
Linear-Time Recognition of Probe Interval

Graphs

Ross M. McConnell1 and Yahav Nussbaum2

1 Computer Science Department, Colorado State University, Fort Collins, CO 80528,

USA, rmm@cs.colostate.edu
2 The Blavatnik School of Computer Science, Tel Aviv University, 69978 Tel Aviv,

Israel, yahav.nussbaum@cs.tau.ac.il

Abstract. The interval graph for a set of intervals on a line consists

of one vertex for each interval, and an edge for each intersecting pair of

intervals. A probe interval graph is a variant that is motivated by an ap-

plication to genomics, where the intervals are partitioned into two sets:

probes and non-probes. The graph has an edge between two vertices if

they intersect and at least one of them is a probe. We give a linear-time

algorithm for determining whether a given graph and partition of ver-

tices into probes and non-probes is a probe interval graph. If it is, we give

a layout of intervals that proves that it is. In contrast to previous algo-

rithms for the problem, our algorithm can determine whether the layout

is uniquely constrained. This is important for the biological application,

where one seeks the true layout of the intervals in a genome. As part of

the algorithm we solve the consecutive-ones probe matrix problem.

1 Introduction

An interval graph is the intersection graph of a set of intervals on a line. That is, it
has one vertex for each interval and two vertices are adjacent if the corresponding
intervals intersect. The set of intervals constitutes an interval model of the graph.
Interval graphs play an important role in many problems, for example scheduling
problems [5, 7, 9]. The problem of recognizing whether a graph is an interval
graph played a key role in the 1950’s in proving the linear topology of DNA [1];
the intervals were fragments of genetic material, and it was shown empirically
that the intersections of these fragments give rise to an interval graph.

This gave rise to interest in algorithms for determining whether a graph is
an interval graph [6]. Booth and Lueker gave the first linear-time algorithm
for recognizing interval graphs and constructing interval models for the graphs
in the 1970’s [2]. A consecutive-ones ordering of columns of a 0-1 matrix is
one such that, for every row, the 1’s in the row are consecutive. Booth and
Lueker’s approach was to reduce the problem to that of finding a consecutive-
ones ordering of a 0-1 matrix, and to give a linear time bound for finding such
an ordering.

Another related application for interval graphs is physical mapping, which can
be used for DNA sequencing. In this process, biologists create clones, which are

copies of fragments of DNA. Physical mapping is the problem of reconstructing
the original sequence of the DNA from the clones. The order of the clones is
lost, but for some clones, called probes, the intersection data between them and
other clones can be collected. If all clones are probes, then we can construct an
interval graph from the clones, and an interval model for this graph gives the
original sequence. However, because of practical considerations, not all clones
can be used as probes.

A probe interval graphs [15, 18] (sometimes called interval probe graph) is a
graph in which the vertex set is partitioned into probes and non-probes. It is a
generalization of intersection graph of an interval model, such that the graph
has an edge between two vertices if their intervals intersect and at least one of

them is a probe. In other words, missing from the graph is information about
which pairs of non-probe intervals intersect.

There has been recent work on topological and combinatorial properties of
these graphs; see [9, 14] for a survey. The problem of recognizing whether a graph
is a probe interval graph, and finding a corresponding arrangement of intervals
if it is, was first shown to be polynomial by Johnson and Spinrad [10], who
gave an O(V 2) algorithm. Using a different approach, McConnell and Spinrad
gave an O(V + E log V) algorithm [13]. The latter algorithm was a critical step
in the first linear-time algorithm for recognizing circular-arc graphs, which are
the intersection graphs of arcs on a circle [12]. (The algorithm makes use of a
probe interval subgraph of size O(V + E/ log V)). Motivated by the biological
application, where the partition into probes and non-probes is known in advance,
both algorithms get as an input a graph whose vertex set is partitioned into
probes and non-probes. Chang et al. [4] consider the problem of recognizing this
graph class when the partition into probes and non-probes is not given.

In this paper, we give the first linear-time algorithm for recognizing whether
a graph is a probe interval graph when the partition into probes and non-probes
is given, and for finding a corresponding set of intervals if it is. In view of the
complexity of the previous work, it is surprising that we are able to reduce the
problem to that of finding consecutive-ones orderings of two easily-constructed
consecutive-ones matrices, which can then be solved by Booth and Lueker’s
algorithm.

In the physical mapping problem, part of the clones are used as probes. The
number of clones which are probes is enough only if we were able to construct
the original DNA sequence accurately. Previous algorithms for finding probe
interval arrangements have the defect that they cannot determine whether the
graph uniquely constrains the arrangement, and therefore cannot be said to solve
the physical mapping problem. Uehara [17] has addressed the issue and gave a
polynomial-time algorithm that determines whether a give probe interval graph
has a unique model. Our algorithm solves this problem as a by-product of the
recognition problem, and it is the first linear-time algorithm that solves it.

A 0-1 matrix is a consecutive-ones matrix if it has a consecutive-ones ordering.
Booth and Lueker’s algorithm recognizes consecutive-ones matrices, and finds a
consecutive-ones ordering for them. The consecutive-ones sandwich problem is

an extension of this problem where the matrix has 0, 1 or ∗. A ∗ is a “don’t
care”; it can stand for either a 0 or a 1. This problem is NP-Complete [8]. If we
require that the ∗’s form a submatrix then we get the consecutive-ones probe
matrix problem (see also [3]). We solve this problem in linear time, for any 0, 1,
∗ probe matrix.

2 Preliminaries

Except for some additional definitions, we use standard terminology and notation
from [5].

We will assume the standard adjacency-list representation of a graph. This
imposes a numbering from 1 to n on the vertices, which we will call their vertex

numbers.

A graph G = (V,E) is a probe graph if the vertex set is partitioned into P ,
the set of probes, and N the set of non-probes. In this case, every edge of E is
adjacent to at least one probe. We denote this by G = (P,N,E).

If X is a nonempty subset of V , let G[X] denote the subgraph of G induced
by X. If G is a probe graph, then by G[X] we mean a graph that also contains
the classification in G of members of X as probes or non-probes.

An interval model of an interval graph is a set of intervals, one for each
vertex, such that two vertices are adjacent if and only if their intervals intersect.
Similarly, an interval model of a probe interval graph is a set of intervals, one
for each vertex, such that two vertices are adjacent if and only if their intervals
intersect and at least one of the vertices is a probe. If R is an interval model of a
(probe) interval graph G and X is a nonempty subset of V , let R[X] denote the
set of intervals representing members of X. Note that if R is an interval model
of G, then R[X] is an interval model of G[X].

Let N(v) denote the open neighborhood of v, that is, the set of neighbors of
v in G, and let N [v] denote its closed neighborhood, that is, {v} ∪ N(v).

We define the cliques of a graph to be its maximal complete subgraphs. That
is, X is a clique if G[X] is complete and there is no Y ⊆ V such that X ⊂ Y
and G[Y] is complete. The clique matrix of a graph is a 0-1 matrix that has one
column for each clique, one row for each vertex, and a 1 in row i, column j if
and only if vertex i is a member of clique j.

In an interval model R of an interval graph G, each clique of G corresponds
to the set of vertices whose intervals cover a unique clique segment in R. A
clique segment occurs where a right endpoint is immediately to the right of a
left endpoint. Ordering the columns of the clique matrix of G in the left-to-right
order of the clique segments of a model R gives a consecutive-ones ordering of
the clique matrix, since this makes the clique segments covered by each interval
(hence the cliques that contain each vertex) consecutive. Conversely, given a
consecutive-ones ordering of the clique matrix of a graph, the intervals occupied
by the 1’s in the rows constitute an interval model of the graph, since two vertices
are adjacent if and only if they are members of a common clique. Interval graphs

are therefore exactly the set of graphs whose clique matrices have consecutive-
ones orderings [6].

An interval model consists of alternating blocks of consecutive left endpoints
and of consecutive right endpoints. The order of endpoints within a block does
not change the realized graph. Therefore, we represent an interval model by
giving an ordered list of blocks, listing for each block the vertices that have
endpoints in the block. This gives a combinatorial definition of an interval model,
independent of geometry. In fact, a consecutive-ones ordering of the clique matrix
of an interval graph is such a model, where the set of left endpoints in a column
and the set of right endpoints in the column are each interpreted to be a block,
where the block of left endpoints in the column implicitly precedes the block of
right endpoints.

A chordal graph is a is a graph with no induced cycle of size greater than three.
Every interval graph is a chordal graph. A chordal graph has O(V) cliques. It is
possible to find a sparse representation of the clique matrix of a chordal graph
in O(V) time [16]. Booth and Lueker’s algorithm [2] for recognizing interval
graphs uses this to find the clique matrix or else determine that the graph is not
chordal, hence not an interval graph. If it is chordal, it reduces the problem to
that of either finding a consecutive-ones ordering of this clique matrix, giving an
interval model, or determining that no such ordering exists, in which case the
graph is not an interval graph.

The algorithm of [2] actually gives a compact representation of all consecutive-
ones orderings of a matrix, called a PQ-tree. The leaves of the PQ-tree are the
columns of the matrix. Any set of orderings of the children of the internal nodes of
a tree gives a unique ordering of the leaves, and the PQ-tree gives all consecutive-
ones orderings by constraining the orderings of these children as follows. Some
of the internal nodes are labeled P nodes. For such a node there is no constraint
on the order of its children. Others are labeled Q nodes. For such a node an
ordering (x1, x2, . . . xk) of its children is given; in this case, the only permissi-
ble orderings of its children are (x1, x2, . . . , xk) and (xk, xk−1, . . . , x1). If T is
a PQ-tree, let Π(T) denote the set of all possible orderings of its leaves, given
these constraints. Booth and Lueker [2] show that if T is the unique PQ-tree
representing Π(T), to get this property they define some restrictions on the de-
grees of internal nodes in a PQ-tree. Their algorithm either finds the PQ-tree
for consecutive-ones orderings of columns of a matrix, or determines that the
matrix is not a consecutive-ones matrix. Given a sparse representation of a 0-1
matrix, this takes in O(i + j + k) time, where i is the number of rows, j is the
number of columns, and k is the number of 1’s in the matrix.

Let Π = Π(T). We may consider each π ∈ Π to be a bijective function that
maps elements of C, the set of columns, to elements of {1, 2, . . . , |C|}, where for
all c ∈ C, π(c) tells the position of c in a consecutive-ones ordering represented
by π. If X is a nonempty subset of C, let πX be the bijective function that maps
elements of X to {1, 2, . . . , |X|}, giving the relative order of elements of X in π.
Formally, for c ∈ X, πX(c) = 1 + |{d|d ∈ X and π(d) < π(c)}|. Let Π[X] denote
{πX |π ∈ Π}, namely, the relative orderings of elements of X given by orderings

in Π. It is not hard to show that Π[X] is the set of orderings of a PQ-tree with
leaf set X; let us call this tree the restriction T [X] of T to X. In [11], an O(j)
algorithm is given for finding T [X], given X and T , where j = |C| is the number
of leaves of T .

If T1 and T2 are two PQ-trees whose leaf sets are both C, it is not hard to
show that Π(T1) ∩ Π(T2) is a set of permutations that can also be represented
by a PQ-tree. Let us call this tree the intersection T1 ∩ T2 of T1 and T2. In [11],
an O(j) algorithm is given for finding T1 ∩T2, given T1 and T2, where j = |C| is
the number of leaves of each tree.

A probe matrix is a generalization of 0-1 matrix, which has the values 0, 1, ∗,
such that the ∗’s form a submatrix. An ∗ is a “don’t care” value which might be
interpreted either as 0 or as 1. The consecutive-ones probe matrix problem is a
generalization of the consecutive-ones problem. In this problem we look for an
ordering of the columns of the matrix such that there is an interpretation of the
values of the ∗’s such that the 1’s in every row are consecutive.

We want to represent the probe matrix in space proportional to the size
of the matrix and the number of 1’s in it, in other words, we do not want to
represent the ∗’s explicitly. In order to do that, we split a probe matrix M into
two submatrices. Let MR be the submatrix of M whose rows are the rows that do
not have ∗’s, and whose columns are all columns of M . Let MC be the submatrix
of M whose columns are the columns that do not have ∗’s, and whose rows are
all rows of M . We represent M using sparse representations of MR and MC .

In the rest of the paper we present a linear-time recognition algorithm for
probe interval graphs. In Sect. 3 we construct a probe matrix for the input graph
that generalizes the clique matrix used for interval graphs. In Sect. 4 we show
how to construct an interval model from a consecutive-ones ordering of the probe
matrix. In Sect. 5 we present a linear-time algorithm for the consecutive-ones
probe matrix problem. Last, in Sect. 6 we show that using our algorithm we can
determine if the interval model that was found is unique.

3 Extension of the Clique Matrix

In this section we show how to build a probe matrix M that has the consecutive-
ones property if G is a probe interval graph. The basis of this matrix is MP ,
the clique matrix of G[P]. In addition, for every non-probe we define either new
columns or a new row. A new column has a value of 0 or 1 for every row of MP .
Similarly, a new row has a value of 0 or 1 for every column of MP . The submatrix
of M induced by the new rows and the new columns consists exclusively of ∗’s,
and so M is a probe matrix. We view each row of M as a constraint, since it
limits the possible consecutive-ones orderings of M .

The graph G[P] has no non-probes. Therefore, if G is a probe interval graph,
then G[P] is an interval graph and MP has the consecutive-ones property. Let
x ∈ N and denote the set P ∪ {x} by P + x. If G is a probe interval graph then
G[P + x] is an interval graph, because a pair of non-probes is required to give

rise to an interval intersection that is not an edge. This last observation is the
basis of our probe matrix construction.

Therefore, we begin by finding a consecutive-ones ordering of MP . Using [2]
we can either find such an ordering or determine that G is not a probe interval
graph, in O(V + E) time.

Let C denote the set of cliques of G[P]. For each probe p, let Q(p) denote the
set of cliques of C that contain p. In an interval model of G, the interval for p
must cover the clique segments of members of Q(p). Because p is not contained
in any other clique, the clique segments of Q(p) must be consecutive in the left-
to-right ordering of clique segments. In M we represent these constraints for all
P by the rows of MP . We call these constraints probe - clique constraints.

Similarly, for each non-probe x, let Q(x) denote the set of cliques of C that
are subsets of N(x), and Qx denote

⋃
Q(x). We call a vertex v simplicial if N(x)

induces a complete subgraph. For the construction of M , we split the set of non-
probes into three sets: N1 is the set of non-probes x such that |Q(x)| ≥ 1; N2 is
the set of non-simplicial vertices with Q(x) = ∅; and N3 is the set of simplicial
vertices. Note that, according to this definition, a simplicial non-probe x such
that |Q(x)| = 1 is contained both in N1 and in N3. It does not matter into which
of the two sets we put x. Moreover, we show below that x does not impose any
constraints on orderings of M that are not already imposed by other vertices.

The vertices of N1 add two kinds of rows (constraints) to M , the vertices
of N2 add one kind of row to M , and the vertices of N3 add a single column
to M . We show the details below, but first we show how to split N into these
three sets. In order to split N , we should find for every x ∈ N the set Q(x) and
determine whether x is simplicial or not.

Let the left endpoint of a row of a consecutive-ones ordering of MP be the
column of the leftmost 1 in the row, and the right endpoint be the rightmost.
Let x ∈ N , and assume that G[P] is an interval graph. In the consecutive-ones
ordering of MP we find for every p ∈ N(x) the left endpoint and the right
endpoint of the row of p. We keep the column numbers of these two endpoints,
together with their side (left or right) in a list Lx. We sort Lx for all x in linear
time using a single radix sort, with x as the primary sort key, column number
as the secondary sort key, and left versus right endpoint as the tertiary key so
that if a left endpoint and right endpoint have the same primary and secondary
key, the left endpoint goes to the left of the right.

We sweep through Lx from left to right, keeping a running count of the
number of neighbors of x in the current column. We start a counter at zero. Each
time we encounter a left endpoint in Lx we increment the counter, and each time
we encounter a right endpoint we decrement it. Each time we encounter a right
endpoint e that follows a left endpoint f , we compare the counter with the size
of the clique C represented by the column of the endpoint e, and include C in
Q(x) if the counter is equal to the size of C.

For correctness, let C ⊆ N(x). The column for each clique C is the left
endpoint for some member of C and the right endpoint for some member of C.
It is necessary for x to have a neighbor whose left endpoint is in C’s column and

a neighbor whose right endpoint is in C’s column. A check of the counter against
the size of C will therefore occur when C is reached. The procedure identifies all
cliques in Q(x). It does not falsely identify any clique C ′ as a member of Q(x),
since if it doesn’t belong, the counter will be equal to |C ′ ∩ N(x)| < |C ′| when
the sweep passes C ′, and the test for C ′, if it is performed, will fail.

Every time that we change the value of the counter, we compare it to |N(x)|,
if these values are equal at some column C, then N(x) ⊆ C and therefore x is
simplicial. If x is simplicial then there must be at least one clique of G[P] that
contains N(x). The column of at least one of the cliques which contain N(x)
must be the left endpoint of a row of a member of N(x), and therefore we find
all simplicial vertices this way.

The procedure for x takes time proportional to |N [x]| because it spends
O(|N [x]|) time retrieving and sorting Lx, and O(1) time at each entry of Lx, for
a total of O(|N [x]|) time. Summing over all x, we have an O(N + E) bound for
splitting N into N1, N2 and N3. This bound is possible because the procedure
often avoids checks at columns corresponding to cliques that are not subsets of
N(x).

We conclude with the following lemma:

Lemma 1. In linear time we can either split N into N1, N2 and N3 and find

Q(x) for every x ∈ N , or else determine that G is not a probe interval graph.

3.1 Non-Probe - Clique Constraints

Assume that G is indeed a probe interval graph and consider the interval of
x ∈ N1 in a interval model R. The interval of x must cover the clique segments
that correspond to members of Q(x), since each member of Q(x) is a subset
of N(x) and C ∈ Q(x) has a member such that the clique segment of C is the
leftmost clique segment in its interval and a member such that the clique segment
of C is the rightmost clique segment in its interval. For any clique C ′ whose clique
segment is intersected by x’s interval, C ′ ⊆ N(x), hence C ′ ∈ Q(x). We conclude
that the clique segments of Q(x) must be consecutive in the ordering of clique
segments of G[P] given by any interval model of G.

The number of cliques containing a vertex v in an interval graph is bounded
by |N [v]|, since a neighbor of v ends at the clique segment for each clique that
contains v. Since G[P + x] is an interval graph, for any x ∈ N1, the number of
cliques in Q(x) is bounded by |N [x]|.

We therefore add to M a row for each x ∈ N1 that has a 1 in the column for
C if C ∈ Q(x) and a 0 otherwise. Using a sparse representation of the matrix,
this adds O(|N [x]|) to the size of the matrix. We call these new rows non-probe

- clique constraints.

3.2 Non-Probe - Probe Binding Constraints

The non-probe - clique constraints defined for members of N1 are not enough.
These constraints allow the interval of x ∈ N1 to cover the clique segments of

Q(x) and thus intersect the intervals of Qx, but there might be some vertices in
N(x) \ Qx. For these we add more constraints to M .

Let x ∈ N1 and let p ∈ N(x) \ Qx. Since x and p are adjacent, we know
that their intervals must intersect in any interval model of G, and therefore
Q(x)∪Q(p) must be consecutive. In any interval model R of G, these intersections
must be realized between pairs of consecutive clique segments of R[P]. Let us
call this additional constraint a non-probe - probe binding constraint imposed by
x and p, since one of them is a non-probe and the other is a probe. Adding such
a constraint for every such x and p will make M too large. We show that a set
of new rows with a linear number of 1’s is enough to enforce the non-probe -
probe binding constraints.

We know that Q(x) ∩ Q(p) = ∅, because if C ∈ Q(x) ∩ Q(p) then p ∈ C
and thus p ∈ Qx. Therefore, in any interval model of G, the interval of p covers
exactly one endpoint of the interval of x. Moreover, in the order of the clique
segments in any model, either the rightmost member of Q(p) must be consecutive
with the leftmost member of Q(x) or vice versa.

The set of probes that x is bound to is N(x)\Q(x). Denote this set by Y . In a
interval model of G, we can divide Y into the set Y1 that covers the left endpoint
of x and the set Y2 that covers the right endpoint of x. Note that although we
defined Y using a specific model of G, the same Y1 and Y2 arise in every model,
up to interchange between the two, since each of the two subsets induces a
complete subgraph and two vertices from different subsets are nonadjacent.

Recall that the vertices are numbered arbitrarily from 1 through n. For two
vertices v and u, let v ≺ u denote that either Q(v) ⊂ Q(u) or that Q(v) = Q(u)
and v has a smaller vertex number than u does.

Since the members of Y1 all end at the clique segment to the left of x’s left
endpoint and they all occupy consecutive cliques, it follows that for any two
y, y′ ∈ Y1, either Q(y) ⊆ Q(y′) or Q(y′) ⊆ Q(y). It follows that Y1 induces a
linear order in the ≺ relation, so it has a unique a minimal member y1 in this
relation. Similarly, Y2 has a unique minimal member y2 in the ≺ relation. For
every y ∈ Y either Q(y1) ⊆ Q(y) or Q(y2) ⊆ Q(y), but not both.

By similar reasoning, each for each probe p, the ≺ relation on non-probes
that p is bound to has at most two nonadjacent minimal members x1 and x2.
Let us say that x and p are a representative bound pair if p is a minimal bound
neighbor of x and x is a minimal bound neighbor of p in the ≺ relation.

Consider the current status of the matrix M . The matrix includes the probe
- clique constraints and the non-probe - clique constraints. In O(V + E) time
we can either find a consecutive-ones ordering of M or determine that G is not
a probe interval graph, since we cannot satisfy all the constraints. Using this
ordering of M , we can determine in O(1) time for two vertices v, u ∈ P ∪ N1

whether Q(v) ⊆ Q(u) by examining the position of leftmost and rightmost 1’s
in the rows of u and v. So, the relation ≺ for two vertices can be determined
in O(1) time as well. We get that we can find the minimal bound neighbors of
every vertex, and thus all the representative bound pairs, in O(V + E) time.

We add to M a row for any representative pair {x, p} that has a 1 in the
column for C if C ∈ Q(x)∪Q(p) and a 0 otherwise. Using a sparse representation
of the matrix, this adds O(|N [x]|+ |N [p]|) to the size of the matrix. Since every
vertex adds at most two new rows to M , the size of M remains linear in the size
of G.

We claim that it is enough to add probe - non-probe binding constraints only
for representative bound pairs. In other words, a consecutive-ones ordering of
M satisfies the binding constraint not just for representative bound pairs, but
for all such bound pairs of vertices. Recall that because of the probe - clique
constraints and the non-probe - clique constraints, M already has a row with
the characteristic vector of Q(v) for each probe or non-probe vertex v.

Suppose that x and p are bound. Let x′ be the minimal vertex in the neigh-
borhood containment relation that is bound to p such that x′ ≺ x. Next, let p′

be the minimal vertex that is bound to x′ such that p′ ≺ p. We continue this
process until we get x′′ ≺ x and p′′ ≺ p such that x and p are a representa-
tive bound pair. Because of the ≺ relation, Q(x′′) ⊆ Q(x) and Q(p′′) ⊆ Q(p),
from the previous constraints Q(x) is consecutive and Q(p) is consecutive, and
from the non-probe - probe binding constraints Q(x′′)∪Q(p′′) is consecutive. It
follows that Q(x) ∪Q(y) is consecutive, as required.

3.3 Probe - Probe Binding Constraints

Consider x ∈ N2. In this case, Q(x) is empty and N(x) is not a complete
subgraph. If G is a probe interval graph, then in an interval model R of G, the
interval of x lies between two consecutive clique segments of R[P]. Let C1 and
C2 be the cliques of G[P] corresponding to these clique segments, where C1’s
segment lies to the left of C2’s. Let Y1 = N(x) \ C2 and let Y2 = N(x) \ C1.
The sets Y1 and Y2 satisfies Y1 ⊆ C1, Y2 ⊆ C2 and Y1 ∩ Y2 = ∅. Also, since x is
not simplicial, neither Y1 nor Y2 is empty. Note that although we used a specific
model to define Y1 and Y2 for x, these sets are unique for every x ∈ N2, up to
interchange between the two.

Let y ∈ Y1 and y′ ∈ Y2. Since x is adjacent to both y and y′, and does
not cover any clique segment, we know that Q(y) ∪ Q(y′) must be consecutive
in any interval model of G. We call this additional constraint a probe - probe

binding constraint imposed by y and y′. Adding such a constraint for every such
y and y′ for every x ∈ N2 will make M too large. But as with the non-probe -
probe binding constraints, we can use the same relation ≺ and add to M such a
constraint only for a pair p and p′ such that both are minimal bound neighbors
of each other.

We add to M a row for each representative pair p, p′ for probe - probe binding
constraints that has a 1 in the column for C if C ∈ Q(p)∪Q(p′) and a 0 otherwise.
Using a sparse representation of the matrix, this adds O(|N [p]|+ |N [p′]|) to the
size of the matrix. Since every vertex adds at most two new rows to M , the size
of M remains linear in the size of G.

To find these in O(V +E) time, we find for each x ∈ N2, the sets Y1 and Y2 of
probes that are bound because of x. All elements of Y1 are bound to elements of

Y2, but we cannot consider all of these pairs and observe the linear time bound.
The sets Y1 and Y2 are linearly ordered by the relation ≺. Therefore it is enough
to bind only the minimum members of the two sets to each other. This gives
O(|N2|) candidate pairs for bindings. However, a probe may be a member of
several candidate bindings. We proceed on these as in the case of probe - non-
probe bindings to find representative pairs, where each is a minimal element that
is bound to the other.

3.4 Additional Segments

Last, we consider N3. For this set of probes we do not define further constraints,
but refine the probe - clique constraints. This is done by adding columns to M .
As mentioned earlier, the new columns have 0 or 1 in rows of MP and ∗ in rows
that we added for N1 and N2.

Let x ∈ N3, and assume that G is a probe interval graph. Let R be an interval
model of G. The set N [x] is a clique in G. Therefore there is a clique segment
in R that is covered by the intervals of N [x]. Note that intervals of additional
non-probes might cover this clique segment as well.

Let C′ = {N [x] | x ∈ N3}. The members of C′ are the cliques of G that are
not in C. For each vertex v, let Q′(v) denote the set of members of C′ that contain
v (for x ∈ N1 ∪ N2 we get Q′(x) = ∅, and for x ∈ N3, Q

′(x) = {N [x]}). In an
interval model of G, the interval for a probe p must cover the clique segments
that correspond to members of Q(p) ∪Q′(p). Because p is not contained in any
other clique of C ∪ C′, the clique segments of Q(p) ∪ Q′(p) must be consecutive
in the left-to-right ordering of clique segments. This gives us a refinement of the
probe - clique constraints.

To represent the cliques of C′, we add a new column for every x ∈ N3, that
has a 1 in the row of a probe p if p ∈ N [x], and 0 otherwise. Using a sparse
representation of the matrix, this adds O(|N [x]|) to the size of the matrix.

This concludes the construction of M . If G is a probe interval graph, then
there must be a consecutive-ones ordering of the columns of M that obeys all
constraints. We summarize the section in the following lemma:

Lemma 2. It takes O(V + E) time to construct the probe matrix M or else

decide that G is not a probe interval graph. Moreover, if G is a probe interval

graph then M is a consecutive-ones probe matrix.

We use the algorithm of Sect. 5 to find a consecutive-ones ordering of M .
If such an ordering does not exist then G is not a probe interval graph. Note
that in some cases M has a consecutive-ones ordering even if G is not a probe
interval graph.

4 Constructing an Interval Model

In this section we use the consecutive-ones ordering of M that we found in the
previous section to find an interval model of G, if one exists.

The construction is similar to the construction of [2] of an interval model
from the clique matrix of an interval graph. Each interval must cover the clique
segments it belongs to. In addition, realizing bindings requires some differential
stretching of endpoints inside the zone between two consecutive clique segments.

Recall that we represent an interval model combinatorially by a list of al-
ternating blocks of left and right endpoints. We begin by defining two sets of
endpoints for every column C of M : Cℓ and Cr. We show below how we populate
these sets. We order the sets according to the consecutive-ones ordering of the
columns of M , such that Cℓ is to the left of Cr.

Let v ∈ V \ N2. In this case, Q(v) ∪ Q′(v) is not empty. If v ∈ P ∪ N1, then
Q(v) ∪ Q′(v) has a row in M . Let C be the leftmost column with 1 in this row
and D be the rightmost column with 1 in this row. If v ∈ N3, we let C and D
both be the column of the clique N [v]. We put the left endpoint of v in Cℓ and
the right endpoint of v in Dr. Because M has a consecutive-ones ordering, this
takes linear time. Let us denote the resulting interval model by R1.

In R1, for every column C, the segment on the line between Cℓ and Cr is
the clique segment of C. If the intervals of v and u intersect in R1, and at
least one of the two vertices is a probe, then v and u are adjacent, because
(Q(u) ∪Q′(u)) ∩ (Q(v) ∪Q′(v)) 6= ∅.

However, there still might be some edges in E that are not realized by R1.
These edges are between x ∈ N1∪N2 and p ∈ N(x)\Qx. In order to realize these
adjacencies we place the endpoints of vertices of N2 and stretch the intervals of
N1, N2 and N(x) \ Qx for x ∈ N1 ∪ N2 between the clique segments of C ∪ C′.

Let x ∈ N2 and let Y1 and Y2 be as defined in Sect. 3.3, that is the two sets
for which x defines probe - probe constraints, such that the intervals of Y1 are
to the left of the intervals of Y2. Let C be the rightmost column in which all
rows of members of Y1 have a 1. This is the same columns for all Y1 because of
the probe - probe constraints. Let D be the leftmost column in which all rows
of members of Y2 have a 1. The column D is the column immediately to right
of C because of the probe - probe constraints. We place the left endpoint of x
in Dℓ and the right endpoint of x in Cr. Denote the construction so far by R2.
Note that R2 is not an interval model, since we place the left endpoint of x to
the right of its right endpoint. We will resolve this problem when we stretch the
intervals.

The last step of the construction is to stretch intervals of vertices of N1, N2

and N(x) \Qx for x ∈ N1 ∪N2. Consider two vertices v and u that are adjacent
in G, but whose adjacency is not realized in R2. Assume that v is to the left
of u. (If one of them is in N2 then it does not have a real interval, but it is
still clear which one is to the left.) Because of the non-probe - probe constraints
and the probe - probe constraint, we know that the set Cr, which contains the
right endpoint of v, is immediately to the left of Dℓ, which contains the left
endpoint of u. We must stretch the endpoints of intervals that have unrealized
intersections, between the clique segments.

For every Cr and the set to its right, Dℓ, we split the two sets and order
them as follows. We split Cr into subsets A0, A1, . . . , A|Dℓ| and A′ such that an

endpoint f ∈ Cr is in Ai if it is an endpoint of an interval of a probe p with
|N(p) ∩ Dℓ| = i, and in A′ if it is an endpoint of an interval of a non-probe.
Similarly we split Dℓ into subsets B0, B1, . . . , B|Cr| and B′. Note that some of
the the subsets might be empty. We replace Cr with the Ai’s, where A0 is the
leftmost. We replace Dℓ with Bi’s where B0 is the rightmost. For every endpoint
f ∈ B′, we place f in a set to the right of Aj where j is the largest index such
that the vertex of f is non-adjacent to all vertices of A0, A1, . . . , Aj and adjacent
to all vertices of Aj+1, Aj+2, . . . , A|Dℓ|. Similarly we place every endpoint f ∈ A′

in a set on the left of the appropriate Bj . Note that the set between A|Dℓ| and
B|Cr| contains both right and left endpoints. To avoid a set that contains both
left and right endpoint, we split this set F into a set Fℓ of left endpoints and
a set Fr of right endpoints. Let us denote the resulting construction by R. See
Fig. 1.

A0

A1

A3

B1

B2

B3
F DlrC

A’

B’

Fig. 1. Reordering the endpoints of Cr and Dℓ. The endpoints of Cr are right end-

points and the endpoints of Dℓ are left endpoints. Endpoints of non-probes are empty,

endpoints of probes are full. The endpoints of Cr are split into A0, A1, A3 for probes

and A′ for non-probes. The endpoints of Dℓ are split into B1, B2, B3 for probes and B′

for non-probes. The set F contains the endpoints which are to the right of A3 and to

the left of B3. We spit it into Fℓ and Fr.

We show that if G is a probe interval graph, then we can place every members
of A′ and B′, and therefore we can construct R. Assume that we cannot place
f ∈ B′ on the right side of any Ai. Let x be the vertex of f . The fact that we
cannot place f means that there are Ai and Aj with i ≤ j, for which there is
a probe p with an endpoint in Ai and a probe p′ with an endpoint in Aj , such
that x is adjacent to p, but not to p′. Both p and p′ are members of the clique
which C represents, so they are adjacent. Because p′ is adjacent to at least as
many non-probes of A′ as p, we know that there is x′ with an endpoint in A′

that is adjacent to p′ but not to p. In any interval model of G, the intervals of x
and x′ cannot intersect, since otherwise x, x′, p′, p would be a chordless cycle.

There is a vertex q with an endpoint in Dℓ that is adjacent to x. If there is such
a q that is adjacent also to x′, then x, x′, p, p′ and q create a chordless cycle in
any interval model of G. Otherwise, there is a vertex q′ with endpoint Dℓ which
is adjacent to x′ and not to x. In this case, q and q′ must be adjacent since they
are both members of the clique represented by column D. So the vertices x, x′,
p, p′, q and q′ create a chordless cycle in any interval model of G. Therefore, if
we cannot place f ∈ B′ then G is not a probe interval graph. The proof for the
case where we cannot place f ∈ A′ is symmetric.

Since every interval has two endpoints, and the splitting of Cr and Dℓ takes
time proportional to the number of edges between vertices which have endpoints
in these sets, in O(V + E) time we can either construct R or decide that R
cannot be constructed. If R cannot be constructed, G is not a probe interval
graph.

If we managed to construct R, then it is an interval model of G. First note
that the endpoints of every vertex of N2 are now ordered properly, that is, the
left endpoint is to the left of the right endpoint. To show that R realizes G,
we consider the following cases for a probe p and a vertex v, and show that
their intervals in R intersect if and only if they are adjacent. If v ∈ P then
the claim is true because R[P] is a model of G[P]. If v ∈ N1 and p ∈ Qv or
if v ∈ N3 then the claim is true because the intervals intersect if and only if
(Q(v)∪Q′(v))∩ (Q(p)∪Q′(p)) 6= ∅. Otherwise, the claim follows by the way we
stretch intervals into the region between the clique segments.

We conclude with the main theorem:

Theorem 3. Let G be a probe graph. In O(V + E) time we can construct a

interval model for G, or decide that G is not a probe interval graph.

5 Consecutive-Ones Probe Matrices

In this section we present a linear-time algorithm for the consecutive-ones probe
matrix problem. Let M be a probe matrix with i rows, j columns and k 1’s. We
determine if M is a consecutive-ones probe matrix in O(i + j + k) time. We do
so by finding the PQ-tree of two 0-1 submatrices of M using [2], and combining
the trees using tools of [11]. If M is a consecutive-ones probe matrix then we
find a consecutive-ones ordering of it. With a modification of [11] we can find a
PQ-tree that represents all consecutive-ones orderings of M . We do not present
it here, because a single consecutive-ones ordering is enough, and we want to
keep the description simple.

Let MR be the submatrix of M whose rows are the rows that do not have
∗’s, and whose columns are all columns of M . Let MC be the submatrix of M
whose columns are the columns that do not have ∗’s, and whose rows are all
rows of M . Let X be the set of columns of MC .

If π is a consecutive-ones ordering of M , then π is also a consecutive-ones
ordering of MR and πX is a consecutive-ones ordering of MC . On the contrary,
if π is a consecutive-ones ordering of MR, and πX is a consecutive-ones ordering

of MC , then π is a consecutive-ones ordering of M . Therefore, our goal is to find
such a π.

Let TR be the PQ-tree of MR and let TC be the PQ-tree of MC . Let T ′ =
TR[X] ∩ TC . Each permutation σ ∈ Π(T ′) is a permutation in both Π(TR[X])
and in Π(TC). This means that σ = πX where π ∈ Π(TR). Assume that such a
permutation σ ∈ Π(T ′) exists.

We can order TR so that the relative order of leaves that are members of X
is σ, because σ ∈ Π(TR[X]), so it is a restriction of some π ∈ Π(TR). It can be
accomplished by the following at each internal node of TR. At a P node, order
the set of children that contain leaf descendants in X according to the order of
those members in σ. At a Q node, if two children contain leaf descendants in X,
from the two allowed linear orders of children, choose the one that is consistent
with σ. The result is π, a consecutive-ones ordering of columns of MR, such that
σ = πX is a consecutive-ones ordering of MC . Therefore, π is a consecutive-ones
ordering of M .

On the other hand, if Π(T ′) = ∅, then there is no ordering of X that imposes
a consecutive-ones ordering both for TR[X] and for TC , and therefore M is not
a probe interval matrix.

Using Booth and Lueker [2] we can find TR and TC in O(i+ j + k) time, and
using [11] we can find TR[X] and from it T ′ in the same time bound. Choosing
σ and π takes O(j) time.

Theorem 4. Let M be a probe matrix. In time linear in the size of the matrix

and the number of 1’s in it we can either find a consecutive-ones ordering of M ,

or else decide that M is not a consecutive-ones probe matrix.

6 Determining Whether a Model is Uniquely Constrained

Recall that we represent an interval model combinatorially by a list of alternating
blocks of left and right endpoints, as the order of endpoints within a block is
inconsequential. Let R and R′ be two interval models. We say that R and R′

are equivalent if they are identical, or if we can get R′ from R by reversing the
order of its blocks and exchanging the blocks between the two endpoints of each
interval. If every model of G is equivalent to R, then R is a unique model of G.

In this section we show that our algorithm for constructing a interval model
for a probe interval graph can determine whether this model is unique for the
graph. This is important for the physical mapping problem that we mentioned
in the introduction, since the answer to this question tells the biologist if we
found the correct sequence, or if we require more probes to uniquely constrain
the model. Let T ′ be as in Sect. 5, for the matrix M , found in Sect. 3.

An interval model of an interval graph is unique only if the consecutive-
ones ordering of its clique matrix is unique up to reversal. This is because a
consecutive-ones ordering of the clique matrix defines the block of each endpoint,
and also the order of the blocks. Similarly, a probe interval graph G has a unique
model only if the probe matrix M has a unique consecutive-ones ordering up to
reversal.

A consecutive-ones ordering of a matrix is unique up to reversal if and only
if the PQ-tree has a single internal node that is a Q node. Let us call such a tree
a prime PQ-tree. As mentioned before, using a modification of [11] we can find
the PQ-tree of M , and in this way determine if M has a unique consecutive-ones
ordering. Even if we use the algorithm of Sect. 5, we can still determine that
as follows. If T ′ is not a prime PQ-tree, then there are nonequivalent ways to
order the the columns of M , and G has more than one unique model. The same
happens also when T ′ is a prime PQ-tree, but there is more one way to produce
π from σ. This happens if and only if the order of children is not uniquely
constrained at each node. Specifically, if there is a P node with a child that does
not contain an element of X or if there is a Q node for which less than two
children contain an element of X. This can be checked in time linear in the size
of T ′, which is linear in the size of G. In other cases, there is a unique way to
order the columns of M .

Even if M does have a unique consecutive-ones arrangement, there is still a
possibility of different models, due to the fact that there may still be more than
one way to add edges between the non-probes to produce an interval graph. The
matrix M defines a unique order for the cliques of G, and therefore a unique
order of the clique segments in any interval model of G. So, for every two vertices
of V such that at least one is a probe, there is a unique order defined among
their endpoints. However, if there are two non-probes x and x′ such that the
set that contains the left endpoint of x in the model R is next to the set that
contains the right endpoint of x′, then we can change the order between the two
endpoints. So in this case as well, R is not a unique model of G. This last case
can also be detected in time linear in the size of G.

References

1. S. Benzer. On the topology of the genetic fine structure. Proc. Nat. Acad. Sci.
U.S.A., 45:1607–1620, 1959.

2. S. Booth and S. Lueker. Testing for the consecutive ones property, interval graphs,

and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci., 13:335–379,

1976.

3. D. B. Chandler, J. Guo, T. Kloks, and R. Niedermeier. Probe matrix problems: To-

tally balanced matrices. In Third International Conference on Algorithmic Aspects
in Information and Management (AAIM), Lecture Notes in Computer Science

4508:368–377, 2007.

4. G. J. Chang, T. Kloks, J. Liu, and S.-L. Peng. The PIGSs full monty - a floor

show of minimal separators. In 22nd Annual Symposium on Theoretical Aspects
of Computer Science (STACS), Lecture Notes in Computer Science 3403:521–532,

2005.

5. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. McGraw Hill, Boston, 2001.

6. D. R. Fulkerson and O. Gross. Incidence matrices and interval graphs. Pacific J.
Math., 15:835–855, 1965.

7. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,

New York, 1980.

8. M. C. Golumbic. Matrix sandwich problems. Linear Algebra and Applications,
277:239–251, 1998.

9. M. C. Golumbic and A. N. Trenk. Tolerance graphs. Cambridge studies in advanced

mathematics 89, New York, 2004.

10. J. L. Johnson and J. P. Spinrad. A polynomial time recognition algorithm for probe

interval graphs. In Proceedings of the Twelfth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 12:477–486, 2001.

11. R. M. McConnell and F. de Montgolfier. Algebraic operations on PQ trees

and modular decomposition trees. In 31st International Workshop on Graph-
Theoretic Concepts in Computer Science (WG), Lecture Notes in Computer Sci-

ence 3787:421–432, 2005.

12. R. M. McConnell. Linear-time recognition of circular-arc graphs. Algorithmica,

37:93–147, 2003.

13. R. M. McConnell and J. P. Spinrad. Construction of probe interval models. In Pro-
ceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 866–875, 2002.

14. T. A. McKee and F. R. McMorris. Topics in Intersection Graph Theory. Society

for Industrial and Applied Mathematics, Philadelphia, 1999.

15. F. R. McMorris, C. Wang, and P. Zhang. On probe interval graphs. Discrete
Applied Mathematics, 88:315–324, 1998.

16. D. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex elimination

on graphs. SIAM J. Comput., 5:266–283, 1976.

17. R. Uehara. Canonical data structure for interval probe graphs. In 15th Inter-
national Symposium on Algorithms and Computation (ISAAC), Lecture Notes in

Computer Science 3341:859–870, 2004.

18. P. Zhang. United states patent 5667970: Method of mapping DNA fragments. July

3, 2000.

