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Abstract. Elliptic partial differential equations are important both from application and anal-
ysis points of views. In this paper we apply the Closest Point Method to solve elliptic equations
on general curved surfaces. Based on the closest point representation of the underlying surface, we
formulate an embedding equation for the surface elliptic problem, then discretize it using standard
finite differences and interpolation schemes on banded, but uniform Cartesian grids. We prove the
convergence of the difference scheme for the Poisson’s equation on a smooth closed curve. In order to
solve the resulting large sparse linear systems, we propose a specific geometric multigrid method in
the setting of the Closest Point Method. Convergence studies both in the accuracy of the difference
scheme and the speed of the multigrid algorithm show that our approaches are effective.
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1. Introduction. Partial differential equations (PDEs) on surfaces are impor-
tant for many applications in engineering [25], material science [26], biology [22], and
image processing [28]. In all these applications, numerical algorithms are essential for
solving PDEs. There are a variety of techniques for solving surface PDEs numerically,
typically depending on the geometrical representation of the underlying surface:

• One can find a parametrization of the surface [11], formulate and solve the
PDE in the parameter space.

• One can also find a triangulation or a polygonal approximation of the surface,
and solve the PDE on the approximated surface by finite differences [29] or
finite elements [7, 8].

• Based on a level set representation of the surface, one can formulate an embed-
ding PDE corresponding to the surface PDE, then use either finite differences
[2, 13] or finite elements [5, 9, 6] to numerically solve the PDE in the embed-
ding space. This level set approach is desirable for PDEs on moving surfaces
[32, 10].

• Based on a closest point representation of the surface, one can also formulate
an embedding equation (in a different way from the level set approach), then
solve the embedding equation in a banded, uniform Cartesian grid with finite
differences [24, 19, 20]. This approach is called the Closest Point Method.

• Starting from a point cloud (supposed to be sampled from the surface), one
can reconstruct the surface by radial basis functions, and solve the PDE on
the reconstructed surface via the radial basis function finite difference method
[23, 12]. There are also other approaches to compute on point clouds with no
reconstruction procedure [18] or with only local reconstruction [16].

In this paper we will adopt the Closest Point Method, and focus on solving elliptic
PDEs on surfaces. Similarly to the level set approach, the Closest Point Method
extends the surface PDE to the embedding space of the surface in such a way that
the embedding equation agrees with the original PDE on the surface. However, the
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Closest Point Method extends the solution via the closest point extension so that
the extended solution is constant along the normals to the surface, and thus the
Cartesian differential operators agree with the surface intrinsic differential operators
on the surface. One does not need to modify the Cartesian differential operators as
in the case of the level set approach.

The Closest Point Method has been successfully applied to solving a wide vari-
ety of time-dependent PDEs [24, 19, 20] and eigenvalue problems for the Laplace–
Beltrami operator [17] on surfaces, but less attention has been paid to solving elliptic
problems. Motivated by constructing implicit schemes for the in-surface heat equa-
tion, Macdonald and Ruuth [20] propose a way to discretize the embedding operator
corresponding to the Laplace–Beltrami operator; this idea is also successfully applied
to solving eigenvalue problems for the Laplace–Beltrami operator on surfaces [17].
One can apply the approach in [20, 17] to deal with the elliptic operators, but this
requires a properly extended right-hand side function from the surface to the embed-
ding space. A simple closest point extension of the right-hand side seems to work
in practice but the resulting schemes are hard to analyze because the solutions are
not constant in the direction of the normal of the surface. We discuss this further in
Section 2.3.

To overcome this issue, we formulate an embedding equation for the surface el-
liptic problem using a different approach from [20, 17]. The new embedding equation
agrees with the original PDE on the surface and has a solution which is constant
along the normals to the surface. Similar ideas have been investigated for method-
of-lines approaches to solve time-dependent problems involving more general surface
differential operators [31], but here we focus on elliptic problems. We then construct
a finite difference scheme which is consistent with the embedding equation. Further-
more, for the shifted Poisson’s equation on a smooth closed curve embedded in R2,
we prove that the difference scheme is second-order convergent in the ∞-norm under
some smoothness assumptions.

The difference scheme yields a sparse linear system. If S is a curve in R2, the
resulting linear system can be easily solved by sparse direct solvers such as Matlab’s
backslash; but if S is a surface in R3 or higher-dimensional spaces, efficient iterative
solvers are needed. We propose a specific geometric multigrid algorithm in the setting
of the Closest Point Method, making full use of the closest point representation of the
surface and uniform Cartesian grids surrounding the surface.

The rest of the paper is organized as follows. In Section 2 we formulate the em-
bedding equation for the surface elliptic problem. In Section 3 we discretize the em-
bedding equation for the surface Poisson problem, and analyze the difference scheme;
we also provide some numerical examples for Poisson equations on closed curves in R2

to validate our analysis. In Section 4, motivated by solving the large sparse linear sys-
tems arising from problems where the embedding space is R3 or higher, we propose a
V-Cycle Multigrid algorithm based on the closest point representation of the surface.
We then present examples on various surfaces and with variable diffusion coefficients
to show the efficiency of our specific V-Cycle Multigrid algorithm. In Section 5 we
draw several conclusions and discuss some future work.

2. Continuous embedding equation.

2.1. Embedding equation for surface Poisson problem. For ease of deriva-
tion, we first focus on the shifted Poisson’s equation on a smooth closed surface S:

−∆Su(y) + cu(y) = f(y), y ∈ S, (2.1)
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where f(y) is a continuous function defined on the surface S, and we assume c to be
a positive constant for simplicity.1 Since c > 0, (2.1) has a unique solution.

Because S is smooth, there is a tubular neighborhood B(S) surrounding S [15, 21]
such that the following function is well defined in B(S). We define the (Euclidean)
closest point function cp : B(S) → S such that for each point x ∈ B(S), cp(x) is a
surface point which is closest to x in Euclidean distance [24]. We want to define an
embedding equation in B(S), whose solution agrees with the solution of the surface
PDE (2.1) on S.

We construct the right-hand side function f̃ in B(S) via the closest point exten-
sion,

f̃(x) = f(cp(x)), x ∈ B(S).

From this construction of f̃ and the idempotence of the closest point extension, we
have that

f̃(x) = f̃(cp(x)), x ∈ B(S). (2.2)

We also want to find a solution ũ in the band B(S) which is constant along the normal
direction to the surface, i.e., we will need to impose this condition on ũ,

ũ(x) = ũ(cp(x)), x ∈ B(S). (2.3)

Since ũ is constant along the normal direction to the surface, the Cartesian Lapla-
cian of ũ equals the Laplace–Beltrami function of ũ on the surface [24], and thus

−∆ũ(y) + cũ(y) = f̃(y), y ∈ S.

Replacing y with cp(x), we have

−[∆ũ](cp(x)) + cũ(cp(x)) = f̃(cp(x)), x ∈ B(S).

Here the square bracket [·] surrounding ∆ũ means that we first calculate the Cartesian
Laplacian of ũ(x), and then evaluate at the closest point of x on the surface. By
assumption, both f̃ and ũ are closest point extensions ((2.2) and (2.3)), so we have

−[∆ũ](cp(x)) + cũ(x) = f̃(x), (2.4a)

subject to ũ(x) = ũ(cp(x)), x ∈ B(S). (2.4b)

Equation (2.4a) ensures that the embedding equation agrees with the original
surface PDE on the surface, and we will call it the consistency condition. Equation
(2.4b) forces ũ to be constant along the normal direction to the surface (so that we can
replace the surface Laplacian with the Cartesian Laplacian), and we will call it the
side condition. Combining the two equations (2.4a) and (2.4b), we get the embedding
equation,

− [∆ũ](cp(x)) + cũ(x) + γ(ũ(x)− ũ(cp(x))) = f̃(x), x ∈ B(S), (2.5)

where γ is a parameter. As we shall show next, the choice of γ does not have much
impact on the continuous equation (2.5); but later in our numerical scheme, γ plays
a role in balancing the side and consistency conditions.

1 Our derivations and proofs also work for the case where c(y) is a surface function satisfying
c(y) ≥ C > 0, where C is a positive constant.
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So far we have shown that the system (2.4) leads to equation (2.5). Following
the ideas of [31], we are going to show that in the continuous setting and if γ 6= −c,
equation (2.5) implies both equations (2.4a) and (2.4b). We rearrange equation (2.5)
as

− [∆ũ+ γũ](cp(x)) = f̃(x)− (γ + c)ũ(x), x ∈ B(S). (2.6)

Here the square bracket [·] surrounding ∆ũ + γũ means that we first calculate the
Cartesian Laplacian of ũ(x) and add the result with γũ(x), then evaluate the function
∆ũ+ γũ at the closest point of x on the surface. The left-hand side of equation (2.6)
is constant along the direction normal to S, so the right-hand side f̃(x)− (γ+ c)ũ(x)
also has to be constant along the normal direction to S, i.e.,

f̃(x)− (γ + c)ũ(x) = f̃(cp(x))− (γ + c)ũ(cp(x)).

Since f̃(x) = f̃(cp(x)), if γ 6= −c, we have that ũ(x) = ũ(cp(x)), i.e., equation
(2.4b) holds. Substituting (2.4b) back into equation (2.5), we have that equation
(2.4a) holds. In other words, from equation (2.5) with γ 6= −c, we derive that both
equations (2.4a) and (2.4b) hold.

In summary, our logic is as follows: in order to solve the original surface PDE
(2.1), we seek ũ(x) in B(S) satisfying both the consistency condition (2.4a) and the
side condition (2.4b), which is in turn equivalent to equation (2.5) (provided γ 6= −c).
So from now on we can focus on equation (2.5).

2.2. More general elliptic operators. The above ideas extend naturally to
more general linear surface elliptic PDEs,

−∇S · (A(y)∇Su(y)) + c(y)u(y) = f(y), y ∈ S, (2.7)

where A(y) is a symmetric and semi-positive definite matrix.
Again we construct f̃(x) = f(cp(x)), x ∈ B(S), and would like to enforce the side

condition ũ(x) = ũ(cp(x)) for the solution ũ defined in B(S). Using the generalized
closest point principle ([21, Theorem 4.3]), the following equations agree with surface
PDE (2.7) on the surface,

−[∇ · (A(cp(x))∇ũ)](cp(x)) + cũ(x) = f̃(x), (2.8a)

subject to ũ(x) = ũ(cp(x)), x ∈ B(S). (2.8b)

Here the square bracket [·] surrounding ∇·(A(cp(x))∇ũ) means that we first perform
the gradient on ũ, multiply it by A(cp(x)), then take the divergence, and finally
evaluate the results at cp(x). Adding (2.8a) and (2.8b) together, we have

− [∇·(A(cp(x))∇ũ)](cp(x))+cũ(x)+γ(ũ(x)− ũ(cp(x))) = f̃(x), x ∈ B(S), (2.9)

Similarly to the Poisson case in Section 2.1, we have the following equivalence
relationship.

Theorem 2.1.
1. If ũ ∈ B(S) is a solution of (2.8), then ũ is a solution of (2.9).
2. If ũ ∈ B(S) is a solution of (2.9), and γ 6= −c, then ũ is a solution of (2.8).

Proof. The ideas are similar to the Poisson case in Section 2.1, the only difference
is that we replace ∆ũ with ∇ · (A(cp(x))∇ũ).
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We focus our derivation and analysis on the surface Poisson problem via the
embedding equation (2.5). In most cases it is straightforward to extend our approach
to more general elliptic operators (e.g., we look at variable diffusion coefficients in
Section 4.6.6).

As we shall see later in our numerical discretization, by choosing suitable γ in
(2.5) we can get a consistent and stable numerical scheme. From (2.5), no boundary
conditions for the Laplacian operator are needed at the boundary of the band B(S),
since we only need to evaluate ∆ũ at the closest points on the surface. We simply
need a band large enough to enable this evaluation.

2.3. A comparison with the Macdonald–Brandman–Ruuth approach.
If we apply the approach in [20, 17] to the Laplace–Beltrami operator in (2.1), and
extend the right hand side via the closest point extension, then we get the following
continuous embedding equation,

−∆(ũ(cp(x))) + cũ(x) + γ(ũ(x)− ũ(cp(x))) = f̃(x), x ∈ B(S). (2.10)

Note that the only difference between (2.5) and (2.10) is that in (2.5) we first perform
the Cartesian Laplacian operator on ũ and then evaluate at cp(x), while in (2.10) we
first do the closest point extension of ũ and then perform the Laplacian. One can
show (similarly to [17]), that equation (2.10) agrees with the original surface PDE
(2.1) on the surface, and it has a unique solution provided that γ 6= −c. We can
re-arrange (2.10), solving for ũ(x), to obtain

ũ(x) =
1

c+ γ

(
f̃(x) + γũ(cp(x)) + ∆(ũ(cp(x)))

)
.

From this, ũ is not constant along the normals to S because ∆(ũ(cp(x))) is not
constant along the normals. This makes analysis of the method difficult. Furthermore,
it would also be difficult to make ũ constant along the normals to S by modifying the
right-hand side (e.g., via some other method of extension).

In contrast, our new embedding equation (2.5) not only agrees with the original
surface PDE (2.1) on the surface, but also has a solution ũ which is constant in
the normal direction to S. The latter property is crucial to the consistency and
stability analysis for our numerical discretization in the next section. In addition
to these advantages for analysis, (2.5) can lead to a consistent discretization with a
sparser coefficient matrix than the one resulting from (2.10); we discuss this further
in Remark 3.2. Furthermore, as we shall see in Section 4, the construction of our
multigrid solver relies on the property of ũ being constant along the normal direction
to S; it would not be straightforward to design a multigrid solver starting from (2.10)
since it gives a solution that is not constant along the normals. Finally, as noted in
Section 2.2, our new approach extends naturally to non-constant-coefficient problems.

3. Numerical discretization. Similar to [20], we derive a matrix formulation
of a finite difference scheme for the embedding equation (2.5).

3.1. Construction of the difference scheme. Suppose the surface S is em-
bedded in Rd, and a uniform Cartesian grid is placed in the embedding space. When
discretizing u(cp(x)), we need to assign the value at each grid point x to be the value
at the corresponding closest point cp(x); since the closest point is generally not a grid
point, its value is obtained through interpolation of values at the surrounding grid
points. Similarly to [20], we use tensor product Barycentric Lagrange interpolation
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Fig. 3.1. Examples of the lists of grid points
Binterp (indicated by •) and Bedge (indicated by
◦) where the curve S is a circle. The interpolation
stencil is a 4× 4 grid (arising, for example, from
using degree 3 barycentric Lagrange interpolation)
and the shaded regions illustrate the use of this
stencil at the three points on the circle indicated by
�. Five-point difference stencils are shown for two
example points in Binterp, in one case illustrating
the use of points in Bedge.
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[1], where the interpolated value is a linear combination of the values at neighboring
grid points in a hypercube. We call these grid points neighboring the closest point
cp(x) the interpolation stencil of the scheme.

We also use standard finite difference schemes (e.g., the 1
∆x2 {−4, 1, 1, 1, 1} rule

for the Laplacian in 2D), and this requires a difference stencil for each grid point.
Let us review the definition of the two lists of discrete points in [20]. The first

list Binterp = {x1,x2, ...,xm} contains every grid point which can appear in the
interpolation stencil for some point on the surface S. The second one Bedge =
{xm+1,xm+2, ...,xm+me} contains points which are not in Binterp but appear in the
difference stencil of some point in Binterp. Figure 3.1 shows an example of the two
lists Binterp and Bedge where the curve S is a circle embedded in R2. Let B be a set
of grid points such that Binterp ∪ Bedge ⊆ B. Let n = ‖B‖ be the number of points
in B. We introduce the vector uh ∈ Rn with entries ui ≈ ũ(xi) for each grid point
xi ∈ B, and similarly, fh ∈ Rn with entries fi = f̃(xi).

There are two closest point extensions in (2.5); we can use different degrees of
interpolation for the closest point evaluations of ∆ũ and ũ. If we use degree p inter-
polation for [∆ũ](cp(x)), and degree q interpolation for ũ(cp(x)), then for each grid
point xi ∈ B, we have the following discretized equation,

−
∑

xj∈Ip(cp(xi))

ωj

( ∑
xk∈Diff(xj)

lkuk

)
+ cui + γ

(
ui −

∑
xj∈Iq(cp(xi))

ω̄juj

)
= fi. (3.1)

Here Ip(cp(xi)) is the degree p interpolation stencil for point cp(xi), Diff(xj) is the dif-
ference stencil for point xj , and Iq(cp(xi)) is the degree q interpolation stencil for point
cp(xi); ωj are the weights of the interpolation scheme for evaluating [∆ũ](cp(x)), ω̄j
are the weights of the interpolation scheme for evaluating ũ(cp(x)), and lk are the
weights for the difference scheme approximating the Laplacian operator.

Since the interpolation and difference schemes are linear combinations of the
entries of uh, we can write equation (3.1) in matrix form. Denote the discrete solution
by a column vector uh, the discrete right-hand side function by a vector fh, the
identity matrix by Ih, the closest point interpolation matrices of degree p and q by
Ehp and Ehq , and the discrete Laplace matrix by Lh. The matrix form of the difference
scheme for the embedding equation (2.5) is

− EhpLhuh + cuh + γ(Ih − Ehq )uh = fh. (3.2)

We recall that the points in Bedge do not belong to any of the interpolation stencils,
which means that the columns in Ehp corresponding to points in Bedge are all zero
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columns, so the rows in Lh corresponding to points in Bedge can vary arbitrarily while
EhpL

h stays unchanged. Thus we see that no boundary condition for the discrete
Laplace matrix is needed, since the discrete Laplacian at any points in Bedge does not
contribute to the closest point evaluation of Lhuh.

As mentioned before, γ is a parameter balancing the side and consistency condi-
tions. As pointed out in [20], a typical choice of γ is 2d

∆x2 , where d is the dimension
of the embedding space and ∆x is the grid size. In [20], this choice of γ is motivated
by stabilizing the implicit time-stepping scheme for the in-surface heat equation.

The choice of γ = 2d
∆x2 is not obvious simply from (3.2), but it turns out to be

a good choice there. In Section 3.3 we show that for the shifted Poisson’s equation
on a closed curve embedded in R2, the coefficient matrix corresponding to (3.2) is
diagonally dominant by rows when we choose γ = 2d

∆x2 , p = 1, q = 3, and Lh as the
Laplacian matrix from the standard centered finite difference scheme.

3.2. Truncation error. In this section, we show that the difference scheme
(3.2) is consistent for the embedding equation (2.5) provided that ũ is sufficiently
differentiable.

We denote the restriction operator which evaluates the continuous function at the
grid points by Rh, and denote the coefficient matrix in the difference scheme (3.2) by
Ah, i.e.,

Ah = cIh −Mh, where Mh = EhpL
h − γ(Ih − Ehq ). (3.3)

Then we prove a theorem showing the form of the truncation error.
Theorem 3.1. Assume that ũ ∈ Ck(Rd) is a solution of (2.5), where d is

the dimension of the embedding space and k ≥ max{4, p + 3, q + 1} (p and q are
the polynomial interpolation degrees for the discrete closest point extension of ∆ũ
and ũ respectively). Let Lh be a second-order (in the ∞-norm) approximation to
the Cartesian Laplacian ∆, and γ = O( 1

∆x2 ). We have the following form of the
truncation error,2

AhRhũ(x)−Rhf̃(x) = O(∆xp+1) +O(∆xq−1) +O(∆x2), (3.4)

where Ah is as given in (3.3), and Rh is the restriction operator mentioned before.
Proof. Let w(x) = ∆ũ(x), x ∈ B(S); then w(x) ∈ Ck−2(Rd). As mentioned

before, since ũ is constant along directions normal to S, w(y) = f̃(y) for any y ∈ S.
We evaluate w at the closest points on S through degree p interpolation, which will
introduce an interpolation error. Since k ≥ p+ 3, k− 2 ≥ p+ 1, we have the following
standard error estimate for degree p polynomial interpolation,

EhpR
hw(x)−Rhf̃(x) = O(∆xp+1). (3.5)

Furthermore, since ũ ∈ Ck(Rd), k ≥ 4, the Laplacian matrix Lh is a second-order
approximation to ∆, we have that

Rhw(x) = LhRhũ(x) +O(∆x2). (3.6)

Plugging (3.6) into (3.5), we get

Ehp (LhRhũ(x) +O(∆x2))−Rhf̃(x) = O(∆xp+1),

2If v is a column vector, then by v = O(∆xk) we mean that ‖v‖∞ ≤ C∆xk, where k and C are
positive constants.



8 Y.-J. CHEN AND C. B. MACDONALD

Since we are using local polynomial interpolation, ‖Ehp ‖∞ is bounded above by some

constant independent of ∆x, so EhpO(∆x2) = O(∆x2); and thus we get

EhpL
hRhũ(x)−Rhf̃(x) = O(∆xp+1) +O(∆x2). (3.7)

Finally, we estimate the error of evaluating ũ(cp(x)) by degree q interpolation. Be-
cause ũ ∈ Ck(Rd) and k ≥ q+ 1, once again we have the standard interpolation error
estimation,

(Ih − Ehq )Rhũ(x) = O(∆xq+1). (3.8)

Multiplying equation (3.8) by γ = O( 1
∆x2 ) and adding the results with equation (3.7),

we have that equation (3.4) holds. �
Remark 3.2. According to (3.4), if we pick p = 1, q = 3, we will get a difference

scheme for the embedding equation (2.5) with second-order truncation error in the
∞-norm. Contrasting this discretization with the method of Macdonald–Brandman–
Ruuth [17, 20], we note that discretizing (2.10) to second-order consistency requires
cubic interpolations in both terms. Because lower degree interpolations have smaller
stencils, a discretization of (2.5) will yield a coefficient matrix that is sparser than
that of (2.10). For example, for a curve in 2D, our new approach is roughly 34%
sparser and 50% for a surface in 3D.

3.3. Convergence for a closed curve in 2-D. In this section, we aim to prove
convergence of the difference scheme (3.2) in the restricted case of a closed curve in
2D.

Theorem 3.3. Suppose that we wish to solve the embedding equation (2.5) on a
smooth closed curve in R2, and the solution ũ of the embedding equation satisfies the
assumptions in Theorem 3.1. If in (3.2) we choose γ = 4

∆x2 , p = 1, q = 3, and Lh

as the Laplacian matrix from the standard 1
∆x2 {−4, 1, 1, 1, 1} finite difference stencil,

then the difference scheme (3.2) is second-order convergent in the ∞-norm.
If the embedding space is R2, when picking γ = 4

∆x2 , and p = 1, q = 3, the
coefficient matrix becomes

Ah = cIh −Mh, where Mh = Eh1L
h − 4

∆x2
(Ih − Eh3 ). (3.9)

We prove Theorem 3.3 using the following theorem and two propositions.
Theorem 3.4. If the embedding space is R2, then Ah defined by (3.9) (i.e., γ =

4
∆x2 , p = 1, q = 3, and Lh is the Laplacian matrix from the standard 1

∆x2 {−4, 1, 1, 1, 1}
finite difference stencil) is an M-Matrix, with positive diagonal entries akk > 0, non-
positive off-diagonal entries akj ≤ 0, k 6= j, and each row sums up to c:

akk +
∑
k 6=j

akj = c. (3.10)

Proposition 3.5. (Varah 1975 [30]) Assume that A is diagonally dominant by
rows and set c = mink(|akk| −

∑
j 6=k |akj |). Then ‖A−1‖∞ ≤ 1/c.

Proposition 3.6. If ‖(Ah)−1‖∞ ≤ 1/c, then the difference scheme (3.2) is
second-order convergent in the ∞-norm provided that the scheme has second-order
truncation error in the ∞-norm.

Theorem 3.4 indicates that the coefficient matrix Ah satisfies the assumption of
Proposition 3.5, which means that the claim of Proposition 3.5 holds: ‖(Ah)−1‖∞ ≤
1/c; and this is in turn the assumption of Proposition 3.6, so the claim of Proposition
3.6 holds. Putting the theorem and propositions together, Theorem 3.3 holds.
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Proof of Proposition 3.6. Choosing p = 1, q = 3, the truncation error estimate
(3.4) becomes AhRhũ(x)−Rhf̃(x) = O(∆x2). From the discrete linear system (3.2)
we have that Ahuh − Rhf̃(x) = 0. Subtracting these two results gives Ah(uh −
Rhũ(x)) = O(∆x2). Because the∞-norm of (Ah)−1 is bounded by a positive constant
1/c, which is independent of ∆x, we get uh − Rhũ(x) = (Ah)−1O(∆x2) = O(∆x2),
i.e., the difference scheme (3.2) is second-order convergent in the ∞-norm. �

Proof of Theorem 3.4. The proof contains two steps.

Step 1. We first show that each row of Mh sums up to zero.

Taking all ui to be 1 in equation (3.1), the left-hand side minus c becomes

−
∑

xj∈Ip(cp(xi))

ωj

( ∑
xk∈Diff(xj)

lk

)
+ γ

(
1−

∑
xm∈Iq(cp(xi))

ω̄m

)
. (3.11)

Consistency of the finite difference scheme implies that
∑
xk∈Diff(xj) lk = 0, for any xj ∈

L. By the construction of the interpolation weights,
∑
xm∈Iq(cp(xi))

ω̄m = 1. So (3.11)

equals 0, i.e., each row of Mh sums up to zero.

Step 2. We then prove that all the off-diagonal entries of Mh are non-negative,
thus all the diagonal entries are non-positive since each row of Mh sums up to zero.
For convenience (not necessity) we first rearrange Mh as

Mh = Eh1 (Lh +
4

∆x2
Ih) +

4

∆x2
(Eh3 − Eh1 )− 4

∆x2
Ih.

S

∆x

∆x

a

b

(a) Relative position of the
closest point � in the stencil

00

10

20

30

01

11

21

31

02

12

22

32

03

13

23

33

(b) Local index for points in
the stencil

+ − − +

− + + −

− + + −

+ − − +

(c) Signs of the weights of
bi-cubic interpolation for the
closest point �

Fig. 3.2. Information for a 4× 4 stencil surrounding the closest point �.

We then investigate the result of multiplying the i-th row of Mh by the column
vector uh. Figure 3.2(a) shows the position of cp(xi) (indicated by �). cp(xi) is in
the middle block of the bi-cubic interpolation stencil, and its relative position in the
stencil is as shown in Figure 3.2(a). For clarity of notation, we number the points in
the bi-cubic interpolation stencil by a local index as shown in Figure 3.2(b). Denote
the points in the stencil with respect to the local index by Xlm (0 ≤ l,m ≤ 3), the
corresponding values at these points by Ulm (0 ≤ l,m ≤ 3), the bi-cubic interpolation
weights at points Xlm by ω̄lm (0 ≤ l,m ≤ 3), and the bi-linear interpolation weights
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at points Xnk by ωnk (0 ≤ n, k ≤ 1). The i-th entry of Mhuh becomes

ω11(U10 + U01 + U12 + U21)/∆x2

+ω12(U11 + U02 + U13 + U22)/∆x2

+ω21(U20 + U11 + U22 + U31)/∆x2

+ω22(U21 + U12 + U23 + U32)/∆x2

+4
( ∑

0≤l,m≤3

ω̄lmUlm −
∑

1≤l,m≤2

ωlmUlm

)
/∆x2 − 4uhi /∆x

2. (3.12)

By the notation mentioned before, Ulm (0 ≤ l,m ≤ 3) are just the values of uh at the
points in the bi-cubic interpolation stencil written in the local index. The point xi
might not be contained in the interpolation stencil, so we still write uhi in its global
index. As l,m go from 1 to 3, Xlm might or might not be xi, depending on whether
the grid point xi is in the interpolation stencil of cp(xi) or not. In either case the
negative coefficient of uhi only contributes to the diagonal entry in the corresponding
row of the matrix Mh, but the coefficient does not contribute to the off-diagonal
entries of Mh. So we only need to show that all the coefficients of Ulm, excluding
the potential contribution from the negative coefficient of uhi , are non-negative for all
0 ≤ l,m ≤ 3.

If cp(xi) coincides with some grid point xj , then all the interpolation weights
vanish except that the weight at xj is 1, so it is obvious that the above claim is true.
Now we only consider cases where cp(xi) does not coincide with any grid point, which
is the case illustrated in Figure 3.2.

In the rest of the proof, it might be helpful to keep in mind the signs of the bi-
cubic interpolation weights ω̄lm (0 ≤ l,m ≤ 3) for cp(xi) at each point of the stencil.
Figure 3.2(c) shows the signs of the bi-cubic interpolation weights for cp(xi) (indicated
by �) which is in the middle block of the bi-cubic interpolation stencil. These signs
can be obtained by straightforward computations, and they do not depend on the
precise location of cp(xi). Since we interpolate in a dimension-by-dimension fashion,
the weights at each of the points are obtained by multiplication of the corresponding
weights in the x and y directions. For instance, if we want to compute the bi-cubic
interpolation weight at the lower-left corner point ω̄00, we first compute the weight

in the x direction, ω̄x00 = −a(∆x−a)(2∆x−a)
6∆x3 , and the weight in the y direction, ω̄y00 =

− b(∆x−b)(2∆x−b)
6∆x3 , and then we multiply the weights in the two directions to get ω̄00 =

ω̄x00ω̄
y
00. Here we have used the superscripts x and y in the notations ω̄x00 and ω̄y00 to

indicate the weights in the x and y directions, respectively. We shall use this notation
in the following proof. The bi-cubic weights at other points, and the bilinear weights,
can be computed in the same way. Some of their values will be presented in the rest
of the proof when necessary.

Now let us finish the proof by calculating the coefficients of Ulm. There are three
cases for the coefficients of Ulm as l,m go from 1 to 3. We only need to verify that
for each of the three cases, the coefficients of Ulm are positive.

1. Four corner points: (l,m) = (0, 0), (0, 3), (3, 0), (3, 3).
The only contribution for the row entries corresponding to these four points
are the bi-cubic interpolation weights ω̄00, ω̄03, ω̄30, ω̄33, which happen to be
positive in 2-D.

2. Four center points: (l,m) = (1, 1), (1, 2), (2, 1), (2, 2).
There are some positive contributions from the linear combinations of the
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weights in the centered difference scheme; so we only need to show at each
of these four center points, the positive weight of the bi-cubic interpolation
minus the bi-linear interpolation weight is larger than zero. For the sake of
symmetry, we only show that ω̄11 − ω11 > 0, i.e., ω̄x11ω̄

y
11 − ωx11ω

y
11 > 0. Since

ω̄x11, ω̄y11, ωx11, and ωy11 are positive, it is enough to show that

ω̄x11 > ωx11 and ω̄y11 > ωy11. (3.13)

By straightforward computation, ω̄x11 = (∆x+a)(∆x−a)(2∆x−a)
2∆x3 , ωx11 = ∆x−a

∆x ,

ω̄y11 = (∆x+b)(∆x−b)(2∆x−b)
2∆x3 , ωy11 = ∆x−b

∆x . It is then straightforward to verify
that (3.13) holds for any 0 < a < ∆x and 0 < b < ∆x.

3. Eight edge points: (l,m) = (1, 0), (2, 0), (0, 1), (0, 2), (1, 3), (2, 3), (3, 1), (3, 2).
Again by symmetry we only need to show that the row entry corresponding
to (l,m) = (1, 0) is positive, i.e., ω11

∆x2 + 4ω̄10

∆x2 > 0, where ω11 > 0, but ω̄10 < 0.
So we need to show that |ω11| > 4|ω̄10|, i.e., |ωx11ω

y
11| > 4|ω̄x10ω̄

y
10|. In fact we

can show that

ωx11 > 6|ω̄x10|, and ωy11 ≥
8

9
|ω̄y10|. (3.14)

Again by straightforward computation, ωx11 = ∆x−a
∆x , |ω̄x10| =

a(∆x−a)(2∆x−a)
6∆x3 ,

ωy11 = ∆x−b
∆x , |ω̄y10| = (∆x+b)(∆x−b)(2∆x−b)

2∆x3 . Again one can straightforwardly
verify that (3.14) holds for any 0 < a < ∆x and 0 < b < ∆x.

Thus, Theorem 3.4 holds: the diagonal entries of Ah = cIh−Mh are all positive,
the off-diagonal entries are all non-positive, and each row sums up to c. �

Remark 3.7. The M-Matrix result of Theorem 3.4, at least for our particular
parameter choices, does not hold in 3-D. The barycentric interpolation weights at the
corners of the interpolation stencils are negative. A different convergence proof would
be required. However, in practice we still observe second-order convergence in 3-D
(Section 4.6).

3.4. Numerical examples in R2.

3.4.1. Shifted Poisson’s equation on the unit circle. We solve the shifted
Poisson’s equation −∆Su + u = f on the unit circle S; the exact solution is chosen
as sin(θ) + sin(12θ), and we compute the right-hand side function f from the exact
solution. The discrete right-hand side is then obtained by evaluating the closest
point extension of f at the grid points in the computational band. We construct
Mh = Eh1L

h − 4
∆x2 (Ih − Eh3 ), and the coefficient matrix is Ah = Ih −Mh.

Since the embedding equation is a 2D problem, sparse direct solvers (e.g. Matlab’s
backslash) work well in solving the resulting linear system. After solving the linear
system, we obtain the discrete solution defined on the banded grid points. To calculate
the errors, we then place many sample points on S, estimate the numerical solution
at these points by cubic interpolation of the values at the surrounding grid points,
and compute the ∞-norm of the errors at the sample points on S. Table 3.1 shows
second order convergence of the relative errors in the∞-norm. Alternatively, the exact
closest point extension of the exact solution can be performed onto the computational
grid, and the errors can be directly calculated at the grid points; similar results are
observed in this case.

3.4.2. Shifted Poisson’s equation on a bean-shaped curve. Again we solve
the shifted Poisson’s equation −∆Su+ u = f , but this time on a bean-shaped curve
(see Figure 3.3).
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Table 3.1
Convergence study for the shifted Poisson’s equation on a unit circle showing 2nd-order con-

vergence.

∆x 0.1 0.05 0.025 0.0125 0.00625 0.003125 0.0015625
‖u−uh‖∞
‖u‖∞ 6.51e-2 1.85e-2 4.76e-3 1.19e-3 2.97e-4 7.38e-5 1.85e-5

log2
‖u−u2h‖∞
‖u−uh‖∞

1.81 1.95 2.00 2.00 2.01 2.00
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−1.5
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−0.5
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1.5
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 y
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0

0.5

1

1.5

 x

 y

Fig. 3.3. Computational grids for the Closest Point Method on a bean-shaped curve with
∆x = 0.1 (left) and ∆x = 0.05 (right).

This bean-shaped curve is constructed from a sequence of control points in R2;
the Matlab function ‘cscvn’ [27] is used to get a parametric cubic spline curve passing
through these points. This results in (x(t), y(t)) parameterized by t ∈ [0, T ]. We
obtain a closest point representation from this parametrization as follows: we fix a
grid point, then construct the squared distance as a function of the parameter t. Next
we minimize that function (over the parameter t) using Newton’s method [3]. This is
repeated for each grid point in the computational band.

We construct the exact solution in terms of the parametrization, u(t) = sin(2π
T t)+

sin( 20π
T t). The Laplace–Beltrami operator of u in terms of this parametrization

is ∆Su(t) = 1√
ẋ(t)+ẏ(t)

d
dt

(
1√

ẋ(t)+ẏ(t)

du(t)
dt

)
. The right-hand side function is f(t) =

−∆Su(t) + u(t). Again we construct the discrete right-hand side and coefficient ma-
trix, solve the resulting linear system to get the numerical solution, and compute
the ∞-norm of the error on the bean-shaped curve. Table 3.2 shows second order
convergence results.

Table 3.2
Convergence study for the shifted Poisson’s equation on a bean-shaped curve showing 2nd-order

convergence.

∆x 0.1 0.05 0.025 0.0125 0.00625 0.003125 0.0015625
‖u−uh‖∞
‖u‖∞ 6.19e-2 1.17e-2 3.59e-3 8.77e-4 2.35e-4 5.32e-5 1.38e-5

log2
‖u−u2h‖∞
‖u−uh‖∞

2.40 1.71 2.03 1.90 2.14 1.95

4. V-Cycle Multigrid solver. In Section 3.4 we studied some numerical ex-
amples on curves in 2D, where the resulting linear systems were solved by sparse
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direct solvers (e.g., Matlab’s backslash). However, for problems where the embedding
space is R3 or higher, iterative solvers are usually more desirable. Since the geometric
multigrid method (see e.g., [4, 14]) is quite effective in solving linear systems arising
from discretizations of elliptic operators, we combine it with the Closest Point Method
to solve the linear system arising from the embedding equation corresponding to the
surface elliptic PDEs.

4.1. The Multigrid “smoother”: Jacobi iteration. One of the key ingre-
dients of a Multigrid algorithm is the “smoother” [4, 14], which damps out high-
frequency errors and thus smooths the solution at each grid level. One good choice
of “smoother” is the Jacobi iteration: suppose we want to solve Ahuh = fh, starting
from some initial uh, we update the iterates by

uh := uh + diag(Ah)−1(fh −Ahuh). (4.1)

One possible approach is to simply use this standard Jacobi iteration on the discretiza-
tion (3.3) of our embedding equation (2.5). We shall discuss this standard relaxation
strategy further in Section 4.5.

An alternative strategy, and the one we propose here is based instead on consid-
ering the earlier constrained system (2.4): we want to ensure the solution satisfies the
constraint (2.4b) so we re-extend the solution following each Jacobi iteration.

4.2. Ruuth–Merriman Jacobi iteration. The idea of this new smoothing
strategy stems from the original Ruuth–Merriman approach for time-dependent sur-
face PDEs [24]. In the continuous setting, if the solution ũ is constant along the
normal direction to the surface, then the Cartesian Laplacian of ũ agrees with the
Laplace–Beltrami function of ũ on the surface. So roughly speaking Lhuh is con-
sistent with ∆S ũ on the surface, provided that uh is constant along the normals to
the surface. Under this side condition, we can replace Mh with Lh in one iteration.
Let Ãh = cIh − Lh be the shifted Cartesian Laplacian matrix. Starting from an
initial uh which is constant along the normal direction to the surface, in one iteration
we do the standard Jacobi iteration with respect to the Ãh = cIh − Lh (instead of
Ah = cIh −Mh), and then immediately do a closest point extension to ensure the
discrete solution is still constant along the normal direction to the surface:

uh := uh + diag(Ãh)−1(fh − Ãhuh), (4.2a)

uh := Ehuh. (4.2b)

We remark that interpolation Eh with sufficiently high degree should be used in
order to avoid introducing interpolation errors which dominate over the errors from
the discrete Laplacian Lh. In particular, we need to use cubic interpolation to build
Eh if we use a second-order difference scheme to build Lh.

4.3. Restriction and prolongation operators. In a Multigrid algorithm, one
also needs to build restriction operators which restrict data from fine grid to coarse
grid and prolongation operators which prolong data from coarse grid to fine grid.

For practical efficiency, we would like to perform the computation in narrow bands
with bandwidths shrinking proportional to the grid sizes. This makes the coarse grid
band wider than the fine grid band (see Figure 4.1). Some coarse grid points are out of
the range of the fine grid band, which means there are no fine grid points surrounding
those “outer” coarse grid points; in those cases the standard restriction strategies such
as “injection” and “full weighting” [4] do not work. We overcome this problem with
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the help of the closest point extension. When restricting the values of points on the
fine grid to the coarse grid, we assign the value of each coarse grid point to be the
value of its corresponding closest point, which in turn is obtained by interpolating the
values of fine grid points surrounding the closest point. Naturally, we can construct
the prolongation operators in the same way:3 take the value of each fine grid point to
be the value of its corresponding closest point, which is obtained through interpolation
of values of coarse grid points. Similarly to the closest point extension on a single
grid, the restriction and prolongation operators have corresponding matrix forms; we
denote the restriction matrix by E2h

h , and the prolongation matrix by Eh2h. Figure 4.1
illustrates the process of doing restriction and prolongation.

coarse

fine

restriction

prolongation

Fig. 4.1. Illustration of Restriction
and Prolongation. Blue circles indicate the
coarse grid points, red dots indicate the fine
grid points.
Restriction: restrict quantities from fine grid
to coarse grid using E2h

h .
Prolongation: prolong quantities from coarse
grid to fine grid using Eh

2h.

4.4. Closest Point Method V-Cycle algorithm. Armed with the smoothing
strategy in Section 4.2 and the construction of the restriction and prolongation op-
erators in Section 4.3, we propose the Closest Point Method Multigrid algorithm. In
this paper, we use the simplest V-Cycle Multigrid scheme, although the results could
be extended to more general Multigrid schemes such as W-Cycle or the full Multigrid
schemes. We remark that this algorithm does not explicitly involve the side condition
as in (2.5), but instead follows each iteration with a closest point extension as in the
original Ruuth–Merriman approach [24].

Algorithm 4.1 (Closest Point Method V-Cycle Algorithm). Denote by Bh and
B2h the fine and next coarser grids. Denote by Eh and E2h the extension matrices on
the fine and next coarser grids (see Sec. 3.1). Denote the shifted Cartesian Laplacian
matrix, the solution and right-hand side on the fine grid by Ãh = cIh − Lh, uh, and
fh, and the corresponding variables on the next coarser grid by Ã2h = cI2h−L2h, u2h,
and f2h. Let E2h

h and Eh2h be the restriction and prolongation matrices (which are
also extensions as in Sec. 4.3). We compute uh = V h(uh, fh) by recursively calling:

1. Starting from some initial guess uh which is constant along the normals to
the surface (e.g. uh = 0h) on the finest grid, do ν1 steps of Jacobi iteration
with respect to Ãh, each step followed by a closest point extension:

for i = 1 : ν1, do

uh := uh + diag(Ãh)−1(fh − Ãhuh);

uh := Ehuh.

3An alternative approach is simply to use one of the standard nest-grid multigrid approaches
(although we have not tested this here).
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2. Compute the residual and restrict it to the coarser grid,

rh := fh − Ãhuh, (4.3)

f2h := E2h
h rh,

If B2h = coarsest grid, solve A2hu2h = f2h directly; else

u2h := 02h,
u2h := V 2h(u2h, f2h).

3. Correct the fine grid solution by coarse grid solution:

uh := uh + Eh2hu
2h.

4. Do ν2 steps of Jacobi iteration with respect to Ãh, each step followed by a
closest point extension:

for i = 1 : ν2, do

uh := uh + diag(Ãh)−1(fh − Ãhuh);

uh := Ehuh.

4.5. An alternative relaxation strategy. In Step 1 and Step 4, instead of
using the Ruuth–Merriman smoothing strategy (4.2a) and (4.2b), one can simply use
the iteration scheme (4.1) which only depends on the linear system Ahuh = fh. One
can also easily replace the smoother based on Jacobi iteration with other iteration
methods (e.g., Gauss–Seidel iteration). When applying this standard relaxation strat-
egy, we found that replacing the residual calculation (4.3) with rh = fh −Ah(Ehuh)
helps to maintain the desired convergence rate of the V-Cycle scheme. This extra ex-
tension has no effect in the continuous setting but seems to improve the convergence
rate of the discrete algorithm.

Even with this modified residual calculation, we sometimes observed slightly faster
convergence results using the Ruuth–Merriman smoothing strategy. Thus for the
remainder of this work, we use the Ruuth–Merriman smoothing strategy.

4.6. Numerical examples. We test our V-Cycle solver for the shifted Poisson’s
equation on several closed curves in R2 and surfaces in R3. We use cubic (degree 3)
interpolations to construct Eh’s on each grid level. In each round of the V-Cycle,
ν1 = 3 pre-smoothings and ν2 = 3 post-smoothings are applied. For the restriction
and prolongation operators, linear (degree 1) interpolations are used for the closest
point extensions. The linear system on the coarsest grid level is solved by Matlab’s
backslash. The stopping criteria for all the tests are ‖xk+1 − xk‖∞/‖xk‖∞ < 10−6,
where xk and xk+1 are the iterative solutions after the k-th and (k + 1)-th rounds of
V-Cycles.

4.6.1. Unit circle. We consider the simplest example from Section 3.4.1, where
we solve the shifted Poisson’s equation −∆Su + u = f on the unit circle. The exact
solution is chosen as sin(θ) + sin(12θ).

To test the convergence rate of our multigrid solver, we keep the coarsest grid
size unchanged, and reduce the finest grid size. Figure 4.2(a) shows the decreasing
rate of the residuals of the algebraic linear systems, and Figure 4.2(b) shows the
decreasing rate of the numerical errors. Before the numerical solutions achieve the
stopping criterion, they have already reached the limit of the discretization errors,
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and the errors will not decrease after that; so in Figure 4.2(b) as the number of V-
Cycles increases, the errors first decrease and then stay almost the same. This same
behaviour is also observed in the residuals in Figure 4.2(a): as the number of V-Cycles
increases, the residuals initially decrease. However, because we introduce additional
discretization errors to the original linear system Ahuh = fh (by performing discrete
closest point extensions after each smoothing step), the residuals eventually stagnate
at the level of this additional discretization error. In both Figures 4.2(a) and 4.2(b),
the rate of decrease (the slope of the lines) stays almost the same as we refine the
finest mesh, which is expected and desirable in a multigrid algorithm.
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Fig. 4.2. Convergence results on a circle, where the curves show a sequence of progressively
finer grids, each solved with the V-Cycle multigrid method. Each curve shows how the relative
residuals/errors decrease as the number of V-Cycles increases. Here N = 1

∆x
, where ∆x is the grid

size of the finest mesh for that curve. The coarsest grid in each case corresponds to N = 5. The
horizontal lines in (b) are the numerical errors given by Matlab’s backslash.

4.6.2. Bean-shaped curve. We test the shifted Poisson’s equation on the bean-
shaped curve as in Section 3.4.2, and the same exact solution is chosen for convergence
studies. Figure 4.3(a) shows the numerical solution for the embedding equation with
meshsize ∆x = 0.1. Figure 4.3(b) shows the convergence results of the multigrid
method. Note again that the convergence rate (slope of lines) is essentially indepen-
dent of the finest grid size.

4.6.3. Unit sphere. To make an exact solution and perform a convergence
study, we parameterize a sphere in the spherical coordinates (θ, φ, r): x = r sinφ cos θ,
y = r sinφ sin θ, z = r cosφ, where θ is the azimuth ranging from 0 to 2π, φ is the
elevation from 0 to π, and r is the radius.

We emphasize this parametrization is not used in our algorithm: it is only used
to compute the error. For simplicity, we solve the equation on a unit sphere centered
at the origin, and choose the exact solution as the spherical harmonic u(θ, φ) =
cos(3θ) sin(φ)3(9 cos(φ)2−1). The right-hand side function is −∆Su+u = −29u(θ, φ).
Figure 4.4(a) shows the numerical solution for the embedding equation with grid size
∆x = 0.1, visualized using the parametrization. Figure 4.4(b) shows the convergence
results of the multigrid method.

Besides convergence studies, we also investigate the computational cost including
the degrees of freedom and matrix storage for the discrete linear system (see Table 4.1).
Because our 3D computation is performed in a narrow band with bandwidth propor-
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Fig. 4.3. V-Cycle convergence results on a bean shaped curve. The horizontal lines in figure
(b) are the numerical errors given by Matlab’s backslash.

(a) Numerical solution
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Fig. 4.4. V-Cycle convergence results on a unit sphere.

tional to the mesh size ∆x, the number of degrees of freedom scales like O(∆x−2),
just as if we performed a finite difference method to solve the Poisson’s equation in
R2. Since we use the standard 7-point stencil, the number of nonzero entries (nnz)
of the Laplacian matrix Lh is about 7 times the number of degrees of freedom. Since
we use degree 3 polynomial interpolation in a dimension by dimension fashion, the
number of nonzero entries of the interpolation matrix Eh3 is about 43 = 64 times the
number of degrees of freedom. The matrix Ãh used in our Ruuth–Merriman smooth-
ing approach is simply the diagonally shifted Laplacian so nnz(Ãh) = nnz(Lh). From
the analysis in Section 3.3, Mh has nearly the same sparsity pattern as Eh3 , except
that Mh might have more diagonal entries than Eh3 , so the number of nonzero entries
of Mh is about 64 or 65 times the number of degrees of freedom.

We also compare the CPU times for solving the linear system by Matlab’s back-
slash and our V-Cycle multigrid scheme. Table 4.2 shows the performance comparison.
Computations were performed on a 3.47 GHz Intel Xeon X5690 6-core processor,
with 100 GB memory. For the smallest problem, Matlab’s backslash works better
than multigrid; but for larger problems, multigrid works better. What is more, the
CPU time of multigrid scales roughly as O(∆x−2), i.e., proportional to the number of
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Table 4.1
Computational cost for the Closest Point Method on a sphere. As we decrease the mesh size

by a factor of 2, the number of degrees of freedom (DOFs, i.e., length(uh)) increases by a factor of
4. nnz(Lh) ≈ 7×DOFs, nnz(Eh) ≈ 64×DOFs, nnz(Mh) ≈ 64.5×DOFs.

∆x length(uh) nnz(Lh) nnz(Eh
3 ) nnz(Mh)

0.2 3190 20758 204160 205686
0.1 10906 71962 697984 702714
0.05 41870 277358 2679680 2697038
0.025 166390 1103734 10648960 10717230
0.0125 663454 4402366 42461056 42731646
0.00625 2651254 17593318 169680256 170760222

degrees of freedom, which is optimal and what we expect for a multigrid scheme [4].

∆x Backslash V-Cycle

0.2 0.169 0.294
0.1 1.046 0.551
0.05 6.967 1.326
0.025 59.94 4.377
0.0125 466.5 16.66
0.00625 N/A 67.42

Table 4.2
CPU time for solving the linear sys-

tem arising from the Poisson’s equation on
a unit sphere with the Closest Point Method.
Matlab’s backslash versus V-Cycle multigrid
method.

4.6.4. Torus. Again, to calculate an exact solution, we begin with a parametriza-
tion of a torus: x(θ, φ) = (R + r cosφ) cos θ, y(θ, φ) = (R + r cosφ) sin θ, z(θ, φ) =
r sinφ, where φ, θ are in the interval [0, 2π), R is the distance from the center of the
tube to the center of the torus, and r is the radius of the tube.

We test the shifted Poisson’s equation −∆Su + u = f on a torus with R = 1.2,
and r = 0.6. The exact solution is chosen as u(θ, φ) = sin(3θ) + cos(2φ), and the

right hand side function is f(θ, φ) = 9 sin(3θ)
(R+r cosφ)2 −

2 sinφ sin(2φ)
r(R+r cosφ) + 4 cos(2φ)

r2 + u(θ, φ).

Figure 4.5 shows the numerical solution and the multigrid convergence results.

(a) Numerical solution

0 2 4 6 8 10
10

−4

10
−3

10
−2

10
−1

10
0

 number of v−cycles

 |
|u

h
−

u
||

∞
/|
|u

||
∞

 

 

N=5

N=10

N=20

N=40

N=80

(b) Decrease of relative errors

Fig. 4.5. V-Cycle convergence results on a torus.

4.6.5. A level set example. Following Dziuk [7], we consider the surface de-
fined by S = {x ∈ R3 | (x1 − x2

3)2 + x2
2 + x2

3 = 1}, and the shifted Poisson’s equation
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−∆Su + u = f on S. The exact solution is chosen to be u(x) = x1x2. We compute
the right-hand side function by f = −∇S · v, where v = ∇Su = ∇u − (∇u · n)n,

and ∇S · v = ∇ · v −
∑3
j=1(∇vj · n)nj . Here n is the normal vector, and in this

case, n(x) =
(
x1 − x2

3, x2, x3(1− 2(x1 − x2
3)) ) / (1 + 4x2

3(1− x1 − x2
2))1/2

)
. For

each grid point, we compute the closest point on S by minimizing the squared dis-
tance function using Newton’s method. Figure 4.6 shows the numerical solution and
multigrid convergence results.

(a) Numerical solution
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Fig. 4.6. V-Cycle convergence results on the Dziuk surface.

4.6.6. Elliptic equation with variable diffusion coefficients on a sphere.
Finally, we consider an example with scalar variable diffusion coefficients, −∇S ·
(a(y)∇Su(y)) + cu(y) = f(y), for y ∈ S.

To formulate the continuous embedding equation, we simply choose A(cp(x)) =
a(cp(x)) in the general embedding equation (2.9), and get−[∇·(a(cp(x))∇ũ)](cp(x))+
cũ(x) + γ(ũ(x) − ũ(cp(x))) = f̃(x) for x ∈ B(S). Similar to the Poisson case be-
fore, this embedding equation can be discretized using standard finite differences and
interpolation schemes, see also [31]. The matrix formulation of the discretization is
−EhL̃huh+γ(Ih−Eh)uh = fh, where L̃h = Db

xdiag(Af
xa
h)Df

x+Db
ydiag(Af

ya
h)Df

y +

Db
zdiag(Af

za
h)Df

z . Here we have used similar notations to those in [31]. Db
x is the

matrix corresponding to backward differences in the x direction, Df
x is the matrix

corresponding to forward differences in the x direction; Db
y, Df

y , Db
z and Df

z have

similar meanings. The column vector ah has the i-th entry equal to a(cp(xi)), where
xi is the i-th grid point. Af

x is the forward averaging matrix corresponding to cal-
culating the average of two neighboring values of ah along the positive x direction.
Af
xa
h is a column vector and diag(Af

xa
h) is a diagonal matrix with diagonal entries

equal to Af
xa
h; diag(Af

ya
h) and diag(Af

za
h) have similar meanings.

In the multigrid algorithm, we continue to use the Ruuth–Merriman style relax-
ation strategy, except changing Lh to L̃h.

We test on a unit sphere. We choose the exact solution u(φ) = cosφ, diffusion
coefficient a(φ) = cosφ+1.5, and the right hand side function is f(φ) = 2 cosφ(cosφ+
1.5)− (sinφ)2 + u(φ). The multigrid convergence results are shown in Figure 4.7 and
look similar to the Poisson problems shown earlier.

5. Conclusions. We adapt the Closest Point Method to solve elliptic PDEs on
surfaces. In particular, we analyze the shifted Poisson’s equation −∆Su+ cu = f in
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Fig. 4.7. V-Cycle convergence results for a variable diffusion coefficient example.

detail. We formulate an embedding equation which includes a consistency condition
from the surface PDE and a side condition to enforce the solution to be constant
along the normals to the surface. We then discretize the embedding equation using
standard centered finite difference methods and Lagrange interpolation schemes. We
prove the convergence for the difference scheme in a simple case where the underlying
surface is a closed curve embedded in R2.

We then propose a specific geometric multigrid method to solve the resulting large
sparse linear system. The method makes full use of the closest point representation
of the surface and uniform Cartesian grids in different levels. Numerical tests suggest
that the convergence speeds do not deteriorate as we increase the number of grid levels
while fixing the size of the coarsest grid, just as if we performed a standard multigrid
algorithm for the (Cartesian) Laplacian operator.

There are many other possible multigrid methods; in particular, Section 4.5 men-
tions an alternative approach based directly on our modified equation (which addi-
tively combines the side and consistency conditions). Future work could investigate
this further.

Numerical results in Section 4.6.6 show that our approach also works for non-
constant coefficient elliptic PDEs with scalar diffusivity a(y). It would be useful for
some applications to investigate more general elliptic PDEs, replacing a(y) with a
symmetric and semi-positive definite diffusivity matrix A(y). Our approach should
work here too although we have not tested it.

Finally, our analysis of the spatial discretizations of elliptic operators can be
used to analyze embedded method-of-lines approaches for parabolic PDEs on general
surfaces [31].
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