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FOURIER INVERSION FOR FINITE INVERSE SEMIGROUPS

MARTIN E. MALANDRO

Abstract. This paper continues the study of Fourier transforms on finite inverse semigroups,
with a focus on Fourier inversion theorems and FFTs for new classes of inverse semigroups. We
begin by introducing four inverse semigroup generalizations of the Fourier inversion theorem for
finite groups. Next, we describe a general approach to the construction of fast inverse Fourier
transforms for finite inverse semigroups complementary to an approach to FFTs given in previous
work. Finally, we give fast inverse Fourier transforms for the symmetric inverse monoid and its
wreath product by arbitrary finite groups, as well as fast Fourier and inverse Fourier transforms for
the planar rook monoid, the partial cyclic shift monoid, and the partial rotation monoid.

1. Introduction

The theory of Fourier analysis on finite groups unifies the classical discrete Fourier transform
(DFT) and Yates’ analysis of factorial designs [29]. The classical DFT is the Fourier transform on

Zn, the cyclic group of order n, while the analysis of Yates is the Fourier transform on Z2
k. Fast

Fourier transforms (FFTs) and fast inverse Fourier transforms (FIFTs) have been developed for a
wide variety of abelian and nonabelian groups—see, e.g., [1, 5, 7, 9, 18, 19, 23]. For applications,
see, e.g., [6, 10, 11, 23, 24].

Inverse semigroups are generalizations of groups which encode partial symmetries [14]. Every
group is an inverse semigroup, but not conversely. In [15, 16] we extended the theory of Fourier
analysis on finite groups to finite inverse semigroups and developed explicit FFTs for the symmetric
inverse monoid (also called the rook monoid) Rn and its wreath product by arbitrary finite groups.
In [17] we developed an application of Fourier analysis on the rook monoid to the analysis of
partially ranked datasets. While we proved a handful of Fourier inversion theorems for Rn in [15],
there has not yet been a treatment of Fourier inversion for arbitrary inverse semigroups, nor has
there been a treatment of fast Fourier inversion for inverse semigroups.

This paper addresses these issues. First, we develop a sequence of Fourier inversion formulas
valid for arbitrary finite inverse semigroups. Second, we give a framework for the construction of
fast Fourier inversion algorithms for finite inverse semigroups similar to the framework for inverse
semigroup FFTs developed in [16]. Third, we show how this framework together with Maslen’s
algorithm for fast Fourier inversion for the symmetric group [18], Rockmore’s algorithm for fast
Fourier inversion for symmetric group wreath products [23], and the algorithm of Björklund et al.
for the efficient computation of the Möbius transform on lattices with few irreducibles [4] combine
to yield fast Fourier inversion algorithms for the rook monoid and its wreath product by arbitrary
finite groups. These algorithms are complementary to the FFTs for these monoids given in [4, 16].
Finally, we give fast Fourier and inverse Fourier transforms for three inverse monoids not previously
considered, namely the planar rook monoid, the partial cyclic shift monoid, and the partial rotation
monoid.

Let S be a finite inverse semigroup. We associate C-valued functions on S with elements of the
semigroup algebra CS by associating the delta functions of the elements of S with the elements of

2010 Mathematics Subject Classification. 20M18, 20C40, 43A30, 68W40.
Key words and phrases. Fast Fourier transform, inverse semigroup, rook monoid, wreath product, Möbius
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the natural basis {s}s∈S of CS. Specifically, if f : S → C, i.e.,

f =
∑

s∈S

f(s)δs,

then f corresponds to the element
∑

s∈S f(s)s ∈ CS.
If f ∈ CS is expressed in terms of the natural basis, then the Fourier transform of f is the

re-expression of f in terms of a Fourier basis of CS. Unlike the natural basis, Fourier bases of
CS are defined by symmetry conditions on S (Definition 2.9). If S = Zn, the Fourier transform
of f ∈ CZn is the usual DFT of f , and the Fourier basis for CZn is the usual basis of exponential
functions [15, 16, 17].

If f ∈ CS is expressed with respect to a particular Fourier basis, then the inverse Fourier

transform of f is the re-expression of f in terms of the natural basis of CS. As with groups, FFTs
and FIFTs for inverse semigroups give rise to efficient algorithms for computing the convolution
of functions f, g ∈ CS. Naive methods for computing Fourier transforms, inverse transforms,
and convolutions each require |S|2 operations, where an operation is defined to be a complex
multiplication and a complex addition. Faster methods have been developed for a wide variety of
groups and, to a lesser extent, non-group inverse semigroups. For example, it is known that the
Fourier transform of f ∈ CS can be computed in no more than

• O(|S| log |S|) operations if S = Zn [5],
• O(|S| log |S|) operations if S is a supersolvable group [1],
• O(|S| log2 |S|) operations if S = Sn, the symmetric group on n objects [18],
• O(|S| log4 |S|) operations if S = Bn, the hyperoctahedral group on n objects [23], and
• O(|S| log2 |S|) operations if S = Rn, the rook monoid on n objects [4, 16].

Furthermore, if f ∈ CS is expressed with respect to particular computationally advantageous
Fourier bases, then efficient algorithms for computing the inverse Fourier transform of f exist,
which require no more than

• O(|S| log |S|) operations if S = Zn [5],
• O(|S| log |S|) operations if S is a supersolvable group [1, 2],
• O(|S| log2 |S|) operations if S = Sn [18], and
• O(|S| log4 |S|) operations if S = Bn [23].

We make the distinction in complexity between Fourier transforms and their inverses for the
semigroups listed above because, while the classical FFT for Zn automatically gives rise to an
equally efficient algorithm for computing the inverse Fourier transform, it is not yet known whether
FFTs automatically give rise to FIFTs for finite inverse semigroups in general. Given an FFT
for a group, a nearly equally-efficient algorithm for computing the inverse Fourier transform arises
by considering what is essentially the “transpose” of the FFT [2]. The key that enables this
fast transpose algorithm is the Schur relations for group representations, which are not directly
applicable to non-group inverse semigroups. Although we are able to show a relationship between
the complexities of forward and inverse Fourier transforms for inverse semigroups in Theorems 2.21
and 4.1, we have not been able to establish a connection between Fourier transforms and their
inverses for inverse semigroups as strong as the one for groups.

What about lower bounds? If S is a group and all constants involved in multiplications in the
computation of the Fourier transform are restricted to size no larger than 2, then it is known that
the Fourier transform of an arbitrary f ∈ CS requires at least 1

4 |S| log |S| operations [2]. This
bound does not hold for inverse semigroups in general. In Remark 5.19 we point out an infinite
family of inverse semigroups S for which the Fourier transform of f ∈ CS can be computed in
|S| operations. However, the semigroups in this family are all idempotent and therefore have
only trivial maximal subgroups. The question then becomes: Are there any interesting inverse
semigroups S with nontrivial maximal subgroups whose Fourier transform is sub-O(|S| log |S|) in
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complexity? As a first step towards answering this question, we exhibit in Section 5.4 two inverse
semigroup generalizations S of Zn for which a key step in computing the Fourier transform (which
has been O(|S| log |S|) or worse in complexity for previously-considered inverse semigroups) can be
completed in O(|S| log log |S|) operations.

The main results of this paper are as follows. Let S be a finite inverse semigroup with D-classes
D0, . . . ,Dn, natural partial order ≤, and Möbius function µ. First, we have the following Fourier
inversion formula.

Theorem (Theorem 3.5). Let f =
∑

s∈S f(s)s ∈ CS and let X be any complete set of inequivalent,
irreducible representations of CS. For t ∈ Dj , let G(t) denote the maximal subgroup at any
idempotent of Dj and let r(t) denote the number of idempotents in Dj . Then for any s ∈ S, we
have

f(s) =
∑

ρ∈X

dρ
∑

t∈S:t≥s

µ(s, t)

r(t)|G(t)|

∑

v∈S:v−1≤t−1

µ(v−1, t−1) trace
(
f̂(ρ)ρ(v−1)

)
.

Next, we have the following bound on the complexity of the inverse Fourier transform on S.

Theorem (Theorem 4.1). For each D-class Dk, pick an idempotent ek, let Gk be the maximal
subgroup of S at ek, and let IRR(Gk) be a complete set of inequivalent irreducible representations
of CGk. Let Y be the set of representations of CS induced by the IRR(Gk) (Definition 2.20). The
number of operations required to compute the inverse Fourier transform of an arbitrary C-valued
function f on S expressed with respect to Y is no more than

C(µS) +

n∑

k=0

r2kTinv(IRR(Gk)),

where C(µS) is the maximum number of operations required to compute the Möbius transform of an
arbitrary C-valued function on S and Tinv(IRR(Gk)) is the maximum number of operations required
to compute the inverse Fourier transform of an arbitrary C-valued function on Gk expressed with
respect to IRR(Gk).

Finally, we give fast Fourier and inverse Fourier transforms for several families of inverse semi-
groups, which result in the following complexity bounds.

Theorem (Theorem 5.2, Theorem 5.4, Theorem 5.5, Theorem 5.13, Theorem 5.17). There exists
a complete set of inequivalent, irreducible representations Y of CS such that the Fourier transform
and the inverse Fourier transform relative to Y of an arbitrary element f ∈ CS can be computed
in no more than

• O(|S| log2 |S|) operations if S = Rn, the rook monoid on n objects,
• O(|S| log4 |S|) operations if S = G ≀Rn, the wreath product of Rn with any finite group G,
• O(|S| log2 |S|) operations if S = Pn, the planar rook monoid on n objects,
• O(|S| log2 |S|) operations if S = Cn, the partial cyclic shift monoid on n objects, and
• O(|S| log |S|) operations if S = Rotn, the partial rotation monoid on n objects.

We proceed as follows. Although we assume some familiarity with the ideas in [16], we begin in
Section 2 with a quick review of the major ideas and terminology we need for our developments.
Specifically, we review some basic inverse semigroup theory (Section 2.1), the definition of the
Fourier transform for finite inverse semigroups (Section 2.2), B. Steinberg’s isomorphism between
the inverse semigroup algebra CS and a direct sum of matrix algebras over group algebras [28] (Sec-
tion 2.3), and a general approach to the construction of FFTs for inverse semigroups (Section 2.4).
In Section 3 we state and prove our four Fourier inversion formulas for finite inverse semigroups.
In Section 4 we introduce a general method for the construction of fast inverse Fourier transforms
on finite inverse semigroups and we establish a general bound on the inverse Fourier transform
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on a finite inverse semigroup relative to an induced set of representations. Section 5 contains our
new fast Fourier and inverse Fourier transforms. We give fast inverse Fourier transforms for the
rook monoid and its wreath product by arbitrary finite groups in Sections 5.1 and 5.2. Section 5.3
contains our FFT and FIFT for the planar rook monoid. In Section 5.4 we introduce the partial
cyclic shift monoid and the partial rotation monoid, and we conclude with FFTs and FIFTs for
these monoids in Sections 5.4.1 and 5.4.2.

2. Background material

2.1. Inverse semigroups. A semigroup is a nonempty set with an associative binary operation.
A monoid is a semigroup with identity. Unless otherwise specified, we will write our semigroup
operations multiplicatively.

Definition 2.1. A semigroup S is an inverse semigroup if for each x ∈ S there exists a unique
y ∈ S such that xyx = x and yxy = y. In this case we say that y is the inverse of x, and we write
x−1 = y.

It follows that in an inverse semigroup, xx−1 and x−1x are idempotent, and if e is idempotent
then e = e−1. It is clear that every group is an inverse semigroup, and it is straightforward to show
that an inverse semigroup is a group if and only if it has exactly one idempotent (the identity of
the group). An inverse monoid is an inverse semigroup with an identity.

The symmetric inverse monoid (also known as the rook monoid) Rn is the set of all injective
partial functions from {1, 2, . . . , n} to {1, 2, . . . , n} (including the function with empty domain and
range) under the usual operation of partial function composition. In this paper we view maps as
acting on the left of sets and we compose maps from right to left, so if σ, γ ∈ Rn, then σγ ∈ Rn is
the partial function whose domain is given by

dom(σγ) = {x ∈ {1, 2, . . . , n} : x ∈ dom(γ) and γ(x) ∈ dom(σ)},

and if x ∈ dom(σγ), then (σγ)(x) = σ(γ(x)).

Definition 2.2. If S and T are semigroups, then a homomorphism φ : S → T is a map such that
φ(ab) = φ(a)φ(b) for all a, b ∈ S. An isomorphism is a bijective homomorphism.

A rook matrix of dimension n is an n × n matrix with entries in {0, 1} that has at most one 1
in each row and column. Such a matrix can be thought of as a placement of non-attacking rooks
on an n × n chessboard. Rn is called the rook monoid because it is isomorphic to the semigroup
of rook matrices of dimension n under ordinary matrix multiplication, where the partial function
σ ∈ Rn corresponds to the rook matrix that has a 1 in the i, j position whenever σ(j) = i, and
a 0 in all other positions [26]. The rank of an element σ ∈ Rn is |dom(σ)| = |ran(σ)|. The rook
monoid plays the same role for inverse semigroups that the symmetric group does for groups, in
the following variation of Cayley’s theorem [14].

Theorem 2.3. If S is a finite inverse semigroup, then S is isomorphic to an inverse sub-semigroup
of R|S|.

It is easy to see that Rn contains
(n
k

)2
k! elements of rank k, so we have:

Theorem 2.4. |Rn| =
∑n

k=0

(n
k

)2
k!.

2.2. The Fourier transform. Let S be a finite inverse semigroup. The natural basis of the
semigroup algebra CS is called the semigroup basis. Multiplication in CS (also called convolution)
is given by the linear extension of the multiplication in S via the distributive law. As with groups,
Fourier transforms are defined in terms of representations.
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Definition 2.5. A matrix representation (or just representation) ρ of CS is an algebra homomor-
phism ρ : CS → Mn(C) for some n ∈ N. The number n is the dimension of ρ, which we will denote
by dρ.

Definition 2.6. Let f ∈ CS with f =
∑

s∈S f(s)s. If ρ is a representation of CS, then the Fourier

transform of f at ρ, denoted f̂(ρ), is

f̂(ρ) = ρ(f) =
∑

s∈S

f(s)ρ(s).

Adjectives such as irreducible, inequivalent, and complete apply to sets of representations of CS
in a fashion similar to that for group algebras. Precise definitions may be found in [16, 17]. Munn
showed that CS is semisimple [22], so Wedderburn’s theorem applies to CS.

Theorem 2.7 (Wedderburn’s theorem). Let X be a complete set of inequivalent, irreducible repre-
sentations of CS. Then X is finite, and X induces an algebra isomorphism (called the Wedderburn

isomorphism induced by X , or just the Wedderburn isomorphism if X is understood)

(1)
⊕

ρ∈X

ρ : CS →
⊕

ρ∈X

Mdρ(C).

Explicitly, if f ∈ CS with f =
∑

s∈S f(s)s, then

f 7→
⊕

ρ∈X

(
∑

s∈S

f(s)ρ(s)

)
=
⊕

ρ∈X

f̂(ρ)

in the Wedderburn isomorphism induced by X .

Let X be any complete set of inequivalent irreducible representations of CS.

Definition 2.8. The Wedderburn isomorphism induced by X is called the Fourier transform on

CS relative to X (or just the Fourier transform on CS, if X is understood). In particular, if f ∈ CS
with f =

∑
s∈S f(s)s, then the Fourier transform of f ∈ CS relative to X is the block matrix

⊕

ρ∈X

(
∑

s∈S

f(s)ρ(s)

)
=
⊕

ρ∈X

f̂(ρ).

The Fourier transform of f relative to X can also be described in terms of a change of basis
within CS. The natural basis of the algebra on the right in (1) is the set of matrices in this algebra
with a 1 in one position and 0 in all other positions, and the inverse image of this basis in CS is
the target basis in CS for the Fourier transform relative to X .

Definition 2.9. If X is a complete set of inequivalent irreducible representations of CS, then the
inverse image of the natural basis of the algebra on the right in (1) is called the Fourier basis of

CS relative to X . It is also called the dual matrix coefficient basis for CS relative to X [18].

Thus, the Fourier transform of f relative to X is a collection of (matrix) coefficients which provide
the expression of f in terms of the Fourier basis of CS relative to X . In general, a Fourier basis

of CS is any basis of CS which arises in this manner by some choice X of inequivalent, irreducible
representations of CS. If f ∈ CS is expressed with respect to the Fourier basis of CS relative to
X , we simply say that f is expressed with respect to X . Note that a dimensionality count of the
algebras in (1) yields

|S| =
∑

ρ∈X

dρ
2.

For S = Zn = {0, 1, . . . , n − 1}, the cyclic group of order n, the Fourier transform of f =∑n−1
t=0 f(t)t ∈ CZn is a diagonal matrix whose entries comprise the usual discrete Fourier transform

of f [15, 16, 17].
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Definition 2.10. If f ∈ CS is expressed with respect to X , then the inverse Fourier transform

of f is the collection of coefficients {f(s) : s ∈ S} such that f =
∑

s∈S f(s)s. The inverse Fourier

transform on CS relative to X is the change of basis within CS from the Fourier basis relative to
X to the natural basis.

Viewing Fourier transforms and inverse Fourier transforms as changes of basis within CS, it
follows that a naive implementation of the Fourier transform requires |S|2 operations to apply to an
arbitrary element of CS, assuming that a complete set of inequivalent, irreducible representations of
CS is precomputed on the natural basis of CS and stored in memory. Similarly, the inverse Fourier
transform requires |S|2 operations to apply to an arbitrary element of CS, provided the inverse of
the Fourier transform matrix is precomputed and stored in memory. A naive implementation of
convolution also requires |S|2 operations to compute the product fg for f, g ∈ CS.

The convolution theorem for inverse semigroups is simply the restatement of the fact that the
Wedderburn isomorphism is a homomorphism.

Theorem 2.11. The Fourier transform on CS turns convolution of functions into multiplication
of block-diagonal matrices. The Fourier transform turns convolution into pointwise multiplication
if and only if every irreducible representation of CS has dimension 1.

As with groups, it follows that efficient methods for computing Fourier transforms and inverse
Fourier transforms in CS relative to the same set of inequivalent, irreducible representations X of
CS give rise to an efficient method for computing the convolution of functions on S. Specifically,
to compute the convolution of f, g ∈ CS, first compute the Fourier transforms f̂ and ĝ of f and g,
then form the matrix product f̂ ĝ, and finally compute the inverse Fourier transform of f̂ ĝ.

2.3. Matrix algebras over group algebras. Let S be a finite inverse semigroup. In this section
we recall B. Steinberg’s isomorphism between CS and a direct sum of matrix algebras over group
algebras [28], which extends ideas of Munn and Solomon [20, 21, 22, 26]. We will need this result
for our proofs of our Fourier inversion formulas in Section 3 and in our approach to fast Fourier
inversion in Section 4. Before we can state his isomorphism we need to review four ideas—the
natural partial order on S, the groupoid basis of CS, the maximal subgroups of S, and Green’s
D-relation. First we recall the natural partial order on S [14].

Definition 2.12. For s, t ∈ S, we say t ≤ s if and only if there exists an idempotent e ∈ S such
that t = es.

Whenever we refer to a partial order on S we will always mean the natural partial order. The
idempotents of Rn are the restrictions of the identity mapping, so for s, t ∈ Rn, we have that t ≤ s
if and only if s extends t as a partial function. If S is a group, then the natural partial order on S
is just equality.

Next we recall Steinberg’s groupoid basis, which is the basis used to implement his isomorphism
[28].

Definition 2.13. For s ∈ S, define

⌊s⌋ =
∑

t∈S:t≤s

µ(t, s)t ∈ CS,

where µ is the Möbius function of the natural partial order on S. The collection {⌊s⌋ : s ∈ S} is
called the groupoid basis of CS.

If s, t ∈ Rn with t ≤ s, then it is well known [27, 28] that µ(t, s) = (−1)rk(s)−rk(t).
Of course, we may recover the natural basis of CS by Möbius inversion—for s ∈ S, in CS we

have
s =

∑

t∈S:t≤s

⌊t⌋.



FOURIER INVERSION FOR FINITE INVERSE SEMIGROUPS 7

It follows that if f =
∑

s∈S f(s) ∈ CS, then writing f with respect to the groupoid basis, we have
f =

∑
s∈S g(s)⌊s⌋, where

g(s) =
∑

t∈S:t≥s

f(t).

Similarly, if g =
∑

s∈S g(s)⌊s⌋ ∈ CS, then writing g with respect to the semigroup basis, we have
g =

∑
s∈S f(s)s, where

f(s) =
∑

t∈S:t≥s

µ(s, t)g(t).

We call these changes of basis the zeta transform and the Möbius transform on CS, respectively.

Definition 2.14. The zeta transform of a function f : S → C is the collection of coefficients
{
∑

t∈S:t≥s f(t) : s ∈ S}. The Möbius transform of a function f : S → C is the collection of

coefficients {
∑

t∈S:t≥s µ(s, t)f(s) : s ∈ S}.

The groupoid basis multiplies in the following manner [28].

Theorem 2.15. For s, t ∈ S, in CS we have

⌊s⌋⌊t⌋ =

{
⌊st⌋ if s−1s = tt−1;

0 otherwise.

To motivate the importance of the groupoid basis, note that there is an alternative model for
the composition of partial functions: for s, t ∈ Rn, we could allow the composition st if and only
if the domain of s lines up exactly with the range of t. For s ∈ Rn, s

−1s is the partial identity on
dom(s) and ss−1 is the partial identity on ran(s), so it follows that for s, t ∈ Rn, in CRn we have

⌊s⌋⌊t⌋ =

{
⌊st⌋ if dom(s) = ran(t);

0 otherwise.

That is, the multiplication of the groupoid basis of CRn encodes this alternate model of partial
function composition [28]. If A ⊆ {1, 2, . . . , n}, we will identify A with the partial identity on A in
Rn, so for s ∈ Rn, we will write s−1s = dom(s) and ss−1 = ran(s). In fact, for any finite inverse
semigroup S and s ∈ S, it is customary to write

(2)
dom(s) = s−1s,

ran(s) = ss−1.

The reason for this is that S is isomorphic to an inverse sub-semigroup of R|S|, and if we identify

S with an embedding of S in R|S|, then for s ∈ S we have s−1s = dom(s) and ss−1 = ran(s).
On the other hand, the notation in (2) makes sense even without an embedding of S into R|S|.
When S is an arbitrary finite inverse semigroup and we make use of this notation, we do so without
reference to any particular embedding of S in any rook monoid. Note that, for any s ∈ S, we have
dom(s−1) = ran(s) and ran(s−1) = dom(s), and if e ∈ S is idempotent, then ran(e) = dom(e) = e.

Definition 2.16. A subset G of S is said to be a subgroup of S if G is a group under the operation
of S. If G is a subgroup of S, then G is said to be a maximal subgroup if G is not properly contained
in any other subgroup of S.

Each idempotent e of S is the identity for a unique maximal subgroup of S, called the maximal

subgroup of S at e [8]. In fact, denoting the maximal subgroup of S at e by Ge, we have [28]

Ge = {s ∈ S : dom(s) = ran(s) = e}.

Thus if e ∈ Rn is idempotent and rk(e) = k, then Ge is isomorphic to Sk, the permutation group
on k elements.

Finally, we recall Green’s D-relation [13].
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Definition 2.17. For s, t ∈ S, we say that s and t are D-related and we write s D t if there exists
x ∈ S such that dom(x) = ran(s) and ran(x) = ran(t).

D is an equivalence relation on S, and the equivalence classes of S under D are called the D-
classes of S. We note that if s, t ∈ S and dom(s) = ran(t), then we certainly have that s D t (by
taking x = s−1). For s, t ∈ Rn, we have that s D t if and only if rk(s) = rk(t), so Rn has n + 1
D-classes. Indeed, for s, t ∈ Rn, if rk(s) 6= rk(t) then s and t are certainly not D-related. On the
other hand, if rk(s) = rk(t), then taking x ∈ Rn to be the unique order-preserving bijection from
ran(s) to ran(t) shows s D t.

We now describe Steinberg’s isomorphism. Let D0, . . . ,Dn denote the D-classes of S, and let
CDk denote the C-span of {⌊s⌋ : s ∈ Dk}. By Theorem 2.15, as an algebra CS =

⊕n
k=0CDk. For

each D-class Dk, fix an idempotent ek, and let Gk denote the maximal subgroup of S at ek. For
each idempotent e ∈ Dk, fix an element pe ∈ S such that dom(pe) = ek and ran(pe) = e, taking
pek = ek. Let rk denote the number of idempotents in Dk. Steinberg gives the following explicit
algebra isomorphism from CDk to Mrk(CGk) [28].

Theorem 2.18. Viewing rk × rk matrices as being indexed by pairs of idempotents in Dk, define
a map Φ : CDk → Mrk(CGk) by, for s ∈ Dk,

Φ(⌊s⌋) = pran(s)
−1spdom(s)Eran(s),dom(s),

where Eran(s),dom(s) is the standard rk × rk matrix with a 1 in the ran(s),dom(s) position and 0
elsewhere, and extending linearly to the rest of CDk. Then Φ is an isomorphism, with inverse
induced by, for s ∈ Gk,

sEe,f 7→ ⌊pesp
−1
f ⌋.

Note that pe ∈ Dk implies pe
−1 ∈ Dk, and note that if s ∈ Dk then pran(s)

−1spdom(s) ∈ Gk by

construction. Since CS =
⊕n

k=0CDk, it follows that

CS ∼=

n⊕

k=0

Mrk(CGk).

As a consequence of Theorem 2.18, we have the following method for generating the irreducible
representations of CS from the irreducible representations of the maximal subgroups of S [28].

Theorem 2.19. Let IRR(Gk) be a complete set of inequivalent irreducible representations of CGk.
If ρ ∈ IRR(Gk), define the representation ρ̄ of CS in the following way. First, define ρ̄ on Mrk(CGk)
by, for g ∈ Gk and idempotents a, b ∈ Dk,

ρ̄(gEa,b) = Ea,b ⊗ ρ(g),

and extending linearly to the rest of Mrk(CGk). Then extend ρ̄ to the rest of
⊕n

k=0Mrk(CGk)
(and hence to CS) by letting ρ̄ be 0 on the other summands. Then Y = {ρ̄ : ρ ∈

⊎n
k=0 IRR(Gk)}

is a complete set of inequivalent irreducible representations of CS.

Definition 2.20. With notation as in Theorem 2.19, for ρ ∈ IRR(Gk), let ρ̄ be the correspond-
ing irreducible representation of CS. We call Y = {ρ̄ : ρ ∈

⊎n
k=0 IRR(Gk)} an induced set of

representations of CS.

By Theorem 2.19, an induced set of representations of CS is automatically a complete set of
inequivalent, irreducible representations of CS. Throughout the paper we reserve the notation
Y to refer to an induced set of representations of CS, while using the notation X to refer to an
arbitrary complete set of inequivalent, irreducible representations of CS.
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2.4. Evaluating the Fourier transform. Let S be a finite inverse semigroup. Let D0, . . . ,Dn

be the D-classes of S, let rk denote the number of idempotents in Dk, and choose an idempotent ek
from each D-class Dk. For every idempotent e ∈ Dk, fix an element pe ∈ S such that dom(pe) = ek
and ran(pe) = e, taking pek = ek. Let Gk be the maximal subgroup at ek and let IRR(Gk) be a
complete set of inequivalent irreducible representations of CGk. With notation as in Theorem 2.19,
let Y be the induced set of representations of CS given by Y = {ρ̄ : ρ ∈

⊎n
k=0 IRR(Gk)}.

We now recall the main idea from [16], which describes the structure of the Fourier transform
on CS relative to Y. Let f =

∑
s∈S f(s)s ∈ CS. Writing f relative to the groupoid basis of CS, we

have

f =
∑

s∈S

g(s)⌊s⌋,

where g : S → C is the function given by

g(s) =
∑

t∈S:t≥s

f(t).

If ρ ∈ IRR(Gk), then

ρ̄(⌊s⌋) =

{
Eran(s),dom(s) ⊗ ρ(pran(s)

−1spdom(s)) if s ∈ Dk;

0 otherwise.

View f̂(ρ̄) as an rk × rk matrix whose rows and columns are indexed by the idempotents in Dk

and whose entries are themselves dρ× dρ matrices. By Theorem 2.18, for idempotents a, b ∈ Dk we
have

f̂(ρ̄)a,b =
∑

s∈Dk:ran(s)=a,dom(s)=b

g(s)ρ(pa
−1spb)

=
∑

s∈Gk

g(paspb
−1)ρ(s).

If we define a function ha,b : Gk → C by, for s ∈ Gk,

ha,b(s) = g(pasp
−1
b ),

then we see that

f̂(ρ̄)a,b =
∑

s∈Gk

ha,b(s)ρ(s),

the Fourier transform (in CGk) of ha,b at ρ.

Thus, the a, b entry of f̂(ρ̄) is a function of the coefficients

{g(s) : s ∈ Dk, ran(s) = a,dom(s) = b}.

In light of this, in [15] we proposed the following general approach to the construction of FFTs
for CS: To compute the Fourier transform of f =

∑
s∈S f(s)s ∈ CS relative to an induced set of

representations of CS, first compute the change of basis of f to the groupoid basis (that is, compute
the zeta transform of f), and then for each D-class Dk, compute r2k group Fourier transforms on
Gk. This gave the following result [16].

Theorem 2.21. The number of operations required to compute the Fourier transform of an arbi-
trary C-valued function f on S is no more than

C(ζS) +

n∑

k=0

r2kT (IRR(Gk)),
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where C(ζS) is the maximum number of operations required to compute the zeta transform of an
arbitrary C-valued function on S and T (IRR(Gk)) is the maximum number of operations required
to compute the Fourier transform of an arbitrary C-valued function on Gk relative to IRR(Gk).

3. Fourier inversion formulas for finite inverse semigroups

In this section we give a series of Fourier inversion theorems for arbitrary finite inverse semigroups
(Theorems 3.2–3.5). Theorems 3.2 and 3.3 are generalizations of Fourier inversion theorems proved
for the rook monoid in [15], while Theorems 3.4 and 3.5 are new. We begin by recalling the Fourier
inversion theorem for finite groups [25, Section 6.2].

Theorem 3.1. Let G be a finite group, and let f =
∑

s∈G f(s)s ∈ CG. Let IRR(G) be a complete
set of inequivalent, irreducible matrix representations of CG. Then

f(s) =
1

|G|

∑

ρ∈IRR(G)

dρ trace
(
f̂(ρ)ρ(s−1)

)
.

Now, let S be a finite inverse semigroup and let notation be as in Section 2.4. Here is our first
inversion theorem, which expresses Fourier inversion relative to Y in terms of the groupoid basis.

Theorem 3.2. Let g =
∑

s∈S g(s)⌊s⌋ ∈ CS, and let s ∈ Dk. Let y ∈ Gk be the element defined by

y = pran(s)
−1spdom(s).

For ρ̄ ∈ Y, view ĝ(ρ̄) as an rk × rk matrix whose rows and columns are indexed by the idempotents
in Dk and whose entries are themselves dρ × dρ matrices. For idempotents a, b ∈ Dk, denote the
a, b entry of ĝ(ρ̄) (itself a dρ × dρ matrix) by ĝ(ρ̄)a,b. Then

g(s) =
1

|Gk|

∑

ρ∈IRR(Gk)

dρ trace
(
ĝ(ρ̄)ran(s),dom(s)ρ(y

−1)
)
.

Proof. For ρ ∈ IRR(Gk) we have

ĝ(ρ̄) =
∑

x∈S

g(x)ρ̄(⌊x⌋),

with ρ̄(⌊x⌋) = 0 if x /∈ Dk. As in Section 2.4, the ran(s),dom(s) entry of ĝ(ρ̄) is determined by the
values g(x) for which dom(x) = dom(s) and ran(x) = ran(s) (and the values g(x) for such x do not
affect any of the other entries of ĝ(ρ̄)), and if we define a function gran(s),dom(s) : Gk → C by

gran(s),dom(s)(x) = g(pran(s)xpdom(s)
−1),

then

ĝ(ρ̄)ran(s),dom(s) =
∑

x∈Gk

g(pran(s)xpdom(s)
−1)ρ(x)

=
∑

x∈Gk

gran(s),dom(s)(x)ρ(x)

= ĝran(s),dom(s)(ρ),

the Fourier transform of gran(s),dom(s) at ρ in CG.

Note that s = pran(s)ypdom(s)
−1, because

s = ss−1ss−1s

= ran(s)sdom(s)

= pran(s)pran(s)
−1spdom(s)pdom(s)

−1

= pran(s)ypdom(s)
−1.
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The Fourier inversion theorem for groups applies to gran(s),dom(s), and yields

g(s) = g(pran(s)ypdom(s)
−1)

= gran(s),dom(s)(y)

=
1

|Gk|

∑

ρ∈IRR(Gk)

dρ trace
(
ĝran(s),dom(s)(ρ)ρ(y

−1)
)
,

and since

ĝran(s),dom(s)(ρ) = ĝ(ρ̄)ran(s),dom(s),

we are done. �

Now, let X be any set of inequivalent, irreducible matrix representations for CS. Here is our
next inversion theorem, which expresses Fourier inversion relative to X in terms of the groupoid
basis.

Theorem 3.3. Let g =
∑

s∈S g(s)⌊s⌋ ∈ CS. Let s ∈ Dk. For ρ ∈ IRR(Gk), let ρ̄ ∈ Y denote the
corresponding induced representation of CS, which is equivalent to some representation ρ̃ ∈ X .
Then

g(s) =
1

|Gk|

∑

ρ∈IRR(Gk)

dρ trace
(
ĝ(ρ̃)ρ̃(⌊s−1⌋)

)
.

Proof. Since ρ̃ is equivalent to ρ̄, we have ρ̄ = A−1ρ̃A for some invertible matrix A. It follows that

ĝ(ρ̄) = A−1ĝ(ρ̃)A.

As in Theorem 3.2, let y ∈ Gk be the element defined by y = pran(s)
−1spdom(s). Then

trace
(
ĝ(ρ̄)ran(s),dom(s)ρ(y

−1)
)
=trace

(
ĝ(ρ̄)

(
Edom(s),ran(s) ⊗ ρ(y−1)

))

=trace
(
ĝ(ρ̄)ρ̄(⌊s−1⌋)

)

=trace
((
A−1ĝ(ρ̃)A

) (
A−1ρ̃(⌊s−1⌋)A

))

=trace
(
A−1ĝ(ρ̃)ρ̃(⌊s−1⌋)A

)

=trace
(
ĝ(ρ̃)ρ̃(⌊s−1⌋)

)
,

where the last equality follows from the similarity-invariance of trace. The theorem now follows
from Theorem 3.2. �

Our next inversion theorem also expresses Fourier inversion relative to X in terms of the groupoid
basis, but does so without reference to the IRR(Gk).

Theorem 3.4. Let g =
∑

s∈S g(s)⌊s⌋ ∈ CS. Let s ∈ Dk. Then

g(s) =
1

rk|Gk|

∑

ρ∈X

dρ trace
(
ĝ(ρ)ρ(⌊s−1⌋)

)
.

Proof. If ρ ∈ X , then ρ is equivalent to some representation ρ̄ ∈ Y, which was induced by some
representation ρ′ ∈ IRR(Gj) for some j ∈ {0, 1, . . . , n}.

Notice that since s ∈ Dk, we also have s−1 ∈ Dk, and thus ρ̄(⌊s−1⌋) is 0 unless ρ′ ∈ IRR(Gk). It
follows that ρ(⌊s−1⌋) is 0 unless ρ′ ∈ IRR(Gk). If ρ′ ∈ IRR(Gk), then we have dρ = dρ̄ = rkdρ′ , so
dρ′ = dρ/rk. The theorem now follows from Theorem 3.3. �

Finally, our last inversion theorem expresses Fourier inversion relative to X in terms of the
semigroup basis.



12 MARTIN E. MALANDRO

Theorem 3.5. Let f =
∑

s∈S f(s)s ∈ CS. For t ∈ Dj , let G(t) denote Gj (the maximal subgroup
at ej), and let r(t) denote rj (the number of idempotents in Dj). Then for any s ∈ S we have

f(s) =
∑

ρ∈X

dρ
∑

t∈S:t≥s

µ(s, t)

r(t)|G(t)|

∑

v∈S:v−1≤t−1

µ(v−1, t−1) trace
(
f̂(ρ)ρ(v−1)

)
.

Proof. We have that f =
∑

s∈S g(s)⌊s⌋, where g(s) =
∑

t∈S:t≥s f(t). For s ∈ Dj , by Theorem 3.4
we have

g(s) =
1

rj|Gj |

∑

ρ∈X

dρ trace
(
f̂(ρ)ρ(⌊s−1⌋)

)

=
1

rj|Gj |

∑

ρ∈X

dρ trace


f̂(ρ)ρ




∑

t∈S:t−1≤s−1

µ(t−1, s−1)t−1






=
1

rj|Gj |

∑

ρ∈X

dρ trace




∑

t∈S:t−1≤s−1

µ(t−1, s−1)f̂(ρ)ρ(t−1)




=
1

rj|Gj |

∑

ρ∈X

dρ
∑

t∈S:t−1≤s−1

µ(t−1, s−1) trace
(
f̂(ρ)ρ(t−1)

)
.

Since g(s) =
∑

t∈S:t≥s f(t), we have

f(s) =
∑

t∈S:t≥s

µ(s, t)g(t)

=
∑

t∈S:t≥s

µ(s, t)


 1

r(t)|G(t)|

∑

ρ∈X

dρ
∑

v∈S:v−1≤t−1

µ(v−1, t−1) trace
(
f̂(ρ)ρ(v−1)

)



=
∑

ρ∈X

dρ
∑

t∈S:t≥s

µ(s, t)

r(t)|G(t)|

∑

v∈S:v−1≤t−1

µ(v−1, t−1) trace
(
f̂(ρ)ρ(v−1)

)
.

�

Remark. If S is a group, then the statements of Theorems 3.2–3.5 all reduce to the statement of
the Fourier inversion theorem for groups (Theorem 3.1).

4. Fast Fourier inversion for finite inverse semigroups—a unified approach

In this section we describe a general method for the construction of fast inverse Fourier transforms
for finite inverse semigroups, which results in general bounds on the complexity of the inverse Fourier
transform in Theorem 4.1 and Corollary 4.2. In preparation for our results in Section 5, we also
explain how the results of Björklund et al. [4] can be used to bound certain terms appearing in
Theorem 2.21, Theorem 4.1, and Corollary 4.2. Let S be a finite inverse semigroup and let notation
be as in Section 2.4.

4.1. Designing a fast inverse Fourier transform. We begin with the following result on the
complexity of the inverse Fourier transform. This result can be seen as the natural complement to
Theorem 2.21.

Theorem 4.1. If Y is an induced set of representations of CS, then the number of operations re-
quired to compute the inverse Fourier transform of an arbitrary C-valued function f on S expressed
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with respect to Y is no more than

C(µS) +

n∑

k=0

r2kTinv(IRR(Gk)),

where C(µS) is the maximum number of operations required to compute the Möbius transform of an
arbitrary C-valued function on S and Tinv(IRR(Gk)) is the maximum number of operations required
to compute the inverse Fourier transform of an arbitrary C-valued function on Gk expressed with
respect to IRR(Gk).

Proof. Given a set of induced representations Y of CS and an element f ∈ CS expressed with
respect to Y, we may find the coefficients f(s) such that f =

∑
s∈S f(s)s by first computing the

coefficients g(s) for which f =
∑

s∈S g(s)⌊s⌋, and then computing the coefficients f(s) from the
g(s) by computing the change of basis from the groupoid basis to the semigroup basis.

To show that this approach results in the above bound, let f =
∑

s∈S f(s)s be an arbitrary

C-valued function on S. We assume we have the coefficients of the matrices f̂(ρ̄) = ρ̄(f) for all
ρ̄ ∈ Y stored in memory. Let g : S → C be the function given by, for s ∈ S, g(s) =

∑
t∈S:t≥s f(t),

so that

f =
∑

s∈S

f(s)s =
∑

s∈S

g(s)⌊s⌋.

Let a, b ∈ Dk be idempotent and let Sa,b = {s ∈ Dk : ran(s) = a,dom(s) = b}. By Theorem 2.18
we have the bijection

ha,b : Sa,b → Gk

given by ha,b(s) = pa
−1spb, with inverse

ha,b
−1 : Gk → Sa,b

given by ha,b
−1(s) = paspb

−1. Let ga,b : Gk → C by ga,b(s) = g(paspb
−1), so that for all ρ ∈

IRR(Gk), we have f̂(ρ̄)a,b = ĝa,b(ρ), the Fourier transform of ga,b at ρ in Gk. If we invert the ĝa,b(ρ)
as ρ varies over IRR(Gk), then we recover the coefficients {ga,b(s) : s ∈ Gk} = {g(paspb

−1) : s ∈
Gk} = {g(s) : s ∈ Sa,b}. By assumption this computation requires no more than Tinv(IRR(Gk))
operations. Thus, computing the coefficients g(s) for all s ∈ S requires no more than

n∑

k=0

r2kTinv(IRR(Gk))

operations.
We can then compute the coefficients f(s) from the coefficients g(s) by computing the change

of basis from the groupoid basis of S to the semigroup basis (that is, by computing the Möbius
transform of the function g), which by assumption requires no more than C(µS) operations. �

Corollary 4.2. Let Cinv(Gk) denote the quantity

Cinv(Gk) = min{Tinv(Rk)},

where the minimum is taken across all complete sets Rk of inequivalent, irreducible representations
of CGk. Then there exists a complete set of inequivalent, irreducible representations R of CS such
that the number of operations required to compute the inverse Fourier transform of an arbitrary
C-valued function on S expressed with respect to R is no more than

C(µS) +

n∑

k=0

r2kCinv(Gk).
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Proof. For k ∈ {0, . . . , n}, let Rk be a complete set of inequivalent irreducible representations of
CGk such that the inverse Fourier transform of an arbitrary C-valued function on Gk expressed with
respect to Rk can be computed in no more than Cinv(Gk) operations. Then let R be the complete
set of inequivalent irreducible representations of CS induced by

⊎n
k=0Rk. The result follows from

Theorem 4.1, with IRR(Gk) = Rk. �

4.2. Fast zeta and Möbius transforms. In [16] we designed fast Fourier transforms for specific
inverse semigroups of interest using Theorem 2.21, by designing explicit fast zeta transforms for
these inverse semigroups and combining them with existing algorithms for Fourier transforms on
their maximal subgroups. The recent work of Björklund et al. [4] contains an algorithm that
constructs small circuits for computing zeta and Möbius transforms on finite lattices with few join-
irreducibles. Recall that, if L is a finite lattice, then an element j ∈ L is join-irreducible if and only
if j covers exactly one other element of L. If M is a finite meet-semilattice, denote by L(M) the
lattice obtained by adjoining a formal maximal element MAX to M if M is not already a lattice. If
M is a lattice, then let L(M) = M . The algorithm in [4] is easily modified to work for semilattices,
which results in the following theorem.

Theorem 4.3. Let (M,≤) be a finite meet-semilattice with Möbius function µ and suppose L(M)
has v join-irreducible elements. Let f : M → C. For s ∈ M , let

fζ(s) =
∑

t∈M :t≥s

f(t)

and
fµ(s) =

∑

t∈M :t≥s

µ(s, t)f(t).

Then the collections of coefficients {fζ(s) : s ∈ M} and {fµ(s) : s ∈ M} can each be computed in
O(|M |v) operations.

Proof. The result is immediate from Theorem 1.1 of [4] if M is a lattice, so suppose M is not a
lattice. Let L = L(M), and denote by ≤L and µL the partial order and the Möbius function of
L, respectively. The algorithm in [4] finds arithmetic circuits, each of size O(|L|v), for computing
the upward Möbius and zeta transforms of arbitrary C-valued functions on L. (In our language,
these circuits are algorithms which each require O(|L|v) operations to run on an arbitrary C-valued
function on L as input.) Let fL : L → C by

fL(s) =

{
f(s) if s ∈ M ;

0 if s = MAX,

so we can compute the coefficients

ζL(s) =
∑

t∈L:t≥Ls

fL(t)

for all s ∈ L and
µL(s) =

∑

t∈L:t≥Ls

µL(s, t)fL(t)

for all s ∈ L, each in O(|L|v) operations. For s ∈ M we have

ζL(s) = fL(MAX) +
∑

t∈M :t≥s

fL(t)

= 0 +
∑

t∈M :t≥s

f(t)

= fζ(s),
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and, since the Möbius function of a partial order at an ordered pair (a, b) depends only on the
interval [a, b] in the partial order, we have

µL(s) = µL(s,MAX)fL(MAX) +
∑

t∈M :t≥s

µL(s, t)fL(t)

= µL(s,MAX) · 0 +
∑

t∈M :t≥s

µ(s, t)f(t)

= fµ(s).

Thus we can compute the collections of coefficients {fζ(s) : s ∈ M} and {fµ(s) : s ∈ M} each in
O(|L|v) = O((|M |+ 1)v) = O(|M |v + |M |) = O(|M |v) (since v ≤ |M |) operations, as claimed. �

Remark 4.4. Let E(S) denote the set of idempotents of S. It is easy to see that E(S) is a sub-
inverse semigroup of S and (E(S),≤) is a meet-semilattice (where the meet e∧ f of e, f ∈ E(S) is
simply given by e ∧ f = ef = fe). However, in general (S,≤) itself is not a meet-semilattice. For
example, if S is a group with |S| > 1, then the partial order on S reduces to equality, so (S,≤)
is not a meet-semilattice. More generally, if e ∈ E(S) is the minimal element and |Ge| > 1, then
(S,≤) is not a meet-semilattice. However, in many cases of interest (S,≤) is a meet-semilattice,
and when this is the case Theorem 4.3 can be used to help bound the terms C(ζS) and C(µS) in
Theorem 2.21, Theorem 4.1, and Corollary 4.2.

5. FFTs and FIFTs for specific classes of inverse semigroups

In [16] we developed fast Fourier transforms for the rook monoid and its wreath product by
arbitrary finite groups. In this section we begin by giving fast Fourier inversion algorithms for
these semigroups relative to the same sets of representations used in [16], so our results in this
section also give rise to fast convolution algorithms for these semigroups. We then proceed to give
fast forward and inverse Fourier transform algorithms for other inverse semigroups of interest not
previously considered—namely, for the planar rook monoid, the partial cyclic shift monoid, and
the partial rotation monoid.

5.1. The rook monoid. In [16] we used the approach in Section 2.4 to show that, for any
f =

∑
s∈Rn

f(s)s ∈ CRn, the change of basis from the semigroup basis to the groupoid basis

can be computed in no more than 2
3n

3|Rn| operations, and the change of basis from the groupoid

basis to the Fourier basis of CRn relative to Y can be computed in no more than 3
4n(n − 1)|Rn|

operations, where Y is the set of representations of CRn induced by Young’s seminormal (or or-
thogonal) representations of the symmetric group. Since n = O(log |Rn|), it followed that the
Fourier transform of an arbitrary C-valued function on Rn can be computed in O(|Rn| log

3 |Rn|)
operations.

Björklund et al. [4] then showed that the computation of the change of basis from the semigroup
basis to the groupoid basis of CRn requires no more than O(|Rn| log

2 |Rn|) operations—this proves
the following theorem.

Theorem 5.1. Let f =
∑

s∈Rn
f(s)s ∈ CRn. Let Y be the complete set of inequivalent irreducible

representations of CRn induced by Young’s seminormal or orthogonal representations of the sym-
metric group. Then the Fourier transform of f relative to Y can be computed in no more than
O(|Rn| log

2 |Rn|) operations.

We now show that a similar result holds for Fourier inversion in Rn. In particular, we have:

Theorem 5.2. Let f =
∑

s∈Rn
f(s)s ∈ CRn. Let Y be the complete set of inequivalent, irreducible

representations of CRn induced by Young’s seminormal or orthogonal representations of the sym-
metric group. If f ∈ CRn is expressed with respect to Y, then we can compute the coefficients
{f(s) : s ∈ Rn} such that f =

∑
s∈Rn

f(s)s in no more than O(|Rn| log
2 |Rn|) operations.
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Proof. Let D0, . . . ,Dn denote the D-classes of Rn, where Dk is the set of elements of Rn of rank k.
Since the idempotents of Rn are the restrictions of the identity map, Dk contains

(
n
k

)
idempotents

and if e ∈ Dk is idempotent, then Ge
∼= Sk. Let Y be the induced set of representations of CRn

given by taking ek to be the partial identity on {1, 2, . . . , k}, taking pa (for any idempotent a ∈ Dk)
to be the unique order-preserving bijection from ran(ek) = dom(ek) to ran(a) = dom(a), and taking
IRR(Gk) to be Young’s seminormal or orthogonal representations of CSk. By Theorem 4.1, then,
the number of operations needed to compute the coefficients {f(s) : s ∈ Rn} is no more than

C(µRn) +
n∑

k=0

(
n

k

)2

Tinv(IRR(Sk)).

Maslen’s algorithm [18] for Fourier inversion on CSk implies that

Tinv(IRR(Sk)) ≤
3

4
k(k − 1)k!,

so we need no more than

C(µRn) +

n∑

k=0

(
n

k

)2 3

4
k(k − 1)k! ≤ C(µRn) +

3

4
n(n− 1)

n∑

k=0

(
n

k

)2

k!

= C(µRn) +
3

4
n(n− 1)|Rn|

= C(µRn) +O(|Rn| log
2 |Rn|)

operations to compute the coefficients {f(s) : s ∈ Rn}.
To handle the C(µRn) term, we note that (Rn,≤) is a meet-semilattice, where the meet σ∧τ ∈ Rn

of two elements σ, τ ∈ Rn is the maximal common restriction between σ and τ—namely, σ ∧ τ is
the element such that

dom(σ ∧ τ) = {x ∈ {1, 2, . . . , n} : x ∈ dom(σ) ∩ dom(τ) and σ(x) = τ(x)},

and for x ∈ dom(σ∧τ), we have σ∧τ(x) = σ(x) = τ(x). Let L denote (Rn,≤) with a formal maximal
element adjoined and let n ≥ 1. The join-irreducibles of L are the elements of Rn of rank 1, of which
there are n2. Theorem 4.3 then applies, and yields C(µRn) = O(n2|Rn|) = O(|Rn| log

2 |Rn|). �

5.2. Rook wreath products. We now consider wreath products of Rn with arbitrary finite
groups.

Definition 5.3. If G is a finite group, then the rook wreath product G ≀Rn is the semigroup of all
n×nmatrices with entries in G⊎{0} having at most one entry from G in each row and column under
the operation of matrix multiplication (extended from the multiplication of G), where 0g = g0 = 0
for all g ∈ G.

Write 1 for the identity of G. Clearly we recover Rn as Z1 ≀ Rn. In [16] we showed that, if G is
an arbitrary finite group, then the Fourier transform of an arbitrary C-valued function on G ≀ Rn

can be computed in O(|G ≀ Rn| log
4 |G ≀ Rn|) operations. We now show that a similar result holds

for Fourier inversion for G ≀Rn.

Theorem 5.4. There exists a complete set Y of inequivalent irreducible representations of CG ≀Rn

such that the Fourier transform and the inverse Fourier transform relative to Y of an arbitrary
element f ∈ CG ≀Rn can be computed in O(|G ≀ Rn| log

4 |G ≀Rn|) operations.

Proof. Recall that the symmetric group wreath product G ≀Sk is group of k×k matrices with entries
in G ⊎ {0} with exactly one entry from G in each row and column. For x ∈ G ≀ Rn, let rk(x)
denote the number of rows (or columns) of x with an entry in G. The idempotents of G ≀ Rn are
the restrictions of the identity matrix, and if e ∈ G ≀ Rn is idempotent with rk(e) = k, then the
maximal subgroup Ge at e is isomorphic to G ≀ Sk [16].
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The natural partial order ≤ on G ≀Rn can be described in the following manner. For s, t ∈ G ≀Rn,
we have s ≤ t if and only if s may be obtained from t by replacing entries of t with 0. The D-classes
of G ≀ Rn are D0, . . . ,Dn, where Dk = {x ∈ G ≀ Rn : rk(x) = k}, so Dk contains

(
n
k

)
idempotents

[16]. It is easy to see that |G ≀ Sk| = k!|G|k,

|G ≀Rn| =
n∑

k=0

(
n

k

)2

k!|G|k,

and n = O(log |G ≀ Rn|).
Let IRR(G ≀ Sk) denote the complete set of inequivalent, irreducible representations of the sym-

metric group wreath product algebra CG≀Sk constructed in [23]. Let Y be the set of representations
of CG≀Rn induced by the IRR(G≀Sk), by taking ek to be the partial identity on {1, 2, . . . , k} (thought
of as a rook matrix), and taking pa (for any idempotent a ∈ Dk) to be the unique order-preserving
bijection from ran(ek) = dom(ek) to ran(a) = dom(a) (thought of as a rook matrix). Y is the set
of representations we used in [16] for constructing our O(|G ≀ Rn| log

4 |G ≀ Rn|)-complexity Fourier
transform, and we now show that the inverse Fourier transform of an arbitrary element f ∈ CG ≀Rn

expressed relative to Y can also be computed in the stated number of operations.
In [23] it is shown that, if G has h conjugacy classes, then

Tinv(IRR(G ≀ Sk)) ≤ |G ≀ Sk|

(
|G|

k(k + 1)

2
+ 2h

k2(k + 1)2

4
+ 1

)
.

Note that |G| and h are constants with respect to n. By Theorem 4.1, the number of operations
required to compute the inverse Fourier transform of f is no more than

C(µG≀Rn
) +

n∑

k=0

(
n

k

)2

|G ≀ Sk|

(
|G|

k(k + 1)

2
+ 2h

k2(k + 1)2

4
+ 1

)

≤ C(µG≀Rn
) +

(
|G|

n(n + 1)

2
+ 2h

n2(n+ 1)2

4
+ 1

) n∑

k=0

(
n

k

)2

k!|G|k

≤ C(µG≀Rn
) +O(|G ≀ Rn| log

4 |G ≀ Rn|).

To handle the C(µG≀Rn
) term, we note that G ≀Rn is a meet-semilattice, where the meet x∧ y of

two elements x, y ∈ G ≀Rn is given by the maximal common restriction of x and y. Specifically, the
rows and columns of the elements of G ≀Rn are indexed by {1, 2, . . . , n}, and for i, j ∈ {1, 2, . . . , n},

(x ∧ y)i,j =

{
xi,j if xi,j = yi,j;

0 otherwise.

Let n ≥ 1 and let L denote (G ≀ Rn,≤) with a formal maximal element adjoined. The join-
irreducibles of L are the elements of G ≀Rn with exactly one entry in G, of which there are |G|n2.
Theorem 4.3 applies, and yields C(µG≀Rn

) = O(|G ≀ Rn||G|n2) = O(|G ≀ Rn| log
2 |G ≀ Rn|). �

5.3. The planar rook monoid. Any element σ ∈ Rn can be represented by a graph consisting of
two rows of n vertices, where vertex i in the first row is connected by a line segment to vertex j in
the second row if σ(i) = j. Call σ ∈ Rn planar if this representation of σ has no crossing edges. The
planar rook monoid Pn is the submonoid of Rn consisting of its planar elements. Equivalently, Pn is
the collection of order-preserving injective partial functions from {1, 2, . . . , n} to {1, 2, . . . , n}. Since
the composition of two planar elements is planar and the inverse of a planar element is planar, Pn

is an inverse semigroup. The representation theory of Pn was worked out in [12]. Here we approach
the representation theory of Pn through Theorem 2.19 to prove the following theorem.
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Theorem 5.5. There exists a complete set Y of inequivalent irreducible representations of CPn

such that the Fourier transform and the inverse Fourier transform relative to Y of an arbitrary
element f ∈ CPn can be computed in O(|Pn| log

2 |Pn|) operations.

Proof. For s, t ∈ Pn, if rk(s) 6= rk(t) then s and t are certainly not D-related. If rk(s) = rk(t), then
taking x ∈ Pn to be the unique order-preserving bijection from ran(s) to ran(t) shows that s D t.
The D-classes of Pn are therefore D0, . . . ,Dn, where Dk is the set of elements of Pn of rank k.

The idempotents of Pn are precisely those of Rn (so Dk has
(
n
k

)
idempotents), and for all k, if

e ∈ Dk is idempotent, then Ge
∼= Z1. It follows that

|Pn| =

n∑

k=0

(
n

k

)2

,

so n = O(log |Pn|). Let ek denote the partial identity on {1, 2, . . . , k}, so Gk
∼= Z1 (whose Fourier

transform is trivial), and for any idempotent a ∈ Dk, let pa be the unique order-preserving bijection
from ran(ek) to ran(a). Let Y denote the associated set of induced representations of CPn. We
note that Y coincides with the representations written down in [12]. Theorems 2.21 and 4.1 then
imply that the Fourier transform and inverse Fourier transform relative to Y of an arbitrary element
f ∈ CPn can be computed in C(ζPn) and C(µPn) operations, respectively.

(Pn,≤) is a meet-semilattice, where the meet x ∧ y of x, y ∈ Pn is the meet of x, y in Rn. (See
the proof of Theorem 5.2. The main observation here is simply that the restriction of a planar
map is planar.) Let L denote the lattice obtained by adjoining a formal maximal element to Pn.
The join-irreducibles of L are the n2 elements of Pn of rank one, so by Theorem 4.3 we have
C(ζPn), C(µPn) = O(|Pn|n

2) = O(|Pn| log
2 |Pn|). �

5.4. Inverse semigroup generalizations of the cyclic group. We now define and study the
Fourier transform on two natural inverse semigroup analogues of the cyclic group Zn, whose Fourier
transform has been enormously useful in applications. We call these analogues the partial cyclic shift
monoid and the partial rotation monoid. Zn can be viewed as the group of cyclic shifts of an n-set
or, equivalently, the group of rotations of n equally spaced points on a circle. In this section we take
our set of equivalence class representatives for the integers mod n to be {1, 2, . . . , n}. Following
Lawson [14, pp. 17], we regard inverse semigroups as collections of partial symmetries, where a
partial symmetry of a structure is a structure-preserving bijection between two of its subsets. This
motivates the following definitions.

Definition 5.6. Let S, T ⊆ {1, 2, . . . , n} with |S| = |T |. Say S = {s1 < s2 < · · · < sk} and
T = {t1 < t2 < · · · < tk}. We say σ is a cyclic shift from S to T if σ : S → T a bijection, where
σ(s1) = tj implies σ(sr) = tj+r−1 (mod k) for all r ∈ {1, 2, . . . , k}.

We note that the empty bijection is a cyclic shift, and that Zn is the group of cyclic shifts from
{1, 2, . . . , n} to {1, 2, . . . , n}.

Definition 5.7. The partial cyclic shift monoid Cn is the subset of Rn consisting of all cyclic shifts
from S to T , as S and T range across the subsets of {1, 2, . . . , n}.

Note that we only have a cyclic shift from S to T if |S| = |T |. Of course, the identity of Cn is
the identity of Rn.

Proposition 5.8. Cn is an inverse semigroup.

Proof. Since Cn ⊆ Rn, it suffices to show that Cn is closed under composition and inverses. It is
clear that the inverse of a cyclic shift is a cyclic shift. To show Cn is closed under composition, we
begin by noting that the restriction of cyclic shift is a cyclic shift—that is, if e ∈ Rn is idempotent
and σ ∈ Cn, then σe ∈ Cn. We also note that if τ is a cyclic shift from A to B and σ is a cyclic
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shift from B to C (where A,B,C ⊆ {1, 2, . . . , n} with |A| = |B| = |C|), then στ is a cyclic shift
from A to C.

If σ ∈ Rn and S ⊆ {1, 2, . . . , n}, let σ|S denote σe, where e is the partial identity on S. That
is, σ|S is the map given by restricting the domain of σ to dom(σ) ∩ S. Suppose then that σ
and τ are cyclic shifts. Let τ ′ = τ |dom(στ) and σ′ = σ|ran(τ ′). Then σ′ and τ ′ are cyclic shifts,
στ = σ′τ ′, and dom(σ′) = ran(τ ′). It follows that στ is a cyclic shift (from dom(στ) = dom(τ ′) to
ran(στ) = ran(σ′)). �

Thus Cn is an inverse semigroup analogue of Zn in the setting of partial symmetries. We analyze
the Fourier transform on Cn in Section 5.4.1.

Next we consider partial rotations, which lead to a different inverse semigroup analogue of Zn.
Place equally-spaced points {1, 2, . . . , n} along the perimeter of a circle, and view Zn as the group of
bijections from {1, 2, . . . , n} to {1, 2, . . . , n} by rotation of the circle. A partial rotation is a bijection
between subsets S, T ⊆ {1, 2, . . . , n} obtained by the restriction of a rotation. Specifically:

Definition 5.9. Let r ∈ Sn ⊆ Rn be the n-cycle given by r(i) = i + 1 (mod n). Let σ ∈ Rn. We
say σ is a partial rotation if σ = rkf for some k ∈ Z and some idempotent f ∈ Rn. The partial

rotation monoid Rotn is the set of partial rotations in Rn.

Let e denote the identity of Rn. Clearly e is the identity of Rotn, and we find Zn in Rotn as the
set of elements of the form rke.

Lemma 5.10. Let σ ∈ Rn. Then σ ∈ Rotn if and only if σ = grk for some k ∈ Z and some
idempotent g ∈ Rn. Furthermore, if σ ∈ Rotn, then σ = rkf = erk for some k ∈ Z and idempotents
e, f ∈ Rn.

Proof. If σ = rkf for some idempotent f ∈ Rn, then σ = grk for the idempotent g = rkfr−k, and
if σ = grk then σ = rkf for the idempotent f = r−kgrk. �

Proposition 5.11. Rotn is an inverse semigroup.

Proof. Since Rotn ⊆ Rn, it suffices to show that Rotn is closed under inverses and composition.
From Lemma 5.10 it follows that the inverse σ−1 = fr−k of a partial rotation σ = rkf is a partial
rotation. To show Rotn is closed under composition, if σ = grk and τ = rjf for idempotents f, g ∈
Rn, then στ = grkrjf = (grk+j)f = (rk+jh)f = rk+j(hf) for the idempotent h = r−k−jgrk+j.
Since h and f are idempotent, so is hf , so στ is a partial rotation. �

Therefore, Rotn is also an inverse semigroup analogue of Zn in the setting of partial symmetries.
We analyze the Fourier transform on Rotn in Section 5.4.2.

Remark 5.12. We note that Rotn ⊆ Cn. We also note that, even though Cn and Rotn are inverse
semigroup generalizations of Zn and the maximal subgroups of Cn and Rotn are all abelian, Cn

and Rotn are themselves non-abelian for n ≥ 2.

5.4.1. The Fourier transform on the partial cyclic shift monoid. We now analyze the complexity of
the Fourier transform on Cn.

Theorem 5.13. There exists a complete set of inequivalent, irreducible representations Y of CCn

such that the Fourier transform and the inverse Fourier transform relative to Y of an arbitrary
element f ∈ CCn can be computed in O(|Cn| log

2 |Cn|) operations.

Proof. It is clear that the idempotents of Cn are precisely those of Rn. For s, t ∈ Cn, if rk(s) 6= rk(t)
then s and t are not D-related, and if rk(s) = rk(t) then taking x ∈ Cn to be the unique order-
preserving bijection from ran(s) to ran(t) shows that s D t. The D-classes of Cn are therefore
D0, . . . ,Dn, where Dk consists of the rank-k elements of Cn. It follows that Dk contains

(n
k

)

idempotents. If e ∈ Dk is idempotent, then rk(e) = k and Ge is the set of all cyclic shifts from
dom(e) to dom(e), which is isomorphic to Zk.
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Let IRR(Zk) denote a complete set of inequivalent, irreducible representations of CZk. (Equiva-
lently, IRR(Zk) is the set of characters of Zk.) Let Y be the set of representations of CCn induced
by the IRR(Zk), by taking ek to be the partial identity on {1, 2, . . . , k} and taking pa (for any
idempotent a ∈ Dk) to be the unique order-preserving bijection from ran(ek) to ran(a). We have

|Cn| = 1 +

n∑

k=1

(
n

k

)2

k,

so n = O(log |Cn|). Theorems 2.21 and 4.1 imply that the Fourier transform and inverse Fourier
transform relative to Y of an arbitrary element f ∈ CCn can be computed in

C(ζCn) +
n∑

k=0

(
n

k

)2

T (IRR(Zk))

and

(3) C(µCn) +

n∑

k=0

(
n

k

)2

Tinv(IRR(Zk))

operations, respectively. It is well known that there is a constant c for which T (IRR(Zk)) ≤ ck log k
and Tinv(IRR(Zk)) ≤ ck log k for all k [5]. Thus

C(ζCn) +
n∑

k=0

(
n

k

)2

T (IRR(Zk)) ≤ C(ζCn) +
n∑

k=1

(
n

k

)2

ck log k

≤ C(ζCn) + c log n
n∑

k=1

(
n

k

)2

k

= C(ζCn) +O(|Cn| log n)

= C(ζCn) +O(|Cn| log log |Cn|).

Similarly, (3) is C(µCn) +O(|Cn| log log |Cn|).
To handle C(ζCn) and C(µCn), (Cn,≤) is a meet-semilattice, where the meet s ∧ t ∈ Cn of

two elements s, t ∈ Cn is simply the meet of s, t in Rn. (See the proof of Theorem 5.2. The
main observation here is that the restriction of a cyclic shift is a cyclic shift.) Let L denote the
lattice obtained by adjoining a formal maximal element to Cn. The join-irreducibles of L are
the n2 elements of Cn of rank one, so by Theorem 4.3 we have C(ζCn), C(µCn) = O(|Cn|n

2) =
O(|Cn| log

2 |Cn|). �

5.4.2. The Fourier transform on the partial rotation monoid. In this section we analyze the com-
plexity of the Fourier transform on Rotn. Before proceeding, we note that our analysis of Rn, G≀Rn,
Pn and Cn thus far have been quite similar. The main reason for this is that all of the semigroups an-
alyzed so far contain the unique order-preserving bijection from A to B, for all A,B ⊆ {1, 2, . . . , n}
with |A| = |B|. This causes each of these semigroups to have D-classes D0, . . . ,Dn, where Dk is the
set of elements of the semigroup of rank k. If S ⊆ Rn is an inverse semigroup, then it is clear that
x, y ∈ S can only be D-related if rk(x) = rk(y), so in this sense Rn, G ≀ Rn, Pn, and Cn have the
fewest D-classes possible. Our analysis of Rotn is different, because the unique order-preserving
bijection from A to B is not necessarily a partial rotation. This causes Rotn to have more than
n+ 1 D-classes in general.

Let r ∈ Rotn be the n-cycle given by r(i) = i + 1 (mod n), and let us identify Zn with the
subgroup of Rotn generated by r. (That is, we identify Zn with the set of elements of Rotn of full
rank.) Let Zn ⊆ Rotn act on the subsets of {1, 2, . . . , n} by rotation. Denote this action by ·, so
for rk ∈ Zn we have rk · {t1, t2, . . . , ti} = {t1 + k, t2 + k, , . . . , ti + k}, where all sums are taken mod
n. As in Section 2.3, we identify the subsets of {1, 2, . . . , n} with the partial identities on these
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subsets in Rotn. It is important to note that · does not coincide with the multiplication in Rotn.
That is, if e ∈ Rotn is idempotent, then rk · e 6= rke in general. Rather, it is straightforward to
check that rk · e = rker−k. We will write the operation on Rotn as concatenation, while reserving
· to refer only to the action of Zn. Here is a characterization of D on Rotn.

Lemma 5.14. Let a, b ∈ Rotn. Then a D b if and only if there exists k ∈ Z such that rk · ran(a) =
ran(b).

Proof. Let a D b. Let x = rke = frk ∈ Rotn (for some k ∈ Z and idempotents e, f ∈ Rotn) such
that dom(x) = ran(a) and ran(x) = ran(b). Then dom(x) = e and ran(x) = f , and rker−k = f =
rk · e, so rk · ran(a) = ran(b).

On the other hand, let rk · ran(a) = ran(b). Then, for x = rkran(a), we have dom(x) = ran(a)
and ran(x) = rkran(a)ran(a)r−k = rkran(a)r−k = rk · ran(a) = ran(b), so a D b. �

For any idempotent e ∈ Rotn, let j(e) be the smallest positive integer j such that rj · e = e.
Equivalently, j(e) is the size of the orbit of e under ·. By the division algorithm (or the orbit-
stabilizer theorem), j(e) divides n.

Lemma 5.15. If e ∈ Rotn is idempotent, then the D-class of e contains j(e) idempotents.

Proof. By Lemma 5.14, if f ∈ Rotn is idempotent, then e D f if and only if there exists k ∈ Z

such that rk · e = f , so the idempotents to which e is D-related are the distinct idempotents
r · e, r2 · e, . . . , rj(e) · e = e. �

Lemma 5.16. Let e ∈ Rotn be idempotent with rk(e) ≥ 1. Then the maximal subgroup of Rotn
at e is isomorphic to Zn/j(e).

Proof. Let e ∈ Rotn be idempotent and let j = j(e). First we show that the maximal subgroup Ge

at e is given by
Ge = {rjke : k ∈ Z}.

From Section 2.3 we have Ge = {σ ∈ Rotn : dom(σ) = ran(σ) = e}. Let k ∈ Z and let σ = rjke.
Then dom(σ) = e, and ran(σ) = rjkeer−jk = rjker−jk = rjk · e = (rj)k · e = e. Therefore rjke ∈ Ge

for all k ∈ Z. On the other hand, let σ ∈ Ge, so σ = rqf for some q ∈ Z and some idempotent
f ∈ Rotn, with dom(σ) = e and ran(σ) = e. Since dom(σ) = f , we have f = e, so σ = rqe. Then
e = ran(σ) = rqe(rqe)−1 = rqeer−q = rqer−q = rq · e. That is, rq · e = e. It is straightforward to
show that the minimality of j implies that j divides q, so we have σ = rjke for some k ∈ Z. Thus
Ge = {rjke : k ∈ Z}, as claimed.

Now let rk(e) ≥ 1. It is clear that Ge = {rje, r2je, . . . , r
n
j
je = e}, and we claim that the elements

in this list are distinct. To see why, suppose not. Then rjie = rjke for some 1 ≤ i < k ≤ n/j. Let
x ∈ dom(e), so applying rjie and rjke to x we have (rjie)(x) = (rjke)(x), so rji(x) = rjk(x), so
x = rjk−ji(x), but that is absurd because rjk−ji is a nontrivial rotation. It is now clear that Ge is
isomorphic to Zn/j . �

The final ingredient we need is a description of the poset structure of Rotn. For k ∈ N let
Bk denote the boolean lattice of subsets of {1, 2, . . . , k}. First, it is clear that the order ideal
{τ ∈ Rotn : τ ≤ σ} is isomorphic to the boolean lattice Brk(σ) for any σ ∈ Rotn. What is nice is
that if σ ∈ Rotn and there exists i ∈ dom(σ), then σ(k) is determined for all k ∈ dom(σ). This
means that the order filter {τ ∈ Rotn : τ ≥ σ} is isomorphic to the boolean lattice Bn−rk(σ) for all
σ ∈ Rotn with rk(σ) ≥ 1. It follows that (Rotn,≤) is isomorphic to n disjoint copies of Bn—one
for each element of Rotn of rank n—identified at their minimal elements.

We now analyze the complexity of the Fourier transform on Rotn.

Theorem 5.17. There exists a complete set of inequivalent, irreducible representations of CRotn
such that the Fourier transform and the inverse Fourier transform relative to Y of an arbitrary
element f ∈ CRotn can be computed in O(|Rotn| log |Rotn|) operations.
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Proof. First, we note that the poset description of Rotn above implies that |Rotn| = 2nn − n+ 1,
so n = O(log |Rotn|).

Next, since the elements of any D-class of Rotn are all of the same rank, for k = 0, . . . , n, let
d(k) denote the number of D-classes of Rotn consisting of rank-k elements, and label the D-classes
consisting of rank-k elements Dk,1,Dk,2, . . . ,Dk,d(k). Choose an idempotent ek,l for each D-class
Dk,l, and let j(k, l) = j(ek,l). Then, by Lemma 5.15, D(k,l) has j(k, l) idempotents and, by Lemma
5.16, for k > 0 the maximal subgroup at ek,l is isomorphic to Zn/j(k,l). Let IRR(Zn/j(k,l)) be a
complete set of inequivalent, irreducible representations of CZn/j(k,l).

For any idempotent a ∈ D(k,l), let pa = rmek,l, where m is the smallest nonnegative integer such
that rm · ek,l = a. Let Y be the set of representations of CRotn induced by the IRR(Zn/j(k,l)).

Theorems 2.21 and 4.1 imply that the Fourier transform and inverse Fourier transform relative
to Y of an arbitrary element f ∈ CRotn can be computed in

(4) C(ζRotn) +
n∑

k=1

k∑

l=1

j(k, l)2T (IRR(Zn/j(k,l)))

and

(5) C(µRotn) +

n∑

k=1

k∑

l=1

j(k, l)2Tinv(IRR(Zn/j(k,l)))

operations, respectively. Let c be a constant such that T (IRR(Zk)) ≤ ck log k and Tinv(IRR(Zk)) ≤
ck log k for all k. Then we can bound the sum in (4) by

n∑

k=1

k∑

l=1

j(k, l)2T (IRR(Zn/j(k,l))) ≤

n∑

k=1

k∑

l=1

j(k, l)2c
n

j(k, l)
log

(
n

j(k, l)

)

= cn
n∑

k=1

k∑

l=1

j(k, l) log

(
n

j(k, l)

)

≤ cn log(n)

n∑

k=1

k∑

l=1

j(k, l)

= cn log(n)

n∑

k=1

(
n

k

)

= cn log(n)(2n − 1)

≤ c log(n)(2nn− n+ 1)

= O(|Rotn| log log |Rotn|).

Similarly, in (5) we have

n∑

k=1

k∑

l=1

j(k, l)2Tinv(IRR(Zn/j(k,l))) = O(|Rotn| log log |Rotn|).

Although it is possible to use Theorem 4.3 to show C(ζRotn) = O(n2|Rotn|) = O(|Rotn| log
2 |Rotn|)

(and similarly for C(µRotn)), the following more direct approach yields a better result: (Rotn,≤) is
isomorphic to n disjoint copies of the boolean lattice Bn identified at their minimal elements. Fast
zeta and Möbius transforms on Bn are simple to describe and implement—see, e.g., Section 2.2 of
[3]. In particular, the zeta or Möbius transform of an arbitrary C-valued function on Bn can be
computed in no more than n2n operations.

Suppose f : Rotn → C, and for i ∈ {0, . . . , n − 1}, let ιi(Rotn) denote {σ ∈ Rotn : σ ≤ ri}. We
may compute the zeta transform fζ of f in the following manner: First compute the zeta transform
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of f restricted to each of the ιi(Rotn), and call the results fζ,i. Then, for σ ∈ Rotn, if rk(σ) ≥ 1,
we have fζ(σ) = fζ,i(σ), where i ∈ {0, . . . , n − 1} is the unique value i for which σ ≤ ri. For the

element σ ∈ Rotn of rank 0, we have fζ(σ) = (1−n)f(σ)+
∑n−1

i=0 fζ,i(σ). Using fast zeta transforms
for the ιi(Rotn), we have

C(ζRotn) ≤ n(n2n) + n+ 1

= n(n2n − n+ 1) + n2 + 1

= O(n|Rotn|)

= O(|Rotn| log |Rotn|).

In a similar fashion, we may compute the Möbius transform fu of f in the following manner:
First compute the Möbius transform of f restricted to each of the ιi(Rotn) and call the results fµ,i.
For σ ∈ Rotn, if rk(σ) ≥ 1, we have fµ(σ) = fµ,i(σ), where i ∈ {0, . . . , n − 1} is the unique value

for which σ ≤ ri. For the element σ ∈ Rotn of rank 0, we have fµ(σ) = (1−n)f(σ)+
∑n−1

i=0 fµ,i(σ).
Using fast Möbius transforms for the ιi(Rotn), we have

C(µRotn) ≤ n(n2n) + n+ 1 = O(|Rotn| log |Rotn|).

Therefore (4) and (5) are both O(|Rotn| log |Rotn|). �

Remark 5.18. The changes from the groupoid basis to the Fourier basis for S = Cn and S = Rotn
in the proofs of Theorems 5.13 and 5.17 are accomplished in O(|S| log log |S|) operations. If S is a
group and all multiplications by constants involved in the computation of the Fourier transform are
restricted to multiplications by constants of size no larger than 2, then it is known that the Fourier
transform on CS requires at least 1

4 |S| log |S| operations [2]. Although our Fourier transforms for
S = Cn and S = Rotn use O(|S| log |S|) operations (due to the complexities of the changes of basis
from the natural basis to the groupoid basis), Cn and Rotn are the first interesting examples of
families of inverse semigroups with nontrivial maximal subgroups whose changes of basis from the
groupoid basis to the Fourier basis can be achieved in sub-O(|S| log |S|) complexity.

Remark 5.19. Simple examples exist which show that the general 1
4 |S| log |S| lower bound on

the complexity of the Fourier transform for groups does not extend to inverse semigroups. For
example, if S is the chain on n elements under the meet operation, then S is an idempotent
inverse semigroup of order n, so each D-class of S has size one and the maximal subgroup at each
element of S is trivial. Therefore, the Fourier transform of an element f ∈ CS is just the zeta
transform of f , and it is easy to see that the zeta transform of f ∈ CS can be computed in linear
time. Indeed, let S = {s1 < s2 < · · · < sn} and f : S → C. Then set fζ(sn) = sn and, for
i = n− 1, . . . , 1, compute fζ(si) = f(si)+ fζ(si+1). Thus we can compute the Fourier transform of
f in n operations. The Möbius transform fµ of f : S → C is even simpler. We have fµ(sn) = f(sn)
and, for i = 1, 2, . . . , n− 1, fµ(si) = f(si)− f(si+1), so the inverse Fourier transform of f can also
be computed in n operations.
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