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Abstract. We construct frames of wavepackets produced by parabolic dilation,
rotation and translation of (a finite sum of) Gaussians and give asymptotics on
the analogue of Daubechies frame criterion. We show that the coefficients in the
corresponding approximate expansion decay fast away from the wavefront set of
the original data.

1. Introduction

Wavepackets are a powerful tool for the microlocal analysis of (Fourier integral)
operators and their wave front sets [13, 38, 39]. A “second dyadic decomposi-
tion” [40] with parabolic scaling and rotations endows them with the necessary
directional sensitivity to resolve singularities. Related objects, such as curvelets
and shearlets, incorporate similar features, in particular the parabolic dilations.
Frames of these also facilitate methods to sparsify Fourier integral operators and
resolve the wavefront set; the emphasis is often on the applications to image pro-
cessing and numerical aspects. See [10, 11, 23, 32, 6] for representative references.

We consider wavepackets produced by parabolic dilation, rotation and transla-
tion of a function ϕ : R2 → C, given by

ϕj,k,λ(x) := 8j/2ϕ(Aj,kx− λ), (j ≥ 1, 0 ≤ k ≤ 2j − 1, λ ∈ Λ),(1)

where

Aj,k :=

[
4j 0
0 2j

] [
cos(2kπ

2j
) − sin(2kπ

2j
)

sin(2kπ
2j

) cos(2kπ
2j

)

]
,

and Λ ⊆ R2 is a lattice. If ϕ is rapidly decaying, the packet ϕj,k,λ is localized
near A−1

j,kλ and aligned to an angle of −2πk
2j

radians. For the coarse scales we use
translates of a second window ϕ0,λ := ϕ0(· − λ), which typically is a symmetric
Gaussian centered at 0. The complete collection of such wavepackets is then the
set

CΛ :=
{
ϕ0,λ

∣∣λ ∈ Λ
}
∪
{
ϕj,k,λ

∣∣λ ∈ Λ, j ≥ 1, 0 ≤ k ≤ 2j − 1
}
.(2)
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Our contribution is twofold: First we consider exact expansions and approximate
expansions of L2(R2) functions in terms of these packets using Gaussian windows.
Second we study the wavefront set with respect to a frame of wavepackets.

The motivation for using purely Gaussian windows comes from highly efficient
numerical algorithms [4], with applications in reflection and global seismology. The
Gaussian is the window of choice, because it has the best localization in phase-
space and yields the best resolution. The use of wavepackets that consist of pure
Gaussians has several technical advantages because a number of computations can
be done explicitly.

Applications include data compression, denoising, and wavefield recovery from
finite data [2, 3, 41], and wave propagation and inverse scattering described by
Fourier integral operators associated with canonical graphs. For the latter ap-
plication, see [17]. Purely Gaussian wave packets are effective in the parametrix
construction of the wave equation. Here the the initial data are decomposed with
respect to a frame of such wave packets, because a Gaussian wave packet naturally
matches the initial conditions for a multi-scale Gaussian-beam-like solution [35].
Gaussian beams are designed to account for the formation of caustics. The frame
property facilitates the derivation of error estimates for the parametrix which de-
cay under scale refinement. One can also generate multi-scale Gaussian-beam-like
solutions from the decomposition of boundary values, which play a role in the de-
velopment of inverse scattering algorithms via wavefield cross correlation that are
based on efficient reverse-time continuation [33].

We refer the reader to [4] for a comparison of curvelets and Gaussian wavepackets
and [7] for the use of Gaussians as wavelets for the continuous wavelet transform.
Whereas the recent results on curvelets and shearlets emphasize the construction
of tight frames with compactly supported windows or bandlimited windows [1, 12,
23, 14, 36, 30, 28], we understand much less about the spanning properties and the
frame properties of wavepackets with Gaussian windows. For instance, Andersson,
Carlsson, and Tenorio [4] treat the effective approximation of bounded compactly-
supported functions by this kind of packets, but they left open the question whether
a full expansion by a set CΛ of Gaussian wavepackets represents every function in
L2(R2). Likewise, most of the work on Gaussian beams [3, 34, 35, 37] emphasizes
the algorithmic aspects and contents itself with good numerical approximations.
The question of exact representations by a wavepacket expansion is omitted.

Our work complements the numerical results in [4, 35]. We will show in The-
orem 3.3 that the wavepacket system CΛ constitutes a frame for a large class of
Gaussian-like windows and suitable lattices Λ.

Using a Gaussian window adds numerous (technical) difficulties to the rigorous
analysis of wavepacket expansions. On the one hand, the Gaussian does not have
vanishing moments, which is an absolute must in this analysis. On the other
hand, the Gaussian is neither compactly supported nor bandlimited; this requires
delicate estimates to control the overlap of dilates and rotations of the Gaussian
(see Proposition 2.3).
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Figure 1. A possible choice of ϕ̂ with vanishing moments of order
3. On the left, a plot of ϕ̂, and on the right a plot of its restriction
to the ξ1 axis.

ϕ̂(ξ) = g1(ξ1)g2(ξ2)

g1(t) ≈ e−
(t−10)2

100 + 0.578e−(t−1)2 − 3.45205e−(t−0.5)2 + 4.66167e−(t−0.25)2 − 2.27129e−t
2

g2(t) = e−
t2

1100 .

The problems due to the lack of vanishing moments can be circumvented, as with
Morlet’s wavelets, by considering linear combinations of modulated Gaussians. As
a fundamental example we consider windows of the form,

ϕ̂(ξ1, ξ2) :=
N∑
k=1

ake
−(δ0|ξ1−tk|2+δk|ξ2|2), ξ = (ξ1, ξ2) ∈ R2,(3)

where the points t1, . . . , tN , the dilation parameters δ0, . . . , δN and the coefficients
a1, . . . , aN are chosen so that

ϕ̂(0) = ∂ξ1ϕ̂(0) = . . . = ∂Nξ1 ϕ̂(0) = 0.(4)

For such a choice of ϕ, the wavepackets in (1) are finite linear combinations of Gaus-
sians with different eccentricities, scales and centers. It should be noted that this
is different from other Gaussian wavepackets that enforce the vanishing moments
through a scale-dependent frequency cut-off (see for example [5]).

The formula in (3) allows for a number of rather different windows. One possi-

bility is to let ϕ̂(ξ) be essentially a translated Gaussian e−|ξ−(0,t1)|2 , where t1 >> 0.
This window is then corrected with other Gaussians centered near the origin, so as
to obtain several vanishing moments. If t1 >> 0, the coefficients corresponding to
these correcting terms can be numerically neglected. The case where t1 is not large
enough to make the correcting terms negligible is also of practical interest. In this
case the window ϕ does not look like a pure Gaussian (see Figure 1). Neverthe-
less, an expansion in terms of the packets in (3) leads to an expansion in terms of
Gaussians.
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Throughout the article we make the following assumptions on the windows
ϕ0, ϕ ∈ L2(R2).

0 < A ≤ |ϕ̂0(ξ)|2 +
∑
j≥1

2j−1∑
k=0

|ϕ̂(Bj,kξ)|2 ≤ B < +∞, where Bj,k := (A∗j,k)
−1,(5)

|ϕ̂0(ξ)| . e−δ|ξ|
2

,(6)

|ϕ̂(ξ)| . min(1, |ξ1|ς)e−δ|ξ|
2

, for some δ > 0 and ς > 2.(7)

The assumption in (5) means that the windows are wide enough so as to cover
the whole frequency plane (see figure 2). The Gaussian wavepackets in (3) clearly
satisfy the decay conditions in (6) and (7) while the vanishing moments in the
direction ξ1 are granted by (4).

Our main result shows that CΛ is a frame for L2(R2) for sufficiently fine lattices
Λ. In Theorem 3.6 we give asymptotics on the lattice parameters required for these
packets to generate a frame. The proof uses the method that was developed by
Daubechies for wavelets [15]. We will examine the quantities that appear in (the
analogue of) Daubechies’ criterion for wavelets, and then bound the correlation
between rotations and dilations of the window. A similar approach (involving
fewer technicalities) was recently carried out in [28] for the so-called cone-adapted
shearlets, in order to obtain compactly supported atoms. The fact that Daubechies’
criterion can be satisfied at all proves that every L2(R2) function can be expanded in
terms of pure Gaussian packets. Thus our main result provides theoretical support
for the accuracy of numerical wavepacket methods in [4].

As a by-product of using Daubechies’ criterion, we obtain a simple approxi-
mate dual frame of the wavepacket system CΛ. The main term of the associated
frame operator can be written as a Fourier multiplier. Applying the inverse of this
Fourier multiplier to the wavepackets we obtain an approximate dual frame that
can be easily computed with a simple frequency filter. The error estimate given in
Theorem 3.12 may be used to justify when to use the simple approximate expan-
sion (without knowledge of a precise dual frame). In the applications to geophysics
that motivated us, the data are noisy and possess a limited numerical accuracy [18].
Therefore, the explicit, simple, but only approximate expansion of the wavefield
will be sufficient for many purposes in this context.

Our second contribution is the investigation of the wavefront set with Gaussian
wavepackets. We will study the behavior of the coefficients 〈f, ϕj,k,λ〉 as j → +∞.
Since CΛ is parametrized by a discrete set and is not invariant under translations
and rotations, we need to select the parameters k = kj, λ = λj as a function of the
scale in order to track a given phase-space point. Thus the discrete description is
more subtle than the descriptions with a continuous transform in [19, 11, 21, 29, 25].
In Theorem 4.1 we will show that if a point does not belong to the wavefront set
of f with respect to a Sobolev space Hs, then the corresponding coefficients decay
like 4−js. We also consider the approximate wavepacket expansion of Section 3.4
and show that the coefficients decay fast in the scale parameter j, away from the
wavefront set of the original data. It is worth pointing out that wavefront sets can
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Figure 2. A plot of the quantity in (5) for the function ϕ from Fig.

1 and ϕ0(ξ) = e−
|ξ|2

10000 , showing A ≈ 0.9503 and B ≈ 2.2483.

Figure 3. A time-domain display of the wavepackets associated
with the window depicted in Figure 1 (absolute value).

be characterized with other types of anisotropies besides the parabolic one, see for
example [19, Theorem 3.29]. The parabolic scaling, however, is essential for the
efficient representation of functions with singularities along smooth curves.

1.1. Related work. The Gaussian wavepackets that we treat in this article share
the geometric features of other parabolic wavepackets including curvelets and shear-
lets. Specifically, the atoms are concentrated on elongated regions obeying the
relation: width ≈ length2 and oscillate across their ridge. The packets in (1) are
produced exactly by applying a parabolic dilation, rotation and translation to a sin-
gle window function. In constrast, the classic Gaussian wavepackets from [13, 39, 5]
use an additional frequency cut-off to enforce vanishing moments. The curvelets
from [10] are produced by parabolic dilation and rotation of a slightly different
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window at each scale. In the case of shearlets, rotations are replaced by the shear
maps Ss(x, y) = (x + sy, y). Wave packets based on tilings of frequency space are
discussed in [1, 30, 8, 31].

While the differences between the various parabolic wavepackets are very relevant
in practice, their asymptotic properties are similar. The Gaussian wavepackets in
(1) are an example of curvelet molecules from [9] and therefore they provide the
same sparse approximation properties as curvelets for functions with discontinu-
ities along smooth edges [10]. The notion of curvelet molecules and the related
notion of shearlet molecules in [24] are in turn particular cases of the notion of par-
abolic molecules, as recently introduced in [22]. In that article it is shown that all
expansions with adequate systems of parabolic molecules share similar asymptotic
properties. As a consequence, our results on the decay of frame coefficients away
from the wavefront set can be transferred to other parabolic systems.

Closest to our work is the construction of curvelet-type expansions in [36].
Whereas we construct frames by using an analogue of Daubechies criterion for
wavelets, the curvelet-type frames for L2(R2) in [36] are obtained by using a per-
turbation argument. The main focus of that work is the production of compactly-
supported atoms, but the results also apply to sums of modulated Gaussians. As
mentioned in [36, Section 6], the perturbation argument yields a frame where each
element is a linear combination of dilated, rotated and translated Gaussians. How-
ever, the coefficients in that linear combination depend on the indices of the par-
ticular frame element, but the number of terms is proved to be uniformly bounded.
By contrast, the packets in (1) consist exactly of parabolic dilations, rotations and
translations of a single function, which may be taken to be a fixed linear combina-
tion of Gaussians.

The Gaussian wavepackets with parabolic scaling in (1) provide an optimal rep-
resentation of functions with singularities along smooth curves [10], sparsify Fourier
wave propagators [9], and are particularly useful in geophysics [18]. For other kinds
of applications, other geometries are more adequate. For example, in [16] it is
shown that a dictionary of wave-atoms with the scaling “wavelength ≈ diameter 2”
is optimal for the representation of oscillatory patterns (texture).

1.2. Organization. The paper is organized as follows. In Section 2 we derive
certain estimates on rotation-dilation overlaps. This is perhaps the main technical
contribution when working with Gaussian wavepackets. In Section 3 we develop
a Daubechies-like frame criterion and derive conditions for when the wavepacket
system CΛ is a frame. We also study the approximate expansions. In Section 4
we study the complement of the wavefront set and describe it by the decay of the
coefficients 〈f, ϕj,k,λ〉 as j → +∞. Finally we show that similar estimates hold for
the coefficients in the approximate expansion related to Daubechies’ criterion.

Notation: In the sequel we use the following notation. We let 1E denote
the characteristic function of a set E ⊆ R2 and |x| denote the Euclidean norm

of a vector x ∈ R2. The Fourier transform is normalized as Ff(ξ) = f̂(ξ) :=∫
R2 f(x)e−2πiξx dx. Translations and dilations of function f : R2 → C are defined
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Figure 4. The set Vs,t defined in (9).

as

DilAf(x) := |det(A)|1/2 f(Ax), A ∈ R2×2,

Tyf(x) := f(x− y).

With this notation, ϕj,k,λ = DilAj,kTλϕ. Note also that with this notation DilA·Bf =
DilBDilAf .

Let us further denote the parabolic dilations and the rotations by

Dj =

[
4j 0
0 2j

]
, Rθ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

Hence Aj,k = DjR 2kπ

2j
and Bj,k := (A∗j,k)

−1 = D−1
j R 2kπ

2j
.

If the lattice Λ is given by Λ = PZ2, with P ∈ R2×2 invertible, then we denote
its volume by |Λ| = |detP | and its dual lattice by Γ = (P−1)∗Z2.

2. Estimates for rotation-dilation overlaps

We now prove certain technical estimates on rotation-dilation overlaps that will
be needed throughout the article. For f : R2 → C let the star-norm of f be defined
by

‖f‖∗ := esssup
ξ∈R2

∑
j≥1

2j−1∑
k=0

|f(Bj,kξ)| .(8)

Let us define the circular sectors,

Vs,t :=

{
(r cos(θ), r sin(θ)) :

2s ≤ r ≤ 2s+1, 0 ≤ θ ≤ π/2,
2−(t+1) ≤ cos(θ) ≤ 2−t

}
, (s ∈ Z, t ≥ 0).

(9)

The next lemma estimates the overlaps of the orbit of each of these sets under
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parabolic dilations and rotations.

Lemma 2.1. Let Vs,t be defined by (9). Then ‖1Vs,t‖∗ . 4t.

Proof. The effect of the parabolic dilation Dj can be described (on the first quad-
rant) in the following way.

Dj(r cos(θ), r sin(θ)) = (r′ cos(θ′), r sin(θ′)),(10)

r′ = ρ(cos(θ), j)r,(11)

tan(θ′) = 2−j tan(θ),(12)

where 0 ≤ θ ≤ π/2, r > 0, and ρ(α, j) ≥ 0 is given by

ρ(α, j)2 = α242j + (1− α2)22j, (α ∈ [0, 1], j ∈ N).(13)

We note that ρ(α, j) satisfies the growth estimates,

ρ(α, j + 1) ≥ 2ρ(α, j),(14)

ρ(α/2, j + 2) ≥ 2ρ(α, j), (α ∈ [0, 1], j ∈ N).(15)

Note also that for fixed j ∈ N, ρ(α, j) is increasing in α.
With this description, we estimate the image of Vs,t under the parabolic dilation

Dj. For s ∈ Z, t ≥ 0 and j ∈ N, let us define

Wj,s,t :=

{
(r cos(θ), r sin(θ)) :

2sρ(2−(t+1), j) ≤ r ≤ 2s+1ρ(2−t, j)
0 ≤ θ ≤ π/2 min{1, 2−j4t+1}

}
.

We note that

DjVs,t ⊆ Wj,s,t.(16)

Indeed, if ξ = (r cos(θ), r sin(θ)) ∈ Vs,t and Djξ = (r′ cos(θ′), r′ sin(θ′)), then by
(10),

r′ = ρ(cos(θ), j)r ∈ r[ρ(2−(t+1), j), ρ(2−t, j)] ⊆ [2sρ(2−(t+1), j), 2s+1ρ(2−t, j)].

Since ξ belongs to the first quadrant, so does Djξ. Hence, θ′ ∈ [0, π/2). In addition,
using (12) and the mean value theorem we estimate,

θ′ ≤ tan(θ′) = 2−j tan(θ) = 2−jθ(cos(τ))−2,

for some 0 ≤ τ ≤ θ. Hence, cos2(τ) ≥ cos2(θ) ≥ 4−t−1 and, θ′ ≤ 2−j4t+1π/2. This
shows that (16) holds true.

Hence, Dj maps Vs,t into Wj,s,t, a circular sector of angle ≈ 2−j4t. The 2j

rotations R 2kπ

2j
Wj,s,t, k = 0, . . . , 2j − 1 have . 4t overlaps. Therefore, (16) allows

us to estimate for every j ∈ N and ξ ∈ R2,

2j−1∑
k=0

1Vs,t(Bj,kξ) =
2j−1∑
k=0

1R− 2kπ
2j

DjVs,t(ξ) =
2j−1∑
k=0

1R 2kπ
2j

DjVs,t(ξ)

≤
2j−1∑
k=0

1R 2kπ
2j

Wj,s,t
(ξ) . 4t1Cj,s,t(ξ),
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where the set Cj,s,t is the annulus

Cj,s,t :=
{
ξ ∈ R2

∣∣ 2sρ(2−(t+1), j) ≤ |ξ| ≤ 2s+1ρ(2−t, j)
}
.(17)

Finally we note that these sets do not overlap too much as j varies. Indeed, if
Cj,s,t ∩ Cj′,s,t 6= ∅ for j ≤ j′, then 2sρ(2−(t+1), j′) ≤ 2s+1ρ(2−t, j). Hence, setting
α := 2−t, we have that ρ(α/2, j′) ≤ 2ρ(α, j). By (15) this implies that j′ ≤ j + 2.
Hence,

‖1Vs,t‖∗ . 4t sup
ξ∈R2

∑
j≥1

1Cj,s,t(ξ) . 4t.

�

We now notice the following invariance property of the star-norm.

Lemma 2.2. Let f : R2 → C and let S : R2 → R2 be one of the four symmetries
(ξ1, ξ2) 7→ (±ξ1,±ξ2). Then ‖f ◦ S‖∗ = ‖f‖∗.

Proof. If S(ξ1, ξ2) = (ξ1, ξ2) or S(ξ1, ξ2) = (−ξ1,−ξ2), then S commutes with Bj,k

and the conclusion is trivial. If S(ξ1, ξ2) = (−ξ1, ξ2) or S(ξ1, ξ2) = (ξ1,−ξ2), then
S commutes with Dj and is related to the rotation of angle θ by: SRθ = R−θS.
Hence,

‖f ◦ S‖∗ = esssup
ξ∈R2

∑
j≥1

2j−1∑
k=0

∣∣∣∣f(SD−1
j R−1

2kπ

2j

ξ)

∣∣∣∣ = esssup
ξ∈R2

∑
j≥1

2j−1∑
k=0

∣∣∣∣f(D−1
j R−1

− 2kπ

2j

Sξ)

∣∣∣∣
= esssup

ξ∈R2

∑
j≥1

2j−1∑
k=0

∣∣∣∣f(D−1
j R−1

− 2kπ

2j

ξ)

∣∣∣∣ = ‖f‖∗,

where the last equality follows from the fact that (R 2kπ

2j
)2j = I. �

Finally we derive the main technical time-scale correlation estimate.

Proposition 2.3. Assume that f : R2 → C satisfies

|f(ξ)| ≤ |ξ1|2+ε e−τ |ξ|(18)

for some ε, τ > 0. Then

‖f‖∗ = esssup
ξ∈R2

∑
j≥1

2j−1∑
k=0

|f(Bj,kξ)| . 1.

Here, the implicit constant depends on τ and ε.

Remark 2.4. Since the window ϕ generating the wavepackets satisfies (7), it
follows that ‖ϕ̂‖∗ < +∞.

Proof of Proposition 2.3. Recall the definition of the sets Vs,t in (9) and further
define V i

s,t := SiVs,t, i = 0, 1, 2, 3, where Si are the four symmetries (ξ1, ξ2) 7→
(±ξ1,±ξ2). From Lemma 2.2, ‖1V is,t‖∗ = ‖1Vs,t‖∗ and hence, by Lemma 2.1,
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‖1V is,t‖∗ . 4t. Since the sets
{
V i
s,t : s ∈ Z, t ∈ N, i = 0, 1, 2, 3

}
cover R2\{(ξ1, ξ2) : ξ1 = 0}

and f(ξ) = 0 if ξ1 = 0, we have the pointwise estimate

|f(ζ)| ≤
3∑
i=0

∑
s∈Z

∑
t≥0

sup
ξ∈V is,t

|f(ξ)| 1V is,t(ζ), ζ ∈ R2,

and therefore,

‖f‖∗ .
3∑
i=0

∑
s∈Z

∑
t≥0

4t sup
ξ∈V is,t

|f(ξ)| .

Using (18) and writing r := 22+ε we see that

sup
ξ∈V is,t

|f(ξ)| = sup
ξ∈Vs,t

|f(ξ)| . (2s−t+1)2+εe−τ2s = (1/r)trs+1e−τ2s .(19)

Since r > 4,

‖f‖∗ .
∑
t≥0

(4/r)t ·
∑
s∈Z

rs+1e−τ2s < +∞.

�

3. Frame expansions

3.1. Representation of the frame operator. Let SΛ be the frame operator
associated with the set of wavepackets CΛ, given by (2)

SΛf :=
∑
λ∈Λ

〈f, Tλϕ0〉Tλϕ0 +
∑
λ∈Λ

+∞∑
j=1

2j−1∑
k=0

〈
f,DilAj,kTλϕ

〉
DilAj,kTλϕ.

Recall that ϕ and ϕ0 satisfy the hypotheses (5) – (7) and that Γ denotes the dual
lattice of Λ, precisely, if Λ = PZ2, with P ∈ R2×2 invertible, then Γ = (P−1)∗Z2.
Using Poisson’s summation formula

|Λ|−1
∑
γ∈Γ

f(x− γ) =
∑
λ∈Λ

f̂(λ)e2πixλ, (f ∈ S(R2)),(20)

we derive a simple description of the action of SΛ in the frequency domain that
leads to an analogue of Daubechies’ criterion. We now describe this explicitly.

Let us denote ŜΛ := FSΛF−1; i.e., ŜΛf̂ := (̂SΛf). Using Poisson’s summation

formula, ŜΛ can be decomposed in the following way.

Lemma 3.1. For γ ∈ Γ, consider the operator ŜΛ,γ : L2(R2)→ L2(R2) defined by

ŜΛ,γf(ξ) = f(ξ − γ)ϕ̂0(ξ)ϕ̂0(ξ − γ) +
+∞∑
j=1

2j−1∑
k=0

f(ξ − A∗j,kγ)ϕ̂(Bj,kξ)ϕ̂(Bj,kξ − γ).

(21)
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Then the operator ŜΛ can be written as

ŜΛf = |Λ|−1
∑
γ∈Γ

ŜΛ,γf.

Proof. Let us consider the operators,

S0f :=
∑
λ∈Λ

〈f, Tλϕ0〉Tλϕ0,

S∗f :=
∑
λ∈Λ

〈f, Tλϕ〉Tλϕ,

Sj,kf :=
∑
λ∈Λ

〈
f,DilAj,kTλϕ

〉
DilAj,kTλϕ, (j ≥ 1, k = 0, . . . , 2j − 1).

Hence, SΛ = S0 +
∑

j,k Sj,k and Sj,k = DilAj,kS∗Dil−1
Aj,k

.
Let us compute

FS0F−1f(ξ) =
∑
λ∈Λ

〈
F−1f, Tλϕ0

〉
e−2πiλξϕ̂0(ξ)

=
∑
λ∈Λ

〈
f, ϕ̂0e

−2πiλ·〉 e−2πiλξϕ̂0(ξ) =
∑
λ∈Λ

F(fϕ̂0)(λ)e2πiλξϕ̂0(ξ).

Using (20), this implies that

FS0F−1f(ξ) = |Λ|−1
∑
γ∈Γ

f(ξ − γ)ϕ̂0(ξ − γ)ϕ̂0(ξ).(22)

Similarly,

FS∗F−1f(ξ) = |Λ|−1
∑
γ∈Γ

f(ξ − γ)ϕ̂(ξ − γ)ϕ̂(ξ).

Noting that FSj,kF−1 = Dil−1
A∗j,k
FS∗F−1DilA∗j,k , this yields

FSj,kF−1f(ξ) = |Λ|−1
∑
γ∈Γ

f(ξ − A∗j,kγ)ϕ̂(Bj,kξ − γ)ϕ̂(Bj,kξ).(23)

Since SΛ = S0 +
∑

j,k Sj,k, the conclusion follows from (22) and (23). �

Following the representation in Lemma 3.1, we define the time-scale correlation
function,

Θ(ζ) := esssup
ξ∈R2

|ϕ̂0(ξ)| |ϕ̂0(ξ − ζ)|+
+∞∑
j=1

2j−1∑
k=0

|ϕ̂(Bj,kξ)| |ϕ̂(Bj,kξ − ζ)|

 , (ζ ∈ R2).

(24)

We now note that this function bounds the operators appearing in Lemma 3.1.

Lemma 3.2. The operators in (21) satisfy the bound,

‖ŜΛ,γf‖2 ≤ max{Θ(γ),Θ(−γ)}‖f‖2, (f ∈ L2(R2), γ ∈ Γ).
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Proof. It is straightforward to see that ‖ŜΛ,γf‖1 ≤ Θ(−γ)‖f‖1 and ‖ŜΛ,γf‖∞ ≤
Θ(γ)‖f‖∞. Hence the conclusion follows by interpolation. �

3.2. A Daubechies-like frame criterion. We now get the following analogue of
Daubechies’ criterion for wavelets.

Theorem 3.3. Let

∆(Λ) :=
∑

γ∈Γ\{0}

max{Θ(γ),Θ(−γ)}.(25)

If ∆(Λ) < A, then the set of wavepackets

CΛ =
{
ϕ0,λ

∣∣λ ∈ Λ
}
∪
{
ϕj,k,λ

∣∣λ ∈ Λ, j ≥ 1, 0 ≤ k ≤ 2j − 1
}

is a frame of L2(R2) with bounds |Λ|−1 (A−∆(Λ)) and |Λ|−1 (B + ∆(Λ)).

Proof. Recall the decomposition ŜΛf = |Λ|−1∑
γ∈Γ ŜΛ,γf in Lemma 3.1 and note

that

ŜΛ,0f(ξ) = f(ξ)

|ϕ̂0(ξ)|2 +
+∞∑
j=1

2j−1∑
k=0

|ϕ̂(Bj,kξ)|2
 .

The covering condition in (5) implies that

A |f(ξ)| ≤
∣∣∣ŜΛ,0f(ξ)

∣∣∣ ≤ B |f(ξ)| , (f ∈ L2(R2))

and therefore

A‖f‖2 ≤ ‖ŜΛ,0f‖2 ≤ B‖f‖2, (f ∈ L2(R2)).(26)

Using Lemma 3.2 we get

‖|Λ| ŜΛf − ŜΛ,0f‖2 ≤
∑

γ∈Γ\{0}

‖ŜΛ,γf‖2

≤
∑

γ∈Γ\{0}

max{Θ(γ),Θ(−γ)}‖f‖2 = ∆(Λ)‖f‖2.

This together with (26) this implies that for all f ∈ L2(R2)

|Λ|−1 (A−∆(Λ))‖f‖2 ≤ ‖ŜΛf‖2 ≤ |Λ|−1 (B + ∆(Λ))‖f‖2.

Applying the last estimate to f̂ and using Plancherel’s theorem we conclude that
for all f ∈ L2(R2)

|Λ|−1 (A−∆(Λ))‖f‖2 ≤ ‖SΛf‖2 ≤ |Λ|−1 (B + ∆(Λ))‖f‖2,

as desired. �

Remark 3.4. The criterion remains true if ∆(Λ) is replaced by the following
smaller quantity, cf. Lemma 3.2,∑

γ 6=0

Θ(γ)1/2Θ(−γ)1/2.
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3.3. Asymptotics for the sampling density and the error. Using the rotation-
dilation estimates from Section 2 we can give asymptotics for the frame criterion of
Theorem 3.3. Let the lattice Λ be given by Λ = PZ2, with P having singular values
a, b ≥ 0. This means that Λ is a unitary image of the rectangular lattice aZ× bZ.
Motivated by this, we call a, b the lattice parameters of Λ. We now estimate the
sampling density and reconstruction error in terms of a and b.

Lemma 3.5. Under assumptions (5), (6), (7), the quantity ∆(Λ) in (25) satisfies
the estimate

∆(Λ) . e−τ/a
2

+ e−τ/b
2

,

for some 0 < τ < δ and 0 < a, b ≤ 1.

Proof. Let ξ, ζ ∈ R2. We use repeatedly the quasi triangle inequality: |ξ + ζ|2 ≤
2(|ξ|2 + |ζ|2) and use τ to denote new (smaller) decay parameters that can vary
from line to line. By (6),

|ϕ̂0(ξ)| |ϕ̂0(ξ − ζ)| . e−δ(|ξ|
2+|ξ−ζ|2) ≤ e−τ |ζ|

2

.

Likewise, by (7),

|ϕ̂(ξ)| |ϕ̂(ξ − ζ)| . |ξ1|ς e−δ(|ξ|
2+|ξ−ζ|2).

Since |ξ|2 + |ξ − ζ|2 & max{|ξ|2 , |ζ|2}, we have that |ξ|2 + |ξ − ζ|2 & |ξ|2 + |ζ|2.
Hence,

|ϕ̂(ξ)| |ϕ̂(ξ − ζ)| . |ξ1|ς e−τ |ξ|
2

e−τ |ζ|
2

= Φ(ξ)e−τ |ζ|
2

,

if we let Φ(ξ) := |ξ1|ς e−τ |ξ|
2

. This implies that the time-scale correlation function
in (24) satisfies

Θ(ζ) . e−δ|ζ|
2

+ esssup
ξ∈R2

+∞∑
j=1

2j−1∑
k=0

|ϕ̂(Bj,kξ)| |ϕ̂(Bj,kξ − ζ)|

≤ e−τ |ζ|
2

+ e−τ |ζ|
2

esssup
ξ∈R2

+∞∑
j=1

2j−1∑
k=0

Φ(Bj,kξ)

= e−τ |ζ|
2

(1 + ‖Φ‖∗).
Using Proposition 2.3 we conclude that

Θ(ζ) . e−τ |ζ|
2

.(27)

Recall that Λ = PZ2 and let us write P = UD with D = diag(a, b), U unitary and
a, b ≥ 0. Then Γ = UD−1Z2 and we can estimate

∆(Λ) .
∑

(k,j)∈Z2\{0}

e−τ|UD−1(k,j)|2 =
∑

(k,j)∈Z2\{0}

e−τ|D−1(k,j)|2

≤
∑

(k,j)∈Z2\{0}

e−τk
2/a2e−τj

2/b2 .
∑

(k,j)∈N2\{0}

e−τk/a
2

e−τj/b
2

.
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Summing the geometric series gives

∆(Λ) . (1− e−τ/a2)−1(1− e−τ/b2)−1 − 1 =
1− (1− e−τ/a2)(1− e−τ/b2)

(1− e−τ/a2)(1− e−τ/b2)
. 1− (1− e−τ/a2)(1− e−τ/b2)

= e−τ/a
2

+ e−τ/b
2 − e−τ/a2e−τ/b2

≤ e−τ/a
2

+ e−τ/b
2

.

�

As an immediate consequence of Theorem 3.3 and Lemma 3.5 we have the fol-
lowing result.

Theorem 3.6. Assume that (5), (6), (7) hold. Then there are constants C, τ > 0
depending on δ, ς and ε such that CΛ is a frame whenever

κ := e−τ/a
2

+ e−τ/b
2 ≤ CA.(28)

Moreover, in this case, |Λ|−1 (A − C−1κ) and |Λ|−1 (B + C−1κ) are frame bounds
for CΛ.

In particular, for every lattice Λ with sufficiently large density (i.e. a, b � 1),
the system CΛ is a frame of L2(R2) and yields the following expansions

f =
∑
λ∈Λ

〈
f, S−1

Λ ϕ0,λ

〉
ϕ0,λ +

∑
λ∈Λ

+∞∑
j=1

2j−1∑
k=0

〈
f, S−1

Λ ϕj,k,λ
〉
ϕj,k,λ(29)

=
∑
λ∈Λ

〈f, ϕ0,λ〉S−1
Λ ϕ0,λ +

∑
λ∈Λ

+∞∑
j=1

2j−1∑
k=0

〈f, ϕj,k,λ〉S−1
Λ ϕj,k,λ.(30)

As the lattice parameters a, b −→ 0+, the ratio of the frame bounds tends to B/A.

Remark 3.7. If the window ϕ is given by (3), then (29) provides a formal argu-
ment for the representability of L2 functions in terms of the Gaussian wavepackets
discussed in [4], which can be then computed with the algorithms discussed there.

Remark 3.8. The system CΛ is a family of curvelet molecules in the sense of [9] and
hence the expansion in (30) possesses the same asymptotic sparse approximation
as curvelets [10].

Remark 3.9. As the proof of Proposition 2.3 shows, its conclusion holds under
much weaker conditions than those in (6), (7), for example polynomial decay.

Remark 3.10. Theorem 3.6 is analogous to a recent result for shearlets [28]. The
factor |ξ1|2+ε in (7) should be compared with the factor |ξ1|3+ε in [28].
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3.4. Approximate reconstruction. Since the frame criterion in Theorem 3.3
consists in showing that the frame operator SΛ is close to SΛ,0, in practice one
often uses SΛ,0 to construct an approximate dual frame. This approximation is
particularly convenient because SΛ,0 is simply the Fourier multiplier with symbol

m(ξ) := |ϕ̂0(ξ)|2 +
∑
j≥1

2j−1∑
k=0

|ϕ̂(Bj,kξ)|2 , (ξ ∈ R2),

(cf. Lemma 3.1). (Recall that the Fourier multiplier with symbol m ∈ L∞(R2) is

the operator Mm : L2(R2)→ L2(R2) given by (̂Mmf)(ξ) = m(ξ)f̂(ξ).)
Hence, the approximate dual system is just the image of CΛ by the Fourier

multiplier with symbol 1/m. It then readily follows from the proof of Theorem 4.1
and the estimates of Section 3.3 that this gives a reconstruction error of at most
∆(Λ)/A . e−τ/a

2
+ e−τ/b

2
, with a, b the lattice parameters.

By slightly relaxing this bound one can gain certain liberty in the design of
the approximate dual system, which can be exploited to improve the function
properties. If one considers a second window ψ ∈ L2(R2), then the frame-type

operator S̃Λ : L2(R2)→ L2(R2),

S̃Λf :=
∑
λ∈Λ

〈f, Tλϕ0〉Tλϕ0 +
∑
λ∈Λ

+∞∑
j=1

2j−1∑
k=0

〈
f,DilAj,kTλψ

〉
DilAj,kTλϕ

can be decomposed in a way completely analogous to the one in Lemma 3.1. (This
can be seen from the proof of Lemma 3.1, or obtained a posteriori by polarization).
The Daubechies-like criterion in this case is expressed in terms of lower and upper
bounds for

m̃(ξ) := |ϕ̂0(ξ)|2 +
∑
j≥1

2j−1∑
k=0

ϕ̂(Bj,kξ)ψ̂(Bj,kξ),(31)

and upper bounds for

∆̃(Λ) :=
∑

γ∈Γ\{0}

max{Θ̃1(γ), Θ̃2(γ)},

where

Θ̃1(ζ) := esssup
ξ∈R2

|ϕ̂0(ξ)| |ϕ̂0(ξ − ζ)|+
+∞∑
j=1

2j−1∑
k=0

|ϕ̂(Bj,kξ)| |ψ̂(Bj,kξ − ζ)|

 ,

Θ̃2(ζ) := esssup
ξ∈R2

|ϕ̂0(ξ)| |ϕ̂0(ξ + ζ)|+
+∞∑
j=1

2j−1∑
k=0

|ϕ̂(Bj,kξ + ζ)| |ψ̂(Bj,kξ)|

 .

In our case it makes sense to choose ψ as a small modification of ϕ that enforces
some extra frequency cancellation. Let ε > 0. According to our assumptions, the
set Eε :=

{
ξ ∈ R2

∣∣ |ϕ̂(ξ)| > ε
}

is an open bounded set at positive distance from
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the origin. Let η : R2 → [0, 1] be a smooth function with compact support not
containing the origin such that η ≡ 1 on Eε. Let ψ ∈ L2(R2) be given by

ψ̂ := ηϕ̂.

The following lemma shows that this approximation is compatible with the quan-
tities in Daubechies’ criterion.

Lemma 3.11. The following estimates hold.

|m(ξ)− m̃(ξ)| ≤ ‖ϕ̂‖∗ε ≈ ε,

0 ≤ ∆̃(Λ) ≤ ∆(Λ).

Proof. Recall that by Remark 2.4 ‖ϕ̂‖∗ < +∞ and note that, by definition, (1 −
η(ξ)) |ϕ̂(ξ)| ≤ ε. Hence, we simply estimate

|m(ξ)− m̃(ξ)| =

∣∣∣∣∣∣
∑
j≥1

2j−1∑
k=0

ϕ̂(Bj,kξ)(1− η(Bj,kξ))ϕ̂(Bj,kξ)

∣∣∣∣∣∣
≤ ε

∑
j≥1

2j−1∑
k=0

|ϕ̂(Bj,kξ)| = ε‖ϕ̂‖∗.

The bound for ∆̃(Λ) follows from the fact that |ψ̂| = |ϕ̂| η ≤ |ϕ̂| and consequently

Θ̃1(ζ) ≤ Θ(ζ) and Θ̃2(ζ) ≤ Θ(−ζ). �

As a consequence of these estimates, if ε‖ϕ̂‖∗ < A, then

0 < Ã := A− ε‖ϕ̂‖∗ ≤ m̃(ξ) ≤ B̃ := B + ε‖ϕ̂‖∗ < +∞,(32)

and the Fourier multiplier with symbol m̃ is invertible on L2(R2). We can then
consider the following system

C̃Λ :=
{
ϕ̃0,λ

∣∣λ ∈ Λ
}
∪
{
ϕ̃j,k,λ

∣∣ j ≥ 1, 1 ≤ k ≤ 2j − 1, λ ∈ Λ
}
,̂̃ϕ0,λ(ξ) :=

1

m̃(ξ)
T̂λϕ0(ξ),

̂̃ϕj,k,λ(ξ) :=
1

m̃(ξ)
̂DilAj,kTλψ(ξ).

This provides the following approximate reconstruction.

Theorem 3.12. Let ε‖ϕ̂‖∗ < A and ∆(Λ) < A − ε‖ϕ̂‖∗. Then every f ∈ L2(R2)
admits the following approximate expansion.

f̃ := |Λ|

∑
λ∈Λ

〈f, ϕ̃0,λ〉ϕ0,λ +
∑
j≥1

2j−1∑
k=0

∑
λ∈Λ

〈f, ϕ̃j,k,λ〉ϕj,k,λ

 ,(33)

with ‖f − f̃‖2 ≤ ∆(Λ)
A−ε‖ϕ̂‖∗‖f‖2 . (e−τ/a

2
+ e−τ/b

2
)‖f‖2.
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Remark 3.13. Note that the coefficients in (33) are given by

〈f, ϕ̃j,k,λ〉 =
〈
M1/m̃f, ψj,k,λ

〉
,

whereM1/m̃ is the Fourier multiplier with symbol 1/m̃, i.e., ̂(M1/m̃f)(ξ) = 1/m̃(ξ)f̂(ξ),
and the packets ψj,k,λ = DilAj,kTλψ have rotation-dilation structure. That is why
in practice we prefer the expansion in (33) to the “abstract” expansion in (29).

Proof of Theorem 3.12. Let us denote by Mm̃ the Fourier multiplier with symbol
m̃. As in the proof of Theorem 3.3, for every f ∈ L2(R2)

‖|Λ| S̃Λf −Mm̃f‖2 ≤ ∆̃(Λ)‖f‖2.

Applying this to M−1
m̃ f and using Lemma 3.11 and (32) we obtain

‖|Λ| S̃ΛM
−1
m̃ f − f‖2 ≤ ∆(Λ)‖M−1

m̃ f‖2 ≤
∆(Λ)

A− ε‖ϕ̂‖∗
‖f‖2.

Finally note that f̃ = |Λ| S̃ΛM1/m̃f = |Λ| S̃ΛM
−1
m̃ f . �

4. Decay estimates away from the wavefront set

It is well-know that the continuous transform associated with parabolic repre-
sentations detects the wavefront set of a distribution, provided that the generating
window has sufficiently many vanishing moments [11, 29, 21] (see also [20]). In
the case of wavepacket coefficients, the situation is more technical since one needs
to approximate a given phase-space point by discrete parameters (see [27] for a
similar problem related to Gabor expansions).

4.1. Wavefront sets with wavepackets. Let (x0, θ0) ∈ R2 × [0, 2π). For each
scale j ≥ 1, we select a wavepacket of scale j that is localized near x0 and
is approximately aligned to θ0. Recall that the wavepacket ϕj,k,λ is localized
near A−1

j,kλ and aligned to an angle of −2πk
2j

radians. We choose the parameters

kj = kj(x0, θ0) ∈ {0, . . . , 2j − 1} and λj = λj(x0, θ0) ∈ Λ that give the best ap-
proximation of θ0 and x0 respectively. More precisely, for every j ≥ 1 we choose
(kj, λj) such that

2πkj
2j
≤ 2π − θ0 ≤

2π(kj + 1)

2j
,(34) ∣∣Aj,kjx0 − λj

∣∣ ≤ LΛ,(35)

where LΛ is a constant that depends on the lattice Λ (namely the diameter of its
fundamental domain). For certain (x0, θ0) there is more than one possible choice
of (kj, λj). Any of these will be adequate. The resulting sequence {(kj, λj) : j ≥ 1}
will be called the grid parameters related to (x0, θ0).

The objective of this section is to show that when (x0, θ0) does not belong to the
wavefront set of f , then the numbers

〈
f, ϕj,kj ,λj

〉
decay fast as j → +∞.

We denote by Vε the cone of width ε aligned along the ξ1-axis

Vε :=
{
ξ ∈ R2

∣∣ |ξ2| ≤ ε |ξ1|
}
.(36)
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We say that a distribution f ∈ S ′(R2) belongs to the microlocal Sobolev space
Hs(x0, θ0) if there exist ε > 0 and a smooth compactly-supported function η with
η ≡ 1 near x0 and such that∫

Rθ0Vε

∣∣∣η̂f(ξ)
∣∣∣2 |ξ|2s dξ < +∞.(37)

Since we work with windows with a limited number of vanishing moments, we
further consider the space Hs

M(x0, θ0) consisting of distributions in Hs(x0, θ0) that
satisfy, in addition to (37),∫

R2

∣∣∣η̂f(ξ)
∣∣∣2 (1 + |ξ|)−2M dξ < +∞.(38)

Note that Hs(x0, θ0) =
⋃
M>0H

s
M(x0, θ0).

We now state the main microlocal estimate. Although we are mainly interested
in the case of L2-functions (i.e. M = 0), the estimate is valid for distributions
provided that the window ϕ belongs to the Schwartz class.

Theorem 4.1. Let s,M ≥ 0. Assume that ϕ ∈ S(R2) and that ς > 2s+2M−1/2.
Let (x0, θ0) ∈ R2 × [0, 2π), and let {(kj, λj) : j ≥ 1} be the corresponding grid

parameters given by (34) and (35). Let f ∈ Hs
M(x0, θ0), then∑

j≥1

∣∣〈f, ϕj,kj ,λj〉∣∣2 42js < +∞.

Since the parameters (kj, λj) do not exactly capture the pair (x0, θ0) but only
provide the best approximation at scale j, the proof of Theorem 4.1 requires us
to control a certain scale-dependent approximation. For this reason we need a mi-
crolocal version of Lemma 2.1, as formulated by the following technical statement.

Lemma 4.2. For r, t ∈ Z consider the intervals,

Wr,t :=
{
ξ ∈ R2

∣∣ 4r−1 ≤ |ξ1| ≤ 4r, 2t−1 ≤ |ξ2| ≤ 2t
}
.(39)

For each j ≥ 1, let θj ∈ [−2−j2π, 2−j2π] be arbitrary. Then

sup
r,t∈Z

sup
ξ∈R2

∑
j≥1

1RθjDjWr,t(ξ) < +∞.

That is, each of the families of sets
{
RθjDjWr,t : j ≥ 1

}
has a number of overlaps

that is bounded independently of r, t.

Proof. Let r, t ∈ Z and suppose that (RθjDjWr,t) ∩ (Rθj′
Dj′Wr,t) 6= ∅ for some

1 ≤ j ≤ j′. Let h := j′ − j. We want to find an absolute bound on h.
It follows that there exists some ξ ∈ (Rθj−θj′DjWr,t) ∩ (DhDjWr,t). Since ξ ∈

DhDjWr,t, we have

|ξ1| ≈ 4h+j+r = 22h+2j+2r,(40)

|ξ2| ≈ 2h+j+t.(41)
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Similarly, since ξ ∈ Rθj−θj′DjWr,t

ξ1 = cos(θj − θj′)ζ1 + sin(θj − θj′)ζ2,

ξ2 = − sin(θj − θj′)ζ1 + cos(θj − θj′)ζ2,

for some ζ = (ζ1, ζ2) such that |ζ1| ≈ 4j+r = 22j+2r and |ζ2| ≈ 2j+t. Since
|θj − θj′ | . 2−j + 2−j

′ ≈ 2−j, we have that |sin(θj − θj′)| . 2−j. Using this and
that |cos(θj − θj′)| ≤ 1 we estimate

|ξ1| . 22j+2r + 2−j2j+t = 22j+2r + 2t,(42)

|ξ2| . 2−j22j+2r + 2j+t = 2j+2r + 2j+t.(43)

Comparing these equations with (40) and (41) we get

22h+2j+2r . 22j+2r + 2t,

2h+j+t . 2j+2r + 2j+t.

Hence, there exists an absolute constant C > 0 such that

2h+ 2j + 2r ≤ max{2j + 2r + C, t+ C},
h+ j + t ≤ max{j + 2r + C, j + t+ C}.

If h = j′ − j ≤ C, we are done. If on the contrary h > C, then the previous
estimates reduce to

2h+ 2j + 2r ≤ t+ C,(44)

h+ t ≤ 2r + C.(45)

Since h, j ≥ 0 we get from (44) that 2r ≤ 2h+ 2j + 2r ≤ t+C. Plugging this into
(45) gives h+ t ≤ t+ 2C. Hence h ≤ 2C. This completes the proof. �

Proof of Theorem 4.1. For convenience, let us define θj :=
2πkj

2j
and ϕj(x) :=

DilDjϕ(x) = 8j/2ϕ(4jx1, 2
jx2). Hence ϕj,kj ,λj = DilRθjDilDjTλjϕ = DilRθjTD−1

j λj
ϕj.

We now further define

gj := T−D−1
j λj

DilR−θj f, (j ≥ 1).

Consequently, 〈
f, ϕj,kj ,λj

〉
= 〈gj, ϕj〉 .

Since f ∈ Hs
M(x0, θ0) there exist a smooth compactly-supported function η and

γ > 0 such that η ≡ 1 on the Euclidean ball Bγ(x0) and (37) and (38) hold. Let
us consider the functions,

g1
j := T−D−1

j λj
DilR−θj (ηf), (j ≥ 1),

g2
j := T−D−1

j λj
DilR−θj ((1− η)f), (j ≥ 1).

Hence, 〈
f, ϕj,kj ,λj

〉
=
〈
g1
j , ϕj

〉
+
〈
g2
j , ϕj

〉
.
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The proof consists in showing that the last two terms have the desired decay as
j → +∞.

Step 1. We show that
∑

j≥1

∣∣〈g2
j , ϕj

〉∣∣2 42js < +∞.

Since η ≡ 1 on Bγ(x0),

g2
j = T−D−1

j λj
DilR−θj ((1− η)f) ≡ 0 on RθjBγ(x0)−D−1

j λj = Bγ(Rθj(x0 − A−1
j,kj
λj)).

Using (35) we estimate,

‖Rθj(x0 − A−1
j,kj
λj)‖ = ‖x0 − A−1

j,kj
λj‖ = ‖A−1

j,kj
(Aj,kjx0 − λj)‖

≤ 2−j‖Aj,kjx0 − λj‖ ≤ 2−jLΛ.

For j � 0, 2−jLΛ ≤ γ/2 and therefore Bγ/2(0) ⊆ Bγ(Rθj(x0−A−1
j,kj
λj)). Hence, for

j � 0,

g2
j ≡ 0 on Bγ/2(0).(46)

Since (1− η)f ∈ S ′, there exist N such that for all h ∈ S,

|〈(1− η)f, h〉| .
∑
|α|≤N

‖(1 + |·|)N∂αh‖∞.

Using this estimate we have that for all j ≥ 1,∣∣〈g2
j , h
〉∣∣ =

∣∣∣〈T−D−1
j λj

DilR−θj (1− η)f, h
〉∣∣∣

=
∣∣∣〈(1− η)f,DilRθjTD−1

j λj
h
〉∣∣∣ . ∑

|α|≤N

‖(1 + |·|)N∂α(DilRθjTD−1
j λj

h)‖∞.

.
∑
|α|≤N

‖(1 + |·|)N∂αTD−1
j λj

h‖∞

.
∑
|α|≤N

‖(1 + |·|)N∂αh‖∞,

where the last two bounds follow from the fact that
∣∣Rθjx

∣∣ = |x| and that, according
to (35),

‖D−1
j λj‖ = ‖D−1

j (λj − Aj,kjx0) +Rθjx0‖ ≤ 2−jLΛ + ‖x0‖ . 1.

Taking into account the vanishing property in (46), the bound on
∣∣〈g2

j , h
〉∣∣ can

be improved for j � 0 to∣∣〈g2
j , h
〉∣∣ . ∑

|α|≤N

‖(1 + |·|)N∂αh‖L∞(R2\Bγ′ (0)),(47)

where γ′ := γ/4.
We finally use this to bound

〈
g2
j , ϕj

〉
. Since ϕ ∈ S we have that for all L > 2N+2

there is a constant CL > 0 such that for all multi-indices with |α| ≤ N

|∂αϕ(x)| ≤ CL |x|−L .
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Hence, when |x| ≥ γ′,

(1 + |x|)N |∂αϕj(x)| ≤ Cγ′ |x|N |∂αϕj(x)|

. |x|N 8j/24jN
∑
β≤α

∣∣∂βϕ(4jx1, 2
jx2)

∣∣
. CL |x|N 4j(N+1)

∣∣(4jx1, 2
jx2)

∣∣−L
≤ CL4j(N+1)2−jL |x|N−L ≤ CLγ

′(N−L)
2j(2N+2−L).

Plugging this into (47) shows that
∣∣〈g2

j , ϕj
〉∣∣ . 2−(2N+2−L)j, for all L > 2N + 2.

This clearly implies the desired estimate.

Step 2. We show that
∑

j≥1

∣∣〈g1
j , ϕj

〉∣∣2 42js < +∞.

Since g1
j = T−D−1

j λj
DilR−θj (ηf), we have∣∣∣ĝ1

j (ξ)
∣∣∣ =

∣∣∣η̂f(R−θjξ)
∣∣∣ , (ξ ∈ R2).

So if we let αj := 2π − θ0 − θj and Φ(ξ) := η̂f(Rθ0ξ), we see that∣∣∣ĝ1
j (ξ)

∣∣∣ = Φ(Rαjξ), (ξ ∈ R2).(48)

Note that from (34) we get

0 ≤ αj ≤ 2π2−j, (j ≥ 1).(49)

Since f satisfies (38), it follows that Φ satisfies,∫
R2

Φ(ξ)2(1 + |ξ|)−2M dξ < +∞.(50)

In addition, by (37), we have∫
Vε

Φ(ξ)2 |ξ|2s dξ < +∞,(51)

where ε > 0 and the cone Vε is defined in (36). Let k ∈ N be such that 2−k < ε.
Since αj → 0, there exist j0 ≥ 1 such that for all j ≥ j0,

R−αj(V2−k) ⊆ Vε.(52)

Consider the sets {Wr,t : r, t ∈ Z} from (39). Since these sets partition R2 up to
sets of measure zero, we can decompose ϕ̂ as

ϕ̂ =
∑
r,t∈Z

ϕ̂r,t, a.e.

ϕ̂r,t := ϕ̂ · 1Wr,t .

Let us define Kr,t ≥ 0 by

K2
r,t :=

∫
R2

∣∣∣ϕ̂r,t(ξ)∣∣∣2 dξ =

∫
Wr,t

|ϕ̂(ξ)|2 dξ.(53)
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Our main assumption (7) on the window ϕ implies that

K2
r,t . 4r(2ς+1)e−2δ16r−1

2te−2δ4t−1

.

Hence if ρ1, ρ2 ∈ R are such that ρ1 < (2ς + 1) and ρ2 > −1, then∑
r,t∈Z

4−ρ1r2ρ2tK2
r,t < +∞.(54)

We also use the notation ϕ̂r,tj (ξ) := DilD−j ϕ̂
r,t(ξ) = 8−j/2ϕ̂r,t(4−jξ1, 2

−jξ2), so for
each j ≥ 1

ϕ̂j =
∑
r,t∈Z

ϕ̂r,tj .

Fix r, t ∈ Z and let us bound
〈
g1
j , ϕ

r,t
j

〉
.

Since ϕ̂r,t is supported on Wr,t, its dilation ϕ̂r,tj is supported on DjWr,t. Recall
the numbers k, j0 from (52). The set DjWr,t is contained in the cone V2−k , if
j ≥ k + t − 2r + 2. Let us denote j1 = j1(r, t) := max{j0, k + t − 2r + 2}. For
j ≥ j1(r, t) we bound,∣∣〈g1

j , ϕ
r,t
j

〉∣∣ ≤ 8−j/2
∫
DjWr,t

∣∣∣ĝ1
j (ξ)

∣∣∣ ∣∣∣ϕ̂r,t(4−jξ1, 2
−jξ2)

∣∣∣ dξ
≤ 8−j/24−js

∫
DjWr,t

∣∣∣ĝ1
j (ξ)

∣∣∣ |ξ1|s
∣∣4−jξ1

∣∣−s ∣∣∣ϕ̂r,t(4−jξ1, 2
−jξ2)

∣∣∣ dξ
≤ 4−js

(∫
DjWr,t

∣∣∣ĝ1
j (ξ)

∣∣∣2 |ξ1|2s dξ

)1/2

8−j/2

(∫
DjWr,t

∣∣4−jξ1

∣∣−2s
∣∣∣ϕ̂r,t(4−jξ1, 2

−jξ2)
∣∣∣2 dξ)1/2

≤ 4−js

(∫
DjWr,t

∣∣∣ĝ1
j (ξ)

∣∣∣2 |ξ1|2s dξ

)1/2(∫
Wr,t

|ξ1|−2s
∣∣∣ϕ̂r,t(ξ)∣∣∣2 dξ)1/2

. 4−js4−rs

(∫
DjWr,t

∣∣∣ĝ1
j (ξ)

∣∣∣2 |ξ1|2s dξ

)1/2(∫
Wr,t

∣∣∣ϕ̂r,t(ξ)∣∣∣2 dξ)1/2

.

Hence, since |ξ1| ≤ |ξ|,

∣∣〈g1
j , ϕ

r,t
j

〉∣∣ ≤ 4−js4−rsKr,t

(∫
DjWr,t

∣∣∣ĝ1
j (ξ)

∣∣∣2 |ξ|2s dξ)1/2

, (j ≥ j1(r, t)).

Using (48) we get

∣∣〈g1
j , ϕ

r,t
j

〉∣∣ ≤ 4−js4−rsKr,t

(∫
R−αj (DjWr,t)

Φ(ξ)2 |ξ|2s dξ

)1/2

, (j ≥ j1(r, t)).

For j ≥ j1(r, t), we have that DjWr,t ⊆ V2−k so (52) implies that R−αj(DjWr,t) ⊆
Vε. Combining this with (51) and the bound on the number of overlaps of the sets
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R−αj(DjWr,t) : j ≥ 1

}
granted by Lemma 4.2, we obtain∑
j≥j1(r,t)

∣∣〈g1
j , ϕ

r,t
j

〉∣∣2 42sj . 4−2rsK2
r,t.(55)

Since by assumption s < ς + 1/2, we use (54) with ρ1 = 2s and ρ2 = 0 and obtain∑
r,t∈Z

∑
j≥j1(r,t)

∣∣〈g1
j , ϕ

r,t
j

〉∣∣2 42sj < +∞.(56)

For 1 ≤ j < j1(r, t) we use the bound

(1 + |ξ|) ≤ 1 + 4j |D−jξ| ≤ 4j(1 + |D−jξ|),

and carry out a similar estimate.∣∣〈g1
j , ϕ

r,t
j

〉∣∣ ≤ 8−j/2
∫
DjWr,t

∣∣∣ĝ1
j (ξ)

∣∣∣ ∣∣∣ϕ̂r,t(D−jξ)∣∣∣ dξ
≤ 8−j/24jM

∫
DjWr,t

∣∣∣ĝ1
j (ξ)

∣∣∣ (1 + |ξ|)−M(1 + |D−jξ|)M
∣∣∣ϕ̂r,t(D−jξ)∣∣∣ dξ

≤ 4jM

(∫
DjWr,t

∣∣∣ĝ1
j (ξ)

∣∣∣2 (1 + |ξ|)−2M dξ

)1/2

8−j/2

(∫
DjWr,t

(1 + |D−jξ|)2M
∣∣∣ϕ̂r,t(D−jξ)∣∣∣2 dξ)1/2

≤ 4jM

(∫
DjWr,t

∣∣∣ĝ1
j (ξ)

∣∣∣2 (1 + |ξ|)−2M dξ

)1/2(∫
Wr,t

(1 + |ξ|)2M
∣∣∣ϕ̂r,t(ξ)∣∣∣2 dξ)1/2

. 4jM(1 + 4r + 2t)M

(∫
DjWr,t

∣∣∣ĝ1
j (ξ)

∣∣∣2 (1 + |ξ|)−2M dξ

)1/2(∫
Wr,t

∣∣∣ϕ̂r,t(ξ)∣∣∣2 dξ)1/2

.

Therefore, for 1 ≤ j < j1(r, t),

∣∣〈g1
j , ϕ

r,t
j

〉∣∣ ≤ 4jM(1 + 4r + 2t)MKr,t

(∫
R−αj (DjWr,t)

Φ(ξ)2(1 + |ξ|)−2M dξ

)1/2

.

Hence, for 1 ≤ j < j1(r, t),

∣∣〈g1
j , ϕ

r,t
j

〉∣∣ 4js ≤ 4j1(r,t)(M+s)(1 + 4r + 2t)MKr,t

(∫
R−αj (DjWr,t)

Φ(ξ)2(1 + |ξ|)−2M dξ

)1/2

.

Using again the bound on the number of overlaps of
{
R−αj(DjWr,t) : j ≥ 1

}
of

Lemma 4.2, this time combined with (50), we get

j1(r,t)−1∑
j=j0

∣∣〈g1
j , ϕ

r,t
j

〉∣∣2 42sj . 42j1(r,t)(M+s)(1 + 4r + 2t)2MK2
r,t.
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To bound this quantity we may assume that j1(r, t) = k + t − 2r + 2 > j0, since
otherwise j1(r, t) = j0 and the sum is empty. Hence,

j1(r,t)−1∑
j=j0

∣∣〈g1
j , ϕ

r,t
j

〉∣∣2 42sj . 42(t−2r)(M+s)(1 + 4r + 2t)2MK2
r,t

. 24(M+s)t4−4(M+s)r(1 + 42Mr + 22Mt)K2
r,t

=
(
4−(4M+4s)r2(4M+4s)t + 4−(2M+4s)r2(4M+4s)t + 4−(4M+4s)r2(6M+4s)t

)
K2
r,t.

To bound the sum over r, t ∈ Z of the last expression, we use (54) with ρ1 =
4M + 4s, ρ2 = 4M + 4s; ρ1 = 2M + 4s, ρ2 = 4M + 4s; ρ1 = 4M + 4s, ρ2 = 6M + 4s.
Note that in each case ρ1 ≤ 4M + 4s < 2ς + 1 by assumption and ρ2 ≥ 0 > −1.
Hence the use of (54) is justified and we conclude that∑

r,t∈Z

j1(r,t)−1∑
j=j0

∣∣〈g1
j , ϕ

r,t
j

〉∣∣2 42sj < +∞.(57)

Finally, since ϕj =
∑

r,t ϕ
r,t
j ,

∑
j≥j0

∣∣〈g1
j , ϕj

〉∣∣2 42js ≤
∑
r,t∈Z

∑
j≥j1(r,t)

∣∣〈g1
j , ϕ

r,t
j

〉∣∣2 42js +
∑
r,t∈Z

j1(r,t)−1∑
j=j0

∣∣〈g1
j , ϕ

r,t
j

〉∣∣2 42js < +∞.

�

4.2. Estimates for the approximate reconstruction. Theorem 4.1 shows that
the coefficients of the wavepacket expansion in (30) decay fast away from the wave-
front set of f . We now show that the same is true for the coefficients in the
approximate wavepacket expansion in (33). To avoid immaterial technicalities, let
us assume that ϕ0, ϕ ∈ S(R2).

Theorem 4.3. In the setting of Theorem 3.12, let (x0, θ0) ∈ R2 × [0, 2π) and let
{(kj, λj) : j ≥ 1} be the corresponding grid parameters given by (34) and (35). If
f ∈ L2(R2) belongs to Hs microlocally at (x0, θ0), then∑

j≥1

∣∣〈f, ϕ̃j,kj ,λj〉∣∣2 42js < +∞.

As mentioned in Remark 3.13, the approximate coefficients can be rewritten as

〈f, ϕ̃j,k,λ〉 =
〈
M1/m̃f, ψj,k,λ

〉
,

where ψj,k,λ = DilAj,kTλψ, m̃ is given by (31) and M̂1/m̃(f) := (1/m̃)f̂ . Since ψ
satisfies the same conditions that ϕ, it follows from Theorem 4.1 that the numbers
〈f, ϕ̃j,k,λ〉 decay away from the Hs-wavefront set of M1/m̃(f). Hence, it suffices to
show that f and M1/m̃(f) share the same Hs-wavefront set. We do so in the next
lemma.

Lemma 4.4. Under the hypothesis of Theorem 3.12, let s ≥ 0. Then a function
f ∈ L2(R2) belongs to the microlocal Sobolev space Hs(x0, θ0) if and only if M1/m̃(f)
does. Consequently, f and M1/m̃(f) have the same Hs-wavefront set.
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Proof. Let g := M1/m̃(f). We want to show that g and Mm̃g have the same Hs-
wavefront set. The Fourier multiplier Mm̃ is a pseudo-differential operator with
Weyl symbol σ(x, ξ) := m̃(ξ). Under the hypothesis of Theorem 3.12, by (32),

0 < Ã ≤ m̃(ξ) ≤ B̃ < +∞. This implies that Mm̃ is elliptic of order 0. We will
show that σ belongs to Hörmander’s symbol class S0

1
2
,0

, i.e.,∣∣∂αξ ∂βxσ(x, ξ)
∣∣ =

∣∣∂αξ m̃(ξ)
∣∣ ≤ Cα(1 + |ξ|)−

|α|
2 , for every multi-index α.

Once this is established, it will follow that Mm̃ preserves the Hs-wavefront set (see
[26, Chapter 18] or [19, Chapter 2]). Let us write

m̃(ξ) := |ϕ̂0(ξ)|2 + m̃1(ξ),

where

m̃1(ξ) :=
∑
j≥1

2j−1∑
k=0

Φ(Bj,kξ),

Φ(ξ) := ϕ̂(ξ)ψ̂(ξ).

Since |ϕ̂0(ξ)|2 is a Schwartz function and thus in S0
1
2
,0

we focus on m̃1. Note that, by

the construction of ψ, Φ is a compactly supported smooth function that vanishes
in some neighborhood of the origin (−ε, ε)2.

Let α be a multi-index, N = |α| and

ΦN(ξ) :=
∑
|β|≤N

∣∣∣∂βξ Φ(ξ)
∣∣∣ .

Therefore ∣∣∂αξ m̃1(ξ)
∣∣ ≤∑

j≥1

2j−1∑
k=0

2−jNΦN(Bj,kξ).(58)

For each j, k, |Bj,kξ| ≥ 4−j |ξ| and consequently |ξ|N/2 ≤ 2jN |Bj,kξ|N/2. Hence,

setting Φ∗N(ξ) := |ξ|N/2 ΦN(ξ) we have that

|ξ|N/2
∣∣∂αξ m̃1(ξ)

∣∣ ≤∑
j≥1

2j−1∑
k=0

Φ∗N(Bj,kξ) ≤ ‖Φ∗N‖∗.

Since the support of Φ∗N is compact and does not contain 0, Proposition 2.3 implies
that ‖Φ∗N‖∗ < +∞. Similarly,

∣∣∂αξ m̃1(ξ)
∣∣ ≤∑

j≥1

2j−1∑
k=0

2−jNΦN(Bj,kξ) ≤
∑
j≥1

2j−1∑
k=0

ΦN(Bj,kξ) ≤ ‖ΦN‖∗ < +∞.

The last two estimates imply that
∣∣∂αξ m̃1(ξ)

∣∣ . (1 + |ξ|)−N2 = (1 + |ξ|)−
|α|
2 , as

desired. �
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23(1):89–121, 1990.

[21] P. Grohs. Continuous shearlet frames and resolution of the wavefront set. Monatsh. Math.,
164(4):393–426, 2011.

[22] P. Grohs and G. Kutyniok. Parabolic Molecules. Found. Comput. Math., 14(2):299-337, 2014.
[23] K. Guo and D. Labate. Optimally sparse multidimensional representation using shearlets.

SIAM J. Math. Anal., 39(1):298–318, 2007.
[24] K. Guo and D. Labate. Representation of Fourier integral operators using shearlets. J.

Fourier Anal. Appl., 14(3):327–371, 2008.



EXACT AND APPROXIMATE EXPANSIONS WITH PURE GAUSSIAN WAVEPACKETS 27

[25] K. Guo and D. Labate. Characterization and analysis of edges using the continuous shearlet
transform. SIAM J. Imaging Sci., 2(3):959–986, 2009.
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