

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

So
bo

l

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

40 60 90 120 150 200

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

So
bo

l

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

40 60 90 120 150 200

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c)

Figure 2: Comparison between three Sobol index estimators. The comparison are performed
from 100 random LHS for each number of observations n. Figure (a) corresponds to the sug-

gested Sobol estimator S̄Xd1

m,n (see Section 4), Figure (b) corresponds to the usual (metamodel

predictor only) estimator ŠXd1

m,n (see Equation (37)) and Figure (c) corresponds to the estima-

tor S̃Xd1

m,n suggested in [19]. The horizontal lines represent the true values of the Sobol indices
(solid gray line: S1; solid black line: S2 and dashed black line: S3)

design set too. Then for each n, the Nash-Sutcliffe model efficiency is evaluated on a test set
composed of 10,000 points uniformly spread on the input parameter space [−π, π]3. Figure 3
illustrates the estimated values of Eff n with respect to the number of observations n.

Then, for estimating the Sobol indices, we use the Monte-Carlo based estimator given by
(10). It has the strength to be asymptotically efficient for the first order indices (see [11]).

6.3 Sensitivity index estimates when n increases

Let us consider a fixed number of Monte-Carlo particles m = 10, 000. The aim of this sub-
section is to quantify the part of the index estimator uncertainty related to the Monte-Carlo
integrations and the one related to the surrogate modeling.

To perform such analysis we use the procedure presented in Algorithm 1 with B = 300
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Figure 3: Convergence of the model efficiency when the number n of observations increases.
For each number of observations n, the experimental design set is an optimized-LHS with
respect to the centered L2-discrepancy.

bootstrap samples and NZ = 500 realizations of Zn(x) (12). It results for each i = 1, 2, 3

a sample
(
Ŝi
m,n,k,l

)
, k = 1, . . . , NZ , l = 1, . . . , B, with respect to the distribution of the

estimator obtained by substituting z(x) with Zn(x) in (10).

Then, we estimate the 0.05 and 0.95 quantiles of
(
Ŝi
m,n,k,1

)
, k = 1, . . . , NZ for each

i = 1, 2, 3 with a bootstrap procedure. The resulting quantiles represent the uncertainty
related to the surrogate modeling. Furthermore, we estimate the 2.50% and 97.50% quantiles

of
(
Ŝi
m,n,k,l

)
, k = 1, . . . , NZ , l = 1, . . . , B with a bootstrap procedure too. These quantiles

represent the total uncertainty of the index estimator. Figure 4 illustrates the result of this
procedure for different numbers of observations n. We see in Figure 4 that for small values
of n, the error related to the surrogate modeling dominates. Then, when n increases, this
error decreases and it is the one related to the Monte-Carlo integrations which is the largest.
This emphasizes that it is worth to adapt the number of Monte-Carlo particles m to the
number of observations n. Finally, we highlight that the equilibrium between the two types of
uncertainty does not occur for the same n for the three indices. Indeed, it is around n = 100
for S1, n = 150 for S2 and around n = 75 for S3. We observe that the smaller the index is,
the larger its Monte-Carlo estimation error is.

6.4 Optimal Monte-Carlo resource when n increases

We saw in the previous subsection that the equilibrium between the error related to the Monte-
Carlo integrations and the one related to the surrogate modeling depends on the considered
sensitivity index. The purpose of this subsection is to determine this equilibrium for each
index. To perform such analysis, we use the method presented in Subsection 4.2.

Let us consider a sample
(
Ŝi
m,n,k,l

)
, m = 30, . . . , 200, k = 1, . . . , NZ , l = 1, . . . , B, i =

1, 2, 3, generated with Algorithm 1 and using the Monte-Carlo estimator presented in (10).
For each pair (m,n) we can evaluate the variance σ̂2

Zn

(
Si
m,n

)
, i = 1, 2, 3, related to the

meta-modeling with Equation (21) and the variance σ̂2
MC

(
Si
m,n

)
, i = 1, 2, 3, related to the
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Figure 4: Sensitivity index estimates when n increases. The solid lines represent the means of
the sensitivity index estimators. The dashed lines represent the 2.50% and 97.50% confidence
intervals taking into account only the uncertainty related to the surrogate modeling. The
dashed-dotted lines represent the 2.50% and 97.50% confidence intervals taking into account
both the uncertainty related to the surrogate modeling and the one related to the Monte-Carlo
integrations. The horizontal gray lines represent the true values of S1 (a), S2 (b) and S3 (c).

Monte-Carlo integrations with Equation (22). We state that the equilibrium between the two
types of uncertainty corresponds to the case

σ̂2
Zn

(
Si
m,n

)
= σ̂2

MC

(
Si
m,n

)
. (38)

We present in Figure 5 the pairs (m,n) such that the equality (38) is satisfied. We see that
the smaller is the sensitivity index, the more important is the number of particles m required
to have the equilibrium. Furthermore, we note that the curve increases extremely quickly for
the index S3 = 0. Therefore, it could be unrealistic to consider the equilibrium for this case,
especially when n is important (i.e. n > 100).

The presented analysis is of practical interest since it provides the appropriate number
of Monte-Carlo particles m for the sensitivity index estimation in function of the number of
observations n. Furthermore, in the framework of computer experiments, the observations are
often time-consuming and n cannot be large. Therefore, we look for a number of particles m
such that the variance σ̂2

Zn

(
Si
m,n

)
related to the meta-modeling is smaller than the one of the
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Figure 5: Relation between the number of observations n and the number of Monte-Carlo
particles m such that the error related to the meta-modeling and the one related to the
Monte-Carlo scheme have the same order of magnitude.

Monte-Carlo integration σ̂2
MC

(
Si
m,n

)
. However, we saw that it could be unfeasible for some

values of sensitivity index. In this case a compromise must necessarily be done.

6.5 Coverage rate of the suggested Sobol index estimator

Algorithm 1 in Subsection 4.1 allows for obtaining a sample
(
Ŝi
m,n,k,l

)
, k = 1, . . . , NZ , l =

1, . . . , B of the estimator of Si for each i = 1, 2, 3. The purpose of this subsection is to verify

the relevance of the confidence intervals provided by
(
Ŝi
m,n,k,l

)
. To perform such analysis, we

generate 200 random LHS (Dn,j)j=1,...,200 for different numbers of observations n. For each
Dn,j, we build a kriging model with the procedure presented in Subsection 6.2 and we generate

a sample
(
Ŝi
m,n,k,l

)
, k = 1, . . . , NZ , l = 1, . . . , B, with B = 200 and NZ = 300. The efficiency

of the different kriging models with respect to the number of observation n is presented in
Figure 6. From this sample, we evaluate the 2.50% and 97.50% quantiles with a bootstrap
procedure and we check if the true value of Si is covered by these two quantiles. At the end
of the procedure, the ratio between the number of confidence intervals covering the true value
of Si and the total number of confidence intervals (i.e. 200) has to be close to 95% for each n.

Furthermore, to perform the analysis we use different values of m according to the pro-
cedure presented in Subsection 4.2 for S1 and S2 (i.e. such that the variance related to the
meta-modeling has the same order of magnitude than the one related to the Monte-Carlo in-
tegrations). For S3, the number of Monte-Carlo particles m increases too quickly with respect
to n to use the method presented in Subsection 4.2. Therefore we fix m to the values presented
in Table 1. We note that the values of m for S3 are larger than the ones for S1 and S2.
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Figure 6: Convergence of the model efficiency when the number n of observations increases.
For each number of observations n, 200 LHS are randomly sampled.

n 60 70 80 90 100 110

m 1,000 3,000 5,000 10,000 40,000 60,000

Table 1: Numbers of Monte-Carlo particles m for different values of the number of observations
n for the estimation of S3.

The empirical 95%-confidence intervals as a function of the number of observations n are
presented in Figure 7. We study three cases:

1. The confidence intervals are built from
(
Ŝi
m,n,k,l

)
, k = 1, . . . , NZ , l = 1, . . . , B. There-

fore, it takes into account both the uncertainty related to the meta-model and the one
related to the Monte-Carlo estimations.

2. The confidence intervals are built from
(
Ŝi
m,n,k,1

)
, k = 1, . . . , NZ . In this case, we do

not use the bootstrap procedure to evaluate the uncertainty due to the Monte-Carlo
procedure. Therefore, we only take into account the one due to the meta-model.

3. The confidence intervals are built from the estimator S̃Xd1

m,n (37) with a bootstrap proce-
dure. Here, we estimate the Sobol indices with the kriging mean and we do not infer from
the uncertainty of the meta-model. Therefore, we only take into account the uncertainty
related to the Monte-Carlo estimations.

We see in Figure 7 that the confidence intervals provided by the approach presented in
Section 4 are well evaluated for indices S1 and S3. Furthermore, they are underestimated when
we take into account only the meta-model or the Monte-Carlo uncertainty. This highlights the
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relevance of the suggested approach to perform uncertainty quantification on the Sobol index
estimates. However, the coverage rate is underestimated for index S2. This is even worst if
we only consider the meta-model error. This may be due to a poor learning in the direction
x2 for the the surrogate model. This emphasizes that the suggested method is valid only if
the kriging variance well represents the modeling error.
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Figure 7: Empirical 95% confidence intervals with respect to the number of observations n for
S1 (a), S2 (b) and S3 (c). The empirical coverage rates are evaluated from 200 kriging models
built from different random LHS.

7 Application of multi-fidelity sensitivity analysis

In this section, we illustrate the multi-fidelity co-kriging based sensitivity analysis presented
in Section 5 on an example about a spherical tank under internal pressure.

7.1 Presentation of the problem

The scheme of the considered tank is presented in Figure 8. We are interested in the von
Mises stress on the point labeled 1 in Figure 8. It corresponds to the point where the stress is
maximal. The von Mises stresses are of interest since the material yielding occurs when they
reach the critical yield strength.
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Figure 8: Scheme of the spherical tank under pressure.

The system illustrated in Figure 8 depends on 8 parameters:

• P (MPa) ∈ [30, 50]: the value of the internal pressure.

• Rint (mm) ∈ [1500, 2500]: the length of the internal radius of the shell.

• Tshell (mm) ∈ [300, 500]: the thickness of the shell.

• Tcap (mm) ∈ [100, 300]: the thickness of the cap.

• Eshell (GPa) ∈ [63, 77]: the Young’s modulus of the shell material.

• Ecap (GPa) ∈ [189, 231]: the Young’s modulus of the cap material.

• σy,shell (MPa) ∈ [200, 300]: the yield stress of the shell material.

• σy,cap (MPa) ∈ [400, 800]: the yield stress of the cap material.

The von Mises stress z2(x), x = (P,Rint, Tshell, Tcap, Eshell, Ecap, σy,shell, σy,cap) is provided by
an finite elements code, called Aster, modelling the tank under pressure. The material prop-
erties of the shell correspond to high quality aluminums and the ones of the cap corresponds
to steels from classical to high quality.

The cheaper version z1(x) of z2(x) is obtained by the 1D simplification of the tank corre-
sponding to a perfect spherical tank, i.e. without the cap:

z1(x) =
3

2

(Rint + Tshell)
3

(Rint + Tshell)3 −R3
int

P

7.2 Multi-fidelity model building

We present here the construction of the model presented in Section 5.
First, we build two LHS design sets D̃1 and D2 of size n1 × 8 and n2 × 8 optimized with

respect to the centered L2-discrepancy criterion, with n1 = 100 and n2 = 20. We note that
the input parameter x is normalized so that the measure µ(x) of the input parameters is
uniform on [0, 1]8. In order to respect the nested property for the experimental design sets,
we remove from D̃1 the n2 points that are the closest to those of D2 and we set that D1 is
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the concatenation of D2 and D̃1. This procedure ensures that D2 ⊂ D1 without operating
any transformation on D2.

Second, we run the expensive code z2(x) on points in D2 and the coarse code z1(x) on
points in D1. The CPU time of the expensive code is around 1 minute. Furthermore, in order
to have a fair illustration, we consider that the CPU time of the coarse code z1(x) is not
negligible and we restrict its runs to n1 = 100.

Third, we use tensorised 5/2-Matérn covariance kernels for σ2
1r1(x, x̃) and σ2

2r2(x, x̃) with
characteristic length scales (θi1)i=1,...,8 and (θi2)i=1,...,8. Furthermore, we set that the regression
functions are constants, i.e. f1(x) = 1 and f2(x) = 1.

The estimates of the characteristic length scales are given in Table 2.

θ̂1 1.71 1.38 1.97 1.98 1.98 1.99 1.95 1.41

θ̂2 1.83 1.89 0.5 1.93 1.93 0.64 1.89 0.79

Table 2: Maximum likelihood estimates of the characteristic length scales of the tensorised
5/2-Matérn covariance kernels used in the multi-fidelity co-kriging model. θ̂1 represents the
estimates for the code level 1 and θ̂2 represents the ones for the bias between the code levels
1 and 2.

The estimates of the characteristic length scales given in Table 2 show that the model is
very smooth. Then, Table 3 gives the posterior mean of the parameters (ρ1,β2) and β1 and
the restricted maximum likelihood estimate of σ2

1 and σ2
2 .

β̂1 148.67

(ρ̂1, β̂2) (0.92, 57.61)

σ̂2
1 495.63

σ̂2
2 551.07

Table 3: Posterior means of the trend parameters β1 and β2 and the adjustment parameter
ρ1 and maximum likelihood estimates of the variance parameters σ2

1 and σ2
2.

The parameter estimates presented in Table 3 show that there is an important bias between
the cheap code and the expensive code since β̂2 ≈ 58 whereas the trend of the cheap code is
β̂1 ≈ 150. In particular, it is greater than the standard deviation of the bias which is σ̂2 ≈ 23.
Then, the posterior mean of the adjustment parameter ρ̂1 = 0.92 does not indicate a perfect
correlation between the two levels of code. Indeed, the estimated correlation between z2(x)
and z1(x) is 0.77. Furthermore their estimated variance equals 1514 for z2(x) and 810 for
z1(x). In fact, the adjustment parameter:

ρ1 =
cov(Z2(x), Z1(x))

var(Z1(x))

represents both the correlation degree and the scale factor between the codes z2(x) and z1(x).
Finally, we can estimate the accuracy of the suggested model with a Leave-One-Out cross

validation procedure. From the Leave-One-Out errors, we estimate the Nash-Sutcliffe model
efficiency Eff LOO = 83%. This means that the suggested multi-fidelity co-kriging model
explains 83% of the variability of the model. We note that the closer Eff LOO is to 1, the
more accurate is the model. Therefore, we have an excellent model despite the small number
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of observations n2 = 20 used for the expensive code z2(x). In order to strengthen this result,
we test the multi-fidelity model on an external test set of 7, 000 points and the estimated
efficiency is 86% which is even better.

7.3 Multi-fidelity sensitivity analysis

Now let us perform a multi-fidelity sensitivity analysis using the approach presented in Sub-
section 5.2. We are interested in the first-order sensitivity indices.

The principle of the method is to sample from the distribution (32) using Algorithm 2.
We note that we use the Monte-Carlo estimator (10) instead of (9) since it is asymptotically
efficient for the first-order indices We repeat the algorithm 2 to have NZ = 200 realizations of
the predictive distribution [Z2(x)|Z

(2) = z
(2),σ2] and for each realization we generate B = 150

bootstrap samples. Furthermore, we choose m = 20, 000 for the Monte-Carlo sampling size so
that the error due to the Monte-Carlo integrations is negligible compared to the one due to
the surrogate modelling (see Subsection 4.2 and 6.4).

Sensitivity analysis for the cheap code.

First, let us present the result of the sensitivity analysis for the cheap code. As emphasized
in Subsection 5.2, once samples with respect to the distribution [Z2(x)|Z

(2) = z
(2),σ2] are

available, samples for [Z1(x)|Z
(1) = z

(1), σ2
1 ] are also available. Therefore, from them we can

perform a sensitivity analysis as presented in Section 4. Moreover, from the explicit formula
of z1(x) we expect that only the three variables P , Rint and Tshell have an impact on the
output.

The result of the sensitivity analysis for the cheap code z1(x) is given in Figure 9. We
see in Figure 9 that only the three parameters P , Rint and Tshell are influent as expected.
Furthermore, the internal pressure is the most important parameter whereas the geometrical
parameter Rint and Tshell have equivalent impact on the output. The sum of the first-order
sensitivity index means informs us that 97% of the variability of the output is explained by
the first-order indices. The interactions between the parameters are thus negligible. Further,
we see that the confidence intervals are tight and that the uncertainty on the Sobol index
estimator is essentially due to the Monte-Carlo integrations. This means that the model’s
error on the cheap code is very low.
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Figure 9: Kriging based sensitivity analysis for the cheap code. The diamonds represent the
means of the first-order sensitivity index estimators, the solid gray lines represent the 95%
confidence intervals taking into account only the meta-modelling uncertainty and the dashed
lines represent the 95% confidence intervals taking into account the uncertainty due to both
the Monte-Carlo integrations and the meta-modelling. The means and the confidence intervals
are obtained with Algorithm 1.

Sensitivity analysis for the expensive code.

Second, we perform a sensitivity analysis for the expensive code z2(x) using the predictive
distribution [Z2(x)|Z

(2) = z
(2),σ2]. The result of the analysis is presented in Figure 10.

We see in Figure 10 that the result of the sensitivity analysis for the expensive code is
substantially different than the one for the cheap code. First, the importance measure of the
parameters P , Rint and Tshell decreases although the internal pressure P remains the most
influent parameter. Second, the material parameters Eshell, Ecap, σy,shell and σy,cap have still a
negligible influence except for the rigidity of the cap Ecap. Then, the most noticeable difference
is for the thickness of the cap Tcap which is now the second most important parameter. Then
the sum of the index estimator means equals 96.7%. This means that the first-order indices
still explain the main part of the model variability.

The hierarchy between the parameters can be easily interpreted. Indeed, the coarse code
corresponds to the approximation of the tank without the cap. Therefore, it is natural that
the parameters related to the cap have no influence. On the contrary, for the expensive
code, we are interested in the von Mises stress at the junction between the cap and the shell.
Consequently, the parameters related to the cap have now an influence. However, it was
difficult to have a prior on the impact of the cap. We deduce from this analysis that it is in
fact very important.

Influences of material parameters are negligible because the model stands in the regime of
elastic deformations. It is thus physically coherent. In fact, they would be more influent in a
plastic deformation regime which can occur for more important internal pressure P .

The other important differences between the two sensitivity analysis is the magnitude of
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the confidence intervals. Indeed, we see in Figure 10 that, contrary to the cheap code, the
confidence intervals for the sensitivity index estimators of the expensive code are very large.
Therefore, despite the good multi-fidelity approximation of the expensive code, we have an
important uncertainty on it. This is natural since we only use 20 runs of z2(x) to learn it.
Finally, we note that the most important uncertainty is for Tcap. This is explained by the
fact that this parameter is not considered by the cheap code. Therefore, z1(x) brings no
information about Tcap contrary to Rint, Tshell and P .
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Figure 10: Co-kriging based sensitivity analysis for the expensive code. The diamonds rep-
resent the means of the first-order sensitivity index estimators, the solid gray lines represent
the 95% confidence intervals taking into account only the meta-modelling uncertainty and the
dashed lines represent the 95% confidence intervals taking into account the uncertainty due
to both the Monte-Carlo integrations and the meta-modelling.

8 Conclusion

This paper deals with the sensitivity analysis of complex computer codes using Gaussian
process regression. The purpose of the paper is to build Sobol index estimators taking into
account both the uncertainty due to the surrogate modelling and the one due to the numerical
evaluations of the variances and covariances involved in the Sobol index definition. The aim
is to provide relevant confidence intervals for the index estimator.

To provide such estimators, we suggest a method which mixes a Gaussian process regression
model with Monte-Carlo based integrations. From it, we can quantify the impact of both the
Gaussian process regression and the Monte-Carlo procedure on the index estimator variability.
In particular, we present a procedure to balance these two sources of uncertainty. Furthermore,
we suggest numerical methods to avoid ill-conditioned problems and to easily handle the
suggested index estimator.

Then, we propose an extension of the suggested approach for multi-fidelity computer codes.
These codes have the characteristic to have coarser but computationally cheaper versions.
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They are of practical interest since they allow for dealing with the problem of very expensive
simulations. To deal with these codes, we use a multivariate Gaussian process regression
model called Multi-fidelity co-kriging.

Finally, we perform several numerical tests which confirm the relevance of this new ap-
proach. We illustrate the suggested strategy on an academic example for the univariate case
and with a real application on a tank under internal pressure for the multi-fidelity analysis.

From this work, two points can naturally be investigated. First, we could improve the un-
certainty quantification for the meta-model. Indeed, in this paper, we do not take into account
the uncertainty due to the estimation of the hyper-parameters of the covariance kernels. This
can imply an underestimation of the predictive variance and thus it can be worth inferring
from these parameters. The natural way to perform such analysis is to use a full-Bayesian
approach. Second, the meta-model considered is built from a fixed experimental design set.
Several methods exist to sequentially add new points on the design in order to perform opti-
mization, to quantify a probability of failure or to improve the accuracy of the meta-model.
However, no methods focus on the error reduction of the sensitivity index estimates. It would
be of practical interest to develop sequential design strategies for a sensitivity analysis purpose.
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