
ar
X

iv
:1

40
1.

26
69

v1
 [

m
at

h.
C

O
]

 1
2

Ja
n

20
14

ON-LINE VERTEX RANKING OF TREES

DANIEL C. MCDONALD

Department of Mathematics, University of Illinois, Urbana, IL, USA

Abstract. A k-ranking of a graph G is a labeling of its vertices from {1, . . . , k} such that any nontrivial
path whose endpoints have the same label contains a larger label. The least k for which G has a k-
ranking is the ranking number of G, also known as tree-depth. Applications of rankings include VLSI
design, parallel computing, and factory scheduling. The on-line ranking problem asks for an algorithm
to rank the vertices of G as they are presented one at a time along with all previously ranked vertices and
the edges between them (so each vertex is presented as the lone unranked vertex in a partially labeled

induced subgraph of G whose final placement in G is not specified). The on-line ranking number of G is
the minimum over all such algorithms of the largest label that algorithm can be forced to use. We give
bounds on the on-line ranking number of trees in terms of maximum degree, diameter, and number of
interior vertices.

1. Introduction

We consider a special type of proper vertex coloring using positive integers, called “ranking.” As with
proper colorings, there exist variations on the original ranking problem. In this paper we consider the
on-line ranking problem, introduced by Tuza and Voigt in 1995 [14].

Definition 1.1. A ranking of a finite simple graph G is a function f : V (G) → {1, 2, . . .} with the
property that if u 6= v but f(u) = f(v), then every u, v-path contains a vertex w satisfying f(w) > f(u)
(equivalently, every path P contains a unique vertex with largest label, where f(v) is called the label of
v). A k-ranking of G is a ranking f : V (G) → {1, . . . , k}. The ranking number of a graph G, denoted
here by ρ(G) (though in the literature often as χr(G)), is the minimum k such that G has a k-ranking.

Vertex rankings of graphs were introduced in [5], and results through 2003 are surveyed in [7]. Their
study was motivated by applications to VLSI layout, cellular networks, Cholesky factorization, parallel
processing, and computational geometry. For example, vertex ranking models the efficient assembly of
a graph from vertices, where each stage of construction consists of individual vertices being added in
such a way that no component ever has more than one new vertex. Vertex rankings are sometimes
called ordered colorings, and the ranking number of a graph is trivially equal to its “tree-depth,” a term
introduced by Nes̆etr̆il and Ossona de Mendez in 2006 [11] in developing their theory of graph classes
having bounded expansion.

The vertex ranking problem has spawned multiple variations, including list ranking [10] and on-line
ranking, studied here. The on-line ranking problem is to vertex ranking as the on-line coloring problem
is to ordinary vertex coloring.

1.1. The on-line vertex ranking problem. The on-line vertex ranking problem is a game between two
players, Presenter and Ranker. A class G of unlabeled graphs is shown to both players at the beginning
of the game. In round 1, Presenter presents to Ranker the graph G1 consisting of a single vertex v1, to
which Ranker assigns a positive integer label f(vi). In round i for i > 1, Presenter extends Gi−1 to an
i-vertex induced subgraph Gi of a graph G ∈ G by presenting an unlabeled vertex vi (without specifying
which copy of Gi among all induced subgraphs of graphs in G). Ranker must then extend the ranking f
of Gi−1 to a ranking of Gi by assigning f(vi).

Presenter seeks to maximize the largest label assigned during the game, while Ranker seeks to minimize
it. The on-line ranking number of G, denoted here by ρ̊(G) (though in the literature often as χ∗

r(G)), is
the resulting maximum assigned value under optimal play. If Presenter can guarantee that arbitrarily
high labels are used, then ρ̊(G) = ∞. If G is the class of induced subgraphs of a graph G, then we define
ρ̊(G) = ρ̊(G).

E-mail address: dmcdona4@illinois.edu.

1

http://arxiv.org/abs/1401.2669v1

Note that ρ̊(G′) ≤ ρ̊(G) if every graph in G′ is an induced subgraph of a graph in G, since any strategy
for Ranker on G includes a strategy on G′. Also ρ(G) ≤ ρ̊(G) trivially.

Several papers have been written about the on-line ranking number of graphs, including [2], [12],
and [13]; some of the results from these papers will be mentioned later. On-line ranking has also been
looked at from an algorithmic perspective, in the sense that one seeks a fast algorithm for determining
the smallest label Ranker is allowed to use on a given turn; see [3], [6], [8], and [9]. Our paper is of the
former variety.

A minimal ranking of G is a ranking f with the property that decreasing f on any set of vertices
produces a non-ranking. Let ψ(G) be the largest label used in any minimal ranking of G. Isaak,
Jamison, and Narayan [4] showed that the minimal rankings of G are precisely the rankings produced
when Ranker plays greedily, so ρ̊(G) ≤ ψ(G). For the n-vertex path Pn, this yields ρ̊(Pn) ≤ ψ(Pn) =
⌊log2(n+ 1)⌋+ ⌊log2(n+ 1− 2⌊log2

n⌋−1)⌋. Bruoth and Horn̆ák [2] gave the best known lower bound for
paths ρ̊(Pn) ≥ 1.619(log2 n)− 1.

1.2. Our Results. Recall that the distance between two vertices u and v in a connected graph G is the
number of edges in a shortest u, v-path in G. The eccentricity of v is the greatest distance between v
and any other vertex in G. The diameter of G is the maximum eccentricity of any vertex in G.

In Section 2, we give bounds on the on-line ranking number of Tk,d, defined for k ≥ 2 and d ≥ 0 to
be the largest tree having maximum degree k and diameter d, i.e., the tree all of whose internal vertices
have degree k and all of whose leaves have eccentricity d. Since the family of trees with maximum degree
at most k and diameter at most d is precisely the set of connected induced subgraphs of Tk,d, our upper
bound on ρ̊(Tk,d) also serves as an upper bound for the on-line ranking number of this class of graphs.

Theorem 1.2. There exist positive constants c and c′ such that if d ≥ 0 and k ≥ 3, then c(k− 1)⌊d/4⌋ ≤
ρ̊(Tk,d) ≤ c′(k − 1)⌊d/3⌋.

We find it informative to compare the on-line ranking number of Tk,d to the regular ranking number
of Tk,d.

Proposition 1.3. For k ≥ 3, we have ρ(Tk,d) = ⌈d/2⌉+ 1.

Proof. The construction for the upper bound assigns label i+1 to vertices at distance i from the nearest
leaf, with the exception of labeling one of the vertices in the central edge of Tk,d with (d + 3)/2 if d is
odd. For the lower bound, note that choosing the unique highest ranked vertex v of a tree T reduces
the ranking problem to individually ranking the components of T − v. Thus if there exists u ∈ V (T)
such that for every w ∈ V (T) each component of T − u is isomorphic to a subtree of some component of
T −w, then T can be optimally ranked by optimally ranking each component of T −u and labeling u one
greater than the largest label used on those components. Letting Fi denote the subforest of Tk,d induced
by the set of vertices within distance i of a leaf, we conclude by induction on i that for 1 ≤ i ≤ ⌈d/2⌉,
each component of Fi is optimally ranked by the upper bound construction. �

Setting n = |V (Tk,d)| and using Theorem 1.2 and Proposition 1.3, we see that ρ̊(Tk,d) = Ω(
√
n) while

ρ(Tk,d) = O(log n). Thus ρ̊ is exponentially larger than ρ on these trees. Theorem 1.5 shows that this
large separation between ρ and ρ̊ does not hold for all trees. Nevertheless we conjecture a general upper
bound like that of Theorem 1.2.

Conjecture 1.4. There exist universal constants a and b satisfying 0 < a < 1 < b such that ρ̊(T) ≤
b(kn)a for any n-vertex tree T with maximum degree k.

In Section 3, we consider the on-line ranking number of trees with few internal vertices. Let T p,q be
the family of trees having at most p internal vertices and diameter at most q. The main result of that
section is an upper bound on ρ̊(T p,q) for any p and q.

Theorem 1.5. ρ̊(T p,q) ≤ p+ q + 1.

Since q ≤ p + 1, this establishes ρ̊(T p,q) ≤ 2p + 2. We also compute ρ̊(T 2,3) = 4. This extends
the work of Schiermeyer, Tuza, and Voigt [13], who characterized the families of graphs having on-line
ranking number 1, 2, and 3.

2

2. Strategies for Presenter and Ranker on Tk,d

In this section, we obtain upper and lower bounds on ρ̊(Tk,d), where Tk,d is the largest tree having
maximum degree k and diameter d. For convenience, we let T ∗

k,r denote the tree with unique root vertex

v∗ such that every internal vertex has k children and every leaf is distance r from v∗. For U ⊆ V (G),
let G[U] denote the subgraph of G induced by U .

2.1. A strategy for Presenter. We first develop a tool for proving lower bounds.

Theorem 2.1. Let G be a connected graph. Suppose for some U ⊂ V (G) that G − U has components
G0, G1, . . . , Ga, all isomorphic to some graph F . If also U contains disjoint subsets U1, . . . , Ua so that
each U i consists of the internal vertices of a path joining G0 and Gi, then ρ̊(G) ≥ ρ̊(F) + a.

Proof. Presenter has a strategy to produce a copy of F on which Ranker must use a label at least ρ̊(F).
Begin by playing this strategy a+1 times on distinct sets of vertices. Index the resulting copies of F as
G0, G1, . . . , Ga so that G0 is a copy whose largest label is smallest (in the labeling by Ranker) among
the copies of F . Present U in any order to complete G.

Let m0 denote the largest label given to a vertex in V (G0). For 1 ≤ i ≤ a, let mi denote the largest
label given to a vertex in V (Gi) ∪ U i. Set Hi = G[V (G0) ∪ U i ∪ V (Gi)] for 1 ≤ i ≤ a. Each Hi is a
connected subgraph of G, so m0 < mi. For i 6= j, Hi ∪Hj is a connected subgraph of G, so mi 6= mj .
Thus the largest mi satisfies mi ≥ m0 + a ≥ ρ̊(F) + a. �

GFED@ABCG0

U1 U2 U3

GFED@ABCG1 GFED@ABCG2 GFED@ABCG3

tt
tt
tt

tt
tt
tt

❏❏
❏❏

❏❏

❏❏
❏❏

❏❏

Figure 1. The graph G of Theorem 2.1.

Note that Tk,2r consists of a copy of T ∗
k−1,r and a copy of T ∗

k−1,r−1 with an edge joining their roots,
and Tk,2r+1 consists of two copies of T ∗

k−1,r with an edge joining their roots. Hence T ∗
k−1,⌊d/2⌋ is an

induced subgraph of Tk,d, so a lower bound on ρ̊(T ∗
k−1,⌊d/2⌋) also serves as a lower bound on ρ̊(Tk,d).

Corollary 2.2. If k ≥ 2 and r ≥ 0, then ρ̊(T ∗
k,r) ≥ k⌊r/2⌋.

Proof. Since T ∗
k,r is an induced subgraph of T ∗

k,r+1, we have ρ̊(T
∗
k,r) ≤ ρ̊(T ∗

k,r+1), so we may assume that

r is even. Set a = kr/2, and let U be the set of vertices u1, . . . , ua at distance r/2 from v∗. Define G to
be the subtree of T ∗

k,r obtained by deleting, for each ui ∈ U , the descendants of all but one child of ui.

Now G− U consists of a+ 1 disjoint copies of T ∗
k,r/2−1

. Let G0 be the component rooted at v∗, and for

1 ≤ i ≤ a let Gi be the component rooted at the child of ui. Setting U
i = {ui} for 1 ≤ i ≤ a, we see that

U i contains the lone vertex of the path joining G0 and Gi. By Theorem 2.1, ρ̊(T ∗
k,r) ≥ ρ̊(G) ≥ a. �

Corollary 2.3. If k ≥ 3 and d ≥ 0, then ρ̊(Tk,d) ≥ (k − 1)⌊d/4⌋.

We finish this subsection with a comment on Conjecture 1.4. Subdivide each edge of the star K1,a to
get a (2a+ 1)-vertex tree G. Letting G0, G1, . . . , Ga correspond to the vertices of the unique maximum
independent set of G, Theorem 2.1 yields ρ̊(G) ≥ a + 1 > |V (G)|/2. Thus Conjecture 1.4 cannot be
strengthened to the statement “There exist universal constants a and b satisfying 0 < a < 1 < b such
that ρ̊(T) ≤ bna for any tree n-vertex tree T .”

2.2. A strategy for Ranker. We now exhibit a strategy for Ranker to establish an upper bound on
ρ̊(Tk,d). In Section 3 we shall see ρ̊(Tk,0) = 1, ρ̊(Tk,1) = 2, ρ̊(Tk,2) = 3, ρ̊(Tk,3) = 4, ρ̊(Tk,4) ≤ k + 6, and
ρ̊(Tk,5) ≤ 2k + 6, so here we only consider d ≥ 6. In specifying a strategy for Ranker on Tk,d, we will
give a procedure for ranking the presented vertex v based solely on the component containing v in the
graph presented so far.

3

Definition 2.4. Let T (v) denote the component containing v when v is presented. Given two sets A
and B of labels, not necessarily disjoint, let TB(v) be the largest subtree of T (v) containing v all of whose
other vertices are labeled from B. Should it exist, let fA

B (v) denote the smallest element of A that would
complete a ranking of TB(v).

The following lemmas analyze when fA
B (v) exists and, if it does exist, when fA

B (v) provides a valid
label that Ranker can give v.

Lemma 2.5. Suppose that each vertex u ∈ V (TB(v)) labeled from A was given label fA
B (u) when it

arrived. If minA > max(B − A), and every component of TB(v) − v lacks some label in A, then fA
B (v)

exists.

Proof. Let A = {a1, . . . , am}, with a1 < . . . < am. For a component T of TB(v) − v having q distinct
labels from A, we claim that the largest label used on T is aq. Each vertex u ∈ V (TB(v)) labeled from A
was given label fA

B (u) when it arrived, with minA > max(B − A), so if fA
B (u) = ai then either i = 1 or

ai−1 was already used in TB(u) (since otherwise ai−1 would complete a ranking). Hence all used labels
are less than all missing labels in A. Since every component of TB(v)− v lacks some label in A, we thus
have aq < am. Therefore am is a valid label for v in TB(v) because the largest label on any path through
v would be used only at v. Hence fA

B (v) exists. �

Lemma 2.6. Suppose that fA
B (v) exists. If T (v) = TB(v) or if all vertices of T (v)− V (TB(v)) having a

neighbor in TB(v) are in the same component of T (v)− v and have labels larger than max(A ∪B), then
setting f(v) = fA

B (v) is a valid move by Ranker.

Proof. Set f(v) = fA
B (v). Let P be an x, y-path in T (v) such that x 6= y, f(x) = f(y) = ℓ, and

v ∈ V (P). We show that P has an internal vertex z satisfying f(z) > ℓ. Since fA
B (v) completes a ranking

of TB(v), we may assume that T (v) 6= TB(v) and P contains some vertex outside TB(v). By hypothesis
all such vertices having a neighbor in TB(v) are in the same component of T (v)− v, so we may assume
x ∈ V (T (v))− V (TB(v)) and y ∈ V (TB(v)).

Since v is labeled from A and TB(v)− v is labeled from B with y ∈ V (TB(v)), we have ℓ ∈ A∪B. By
hypothesis all vertices of T (v)−V (TB(v)) having neighbors in TB(v) have labels larger than max(A∪B),
so x has no neighbor in TB(v). Hence P contains some internal vertex z outside TB(v) with a neighbor
in TB(v). By hypothesis, f(z) > max(A ∪B) ≥ ℓ. �

Set j = ⌊d/3⌋. Break the labels from 1 to 3|V (T ∗
k−1,j)| into three segments, with X consisting of the

lowest |V (T ∗
k−1,j−1)| labels, Y the next |V (T ∗

k−1,j)| − |V (T ∗
k−1,j−1)| labels, and Z the remaining high

labels. For k ≥ 3, we give Ranker a strategy in the on-line ranking game on Tk,d that uses labels from

X ∪ Y ∪ Z. Since ρ̊(Tk,d) ≤ 3|V (T ∗
k−1,j)| = 3((k − 1)j +

∑j−1

i=0 (k − 1)i) < 6(k − 1)j , this establishes the
following.

Theorem 2.7. If d ≥ 0 and k ≥ 3, then ρ̊(Tk,d) ≤ 6(k − 1)⌊d/3⌋.

The goal of our strategy for Ranker is to label from X ∪Y many vertices that lie within distance j− 1
of a leaf, reserving Z for a small number of middle vertices.

Algorithm 2.8. Compute f(v) according to the following table.

Value of f(v) Conditions
(I) fX

X (v) (1) TX(v) is isomorphic to a subgraph of T ∗
k−1,j−1, and

(2) either TX(v) = T (v) or there exists a vertex u in T (v) labeled from Y such
that TX(v) is the component of T (v)− u containing v.

(II) fY
X∪Y (v) (1) The eccentricity of v in T (v) is at least d− j, and

(2) there exists no vertex u in T (v) labeled from Y such that TX(v) is the
component of T (v)− u containing v.

(III) fZ
X∪Y ∪Z(v) (1) The eccentricity of v in T (v) is less than d− j, and

(2) either TX(v) is not isomorphic to a subgraph of T ∗
k−1,j−1 or TX(v) 6= T (v).

4

Before we go any further, we need to show that Algorithm 2.8 is, in fact, an algorithm. Note that
d− j ≥ 2j.

Proposition 2.9. When playing the on-line ranking game on Tk,d, each presented vertex v satisfies the
conditions of exactly one of the three cases.

Proof. If the eccentricity of v in T (v) is less than d−j, then Case II does not apply. If furthermore TX(v)
is isomorphic to a subgraph of T ∗

k−1,j−1 and TX(v) = T (v), then Case I applies but Case III does not.

Otherwise, Case III applies, but Case I does not since if TX(v) is isomorphic to a subgraph of T ∗
k−1,j−1,

then TX(v) 6= T (v) and a vertex u in T (v) such that TX(v) is the component of T (v) − u containing v
would have eccentricity at most max{d− j− 2, 2j− 1}, which is less than d− j, precluding u from being
labeled from Y .

If the eccentricity of v in T (v) is at least d − j, then Case III does not apply. If furthermore TX(v)
is isomorphic to a subgraph of T ∗

k−1,j−1, then the eccentricity of v in TX(v) is at most 2j − 2, so

TX(v) 6= T (v) since 2j − 2 < d − j. Thus Case I only applies if TX(v) is isomorphic to a subgraph of
T ∗
k−1,j−1 and there exists a vertex u in T (v) labeled from Y such that TX(v) is the component of T (v)−u

containing v.
If there does exist a vertex u in T (v) labeled from Y such that TX(v) is the component of T (v) − u

containing v, then u had eccentricity at least d − j in T (u), so TX(v) is isomorphic to a subgraph of
T ∗
k−1,j−1 since Tk,d has diameter d. Hence Case I applies. If there exists no vertex u in T (v) labeled

from Y such that TX(v) is the component of T (v)− u containing v, then Case II applies. �

We now show that Algorithm 2.8 produces a valid label in each of the three cases. Assume that the
algorithm has assigned valid labels before the presentation of v. Note that for (A,B) ∈ {(X,X), (Y,X ∪
Y), (Z,X ∪ Y ∪ Z)}, each vertex u ∈ V (TB(v)) labeled from A was given label fA

B (u) when it arrived,
and minA > max(B − A). Hence by Lemma 2.5, fA

B (v) exists if every component of TB(v) − v lacks
some label in A.

Proposition 2.10. In Case I, fX
X (v) exists, and setting f(v) = fX

X (v) is a valid move for Ranker.

Proof. Note that fX
X (v) exists by Lemma 2.5 because |V (TX(v))| ≤ |X |. Furthermore, fX

X (v) provides
a valid label for v by Lemma 2.6 because either TX(v) = T (v) or there exists a vertex u in T (v) such
that f(u) > maxX and TX(v) is a component of T (v) − u, making u the only vertex outside TX(v)
neighboring a vertex inside TX(v). �

If y satisfies the conditions of Case II, then let H(y) be the component of T (y) − y having greatest
diameter.

Lemma 2.11. If y is labeled from Y , then each vertex separated from H(y) by y (at any point in the
game) is labeled from X.

Proof. The eccentricity of y in T (y) is at least d − j, so H(y) has diameter at least d − j − 1. This
forces each other component of T (y) − y to be isomorphic to a subtree of T ∗

k−1,j−1. Any vertex r of

such a component is labeled from X , since T (r) was isomorphic to a subgraph of T ∗
k−1,j−1, implying

TX(r) = T (r). Furthermore, any subsequently presented vertex s satisfying y ∈ V (T (s)) that is separated
from H(y) by y is labeled from X , since TX(s) is isomorphic to a subgraph of T ∗

k−1,j−1 and is the

component of T (s)− y containing s. �

Lemma 2.12. Every path in TX∪Y (v) contains at most two vertices labeled from Y (including possibly
v).

Proof. Let y, y′, and y′′ be distinct vertices in TX∪Y (v) labeled from Y (one could possibly be v). Since
y′ and y′′ are labeled from Y , neither is separated from H(y) by y, by Lemma 2.11. If u is the neighbor
of y in H(y), then the edge uy must be part of any path containing y and at least one of y′ or y′′. Hence
edge-disjoint y′, y- and y, y′′-paths do not exist, so no path contains y between y′ and y′′. By symmetry,
no path contains each of y, y′, and y′′. �

Lemma 2.13. If T (v) contains a vertex labeled from Y (possibly v), then T (v) contains a vertex labeled
from Z, and no path in T (v) contains a vertex labeled from Z and multiple vertices of TX∪Y (v) labeled
from Y .

5

Proof. For the first claim, let y be the first vertex in T (v) labeled from Y . The diameter of H(y) is
greater than the diameter of T ∗

k−1,j−1 because d− j − 1 > 2j − 2, so some vertex r ∈ V (H(y)) violated
the first condition of Case I when presented and was thus not labeled from X . Since r was presented
before y, it is labeled from Z.

For the second claim, let z be a vertex of T (v) labeled from Z, and y′ and y′′ be distinct vertices of
TX∪Y (v) labeled from Y . If u is the neighbor of z in the direction of v, then the edge uz must be part
of any path containing z and at least one of y′ or y′′. Hence edge-disjoint y′, z- and z, y′′-paths do not
exist, so no path can contain z between y′ and y′′.

By Lemma 2.11, any vertex separated from H(y′) by y′ is labeled from X , so y′′ is not separated from
z by y′. Similarly, y′ is not separated from z by y′′. Thus no path can contain each of z, y′, and y′′. �

/.-,()*+z1

76540123x2 76540123x1

/.-,()*+y1 76540123x1 /.-,()*+y2 /.-,()*+y1

76540123x1 76540123x1 /.-,()*+y2 76540123x1 76540123x1 76540123x1 76540123x1

76540123x2

/.-,()*+y1 76540123x1

76540123x1 76540123x1

❣❣❣❣
❣❣❣❣

❣❣❣❣
❣❣❣❣

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

✎✎✎

⑧⑧⑧⑧ ❄❄
❄❄

✴✴
✴

❄❄
❄❄

✴✴
✴

✴✴
✴

⑧⑧
⑧⑧

✎✎
✎ ✴✴
✴

✎✎
✎ ✎✎✎

⑧⑧⑧⑧ ❄❄
❄❄

✴✴
✴

Figure 2. A labeling of Tk,d for vertices with high eccentricity (xi ∈ X, yi ∈ Y, zi ∈ Z).

Proposition 2.14. In Case II, fY
X∪Y (v) exists, and setting f(v) = fY

X∪Y (v) is a valid move for Ranker.

Proof. Let S be the set consisting of v and every vertex in TX∪Y (v) labeled from Y . By Lemma 2.12,
the elements of S are only separated by vertices labeled from X , so the smallest subtree T of TX∪Y (v)
containing all of S has all its internal vertices labeled from X . Therefore the set of internal vertices of T
induces a tree T ′ isomorphic to a subtree of T ∗

k−1,j−1. By Lemma 2.13, some vertex not labeled from Y

neighbors a vertex in T ′ if T ′ 6= ∅, or else some path in T (v) contains a vertex labeled from Z and multiple
vertices of TX∪Y (v) labeled from Y . Thus |S| = |V (T)| − |V (T ′)| ≤ |V (T ∗

k−1,j)| − |V (T ∗
k−1,j−1)| = |Y |,

so fY
X∪Y (v) exists by Lemma 2.5.

Finally, the only vertices outside TX∪Y (v) that neighbor a vertex inside TX∪Y (v) are in H(y) and
labeled from Z. Hence fY

X∪Y (v) provides a valid label for v, by Lemma 2.6. �

Lemma 2.15. If v is assigned a label m ∈ Z previously unused in T (v), then v is a leaf of some subtree
of TX∪Z(v) containing every label in Z smaller than m.

Proof. By Lemma 2.11, two vertices labeled from Z are never separated by a vertex labeled from Y ,
so all vertices in T (v) − v labeled from Z lie in TX∪Z(v). We use induction on m, with the base case
m = minZ being trivial. If m > minZ, let u be the first vertex in TX∪Z(v) labeled with m− 1. Since u
arrived as a leaf of some subtree containing every label in Z smaller than m− 1, adding to that tree the
u, v-path through TX∪Z(v) yields the desired tree. �

Lemma 2.16. The largest subtree T of Tk,d having diameter d− j− 1 has at most 2|V (T ∗
k−1,j)| vertices.

Proof. Let u1u2 be the central edge of T if d− j − 1 is odd and any edge containing the central vertex
of T if d − j − 1 is even. Deleting u1u2 from T then leaves two trees T1 and T2 containing u1 and
u2, respectively, with ui having degree at most k − 1 and eccentricity at most ⌊(d− j − 1)/2⌋ in Ti.
Thus each Ti is isomorphic to a subtree of T ∗

k−1,j , since ⌊(d− j − 1)/2⌋ ≤ j for j = ⌊d/3⌋. Hence

|V (T)| = |V (T1)|+ |V (T2)| ≤ 2|V (T ∗
k−1,j)|. �

Proposition 2.17. In Case III, fZ
X∪Y ∪Z(v) exists, and setting f(v) = fZ

X∪Y ∪Z(v) is a valid move for
Ranker.

Proof. Note that TX∪Y ∪Z(v) = T (v), so if fZ
X∪Y∪Z(v) exists, then by Lemma 2.6 it is a valid label

for v. If T (v) uses at most 2|V (T ∗
k−1,j)| labels from Z, then by Lemma 2.5 fZ

X∪Y∪Z(v) exists, since

|Z| = 2|V (T ∗
k−1,j)|. By Lemma 2.15 and the first condition of Case III, the number of labels from Z used

in T (v) is at most the number of times a vertex u in TX∪Z(v) was presented as a leaf of TX∪Y (u) having
6

eccentricity less than d− j in TX∪Y (u). Since any leaf added adjacent to a vertex having eccentricity at
least d − j will itself have eccentricity at least d − j, it suffices to show that growing a subtree of Tk,d
by iteratively adding one leaf 2|V (T ∗

k−1,j)| times eventually forces some new leaf to have eccentricity at
least d− j at the time of its insertion. Since any leaf whose insertion raises the diameter of the tree has
eccentricity equal to the higher diameter, this statement follows from Lemma 2.16. �

3. Trees with few internal vertices

Recall that T p,q is the family of trees having at most p internal vertices and diameter at most q. We
first exhibit a strategy for Ranker on T p,q that uses no label larger than p+ q+ 1. We can improve this
bound for the class of double stars by proving ρ̊(T 2,3) = 4 (since every tree with diameter 3 has exactly
two internal vertices, T 2,3 is the family of trees with diameter 3). This extends the work of Schiermeyer,
Tuza, and Voigt [13], who characterized the families of graphs with on-line ranking number 1, 2, and 3.

3.1. Upper bound on T̊ p,q. During the on-line ranking game on T p,q, let S be the component of the
current graph containing the unlabeled presented vertex v. We give Ranker a procedure for ranking v
based solely on S and the labels given to the other vertices of S.

Algorithm 3.1. If v is the only vertex in S, let f(v) = q + 1. If v is not the only vertex in S, then
let m denote the largest label already used on S. If there exists a label smaller than m that completes a
ranking when assigned to v, give v the largest such label. Otherwise, let f(v) = m+ 1.

Lemma 3.2. If v arrives as a leaf of a nontrivial component S whose highest ranked vertex has label m,
then Algorithm 3.1 will assign v a label smaller than m.

Proof. Suppose that Algorithm 3.1 assigns f(v) = m+ 1. Let v0 = v. We now select vertices v1, . . . , vj
from S such that v0, v1, . . . , vj in order form a path P and vj arrived as an isolated vertex. For i ≥ 0, let
vi+1 be a vertex with the least label among all vertices that were adjacent to vi when vi was presented,
unless vi arrived as an isolated vertex, in which case set j = i. Since S is finite, the process must end
with some vertex vj . Since vi was presented as a neighbor of vi+1, P is a path.

Note that Algorithm 3.1 assigns f(u) = a 6= q + 1 only if u arrives as a neighbor of a vertex w such
that f(w) ≤ a + 1. Since f(v1) = 1 (otherwise f(v0) = f(v1) − 1 < m), we must have f(vi) ≤ i for
1 ≤ i < j. Also, f(vj) = q + 1 because vj arrived as an isolated vertex. Since vj was chosen as the
neighbor with the least label when vj−1 arrived, f(u) > q for any such neighbor u. Hence f(vj−1) ≥ q.
Therefore j − 1 ≥ q, which gives P length q + 1, contradicting S having diameter at most q. �

Theorem 3.3. Algorithm 3.1 uses no label larger than p+ q + 1.

Proof. By Lemma 3.2, the only way for a new largest label greater than q + 1 to be used on S is for the
unlabeled vertex to arrive as an internal vertex. Only the p internal vertices of an element of T p,q can
be presented as such, and each time a new largest label is used it increases the largest used value by 1,
so the largest label that could be used on one of them would be p+ q + 1. �

3.2. Double stars. For any forest F , Schiermeyer, Tuza, and Voigt [13] proved ρ̊(F) = 1 if and only
if F has no edges, ρ̊(F) = 2 if and only if F has an edge but no component with more than one edge,
and ρ̊(F) = 3 if and only if F is a star forest with maximum degree at least 2 or F is a linear forest
whose largest component is P4. Since P4 is the only member of T 2,3 having on-line ranking number less
than 4, proving ρ̊(T 2,3) = 4 only requires a strategy for Ranker, and our result implies ρ̊(T) = 4 for any
T ∈ T 2,3−{P4}. We now make some observations about the on-line ranking game on T 2,3 before giving
a strategy for Ranker.

When a vertex u is presented, let G(u) be the graph at that time, and let T (u) be the component of
G(u) containing u. When the first edge(s) appear, the presented vertex v is the center of a star; thus
T (v) is a star, while G(v) may include isolated vertices in addition to T (v). Let v′ be the first vertex to
complete a path of length 3. The graph G(v′) is connected and has two internal vertices, properties that
remain true as subsequent vertices are presented. Let T be the final tree.

Consider the round when a vertex u is presented. If u is presented after v′, or u = v′ and u is a leaf
of T (u), then G(u) = T (u), and u must be a leaf in T . If u is presented after v but before v′, then either
T (u) = u or T (u) is a star not centered at u. If additionally G(u) is disconnected, then u must wind up
as a leaf in T , since T has diameter 3. Call u a forced leaf in this case, the case that u is presented after
v′, or the case that u = v′ and u is presented as a leaf of T (u). Otherwise, if u is presented after v but
before v′, then u is a leaf of T (u), and say that u is undetermined (since u may or may not wind up as
a leaf in T). Also call v undetermined, as well as v′ if v′ is not a forced leaf.

7

Algorithm 3.4. Give label 3 to the first vertex presented, label 2 to any subsequent vertex presented
before v, and label 1 to any forced leaf. The rest of the algorithm specifies how to rank the undetermined
vertices in terms of the labeling of G(v).

If G(v) = P2, then give label 4 to v and label 2 to any subsequent undetermined vertex. If G(v) has
more than one edge (disconnected or not), and v is adjacent to the vertex labeled 3, then give label 4 to
v and label 3 to any subsequent undetermined vertex.

If neither of the previous cases hold, then G(v) is disconnected, and v and v′ are the only undetermined
vertices. If G(v) has exactly one edge, and v is adjacent to the vertex labeled 3, then give label 2 to v
and label 4 to v′. In the remaining case, v is not adjacent to the vertex labeled 3; give label 3 to v and
label 4 to v′.

'&%$!"#3 '&%$!"#4
v '&%$!"#3 '&%$!"#4

v '&%$!"#2 '&%$!"#2 '&%$!"#3 '&%$!"#2
v '&%$!"#2 '&%$!"#2 '&%$!"#3

v '&%$!"#3

Figure 3. Possibilities for G(v).

Proposition 3.5. ρ̊(T 2,3) = 4.

Proof. Because P4 is the only tree with exactly two internal vertices having on-line ranking number at
most 3, we need only to verify that Algorithm 3.4 is a valid strategy for Ranker.

If G(v) = P2, then every vertex labeled 1 is a leaf, and the only label besides 1 that can be used more
than once is 2. Any two vertices labeled 2 must be separated by one of the first two vertices presented,
each of which receives a higher label.

If G(v) has more than one edge, and v is added adjacent to the vertex labeled 3, then every vertex
labeled 1 is a leaf, and the only vertex labeled 4 is v, which is an internal vertex. If the other internal
vertex is labeled 3, then each leaf adjacent to it is labeled 1 or 2. Any two vertices labeled 3 must be
separated from each other by v, which is labeled 4, and any two vertices labeled 2 must be separated
from each other by an internal vertex, which is labeled either 3 or 4. If the internal vertex besides v
is labeled 2, then each adjacent leaf must be labeled 1. Any two vertices with the same label of 2 or 3
would have to be separated from each other by v, which is labeled 4.

If G(v) has exactly one edge but more than two vertices, and v is adjacent to the vertex labeled 3,
then any vertex labeled 1 will be a leaf, only the first vertex presented will be labeled 3, and any two
vertices labeled 2 will be separated from each other by v′, which is the only vertex labeled 4.

If G(v) has more than two vertices, and v is not adjacent to the vertex labeled 3, then any vertex
labeled 1 will be a leaf, and any two vertices with the same label of 2 or 3 will be separated from each
other by v′, which is the only vertex labeled 4. �

Acknowledgments

Special thanks to Prof. Doug West for his helpful guidance and editing advice. This work was
supported by National Science Foundation grant DMS 08-38434 EMSW21-MCTP: Research Experience
for Graduate Students.

References

[1] P. M. Gibson, Conversion of the permanent into the determinant, Proc. Amer. Math. Soc., 27 (1971), pp. 471–476.
[2] E. Bruoth and M. Horn̆ák, Online-ranking numbers for cycles and paths, Discuss. Math. Graph Theory, 19 (1999),

pp. 175–197.
[3] Y.-M. Chen and Y.-L. Lai, An improved on-line node ranking algorithm of trees, Proc. of the 23rd Workshop on

Combin. Math. and Comput. Theory (2006), pp. 345–348.
[4] G.Isaak, R. Jamison, R., and D. Narayan, Greedy rankings and arank numbers, Inform. Process. Lett. 109 (2009),

no. 15, pp. 825–827.
[5] A. V. Iyer, H. D. Ratliff, and G. Vijayan, Optimal node ranking of trees, Inform. Process. Lett. 28 (1988), no. 5,

pp. 225–229.
[6] E. Haque, M. Islam, A. Kashem, and M. R. Rahman, On-line algorithms for vertex-rankings of graphs, Int. Conf.

on Inform. and Communication Technology, (2007), pp. 22–26.
[7] R. E. Jamison, Coloring parameters associated with rankings of graphs, Congr. Numer. 164 (2003), pp. 111–127.
[8] J. S. Juan and C. Lee, On-line ranking algorithms for trees, Proc. of Int. Conf. on Foundations of Comput. Sci., Las

Vegas (2005), pp. 46–51.
[9] J. S. Juan, C. Lee, and T. Wu, An on-line parallel algorithm for node ranking of trees, Algorithms and Architectures

for Parallel Processing (2009), pp. 384–395.

8

[10] D. McDonald, List rankings and on-line list rankings of graphs, in preparation.
[11] J. Nes̆etr̆il and P. Ossona de Mendez, Tree-depth, subgraph coloring and homomorphism bounds, European J.

Combin. 27 (2006), no. 6, pp. 1022-1041.
[12] G. Semanĭsin and R. Soták, A note on on-line ranking number of graphs, Czechoslovak Math. J. 56(131) (2006), no.

2, pp. 591–599.
[13] I. Schiermeyer, Z. Tuza, and M. Voigt, On-line rankings of graphs, Discrete Math. 212 (2000), pp. 141–147.
[14] Z. Tuza and M. Voigt, Manuscript (1995).

9

	1. Introduction
	1.1. The on-line vertex ranking problem
	1.2. Our Results

	2. Strategies for Presenter and Ranker on Tk,d
	2.1. A strategy for Presenter
	2.2. A strategy for Ranker

	3. Trees with few internal vertices
	3.1. Upper bound on p,q
	3.2. Double stars

	Acknowledgments
	References

