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Factorization approach to structured low-rank approximation

with applications∗

Mariya Ishteva† Konstantin Usevich† Ivan Markovsky†

Abstract

We consider the problem of approximating an affinely structured matrix, for example
a Hankel matrix, by a low-rank matrix with the same structure. This problem occurs in
system identification, signal processing and computer algebra, among others. We impose
the low-rank by modeling the approximation as a product of two factors with reduced di-
mension. The structure of the low-rank model is enforced by introducing a penalty term
in the objective function. The proposed local optimization algorithm is able to solve the
weighted structured low-rank approximation problem, as well as to deal with the cases of
missing or fixed elements. In contrast to approaches based on kernel representations (in lin-
ear algebraic sense), the proposed algorithm is designed to address the case of small targeted
rank. We compare it to existing approaches on numerical examples of system identification,
approximate greatest common divisor problem, and symmetric tensor decomposition and
demonstrate its consistently good performance.

Key words. low-rank approximation, affine structure, penalty method, missing data, system
identification, approximate greatest common divisor, symmetric tensor decomposition
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1 Introduction

Low-rank approximations are widely used in data mining, machine learning, and signal pro-
cessing, as a tool for dimensionality reduction, feature extraction, and classification. In system
identification, signal processing, and computer algebra, in addition to having low rank, the ma-
trices are often structured, e.g., they have (block) Hankel, (block) Toeplitz, or (block) Sylvester
structure. Motivated by this fact, in this paper, we consider the problem of approximating a
given structured matrix D by a matrix D̂ with the same structure and with a pre-specified
reduced rank r.

1.1 Problem formulation

Formally, we consider the following problem

min
D̂
‖D − D̂‖2W subject to rank(D̂) ≤ r and D̂ is structured, (1)
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where D ∈ R
m×n, D̂ ∈ R

m×n, r < min(m,n) and ‖ · ‖W is a semi-norm on the space of matrices
R
m×n, induced by a positive semidefinite matrix W ∈ R

mn×mn as

‖D‖2W := (vec(D))⊤Wvec(D).

Being able to deal with weights in (1) has a number of advantages in practice. First, due
to sensor failure, malfunctioning of a communication channel, or simply due to unseen events,
real-world data can have unknown (missing) elements. If repeating the experiments until all
data are collected is not an option, for example because of high price of the experiments or
high computational time, the missing data have to be approximated as well. The problem of
estimating missing data is also known as the matrix completion problem and is well-studied in
the case of unstructured matrices. In the case of structured matrices, however, this problem
has few solutions [21]. A natural way to deal with missing elements is to introduce zeros in the
weight matrix at the positions corresponding to the missing elements.

In addition, if prior knowledge is available about the importance or the correctness of each
(noisy) element, this knowledge can be encoded in the weight matrix. Note also that finding the
closest structured matrix to a given structured matrix with respect to the Frobenius norm can
be encoded with W being the identity matrix.

The structures considered in (1) are affine structures. This class of structures includes many
structures of interest and contains all linear structures. Moreover, it allows us to deal with
fixed elements, i.e., to keep some elements of D in the approximating matrix D̂. Unlike other
approaches in the literature, we do not use infinite weights, but rather incorporate the fixed
values in a special matrix.

1.2 Solution approaches

Existing algorithms to solve problem (1) can be classified into three groups: i) based on local op-
timization, ii) using relaxations, or iii) using heuristics, such as the widely used Cadzow method
[5] or [34]. Relaxation methods include subspace-based methods [33, 16] and, more recently, nu-
clear norm based methods [18, 17, 10]. Local optimization algorithms use kernel or input/output
(I/O) (also known as the structured total least squares (STLS) problem) representations of the
rank constraint, as described in Table 1. Some of these algorithms cannot deal with fixed or
missing elements or solve only special cases of problem (1), e.g. the case of Frobenius norm.

Table 1: Existing local optimization approaches for the structured low-rank approximation
problem

Representation Summary Parameters References

Kernel RD̂ = 0 R ∈ R
(m−r)×m e.g., [19, 20, 31, 3]

I/O
[
X I

]
D̂ = 0 X ∈ R

(m−r)×r e.g., [8, 23, 27, 29, 25]

Image D̂ = PL P ∈ R
m×r, L ∈ R

r×n [6]

In this paper, we study an underrepresented point of view, namely the image representation
of the rank constraint (also known as matrix factorization approach):

rank(D̂) ≤ r ⇐⇒ D̂ = PL for some P ∈ R
m×r, L ∈ R

r×n.

Although this view is widely represented in the literature on (unstructured) low-rank approx-
imation, it is underrepresented in the case of structured low-rank approximation. Imposing
both low-rank and structure simultaneously with the image representation is a nontrivial prob-
lem [6]. The main difficulty comes from the fact that the structure has to be imposed on the
approximation D̂ via the product of its factors P and L.
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1.3 Our contribution

We propose to resolve the problem of imposing the structure via the factors by using the penalty
method [26, §17.1]. The structure can be imposed by introducing a penalty term in the cost
function in (1), representing the distance between the current iterate PL and the space of
structured matrices, i.e.,

min
P,L
‖D − PL‖2W + λdist(PL, its closest structured matrix).

In this way the constrained optimization problem (1) becomes an unconstrained problem, which
can be solved by an alternating projections (block coordinate descent) algorithm. To the best
of our knowledge, this is the first detailed study of the matrix factorization view of structured
low-rank approximation. We apply the proposed algorithm on practically relevant and nontrivial
simulation examples from system identification, computer algebra (finding a common divisor of
polynomials with noisy coefficients), and symmetric tensor decomposition, and demonstrate its
consistently good performance. Large scale problems are not studied in the paper.

The main competitors of the proposed local optimization approach are the kernel-based
algorithms, which aim at solving the same problem. In contrast to kernel-based approaches
which are meant for large rank r (small rank reduction m− r), the proposed approach is more
efficient for problems with small r. Moreover, for general affine structures, existing kernel
approaches have restrictions on the possible values of the reduced rank r [23]. With the new
approach we can overcome this limitation.

Local optimization techniques need a good starting value in order to converge to an adequate
local optimum. We solve a series of related subproblems with increasing penalty parameter λ.
Due to the use of a small initial penalty parameter, the truncated SVD provides a good initial
approximation for the initial subproblem. Each subsequent subproblem is initialized with the
solution of the previous one, providing a good initialization for every subproblem.

Another known issue with the structured low-rank approximation problem is the possible
non-existence of solution with fixed rank [6]. The proposed approach avoids this issue by re-
quiring that the rank of the approximation is bounded from above by r. This way the feasible
set is closed. Then if the fixed elements are all zeros (which is the case for most common struc-
tures), the feasible set is nonempty and solution always exists. We note, however, that in the
non-generic case when the solution of (1) is of lower rank, the proposed algorithm has to be
modified for the convergence results to hold.

Another advantage of the proposed algorithm is its simplicity. As we show in Section 4.1,
the proposed algorithm reduces to solving a sequence of least squares problems with closed form
solutions. This makes it more robust to implementation issues, unlike the algorithm proposed
in [6].

Last but not least, we are able to solve the weighted structured low-rank approximation
problem, as well as to deal with the cases of missing elements in the data matrix or fixed ele-
ments in the structure. These “features” have great impact on the applicability of the proposed
approach, as demonstrated in the numerical section.

The rest of the paper is organized as follows. In Section 2, we discuss the structure specifica-
tion and how to obtain the closest structured matrix to a given unstructured matrix (orthogonal
projection on the space of structured matrices). In Section 2.3, we discuss the structure param-
eter point of view of the main optimization problem. Our reformulations using penalty terms
are proposed in Section 3. The main algorithm and its properties are discussed in Section 4.
In Section 5, it is compared with existing approaches on numerical examples. In Section 6, we
draw our final conclusions.
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2 Structure specification and its use

Commonly used structures include Hankel, block Hankel (system identification, speech encoding,
filter design), Toeplitz, block Toeplitz (signal processing and image enhancement), Sylvester,
extended Sylvester (computer algebra), and banded matrices with fixed bandwidth, see [20,
Table 1.1], [6, §2] and the references therein. These matrices have a pattern for the position of
their elements. For example, in a Hankel matrixD ∈ R

m×n, the elements along any anti-diagonal
are the same, i.e.,

D = Hm(p) =




p1 p2 p3 . . . pn

p2 p3 . .
.

p3 . .
. ...

... . .
.

. .
.

pm pm+1 pm+2 . . . pnp




for some vector p ∈ R
np , np = m + n − 1, called structure parameter vector for the matrix

D. Note that any m × n (unstructured) matrix can be considered as structured matrix with
np = mn structure parameters.

In this section, we first formally introduce the affine structures and then discuss the orthog-
onal projection on the space of structured matrices.

2.1 Affine structures

Formally, affine matrix structures are defined as

S(p) = S0 +

np∑

k=1

Skpk, (2)

where S0, S1, . . . , Snp ∈ R
m×n, p ∈ R

np and np ∈ N is the number of structure parameters. We
require np to be minimal in the sense that

image(S) := {S(p) | p ∈ R
np}

cannot be represented with less than np parameters. It is convenient to define the following
matrix

S =
[
vec(S1) · · · vec(Snp)

]
∈ R

mn×np , (3)

where vec(X) denotes the vectorized matrix X. The minimality of np is equivalent to S having
full column rank. For simplicity, we assume that

(A) the matrix S consists of only zeros and ones and that there is at most one nonzero ele-
ment in each row of the matrix

[
vec(S0) S

]
, i.e., every element of the structured matrix

corresponds to (at most) one element of p or is a fixed element.

This assumption is satisfied for the common structures mentioned earlier ((block) Hankel, (block)
Toeplitz, etc.) and implies that np ≤ mn and S⊤ vec(S0) = 0.

The matrix S0 is introduced to handle fixed elements and is independent of the values of
the structure parameters. The parameter vector p is a vector of true parameters and does not
include elements corresponding to fixed elements in the structure specification. In many cases
(for example, Sylvester matrix in Section 5.3), the fixed elements are zeros, and therefore S0 = 0
(the structure is linear). However, we aim at dealing with the more general case of the arbitrary
fixed elements.
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2.2 Orthogonal projection on image(S)
Next we discuss the orthogonal projection of a matrix on to the space of structured matrices
image(S). This projection is used in the optimization algorithm of Section 4.

Lemma 1. For a structure S satisfying assumption (A), the orthogonal projection PS(X) of a
matrix X on image(S) is given by

PS(X) := S(S† vec (X)), where S† := (S⊤ S)−1S⊤. (4)

The proof is given in the appendix. With some modifications, this lemma also holds for any
affine S. For future reference, using (2), (3), and (4), we also have the following equality

vec(PS(X)) = vec(S0) + ΠS vec(X), (5)

where ΠS = SS† = S(S⊤ S)−1S⊤ is the orthogonal projector on the image of S.
The effect of applying S† on a vectorized m×n matrix X is producing a structure parameter

vector by averaging the elements of X, corresponding to the same Sk. In particular, applying S†

on a (vectorized) structured matrix extracts its structure parameter vector. Further explanation
is provided in the appendix.

2.3 Parameter view of weighted structured low-rank approximation

This section relates problem (1) to an approximation problem in the parameter norm

‖x‖2
W

:= x⊤W x,

where W ∈ R
np×np is a symmetric positive semidefinite matrix of weights. If W is the identity

matrix, then ‖ · ‖W = ‖ · ‖2.

Lemma 2. Problem (1) is equivalent to the following problem

min
p̂
‖p− p̂‖2

W
subject to rank(S(p̂)) ≤ r, (6)

with
W = S⊤WS. (7)

Proof. Indeed,

‖S(p)− S(p0)‖2W = vec(S(p)− S(p0))⊤W vec(S(p)− S(p0))
= (S(p − p0))

⊤W S(p − p0)

= (p− p0)
⊤W (p − p0)

= ‖p− p0‖2W .

Therefore, for W and W related by (7), problems (6) and (1) are equivalent.

In the literature, problem (6) is sometimes referred to as the main problem from which (1)
is derived.
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3 Penalized structured low-rank approximation

Each of the constraints in (1) can easily be handled separately. Approximating a matrix by a
structured matrix without imposing low-rank can be performed by orthogonally projecting the
matrix on the space of structured matrices (see Section 2.2). Unweighted low-rank approximation
without imposing structure can be done using truncated singular value decomposition SVD [12].
However, imposing both low-rank and fixed structure on the approximation is nontrivial even in
the unweighted case (when W = Inp). Likewise, due to the non-convexity of the rank constraint,
the weighted low-rank approximation problem is difficult already in the unstructured case (when
S = I) [30].

We approach the weighted structured low-rank approximation problem from a new point of
view, namely by a penalty technique. We propose two novel reformulations and discuss their
relation to the original problem.

The main idea is to solve a series of related simpler subproblems, the solution of each
subsequent problem being forced closer to the feasible region of the main problem. One of
the requirements (low-rank or structure) will always be imposed, while the other one will be
satisfied only upon convergence. We have the following two choices (see Figure 1):

D̂ in (1): → low-rank constraint
→ structure constraint

PL in (8):

→ low-rank X

→ penalized structure deviation

PS(PL) in (9), (10):

→ penalized low-rank deviation
→ structure X

Figure 1: Optimization problems

• penalize the structure deviation

min
P,L
‖D − PL‖2W + λ‖PL− PS(PL)‖2F , (8)

where λ is a penalty parameter (discussed in Section 4.1.1), ‖ · ‖F stands for the Frobenius
norm and PS(PL) is defined in (4), or

• penalize the low-rank deviation

min
P,L
‖D −PS(PL)‖2W + λ‖PL− PS(PL)‖2F . (9)

The choice of λ is discussed in Section 4.1.1. Note that for λ =∞ the term ‖PL−PS(PL)‖
has to be zero and the three problems (1), (8) and (9) are equivalent. The interpretations of
(8) and (9) are however different. In (8), PL is a matrix of low rank but it only approximately
obeys the given structure. Forcing ‖PL − PS(PL)‖2F to zero forces PL to have the required
structure as well. In (9), the iterate can be considered to be PS(PL), i.e., at each iteration
the iterate is a structured matrix but the low-rank constraint is only approximately satisfied.
Forcing ‖PL− PS(PL)‖2F to zero forces the iterate to have low-rank as well.

Since S is of full rank, given W in problem (6), there are many possibilities to choose W
satisfying (7), such that problems (1) and (6) are equivalent. However, the following holds true.
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Remark 1. If W satisfies (7), problem (9) is independent of the choice of W and can be
formulated using W in the following way

min
P,L
‖p− S†vec(PL)‖2

W
+ λ‖PL− PS(PL)‖2F . (10)

Because of this reason, we will focus on problem formulation (9) and its equivalent repre-
sentation (10). For a particular choice W∗ = (S†)⊤WS† (which satisfies (7)), problem (8) is
equivalent to (10).

Remark 2 (Existence of solution). A known issue with the structured low-rank approximation
problem is the possible non-existence of solution with fixed rank [6]. The proposed approach avoids
this issue by requiring that the rank of the approximation is bounded from above by r. This way
the feasible set is closed. Then if S0 = 0 (which is the case for most common structures), then
the feasible set is nonempty and solution always exists. We note, however, that in the non-
generic case when the solution of (1) is of lower rank, the proposed algorithm has to be modified
for the convergence results to hold.

4 The proposed algorithm

In this section, we propose an algorithm in the framework of the penalty methods. We first
discuss how the minimization problem (10) can be solved for a fixed value of the penalty pa-
rameter λ and then present the algorithmic and computational details related to the proposed
algorithm.

4.1 Description of the algorithm

The main idea is to solve the minimization problem (10) by alternatingly improving the approx-
imations of L, for fixed P ,

min
L
‖p− S† vec(PL)‖2

W
+ λ‖PL− PS(PL)‖2F (11)

and of P , for fixed L,

min
P
‖p− S† vec(PL)‖2

W
+ λ‖PL− PS(PL)‖2F . (12)

Let In be the n× n identity matrix and let ’⊗’ be the Kronecker product

X ⊗ Y =



x11Y · · · x1nY
...

. . .
...

xm1Y · · · xmnY


 , for X ∈ R

m×n.

Lemma 3. Problems (11) and (12) are equivalent to the following least squares problems

(11) ⇔ min
L

∥∥∥∥∥

[
M S†

√
λΠS⊥

]
(In ⊗ P ) vec(L)−

[
Mp

√
λvec(S0)

]∥∥∥∥∥

2

2

,

(12) ⇔ min
P

∥∥∥∥∥

[
M S†

√
λΠS⊥

]
(L⊤ ⊗ Im) vec(P )−

[
Mp

√
λvec(S0)

]∥∥∥∥∥

2

2

,

(13)

for an M ∈ R
np×np with W = M

⊤
M and ΠS⊥

= (Imn −ΠS) being the orthogonal projector on
the left kernel of S.
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The proof is given in the appendix.
Both reformulations in Lemma 3 are least squares problems and can be solved in closed form.

For fixed λ, we propose an algorithm in the framework of alternating least squares and block
coordinate descent, namely we alternatingly improve the approximations of L and of P by solving
the least squares problems in (13). We discuss the update strategy for λ in Section 4.1.1. The
choice of initial approximation P0 for P and the stopping criteria are discussed in Section 4.1.2.
The summary of the proposed algorithm is presented in Algorithm 1.

Algorithm 1 Structured low-rank approximation by factorization

Input: p ∈ R
np , S0 ∈ R

m×n, S ∈ R
mn×np , W = M

⊤
M ∈ R

np×np , r ∈ N, P0 ∈ R
m×r.

Output: Factors P ∈ R
m×r and L ∈ R

r×n, corresponding to a structured low-rank approxima-
tion problem (10).

1: Set S† = (S⊤S)−1S⊤.
2: Set P = P0, λ1 = 1.
3: for j = 1, 2, . . . until a stopping criterion is satisfied do
4: for k = 1, 2, . . . until a stopping criterion is satisfied do
5: Update L from (11).
6: Update P from (12).
7: end for
8: Set λj+1 such that λj+1 > λj .
9: end for

Due to the simplicity of Algorithm 1, dealing with weights, missing elements and structures
with fixed elements is straightforward. The weight matrix W and the matrix with fixed elements
S0 are readily introduced in (13) and thus also in Algorithm 1. Dealing with missing elements
is realized by introducing zeros in the weight matrix W at the positions corresponding to the
missing elements. Numerical examples are introduced in Section 5.

4.1.1 Parameter λ

In theory, if we fix λ = ∞, then (10) is the exact structured low-rank approximation problem.
In practice, we may fix λ to a “large enough” value and the solution PL is only approximately
a structured matrix. The higher the value of λ, the better the structure constraint is satisfied;
however, too large values may lead to numerical issues.

Alternatively, adaptive schemes for updating λ are also possible. We can start from a small
value and increase it with each iteration or set of iterations. This way we allow the algorithm
to move to a “good region” first and then impose more strictly the structure constraint [26].
The following strategy has been proposed in [26, §17.1]: if solving the previous subproblem was
expensive, increase λ only modestly, e.g., λj+1 = 1.5λj . If solving the previous subproblem was
cheap, increase λ more ambitiously, λj+1 = 10λj .

4.1.2 Initial guess and stopping criterion

Let D = UrΣrV
⊤
r be the truncated SVD of the given matrix D (D = S(p)). We initialize P

by Ur. For small λ, the second term in the objective function is also small. In particular, for
λ = 0, problem (8) is exactly the (unstructured) low-rank approximation problem, for which
truncated SVD provides a globally optimal solution (in the unweighted case). Problem (9) and
thus Problem (10) are equivalent to Problem (8) for λ =∞ and are still closely related for small
λ as well. This is why the truncated SVD provides a good initial approximation for Problem (9)
and thus also for Problem (10). We solve a series of related subproblems with increasing penalty
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parameter λ. Each subsequent subproblem is initialized with the solution of the previous one,
providing a good initialization for every subproblem.

Consider the following stopping criteria. For λ fixed to λj , stop when the derivatives of the
objective function are smaller than τj with τj → 0 as j →∞. In practice, if we do not want to
compute derivatives, the algorithm is often stopped when there is little change in the column
space of P , although further progress can potentially be achieved. Note that for small λ we do
not need to solve the problem exactly. Thus, we can stop earlier and avoid slow convergence.
Only when λ becomes large, good approximation is required. We stop iterating when λ is “large
enough”, e.g, 1014.

We declare that PL is a structured matrix if

‖PL− PS(PL)‖2F
‖PL‖2F

< ε,

for a small ε, e.g., ε = 10−12.

4.1.3 Computational complexity

The main computational cost is due to solving the least squares problems in (13), which is
equivalent to solving two systems of linear equations. The computational cost for constructing
the matrices and the vector of the systems is smaller than the cost for solving the system. The
size of the systems’ matrices are (np + mn) × rn and (np + mn) × rm, respectively. Suppose
that m ≤ n and recall that np ≤ mn. Then, the cost for one step of the proposed algorithm is

O((rn)2(np +mn)) = O(n3mr2).

Note that this estimate does not take into account the available structure and sparsity of the
matrices in (13). If the structure and sparsity are exploited, faster computation can be per-
formed. Additionally, compared to the kernel approaches, which are fast for large values of r
(preferably r = m− 1), the proposed approach is designed for small values of r. If the structure
is not taken into account, the kernel approaches also have computational cost that is cubic in
n, namely O((m− r)3n3), and moreover their cost per iteration is higher in m for small r.

4.2 Convergence properties

Algorithm 1 falls into the setting of the penalty methods for constrained optimization [26,
§17.1] whose convergence properties are well understood. For fixed λ, the proposed algorithm
is an alternating least squares (or block coordinate descent) algorithm. Since we can solve the
least squares problems in (13) in closed form, every limit point of the generated sequence is a
stationary point [2, §1.8.1, §2.7][13]. The convergence rate of these methods is linear.

For the convergence properties of the algorithm as λ → ∞, we have the following theo-
rem borrowed from the theory of the quadratic penalty method. We first define c(P,L) =[
c1(P,L) · · · cmn(P,L)

]⊤
as the vector of penalties

c(P,L) := vec(PL− PS(PL)). (14)

Theorem 1. [26, Th. 17.2.] For τj → 0 and λj → ∞, if a limit point (P,L)∗ of the sequence
{(P,L)j} generated by Algorithm 1 is infeasible, it is a stationary point of the function ‖c(P,L)‖22.
On the other hand, if a limit point (P,L)∗ is feasible and the constraint gradients ∇ci((P,L)∗)
are linearly independent, then (P,L)∗ is a KKT (Karush-Kuhn-Tucker) point for problem (1).
For such points, we have for any infinite subsequence K such that limj∈K(P,L)j = (P,L)∗ that

lim
j∈K
−λjci((P,L)j) = ν∗i , for all i = 1, . . . ,mn,

where ν∗ is the multiplier vector that satisfies the KKT conditions.
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We next discuss the applicability of the theorem in our setting and some important special
cases. We start with a discussion on the constraints.

4.2.1 Constraints

There are mn constraints in total, defined by

PL = PS(PL) ⇐⇒ c(P,L) = 0 ⇐⇒ ΠS⊥
vec(PL)− vec(S0) = 0 (15)

Note, however, that by assumption (A), S⊤vec(S0) = 0 and thus

ΠS⊥
vec(S0) = (Imn −ΠS)vec(S0) = (Imn − S(S⊤S)−1S⊤)vec(S0) = vec(S0).

Thus, (14) can be written as

c(P,L) = ΠS⊥
(vec(PL)− vec(S0))

= ΠS⊥
((L⊤ ⊗ Im) vec(P )− vec(S0))

= ΠS⊥
((In ⊗ P ) vec(L)− vec(S0)).

(16)

The optimization variables are the entries of P and the entries of L and the above equivalences
show that each constraint is linear in each optimization variable. It can be concluded that the
matrix of constraint gradients (the Jacobian of the vector of constraints) is

Jc(P,L) = ΠS⊥

[
L⊤ ⊗ Im In ⊗ P

]
∈ R

mn×(mr+nr), (17)

where the gradient of the i-th constraint is the i-th row of the matrix.

4.2.2 S0 = 0 and feasibility of the limit points

The class of structures with S0 = 0 is particularly interesting because of the following reasons:

• Most common structures ((block-, mosaic-, quasi-) Hankel, (extended) Sylvester, etc.) are
in this class.

• Problem (1) always has a solution since the feasible set is closed and nonempty (the zero
matrix is in the feasible set).

• The limit points of the sequence generated by Algorithm 1 are feasible, as follows directly
from the following proposition.

Proposition 1. Let S0 = 0. Then any stationary point of ‖c(P,L)‖22 is feasible.

The proof in given in the appendix.

4.2.3 Equivalent set of constraints

Theorem 1 cannot be applied directly to the set of constraints c(P,L), because rank(Jc(P,L)) ≤
rank(ΠS⊥

) = mn− np < mn. We will next transform the set of constraints c(P,L) = 0 into an
equivalent set of constraints c̃(P,L) = 0, such that the conditions of Theorem 1 can be satisfied
for c̃(P,L).

Let S⊥ ∈ R
mn×(mn−np) be a matrix, whose columns span the orthogonal complement of S

with S⊤
⊥S⊥ = Imn−np . Then we also have

ΠS⊥
= S⊥(S

⊤
⊥S⊥)

−1S⊤
⊥ = S⊥S

⊤
⊥.
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Let
c̃(P,L) = S⊤

⊥(vec(PL)− vec(S0)).

Then
‖c(P,L)‖22 = ‖ΠS⊥

(vec(PL)− vec(S0))‖22
= ‖S⊥S

⊤
⊥(vec(PL)− vec(S0))‖22

= ‖S⊤
⊥(vec(PL)− vec(S0))‖22

= ‖c̃(P,L)‖22.

(18)

Note that from (18), it follows that

c(P,L) = 0 ⇐⇒ c̃(P,L) = 0.

Similarly to (17), the Jacobian of the vector of constraints c̃(P,L) is

Jc̃(P,L) = S⊤
⊥

[
L⊤ ⊗ Im In ⊗ P

]
∈ R

(mn−np)×(mr+nr). (19)

4.2.4 Independence of the constraint gradients

We will need the following lemma.

Lemma 4. Let P ∈ R
m×r and L ∈ R

r×n, then

1. rank(
[
L⊤ ⊗ Im In ⊗ P

]
) ≤ mr + nr − r2.

2. The equality holds if and only if rank(P ) = rank(L) = r.

The proof in given in the appendix.

Remark 3 (The condition rank(P ) = rank(L) = r). The condition that P and L have rank r is
generically satisfied. Nongeneric cases would appear when the exact rank-r problem does not have
a solution, i.e., when the solution of (1) is of rank lower than r. In this case, Algorithm 1 can
be modified to detect rank deficiency in P and in L and reduce their corresponding dimensions,
so that the reduced matrices have full column- and full row-rank, respectively.

From (19) and Lemma 4 we have that

rank(Jc̃(P,L)) ≤ min(mn− np,mr + nr − r2) (20)

and thus the following remark holds true.

Remark 4 (Necessary and sufficient condition for independence of the constraint gradients).
An assumption of Theorem 1 is that the constraint gradients are linearly independent in the
feasible set, i.e., that Jc̃(P,L) has full row rank and thus

rank(Jc̃(P,L)) = mn− np. (21)

From (20) it follows that a necessary condition for (21) to hold is

mn− np ≤ mr + nr − r2. (22)

This condition is often satisfied in practice, for example, for all Hankel approximations with
rank reduction by 1.

Generically, the condition (22) is also a sufficient condition for (21) to hold.
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Apart from the case described in Remark 4, another extreme case in (20) may happen,
namely that rank(Jc̃(P,L)) = mr + nr − r2.

Lemma 5. If a limit point (P∗, L∗) of the sequence {(P,L)j} generated by Algorithm 1 is feasible,
and rank(Jc̃(P∗, L∗)) = mr + nr − r2, then

1. there exists an affine subspace L ⊂ R
mn−np of dimension (m − r)(n − r) − np such that

any ν ∈ L is a multiplier that satisfies the KKT conditions.

2. rank(Jc̃(P,L)) = mr + nr − r2 in a neighborhood of (P∗, L∗)

The proof in given in the appendix.

Proposition 2. If a limit point (P∗, L∗) of the sequence {(P,L)j} generated by Algorithm 1 is
feasible, and rankJc̃(P∗, L∗) = mr + nr − r2, then the limit point satisfies first order necessary
conditions for (1).

Proof. Lemma 5 implies that if rankJc̃(P∗, L∗) = mr+nr− r2, the limit point (P∗, L∗) satisfies
the so-called Constant Rank Constraint Qualification [1]. In this case the KKT conditions are
necessary for the point to be a local minimum of the constrained problem, see [1].

Finally, it may happen that rank(Jc̃(P,L)) < min(nm− np,mr + nr − r2). In this case, we
conjecture the following.

Conjecture 1. A feasible limit point satisfies the first order necessary conditions if the rank of
Jacobian is constant in the neighborhood of that point.

5 Numerical experiments

In this section we apply the proposed algorithm on three different problems, namely, system
identification, finding a common divisor of polynomials (with noisy coefficients), and symmetric
tensor decomposition. Although these problems arise in completely different fields, are essen-
tially different, and require different features (weights, fixed elements, or missing elements), we
demonstrate the consistently good performance of Algorithm 1.

5.1 Related algorithms

In our Matlab simulations, we compare Algorithm 1 with Cadzow’s algorithm [5] and the
kernel-based algorithm slra [22], which also aim to solve problem (1). The former is popular
in signal processing applications due to its simplicity and the latter has been recently extended
to work with missing data. We next briefly summarize the main ideas behind these algorithms.

Cadzow’s algorithm [5] consists of repeating the following two main steps

• “project” the current structured approximation to a low-rank matrix, e.g., using truncated
SVD,

• project the current low-rank matrix to the space of structured matrices.

As shown in [9], Cadzow’s algorithm converges to a structured matrix of rank r, but not neces-
sarily to a stationary point of the optimization problem.

The slra algorithm [31] is based on the kernel representation of the rank constraint, i.e.,

rank(D̂) ≤ r ⇐⇒ RD̂ = 0 for some full row rank matrix R ∈ R
(m−r)×m
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and uses the variable projection method [11], i.e., reformulation of the problem as inner and outer
optimization, where the inner minimization admits an analytic solution. The outer problem is a
nonlinear least squares problem and is solved by standard local optimization methods, e.g., the
Levenberg–Marquardt method [24]. Generalization to problems with fixed and missing data is
presented in [21]. For general affine structures, slra has a restriction on the possible values of
the reduced rank r. Algorithm 1 overcomes this limitation.

5.2 Autonomous system identification

In this section, we will use the fact that the proposed algorithm can handle weighted norms and
missing elements. The considered matrices have Hankel structure.

Background

In system theory, a discrete-time autonomous linear time-invariant dynamical system [20] can
be defined by a difference equation

θ0 y(t) + θ1 y(t+ 1) + · · · + θℓ y(t+ ℓ) = 0, for t = 1, . . . , T − ℓ, (23)

where ℓ is the order of the system and θ =
[
θ0 θ1 · · · θℓ

]
∈ R

ℓ+1 is a non-zero vector
of model parameters. The problem of system identification is: estimate θ, given a response
y = [y(1), . . . , y(T )] ∈ R

T of the system.
The difference equation (23) can equivalently be represented as

[
θ0 θ1 · · · θℓ

]




y(1) y(2) y(3) . . . y(T − ℓ)

y(2) y(3) y(4) . .
.

y(3) . .
. ...

... . .
.

. .
.

y(ℓ+ 1) y(ℓ+ 2) y(ℓ+ 3) . . . y(T )




︸ ︷︷ ︸
Hℓ+1(y)

= 0. (24)

It follows from (24) that the Hankel matrix Hℓ+1(y) is rank deficient, i.e.,

rank(Hℓ+1(y)) ≤ ℓ.

In the more realistic noisy case however, (23) and (24) hold only approximately. The prob-
lem of identifying the system then reduces to finding a rank-ℓ approximation of Hℓ+1(y). The
parameter θ can then be computed from the null space of the obtained approximation.

If enough samples are provided, which is usually the case in engineering applications, another
possible reformulation of (23) is the following

[
θ0 θ1 · · · θℓ 0

0 θ0 θ1 · · · θℓ

]




y(1) y(2) y(3) . . . y(T − ℓ− 1)

y(2) y(3) y(4) . .
.

y(3) . .
. ...

... . .
.

. .
.

y(ℓ+ 2) y(ℓ+ 3) y(ℓ+ 4) . . . y(T )




︸ ︷︷ ︸
Hℓ+2(y)

= 0. (25)

Compared to (24), the matrix Hℓ+2(y) in (25) has more rows and less columns but its rank is
still at most ℓ. The rank deficiency of Hℓ+2(y) is however at least 2 since Hℓ+2(y) has ℓ+2 rows.
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(This can also be concluded from the fact that there are now 2 linearly independent vectors
in the null space of the matrix.) We can continue reshaping by adding rows and removing
columns, e.g., until we get a square matrix H(T+1)/2(y) if T is odd or an almost square matrix
HT/2(y) if T is even. This could be useful since there are indications that truncated SVD of an
(almost) square Hankel matrix relates to a better (initial) noise reduction. Note that for large
T (T ≫ 2ℓ), the matrix H(T+1)/2(y) (HT/2(y)) would have low rank compared to its dimensions
(ℓ≪ T/2), which is the case the proposed algorithm aims for.

Example: system identification in Frobenius norm

In this example, we will use the fact that the proposed algorithm can work with weighted norms.
In particular, in order to approximate a structured matrix S(p) with a low-rank structured
matrix S(p̂) in Frobenius norm, i.e.,

min
p̂
‖S(p)− S(p̂)‖2F subject to rank(S(p̂)) ≤ r

we need to take W from (6) and (10) to be a diagonal matrix with weights equal to the number
of occurrences of each structure parameter pi, i = 1, . . . , np. We consider the Frobenius norm as
a distance measure between the data matrix and the approximation to facilitate the comparison
with Cadzow’s algorithm. In the next example, we illustrate the performance of the proposed
algorithm with respect to the 2-norm ‖p− p̂‖22.

The considered true (noiseless) signal y0 is the sum of the following two exponentially mod-
ulated cosines

y0(t) = y0,1(t) + y0,2(t),

y0,1(t) = 0.9t cos(π5 t),

y0,2(t) = 1
5 1.05

t cos( π
12 t+

π
4 ),

(26)

t = 1, . . . , 50, shown in Figure 2. The rank of the corresponding Hankel matrix is 4, i.e.,

0 10 20 30 40 50
−2

−1

0

1

2
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y 0
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Figure 2: True components in the system identification examples.

rank(Hm(y0)) = 4, for m = 5, 6, . . . , 46. We added noise in the following way

y(t) = y0(t) + 0.2
e(t)

‖e‖2
‖y0(t)‖2, (27)

where e(t) were drawn independently from the normal distribution with zero mean and unit
standard deviation. The added noise increases the rank of Hm(y0), so rank-4 approximation has
to be computed. We denote the approximations by ŷ.

We ran Algorithm 1, slra and Cadzow’s algorithm. To facilitate the comparison with slra,
we first set m = r+1 (i.e., m = 5). The initial approximation was obtained using the truncated
SVD. Since slra is sensitive to the initial approximation, in addition to its default initialization,
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we ran slra starting from the solution obtained by Kung’s method [16] (row “Kung → slra”
in Table 2), which is a heuristic method for Hankel structured low-rank approximation.

After 1000 iterations, Cadzow’s algorithm still did not converge and the rank of its structured
approximation was 5 instead of 4, with smallest singular value of the approximation 0.0027. The
solution of Algorithm 1 had the smallest approximation error, see Table 2. The error of the initial

Table 2: Numerical errors of the initial approximation (by SVD), Cadzow’s algorithm, slra,
Kung’s heuristic algorithm, slra initialized with Kung’s algorithm’s solution, and the proposed
algorithm (Algorithm 1), for the example (26)–(27) with m = 5.

‖S(y)− S(ŷ)‖2F ‖S(y0)− S(ŷ)‖2F Remarks

init.approx. 37.7107 36.1934

Cadzow (4.4916) (1.0740) incorrect rank

slra 11.3892 7.0164

Kung [16] 1.6526 · 1013 1.6526 · 1013 heuristic

Kung → slra 11.3892 7.0172

Algorithm 1 4.6112 0.4848
‖PL−PS(PL)‖2F

‖PL‖2
F

< 10−24

approximation reported in Table 2 is computed by finding the closest structured matrix having
the same kernel as the truncated SVD approximation. This is achieved by solving the inner
minimization problem [22, eq. (f(R))]. The computed trajectories (for one run) are presented in
Figure 3.
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Kung −> slra
CadzowPSfrag replacements

t

y
,
y 0
,
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Figure 3: Noisy data y, true data y0 and the trajectories obtained from Algorithm 1 (ŷA1), slra
(ŷslra), and Cadzow (ŷC), for the example (26)–(27) with m = 5. The computations are with
respect to the Frobenius norm.

In a second experiment, we considered the almost square 25 × 26 matrix H25 and ran the
algorithms again. The initial approximation was again obtained using the truncated SVD. Note
that slra can only be run on H5 but can profit from the initial approximation from H25, by
running slra after Kung’s method. The result obtained by slra when initialized with Kung’s
method and the result obtained by Algorithm 1 were similar to each other. Cadzow’s algorithm
also performed well in this experiment. The numerical errors are presented in Table 3. The
computed trajectories (for one run) are presented in Figure 4.

Different realizations of the example lead to slightly different numerical results. However,
the main conclusions of this example stay the same.

Example: system identification with missing data

In this example, we illustrate the fact that the proposed algorithm can work with matrices
having missing elements. We continue with the above example but since Cadzow’s algorithm
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Table 3: Numerical errors of Cadzow’s algorithm, Kung’s heuristic algorithm, slra initialized
with Kung’s algorithm’s solution, and the proposed algorithm (Algorithm 1), for the example
(26)–(27) with m = 25.

‖S(y)− S(ŷ)‖2F ‖S(y0)− S(ŷ)‖2F Remarks

Cadzow 12.5219 1.4715

Kung [16] 19.7567 10.2969 heuristic

Kung → slra 12.5038 1.3495

Algorithm 1 12.5041 1.3470
‖PL−PS(PL)‖2

F

‖PL‖2
F

< 10−22
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Figure 4: Noisy data y, true data y0 and the trajectories obtained from Algorithm 1 (ŷA1), slra
(ŷslra), and Cadzow (ŷC), for the example (26)–(27) with m = 25. The computations are with
respect to the Frobenius norm.

cannot be applied to the missing data case directly, this time the objective function is with
respect to the more standard parameter norm ‖p− p̂‖22.

Since the rank of the true Hankel matrix is 4, standard algorithms need at least 5 (5 = 4+1)
consecutive data points for identification. However, in the example below, we removed every 5th
data point, so these algorithms cannot be applied directly. Algorithm 1 and slra, however, can
be used. The initial approximation for the missing values was provided by averaging their two
neighboring data points, after which the initial approximation for the algorithms was obtained
by the truncated SVD.

We ran again two experiments with m = 5 and m = 25, respectively. The numerical errors
are presented in Table 4 and Table 5, respectively. The obtained trajectories from Algorithm 1
and slra (initialized with the solution of Kung’s algorithm) are given in Figure 5 and Figure 6,
respectively. For m = 5, Algorithm 1 had the smallest approximation error. For m = 25,

Table 4: Numerical errors of the initial approximation (by SVD), slra, Kung’s heuristic al-
gorithm, slra initialized with Kung’s algorithm’s solution, and the proposed algorithm (Algo-
rithm 1), for the example (26)–(27) with m = 5 and missing data. W is a diagonal matrix with
diagonal consisting of zeros at the positions corresponding to the missing elements and ones
otherwise.

‖y − ŷ‖2
W
‖y0 − ŷ‖2

I−W
‖y0 − ŷ‖22 Remarks

init.approx. 8.4295 1.9481 10.2588

slra 8.4123 1.9447 10.2386

Kung [16] 5.5200 ·105 9.0292 ·104 6.4178 ·105 heuristic

Kung → slra 8.3232 2.3540 10.3141

Algorithm 1 0.9027 0.0512 0.1551
‖PL−PS(PL)‖2

F

‖PL‖2
F

<10−25
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Figure 5: Noisy data (subset of y), missing data (subset of y0), true data y0 and the trajectories
obtained from Algorithm 1 (ŷA1) and slra (ŷslra) for the example (26)–(27) with m = 5 and
missing data.

Table 5: Numerical errors of Kung’s heuristic algorithm, slra initialized with Kung’s algorithm’s
solution, and the proposed algorithm (Algorithm 1), for the example (26)–(27) with m = 25
and missing data. W is a diagonal matrix with diagonal consisting of zeros at the positions
corresponding to the missing elements and ones otherwise.

‖y − ŷ‖2
W
‖y0 − ŷ‖2

I−W
‖y0 − ŷ‖22 Remarks

Kung [16] 1.2480 0.2722 0.6935 heuristic

Kung → slra 0.9228 0.1404 0.2750

Algorithm 1 0.9033 0.0515 0.1429
‖PL−PS(PL)‖2F

‖PL‖2
F

< 10−23
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Figure 6: Noisy data (subset of y), missing data (subset of y0), true data y0 and the trajectories
obtained from Algorithm 1 (ŷA1) and slra (ŷslra) for the example (26)–(27) with m = 25 and
missing data.

the results of Algorithm 1 and slra (initialized with Kung’s method) were similar, although
Algorithm 1 was still better.

Different realizations of the example lead to slightly different numerical results. We also
observed that for smaller noise variance, slra and Algorithm 1 compute the same solution, but
for higher values of the noise Algorithm 1 is generally more robust.

5.3 Approximate common divisor

Another application of structured low-rank approximation and thus of Algorithm 1 is finding
approximate common divisors of a set of polynomials. Existence of a nontrivial common divisor
is a nongeneric property. Given a noisy observation of the polynomials’ coefficients (or due to
round-off errors in storing the exact polynomials coefficients in a finite precision arithmetic), the
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polynomials have a nontrivial common divisor with probability zero. Assuming that the noise
free polynomials have a common divisor of a known degree, our aim in the approximate common
divisor problem is to estimate the common divisor from the noisy data. The problem can be
formulated and solved as Sylvester structured low-rank approximation problems, see [32]. Since
the Sylvester matrix has fixed zero elements, in this example, we use the feature of Algorithm 1
to work with structured matrices having fixed elements.

Background

For a polynomial
a(z) = a0 + a1 z + · · ·+ an z

n,

define the multiplication matrix

Sk(a) =



a0 a1 · · · an 0

. . .
. . .

. . .

0 a0 a1 · · · an








k .

We consider three polynomials a, b, and c and for simplicity let they be of the same degree n.
A basic result in computer algebra, see, e.g., [15], is that a, b, and c have a nontrivial common
divisor if and only if the generalized Sylvester matrix



Sn(b) Sn(c)

Sn(a) 0

0 Sn(a)


 (28)

has rank at most 3n − 1. Alternatively, one can consider another type of generalized Sylvester
matrix [14] 


Sn(a)

Sn(b)

Sn(c)


 , (29)

whose rank deficiency is equal to the degree of the greatest common divisor of a, b, and c.
Formulation (29) is more compact than the one in (28), especially if the number of polynomials
is large. These results are generalizable for arbitrary number of polynomials (2, 3, . . .) of possibly
different degrees and arbitrary order of the required common divisor.

In the case of inexact coefficients, the generalized Sylvester matrices are generically of full
rank. The problem of finding the approximate common divisor is then transformed to the
problem of approximating the matrix in (28) or in (29) by low-rank matrices with the same
structure. This can be done with Algorithm 1 and with the alternative method slra. For
simplicity, in our example we take three polynomials of degree 2 and desired (greatest) common
divisor of order one (one common root).

Example

Let
a(z) = 5− 6z + z2 = (1− z) (5 − z),

b(z) = 10.8 − 7.4z + z2 = (2− z) (5.4 − z),

c(z) = 15.6 − 8.2z + z2 = (3− z) (5.2 − z).
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Aiming at a common divisor of degree one, we approximate (28) and (29) with, respectively,
rank-5 and rank-3 matrices. The obtained solution with Algorithm 1, applied on (29) is

â(z) = 4.9991 − 6.0046 z + 0.9764 z2 = 0.9764 (0.9928 − z) (5.1572 − z),

b̂(z) = 10.8010 − 7.3946 z + 1.0277 z2 = 1.0277 (2.0378 − z) (5.1572 − z),

ĉ(z) = 15.6001 − 8.1994 z + 1.0033 z2 = 1.0033 (3.0149 − z) (5.1572 − z),

with a common root 5.1572. The approximation error was ‖p − p̂‖2 = 0.0014, where p is the
vector of 9 initial coefficients (p =

[
a0 a1 a2 · · · c2

]
) and p̂ is the vector of 9 coefficients of

the approximations (p̂ =
[
â0 â1 â2 · · · ĉ2

]
). The roots of the original and approximating

polynomials, as well as the polynomials themselves are plotted in Figure 7. The same results
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â
,
b̂,

ĉ
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Figure 7: Results for the example of approximate common divisor of three polynomials.

were obtained with slra, applied on (28). Due to the non-convexity of the problem, Algorithm 1
applied on (28) computed a slightly different solution with comparable accuracy (‖p − p̂‖2 =
0.0015). Applying slra on (29) resulted in computing a common divisor of degree 2, i.e.,
â = b̂ = ĉ. Cadzow’s algorithm performed well in both cases ((29) and (28)) and resulted in two
other approximations with ‖p− p̂‖2 = 0.0014 and ‖p− p̂‖2 = 0.0015, respectively.

5.4 Symmetric tensor approximation

Structured low-rank approximation can be applied to decompose and approximate complex
symmetric tensors into a sum of symmetric rank-one terms. With this application we also
demonstrate how the proposed algorithm can deal with missing and fixed elements on quasi-
Hankel structured matrices.

Background

A complex tensor of dimension n and order d, T ∈ C

d︷ ︸︸ ︷
n× · · · × n is called symmetric if it is

invariant under any permutation of the modes. A symmetric tensor T admits a symmetric
decomposition of rank r if it can be represented as a sum of r rank-one symmetric terms:

T =

r∑

k=1

d︷ ︸︸ ︷
vk ⊗ · · · ⊗ vk, (30)
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where vk ∈ C
n. The problem of symmetric tensor decomposition is to find a (minimal) decom-

position (30).
In [4], it was shown that T has a decomposition of rank r if and only if (excluding some

nongeneric cases)
rank(S(T , h)) ≤ r,

where S(T , h) is a quasi-Hankel structured matrix constructed from the tensor and the vector
h has unknown entries (latent variables). Therefore, the tensor decomposition problem is a
low-rank matrix completion of the structured matrix S(T , h). Moreover, symmetric low-rank
tensor approximation is equivalent to structured low-rank approximation with missing data.
The main difficulty for this reformulation is that filling in missing data is nontrivial, and gives
rise to multivariate polynomial systems of equations [4].

Symmetric tensors are often represented as homogeneous polynomials [7] using

T ←→ T (x) := T ×1 x×2 x · · · ×d x,

where x ∈ C
n and ‘×i’ is the tensor-vector product with respect to the ith mode of the tensor.

With this representation, symmetric tensor decomposition is equivalent to the Waring problem
[4] of decomposing a homogeneous polynomial T (x) of degree d into a sum of d-th powers of
linear forms

T (x) :=
r∑

k=1

(v⊤
k x)

d.

We will represent our results in the polynomial form.

Example

Consider the example from [4, §5.2], which is decomposition of a polynomial (a tensor of dimen-

sion 3 and order 4), with x =
[
x0 x1 x2

]⊤
,

T (x) = 79x0x
3
1 + 56x20x

2
2 + 49x21x

2
2 + 4x0x1x

2
2 + 57x1x

3
0,

into a sum of 6 symmetric rank-one terms. (For dimension 3 and degree 4 complex symmetric
tensors, the generic rank is 6 [7]). In this case, in order to compute the decomposition with the
theory of [4] it is crucial to fill in the missing data.

We considered the 10 × 10 submatrix of the matrix in [4, p.14]. We fixed the non-missing
data (by setting them in S0), and computed the missing elements with Algorithm 1. The error
on the deviation from the structure was around machine precision (4.5 · 10−31). The computed
tensor decomposition was

T (x) ≈ 6.94 (x0 + 0.895x1 + 0.604x2)
4

+6.94 (x0 + 0.895x1 − 0.604x2)
4

−4.94 (x0 − 0.982x1 + 0.657 i x2)
4

+4.94 (x0 − 0.982x1 − 0.657 i x2)
4

− (1.99 − 11.9 i) (x0 + (0.128 + 0.308 i) x1)
4

− (1.99 + 11.9 i) (x0 + (0.128 − 0.308 i) x1)
4 ,

(31)

(where we have removed coefficients smaller than 10−12). This is a different expansion from the
one reported in [4, p.15]. This can be expected, because for generic ranks the tensor decomposi-
tions are usually nonunique [7]. The approximation error of (31) on the normalized polynomial
coefficients is 1.7421 · 10−13.
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Remark 5. Instead of the method used in [4, p.15], we computed the vectors vk by joint diag-
onalization of matrices Mx1

and Mx2
of the quotient algebra (see [4] for the definition of these

matrices). For joint diagonalization we used the method [28] from signal processing, where ap-
proximate joint eigenvectors are computed by taking the eigenvectors of a linear combination of
Mx1

and Mx2
. This was needed because in the case of multiple eigenvalues of Mx1

(which is the
case of our computed decomposition), the method in [4, p.15] does not work correctly.

Remark 6. Note that in case of (structured) matrix completion with exact data, the given data
are incorporated in the matrix S0. Thus, since no elements are being approximated, W = 0 and
the first term in the objective function (10)

min
P,L
‖p− S†vec(PL)‖2

W︸ ︷︷ ︸
=0

+λ‖PL− PS(PL)‖2F

vanishes. The parameter λ would not affect the resulting optimization problem and can also be
removed. The problem is thus reduced to the following problem

min
P,L
‖PL− PS(PL)‖2F

and can be solved faster (since no iterations over λ are necessary).

In this example, the data were exact and the goal was to compute exact rank-6 decomposition.
However, Algorithm 1 with the full objective function (10) can be used to solve the more general
problem of tensor low-rank approximation as well.

6 Conclusions

In this paper, we introduced a novel approach for solving the structure-preserving low-rank
approximation problem. We used the image representation to deal with the low-rank constraint,
and a penalty technique, to impose the structure on the approximation. The original problem has
been reduced to solving a series of simple least squares problems with exact solutions. We have
discussed the properties of the proposed local optimization algorithm and ensured that it can
solve the weighted problem and deal with the cases of missing or fixed elements. The proposed
algorithm was tested on a set of numerical examples from system identification, computer algebra
and symmetric tensor decomposition and compared favorably to existing algorithms.

The penalized structured low-rank approximation algorithm proposed in this paper is an
attractive alternative to the kernel approach: it is more robust to the initial approximation
(Section 5.2), allows us to use a simpler Sylvester matrix (29) in the GCD setting, and can be used
for symmetric tensor decompositions, where the alternative slramethod experiences difficulties.
In contrast to algorithms based on the kernel representation, the proposed structured low-rank
approximation is designed for the problems requiring low ranks (small r). It is also worth
noting that there are no restrictions on the values of the rank r. An efficient implementation of
the algorithm and more detailed analysis of its applications in case of missing data and GCD
computation are a topic of future research.

Appendix

Proof of Lemma 1. The closest matrix in image(S) to an unstructured matrix X is the solution
of the minimization problem

arg min
X̂ ∈ image(S)

‖X − X̂‖2F ,
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where ‖ · ‖F stands for the Frobenius norm. Equivalently, we need to solve

min
p∈Rnp

‖X − S(p)‖2F ,

which can be written as
min
p∈Rnp

‖vec(X)− vec(S0)− Sp‖22. (32)

Since, by assumption (A), S has full column rank and S⊤vec(S0) = 0, (32) is a least squares
problem with unique solution

p∗ = (S⊤ S)−1S⊤vec(X − S0) = (S⊤ S)−1S⊤vec(X) = S†vec(X).

Thus,
PS(X) = S(S†vec(X)),

which completes the proof.

Remark 7 (Interpretation of the orthogonal projection). The effect of applying S† on a vector-
ized m× n matrix X is producing a structure parameter vector by averaging the elements of X,
corresponding to the same Sk. Indeed, the product S⊤vec(X) results in a vector containing the
sums of the elements corresponding to each Sk. By assumption (A), S⊤ S is a diagonal matrix,
with elements on the diagonal equal to the number of nonzero elements in each Sk, i.e.,

S⊤ S =



‖S1‖2F 0

. . .

0 ‖Snp‖2F


 =



nnz(S1) 0

. . .

0 nnz(Snp)


 ,

where nnz stands for the number of nonzero elements. Therefore multiplying by (S⊤ S)−1S⊤

corresponds to averaging.
In particular, applying S† on a (vectorized) structured matrix extracts its structure parameter

vector, since
S† vec(S(p)) = (S⊤ S)−1S⊤ S p = p.

Proof of Lemma 3. Using the following well-known equality

vec(XY Z) = (Z⊤ ⊗X) vec(Y ),

we have
vec(PL) = (In ⊗ P ) vec(L) = (L⊤ ⊗ Im) vec(P ). (33)

Consider first problem (11). Problem (12) can be solved in a similar way. Using (5) and
(33), (11) can be reformulated as

min
L
‖p− S† vec(PL)‖2

W
+ λ‖PL− PS(PL)‖2F

⇐⇒ min
L
‖M(p − S† vec(PL))‖22 + λ‖vec(PL)− vec(PS(PL))‖22,

⇐⇒ min
L
‖M(p − S† vec(PL))‖22 + λ‖vec(PL)− vec(S0)−ΠS vec(PL)‖22,

⇐⇒ min
L
‖MS† vec(PL)−Mp‖22 + ‖

√
λΠS⊥

vec(PL)−
√
λvec(S0)‖22,

⇐⇒ min
L

∥∥∥∥∥

[
M S†

√
λΠS⊥

]
vec(PL)−

[
Mp

√
λvec(S0)

]∥∥∥∥∥

2

2

,

⇐⇒ min
L

∥∥∥∥∥

[
M S†

√
λΠS⊥

]
(In ⊗ P ) vec(L)−

[
Mp

√
λvec(S0)

]∥∥∥∥∥

2

2

.

The derivation for P is analogous.
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Proof of Proposition 1. We need to prove that

J⊤
c (P,L) c(P,L) = 0 =⇒ c(P,L) = 0.

Recall from (16) and (17) that

c(P,L) = ΠS⊥
vec(PL) = ΠS⊥

(L⊤ ⊗ Im) vec(P ) = ΠS⊥
(In ⊗ P ) vec(L),

Jc(P,L) = ΠS⊥

[
L⊤ ⊗ Im In ⊗ P

]
.

The expression J⊤
c (P,L) c(P,L) = 0 is then equivalent to the system of equations

{
(L⊗ Im)ΠS⊥

ΠS⊥
(L⊤ ⊗ Im) vec(P ) = 0,

(In ⊗ P⊤)ΠS⊥
ΠS⊥

(In ⊗ P ) vec(L) = 0.
(34)

If we denote A := ΠS⊥
(L⊤ ⊗ Im), B := ΠS⊥

(In ⊗ P ), (34) is equivalent to
{

A⊤A vec(P ) = 0,

B⊤B vec(L) = 0.
⇐⇒

{
A vec(P ) = 0,

B vec(L) = 0.
⇐⇒ ΠS⊥

vec(PL) = 0 ⇐⇒ c(P,L) = 0,

which completes the proof.

Proof of Lemma 4. A vector vec⊤(X), withX ∈ R
m×n, is in the left kernel of

[
L⊤ ⊗ Im In ⊗ P

]

when
vec⊤(X)

[
L⊤ ⊗ Im In ⊗ P

]
= 0 ⇐⇒ vec⊤(X)(L⊤ ⊗ Im) = 0 and

vec⊤(X)(In ⊗ P ) = 0

⇐⇒ XL⊤ = 0 and P⊤X = 0

⇐⇒ X = P⊥Y L⊥, for some Y

⇐⇒ vec(X) = (L⊤
⊥ ⊗ P⊥)vec(Y )

⇐⇒ X ∈ image(L⊤
⊥ ⊗ P⊥),

where we have used the well-known equality vec(XY Z) = (Z⊤ ⊗ X) vec(Y ),
P⊥ ∈ R

m×(m−rP ) and L⊥ ∈ R
(n−rL)×n are orthogonal complements of P and L, respectively,

and rank(P ) = rP and rank(L) = rL. Then,

rank(
[
L⊤ ⊗ Im In ⊗ P

]
) = mn− dim(L⊤

⊥ ⊗ P⊥)

= mn− (m− rP )(n− rL)

≤ mr + nr − r2.

The equality holds if and only if rP = rL = r.

Proof of Lemma 5.

1. Since rank(Jc̃(P∗, L∗)) = mr + nr − r2, it follows from Lemma 4.4 that the row span
of Jc̃(P∗, L∗) coincides with the row span of

[
L⊤
∗ ⊗ Im In ⊗ P∗

]
. We note that the cost

function f(P,L) = ‖D − PL‖2W can be expressed as f(P,L) = g(vec(PL)), and thus its
gradient at the limit point can be expressed as

∇f(P∗, L∗) =
[
L⊤
∗ ⊗ Im In ⊗ P∗

]⊤∇g(vec(P∗, L∗))

and is also in the row span of
[
L⊤
∗ ⊗ Im In ⊗ P∗

]
. Thus the equation

J ⊤
c̃ (P∗, L∗)ν = ∇f(P∗, L∗)

is consistent and its set of solutions is an affine subspace of dimension

(mn− np)− (mr + nr − r2) = (m− r)(n− r)− np.
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2. Since rank(
[
L⊤
∗ ⊗ Im In ⊗ P∗

]
) = mr+nr−r2, from Lemma 4.4 we have that rank(P∗) =

rank(L∗) = r. Since Jc̃(P,L) depends continuously on (P,L), then rankJc̃(P,L) = mr +
nr − r2 in a neighborhood of (P∗, L∗).
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