ON-LINE VERTEX RANKING OF TREES

DANIEL C. MCDONALD
Department of Mathematics, University of Illinois, Urbana, IL, USA

Abstract

A k-ranking of a graph G is a labeling of its vertices from $\{1, \ldots, k\}$ such that any nontrivial path whose endpoints have the same label contains a larger label. The least k for which G has a k ranking is the ranking number of G, also known as tree-depth. Applications of rankings include VLSI design, parallel computing, and factory scheduling. The on-line ranking problem asks for an algorithm to rank the vertices of G as they are presented one at a time along with all previously ranked vertices and the edges between them (so each vertex is presented as the lone unranked vertex in a partially labeled induced subgraph of G whose final placement in G is not specified). The on-line ranking number of G is the minimum over all such algorithms of the largest label that algorithm can be forced to use. We give bounds on the on-line ranking number of trees in terms of maximum degree, diameter, and number of interior vertices.

1. Introduction

We consider a special type of proper vertex coloring using positive integers, called "ranking." As with proper colorings, there exist variations on the original ranking problem. In this paper we consider the on-line ranking problem, introduced by Tuza and Voigt in 1995 [14].

Definition 1.1. A ranking of a finite simple graph G is a function $f: V(G) \rightarrow\{1,2, \ldots\}$ with the property that if $u \neq v$ but $f(u)=f(v)$, then every u, v-path contains a vertex w satisfying $f(w)>f(u)$ (equivalently, every path P contains a unique vertex with largest label, where $f(v)$ is called the label of v). A k-ranking of G is a ranking $f: V(G) \rightarrow\{1, \ldots, k\}$. The ranking number of a graph G, denoted here by $\rho(G)$ (though in the literature often as $\chi_{r}(G)$), is the minimum k such that G has a k-ranking.

Vertex rankings of graphs were introduced in [5], and results through 2003 are surveyed in [7]. Their study was motivated by applications to VLSI layout, cellular networks, Cholesky factorization, parallel processing, and computational geometry. For example, vertex ranking models the efficient assembly of a graph from vertices, where each stage of construction consists of individual vertices being added in such a way that no component ever has more than one new vertex. Vertex rankings are sometimes called ordered colorings, and the ranking number of a graph is trivially equal to its "tree-depth," a term introduced by Nes̆etřil and Ossona de Mendez in 2006 [11] in developing their theory of graph classes having bounded expansion.

The vertex ranking problem has spawned multiple variations, including list ranking [10] and on-line ranking, studied here. The on-line ranking problem is to vertex ranking as the on-line coloring problem is to ordinary vertex coloring.
1.1. The on-line vertex ranking problem. The on-line vertex ranking problem is a game between two players, Presenter and Ranker. A class \mathcal{G} of unlabeled graphs is shown to both players at the beginning of the game. In round 1, Presenter presents to Ranker the graph G_{1} consisting of a single vertex v_{1}, to which Ranker assigns a positive integer label $f\left(v_{i}\right)$. In round i for $i>1$, Presenter extends G_{i-1} to an i-vertex induced subgraph G_{i} of a graph $G \in \mathcal{G}$ by presenting an unlabeled vertex v_{i} (without specifying which copy of G_{i} among all induced subgraphs of graphs in \mathcal{G}). Ranker must then extend the ranking f of G_{i-1} to a ranking of G_{i} by assigning $f\left(v_{i}\right)$.

Presenter seeks to maximize the largest label assigned during the game, while Ranker seeks to minimize it. The on-line ranking number of \mathcal{G}, denoted here by $\stackrel{\rho}{\rho}(\mathcal{G})$ (though in the literature often as $\chi_{r}^{*}(\mathcal{G})$), is the resulting maximum assigned value under optimal play. If Presenter can guarantee that arbitrarily high labels are used, then $\rho(\mathcal{G})=\infty$. If \mathcal{G} is the class of induced subgraphs of a graph G, then we define $\rho(G)=\rho(\mathcal{G})$.

[^0]Note that $\stackrel{\rho}{\rho}\left(\mathcal{G}^{\prime}\right) \leq \stackrel{\rho}{\rho}(\mathcal{G})$ if every graph in \mathcal{G}^{\prime} is an induced subgraph of a graph in \mathcal{G}, since any strategy for Ranker on \mathcal{G} includes a strategy on \mathcal{G}^{\prime}. Also $\rho(G) \leq \stackrel{\rho}{\rho}(G)$ trivially.

Several papers have been written about the on-line ranking number of graphs, including [2], [12], and [13]; some of the results from these papers will be mentioned later. On-line ranking has also been looked at from an algorithmic perspective, in the sense that one seeks a fast algorithm for determining the smallest label Ranker is allowed to use on a given turn; see [3, [6, [8, and [9]. Our paper is of the former variety.

A minimal ranking of G is a ranking f with the property that decreasing f on any set of vertices produces a non-ranking. Let $\psi(G)$ be the largest label used in any minimal ranking of G. Isaak, Jamison, and Narayan [4] showed that the minimal rankings of G are precisely the rankings produced when Ranker plays greedily, so $\stackrel{\rho}{\rho}(G) \leq \psi(G)$. For the n-vertex path P_{n}, this yields $\stackrel{\circ}{\rho}\left(P_{n}\right) \leq \psi\left(P_{n}\right)=$ $\left\lfloor\log _{2}(n+1)\right\rfloor+\left\lfloor\log _{2}\left(n+1-2^{\left\lfloor\log _{2} n\right\rfloor-1}\right)\right\rfloor$. Bruoth and Hornák [2 gave the best known lower bound for paths $\stackrel{\circ}{\rho}\left(P_{n}\right) \geq 1.619\left(\log _{2} n\right)-1$.
1.2. Our Results. Recall that the distance between two vertices u and v in a connected graph G is the number of edges in a shortest u, v-path in G. The eccentricity of v is the greatest distance between v and any other vertex in G. The diameter of G is the maximum eccentricity of any vertex in G.

In Section 2, we give bounds on the on-line ranking number of $T_{k, d}$, defined for $k \geq 2$ and $d \geq 0$ to be the largest tree having maximum degree k and diameter d, i.e., the tree all of whose internal vertices have degree k and all of whose leaves have eccentricity d. Since the family of trees with maximum degree at most k and diameter at most d is precisely the set of connected induced subgraphs of $T_{k, d}$, our upper bound on $\stackrel{\rho}{\rho}\left(T_{k, d}\right)$ also serves as an upper bound for the on-line ranking number of this class of graphs.

Theorem 1.2. There exist positive constants c and c^{\prime} such that if $d \geq 0$ and $k \geq 3$, then $c(k-1)^{\lfloor d / 4\rfloor} \leq$ $\stackrel{\circ}{\rho}\left(T_{k, d}\right) \leq c^{\prime}(k-1)^{\lfloor d / 3\rfloor}$.

We find it informative to compare the on-line ranking number of $T_{k, d}$ to the regular ranking number of $T_{k, d}$.
Proposition 1.3. For $k \geq 3$, we have $\rho\left(T_{k, d}\right)=\lceil d / 2\rceil+1$.
Proof. The construction for the upper bound assigns label $i+1$ to vertices at distance i from the nearest leaf, with the exception of labeling one of the vertices in the central edge of $T_{k, d}$ with $(d+3) / 2$ if d is odd. For the lower bound, note that choosing the unique highest ranked vertex v of a tree T reduces the ranking problem to individually ranking the components of $T-v$. Thus if there exists $u \in V(T)$ such that for every $w \in V(T)$ each component of $T-u$ is isomorphic to a subtree of some component of $T-w$, then T can be optimally ranked by optimally ranking each component of $T-u$ and labeling u one greater than the largest label used on those components. Letting F_{i} denote the subforest of $T_{k, d}$ induced by the set of vertices within distance i of a leaf, we conclude by induction on i that for $1 \leq i \leq\lceil d / 2\rceil$, each component of F_{i} is optimally ranked by the upper bound construction.

Setting $n=\left|V\left(T_{k, d}\right)\right|$ and using Theorem 1.2 and Proposition 1.3, we see that $\stackrel{\circ}{\rho}\left(T_{k, d}\right)=\Omega(\sqrt{n})$ while $\rho\left(T_{k, d}\right)=O(\log n)$. Thus $\stackrel{\rho}{\rho}$ is exponentially larger than ρ on these trees. Theorem 1.5 shows that this large separation between ρ and ρ does not hold for all trees. Nevertheless we conjecture a general upper bound like that of Theorem 1.2 ,
Conjecture 1.4. There exist universal constants a and batisfying $0<a<1<b$ such that $\stackrel{\circ}{\rho}(T) \leq$ $b(k n)^{a}$ for any n-vertex tree T with maximum degree k.

In Section 3, we consider the on-line ranking number of trees with few internal vertices. Let $\mathcal{T}^{p, q}$ be the family of trees having at most p internal vertices and diameter at most q. The main result of that section is an upper bound on $\stackrel{\rho}{\rho}\left(\mathcal{T}^{p, q}\right)$ for any p and q.
Theorem 1.5. $\stackrel{\rho}{\rho}\left(\mathcal{T}^{p, q}\right) \leq p+q+1$.
Since $q \leq p+1$, this establishes $\stackrel{\rho}{\rho}\left(\mathcal{T}^{p, q}\right) \leq 2 p+2$. We also compute $\stackrel{\circ}{\rho}\left(\mathcal{T}^{2,3}\right)=4$. This extends the work of Schiermeyer, Tuza, and Voigt [13], who characterized the families of graphs having on-line ranking number 1,2 , and 3 .

2. Strategies for Presenter and Ranker on $T_{k, d}$

In this section, we obtain upper and lower bounds on $\left.\stackrel{\rho}{(} T_{k, d}\right)$, where $T_{k, d}$ is the largest tree having maximum degree k and diameter d. For convenience, we let $T_{k, r}^{*}$ denote the tree with unique root vertex v^{*} such that every internal vertex has k children and every leaf is distance r from v^{*}. For $U \subseteq V(G)$, let $G[U]$ denote the subgraph of G induced by U.

2.1. A strategy for Presenter. We first develop a tool for proving lower bounds.

Theorem 2.1. Let G be a connected graph. Suppose for some $U \subset V(G)$ that $G-U$ has components $G^{0}, G^{1}, \ldots, G^{a}$, all isomorphic to some graph F. If also U contains disjoint subsets U^{1}, \ldots, U^{a} so that each U^{i} consists of the internal vertices of a path joining G^{0} and G^{i}, then $\stackrel{\circ}{\rho}(G) \geq \stackrel{\circ}{\rho}(F)+a$.

Proof. Presenter has a strategy to produce a copy of F on which Ranker must use a label at least $\rho(F)$. Begin by playing this strategy $a+1$ times on distinct sets of vertices. Index the resulting copies of F as $G^{0}, G^{1}, \ldots, G^{a}$ so that G^{0} is a copy whose largest label is smallest (in the labeling by Ranker) among the copies of F. Present U in any order to complete G.

Let m_{0} denote the largest label given to a vertex in $V\left(G^{0}\right)$. For $1 \leq i \leq a$, let m_{i} denote the largest label given to a vertex in $V\left(G^{i}\right) \cup U^{i}$. Set $H^{i}=G\left[V\left(G^{0}\right) \cup U^{i} \cup V\left(G^{i}\right)\right]$ for $1 \leq i \leq a$. Each H^{i} is a connected subgraph of G, so $m_{0}<m_{i}$. For $i \neq j, H^{i} \cup H^{j}$ is a connected subgraph of G, so $m_{i} \neq m_{j}$. Thus the largest m_{i} satisfies $m_{i} \geq m_{0}+a \geq \circ(F)+a$.

Figure 1. The graph G of Theorem 2.1.
Note that $T_{k, 2 r}$ consists of a copy of $T_{k-1, r}^{*}$ and a copy of $T_{k-1, r-1}^{*}$ with an edge joining their roots, and $T_{k, 2 r+1}$ consists of two copies of $T_{k-1, r}^{*}$ with an edge joining their roots. Hence $T_{k-1,|d / 2|}^{*}$ is an induced subgraph of $T_{k, d}$, so a lower bound on $\stackrel{\circ}{\rho}\left(T_{k-1,\lfloor d / 2\rfloor}^{*}\right)$ also serves as a lower bound on $\stackrel{\circ}{\rho}\left(T_{k, d}\right)$.

Corollary 2.2. If $k \geq 2$ and $r \geq 0$, then $\stackrel{\circ}{\rho}\left(T_{k, r}^{*}\right) \geq k^{\lfloor r / 2\rfloor}$.
Proof. Since $T_{k, r}^{*}$ is an induced subgraph of $T_{k, r+1}^{*}$, we have $\stackrel{\rho}{\rho}\left(T_{k, r}^{*}\right) \leq \stackrel{\circ}{\rho}\left(T_{k, r+1}^{*}\right)$, so we may assume that r is even. Set $a=k^{r / 2}$, and let U be the set of vertices u_{1}, \ldots, u_{a} at distance $r / 2$ from v^{*}. Define G to be the subtree of $T_{k, r}^{*}$ obtained by deleting, for each $u_{i} \in U$, the descendants of all but one child of u_{i}. Now $G-U$ consists of $a+1$ disjoint copies of $T_{k, r / 2-1}^{*}$. Let G^{0} be the component rooted at v^{*}, and for $1 \leq i \leq a$ let G^{i} be the component rooted at the child of u_{i}. Setting $U^{i}=\left\{u_{i}\right\}$ for $1 \leq i \leq a$, we see that U^{i} contains the lone vertex of the path joining G^{0} and G^{i}. By Theorem [2.1] $\stackrel{\rho}{\rho}\left(T_{k, r}^{*}\right) \geq \stackrel{\rho}{\rho}(G) \geq a$.

Corollary 2.3. If $k \geq 3$ and $d \geq 0$, then $\stackrel{\rho}{\rho}\left(T_{k, d}\right) \geq(k-1)^{\lfloor d / 4\rfloor}$.
We finish this subsection with a comment on Conjecture 1.4. Subdivide each edge of the star $K_{1, a}$ to get a $(2 a+1)$-vertex tree G. Letting $G^{0}, G^{1}, \ldots, G^{a}$ correspond to the vertices of the unique maximum independent set of G, Theorem 2.1 yields $\stackrel{\rho}{\rho}(G) \geq a+1>|V(G)| / 2$. Thus Conjecture 1.4 cannot be strengthened to the statement "There exist universal constants a and b satisfying $0<a<1<b$ such that $\stackrel{\circ}{\rho}(T) \leq b n^{a}$ for any tree n-vertex tree T."
2.2. A strategy for Ranker. We now exhibit a strategy for Ranker to establish an upper bound on $\stackrel{\circ}{\rho}\left(T_{k, d}\right)$. In Section 3 we shall see $\stackrel{\circ}{\rho}\left(T_{k, 0}\right)=1, \stackrel{\circ}{\rho}\left(T_{k, 1}\right)=2, \stackrel{\circ}{\rho}\left(T_{k, 2}\right)=3, \stackrel{\circ}{\rho}\left(T_{k, 3}\right)=4, \stackrel{\circ}{\rho}\left(T_{k, 4}\right) \leq k+6$, and $\stackrel{\circ}{\rho}\left(T_{k, 5}\right) \leq 2 k+6$, so here we only consider $d \geq 6$. In specifying a strategy for Ranker on $T_{k, d}$, we will give a procedure for ranking the presented vertex v based solely on the component containing v in the graph presented so far.

Definition 2.4. Let $T(v)$ denote the component containing v when v is presented. Given two sets A and B of labels, not necessarily disjoint, let $T_{B}(v)$ be the largest subtree of $T(v)$ containing v all of whose other vertices are labeled from B. Should it exist, let $f_{B}^{A}(v)$ denote the smallest element of A that would complete a ranking of $T_{B}(v)$.

The following lemmas analyze when $f_{B}^{A}(v)$ exists and, if it does exist, when $f_{B}^{A}(v)$ provides a valid label that Ranker can give v.

Lemma 2.5. Suppose that each vertex $u \in V\left(T_{B}(v)\right)$ labeled from A was given label $f_{B}^{A}(u)$ when it arrived. If $\min A>\max (B-A)$, and every component of $T_{B}(v)-v$ lacks some label in A, then $f_{B}^{A}(v)$ exists.

Proof. Let $A=\left\{a_{1}, \ldots, a_{m}\right\}$, with $a_{1}<\ldots<a_{m}$. For a component T of $T_{B}(v)-v$ having q distinct labels from A, we claim that the largest label used on T is a_{q}. Each vertex $u \in V\left(T_{B}(v)\right)$ labeled from A was given label $f_{B}^{A}(u)$ when it arrived, with $\min A>\max (B-A)$, so if $f_{B}^{A}(u)=a_{i}$ then either $i=1$ or a_{i-1} was already used in $T_{B}(u)$ (since otherwise a_{i-1} would complete a ranking). Hence all used labels are less than all missing labels in A. Since every component of $T_{B}(v)-v$ lacks some label in A, we thus have $a_{q}<a_{m}$. Therefore a_{m} is a valid label for v in $T_{B}(v)$ because the largest label on any path through v would be used only at v. Hence $f_{B}^{A}(v)$ exists.

Lemma 2.6. Suppose that $f_{B}^{A}(v)$ exists. If $T(v)=T_{B}(v)$ or if all vertices of $T(v)-V\left(T_{B}(v)\right)$ having a neighbor in $T_{B}(v)$ are in the same component of $T(v)-v$ and have labels larger than $\max (A \cup B)$, then setting $f(v)=f_{B}^{A}(v)$ is a valid move by Ranker.
Proof. Set $f(v)=f_{B}^{A}(v)$. Let P be an x, y-path in $T(v)$ such that $x \neq y, f(x)=f(y)=\ell$, and $v \in V(P)$. We show that P has an internal vertex z satisfying $f(z)>\ell$. Since $f_{B}^{A}(v)$ completes a ranking of $T_{B}(v)$, we may assume that $T(v) \neq T_{B}(v)$ and P contains some vertex outside $T_{B}(v)$. By hypothesis all such vertices having a neighbor in $T_{B}(v)$ are in the same component of $T(v)-v$, so we may assume $x \in V(T(v))-V\left(T_{B}(v)\right)$ and $y \in V\left(T_{B}(v)\right)$.

Since v is labeled from A and $T_{B}(v)-v$ is labeled from B with $y \in V\left(T_{B}(v)\right)$, we have $\ell \in A \cup B$. By hypothesis all vertices of $T(v)-V\left(T_{B}(v)\right)$ having neighbors in $T_{B}(v)$ have labels larger than $\max (A \cup B)$, so x has no neighbor in $T_{B}(v)$. Hence P contains some internal vertex z outside $T_{B}(v)$ with a neighbor in $T_{B}(v)$. By hypothesis, $f(z)>\max (A \cup B) \geq \ell$.

Set $j=\lfloor d / 3\rfloor$. Break the labels from 1 to $3\left|V\left(T_{k-1, j}^{*}\right)\right|$ into three segments, with X consisting of the lowest $\left|V\left(T_{k-1, j-1}^{*}\right)\right|$ labels, Y the next $\left|V\left(T_{k-1, j}^{*}\right)\right|-\left|V\left(T_{k-1, j-1}^{*}\right)\right|$ labels, and Z the remaining high labels. For $k \geq 3$, we give Ranker a strategy in the on-line ranking game on $T_{k, d}$ that uses labels from $X \cup Y \cup Z$. Since $\stackrel{\circ}{\rho}\left(T_{k, d}\right) \leq 3\left|V\left(T_{k-1, j}^{*}\right)\right|=3\left((k-1)^{j}+\sum_{i=0}^{j-1}(k-1)^{i}\right)<6(k-1)^{j}$, this establishes the following.
Theorem 2.7. If $d \geq 0$ and $k \geq 3$, then $\stackrel{\circ}{\rho}\left(T_{k, d}\right) \leq 6(k-1)^{\lfloor d / 3\rfloor}$.
The goal of our strategy for Ranker is to label from $X \cup Y$ many vertices that lie within distance $j-1$ of a leaf, reserving Z for a small number of middle vertices.

Algorithm 2.8. Compute $f(v)$ according to the following table.

Value of $\mathbf{f}(\mathrm{v})$	Conditions
(I) $f_{X}^{X}(v)$	(1) $T_{X}(v)$ is isomorphic to a subgraph of $T_{k-1, j-1}^{*}$, and (2) either $T_{X}(v)=T(v)$ or there exists a vertex u in $T(v)$ labeled from Y such that $T_{X}(v)$ is the component of $T(v)-u$ containing v.
(II) $f_{X \cup Y}^{X}(v)$	(1) The eccentricity of v in $T(v)$ is at least $d-j$, and (2) there exists no vertex u in $T(v)$ labeled from Y such that $T_{X}(v)$ is the component of $T(v)-u$ containing v.
(III) $f_{X \cup Y \cup Z}^{Z}(v)$	(1) The eccentricity of v in $T(v)$ is less than $d-j$, and (2) either $T_{X}(v)$ is not isomorphic to a subgraph of $T_{k-1, j-1}^{*}$ or $T_{X}(v) \neq T(v)$.

Before we go any further, we need to show that Algorithm 2.8 is, in fact, an algorithm. Note that $d-j \geq 2 j$.

Proposition 2.9. When playing the on-line ranking game on $T_{k, d}$, each presented vertex v satisfies the conditions of exactly one of the three cases.

Proof. If the eccentricity of v in $T(v)$ is less than $d-j$, then Case II does not apply. If furthermore $T_{X}(v)$ is isomorphic to a subgraph of $T_{k-1, j-1}^{*}$ and $T_{X}(v)=T(v)$, then Case I applies but Case III does not. Otherwise, Case III applies, but Case I does not since if $T_{X}(v)$ is isomorphic to a subgraph of $T_{k-1, j-1}^{*}$, then $T_{X}(v) \neq T(v)$ and a vertex u in $T(v)$ such that $T_{X}(v)$ is the component of $T(v)-u$ containing v would have eccentricity at most $\max \{d-j-2,2 j-1\}$, which is less than $d-j$, precluding u from being labeled from Y.

If the eccentricity of v in $T(v)$ is at least $d-j$, then Case III does not apply. If furthermore $T_{X}(v)$ is isomorphic to a subgraph of $T_{k-1, j-1}^{*}$, then the eccentricity of v in $T_{X}(v)$ is at most $2 j-2$, so $T_{X}(v) \neq T(v)$ since $2 j-2<d-j$. Thus Case I only applies if $T_{X}(v)$ is isomorphic to a subgraph of $T_{k-1, j-1}^{*}$ and there exists a vertex u in $T(v)$ labeled from Y such that $T_{X}(v)$ is the component of $T(v)-u$ containing v.

If there does exist a vertex u in $T(v)$ labeled from Y such that $T_{X}(v)$ is the component of $T(v)-u$ containing v, then u had eccentricity at least $d-j$ in $T(u)$, so $T_{X}(v)$ is isomorphic to a subgraph of $T_{k-1, j-1}^{*}$ since $T_{k, d}$ has diameter d. Hence Case I applies. If there exists no vertex u in $T(v)$ labeled from Y such that $T_{X}(v)$ is the component of $T(v)-u$ containing v, then Case II applies.

We now show that Algorithm 2.8 produces a valid label in each of the three cases. Assume that the algorithm has assigned valid labels before the presentation of v. Note that for $(A, B) \in\{(X, X),(Y, X \cup$ $Y),(Z, X \cup Y \cup Z)\}$, each vertex $u \in V\left(T_{B}(v)\right)$ labeled from A was given label $f_{B}^{A}(u)$ when it arrived, and $\min A>\max (B-A)$. Hence by Lemma 2.5 $f_{B}^{A}(v)$ exists if every component of $T_{B}(v)-v$ lacks some label in A.

Proposition 2.10. In Case $I, f_{X}^{X}(v)$ exists, and setting $f(v)=f_{X}^{X}(v)$ is a valid move for Ranker.
Proof. Note that $f_{X}^{X}(v)$ exists by Lemma 2.5 because $\left|V\left(T_{X}(v)\right)\right| \leq|X|$. Furthermore, $f_{X}^{X}(v)$ provides a valid label for v by Lemma 2.6 because either $T_{X}(v)=T(v)$ or there exists a vertex u in $T(v)$ such that $f(u)>\max X$ and $T_{X}(v)$ is a component of $T(v)-u$, making u the only vertex outside $T_{X}(v)$ neighboring a vertex inside $T_{X}(v)$.

If y satisfies the conditions of Case II, then let $H(y)$ be the component of $T(y)-y$ having greatest diameter.

Lemma 2.11. If y is labeled from Y, then each vertex separated from $H(y)$ by y (at any point in the game) is labeled from X.

Proof. The eccentricity of y in $T(y)$ is at least $d-j$, so $H(y)$ has diameter at least $d-j-1$. This forces each other component of $T(y)-y$ to be isomorphic to a subtree of $T_{k-1, j-1}^{*}$. Any vertex r of such a component is labeled from X, since $T(r)$ was isomorphic to a subgraph of $T_{k-1, j-1}^{*}$, implying $T_{X}(r)=T(r)$. Furthermore, any subsequently presented vertex s satisfying $y \in V(T(s))$ that is separated from $H(y)$ by y is labeled from X, since $T_{X}(s)$ is isomorphic to a subgraph of $T_{k-1, j-1}^{*}$ and is the component of $T(s)-y$ containing s.

Lemma 2.12. Every path in $T_{X \cup Y}(v)$ contains at most two vertices labeled from Y (including possibly $v)$.

Proof. Let y, y^{\prime}, and $y^{\prime \prime}$ be distinct vertices in $T_{X \cup Y}(v)$ labeled from Y (one could possibly be v). Since y^{\prime} and $y^{\prime \prime}$ are labeled from Y, neither is separated from $H(y)$ by y, by Lemma 2.11. If u is the neighbor of y in $H(y)$, then the edge $u y$ must be part of any path containing y and at least one of y^{\prime} or $y^{\prime \prime}$. Hence edge-disjoint y^{\prime}, y - and $y, y^{\prime \prime}$-paths do not exist, so no path contains y between y^{\prime} and $y^{\prime \prime}$. By symmetry, no path contains each of y, y^{\prime}, and $y^{\prime \prime}$.

Lemma 2.13. If $T(v)$ contains a vertex labeled from Y (possibly v), then $T(v)$ contains a vertex labeled from Z, and no path in $T(v)$ contains a vertex labeled from Z and multiple vertices of $T_{X \cup Y}(v)$ labeled from Y.

Proof. For the first claim, let y be the first vertex in $T(v)$ labeled from Y. The diameter of $H(y)$ is greater than the diameter of $T_{k-1, j-1}^{*}$ because $d-j-1>2 j-2$, so some vertex $r \in V(H(y))$ violated the first condition of Case I when presented and was thus not labeled from X. Since r was presented before y, it is labeled from Z.

For the second claim, let z be a vertex of $T(v)$ labeled from Z, and y^{\prime} and $y^{\prime \prime}$ be distinct vertices of $T_{X \cup Y}(v)$ labeled from Y. If u is the neighbor of z in the direction of v, then the edge $u z$ must be part of any path containing z and at least one of y^{\prime} or $y^{\prime \prime}$. Hence edge-disjoint y^{\prime}, z - and $z, y^{\prime \prime}$-paths do not exist, so no path can contain z between y^{\prime} and $y^{\prime \prime}$.

By Lemma 2.11, any vertex separated from $H\left(y^{\prime}\right)$ by y^{\prime} is labeled from X, so $y^{\prime \prime}$ is not separated from z by y^{\prime}. Similarly, y^{\prime} is not separated from z by $y^{\prime \prime}$. Thus no path can contain each of z, y^{\prime}, and $y^{\prime \prime}$.

Figure 2. A labeling of $T_{k, d}$ for vertices with high eccentricity $\left(x_{i} \in X, y_{i} \in Y, z_{i} \in Z\right)$.

Proposition 2.14. In Case II, $f_{X \cup Y}^{Y}(v)$ exists, and setting $f(v)=f_{X \cup Y}^{Y}(v)$ is a valid move for Ranker.
Proof. Let S be the set consisting of v and every vertex in $T_{X \cup Y}(v)$ labeled from Y. By Lemma 2.12, the elements of S are only separated by vertices labeled from X, so the smallest subtree T of $T_{X \cup Y}(v)$ containing all of S has all its internal vertices labeled from X. Therefore the set of internal vertices of T induces a tree T^{\prime} isomorphic to a subtree of $T_{k-1, j-1}^{*}$. By Lemma 2.13, some vertex not labeled from Y neighbors a vertex in T^{\prime} if $T^{\prime} \neq \emptyset$, or else some path in $T(v)$ contains a vertex labeled from Z and multiple vertices of $T_{X \cup Y}(v)$ labeled from Y. Thus $|S|=|V(T)|-\left|V\left(T^{\prime}\right)\right| \leq\left|V\left(T_{k-1, j}^{*}\right)\right|-\left|V\left(T_{k-1, j-1}^{*}\right)\right|=|Y|$, so $f_{X \cup Y}^{Y}(v)$ exists by Lemma 2.5.

Finally, the only vertices outside $T_{X \cup Y}(v)$ that neighbor a vertex inside $T_{X \cup Y}(v)$ are in $H(y)$ and labeled from Z. Hence $f_{X \cup Y}^{Y}(v)$ provides a valid label for v, by Lemma 2.6.

Lemma 2.15. If v is assigned a label $m \in Z$ previously unused in $T(v)$, then v is a leaf of some subtree of $T_{X \cup Z}(v)$ containing every label in Z smaller than m.
Proof. By Lemma 2.11 two vertices labeled from Z are never separated by a vertex labeled from Y, so all vertices in $T(v)-v$ labeled from Z lie in $T_{X \cup Z}(v)$. We use induction on m, with the base case $m=\min Z$ being trivial. If $m>\min Z$, let u be the first vertex in $T_{X \cup Z}(v)$ labeled with $m-1$. Since u arrived as a leaf of some subtree containing every label in Z smaller than $m-1$, adding to that tree the u, v-path through $T_{X \cup Z}(v)$ yields the desired tree.

Lemma 2.16. The largest subtree T of $T_{k, d}$ having diameter $d-j-1$ has at most $2\left|V\left(T_{k-1, j}^{*}\right)\right|$ vertices.
Proof. Let $u_{1} u_{2}$ be the central edge of T if $d-j-1$ is odd and any edge containing the central vertex of T if $d-j-1$ is even. Deleting $u_{1} u_{2}$ from T then leaves two trees T_{1} and T_{2} containing u_{1} and u_{2}, respectively, with u_{i} having degree at most $k-1$ and eccentricity at most $\lfloor(d-j-1) / 2\rfloor$ in T_{i}. Thus each T_{i} is isomorphic to a subtree of $T_{k-1, j}^{*}$, since $\lfloor(d-j-1) / 2\rfloor \leq j$ for $j=\lfloor d / 3\rfloor$. Hence $|V(T)|=\left|V\left(T_{1}\right)\right|+\left|V\left(T_{2}\right)\right| \leq 2\left|V\left(T_{k-1, j}^{*}\right)\right|$.
Proposition 2.17. In Case III, $f_{X \cup Y \cup Z}^{Z}(v)$ exists, and setting $f(v)=f_{X \cup Y \cup Z}^{Z}(v)$ is a valid move for Ranker.
Proof. Note that $T_{X \cup Y \cup Z}(v)=T(v)$, so if $f_{X \cup Y \cup Z}^{Z}(v)$ exists, then by Lemma 2.6 it is a valid label for v. If $T(v)$ uses at most $2\left|V\left(T_{k-1, j}^{*}\right)\right|$ labels from Z, then by Lemma $2.5 f_{X \cup Y \cup Z}^{Z}(v)$ exists, since $|Z|=2\left|V\left(T_{k-1, j}^{*}\right)\right|$. By Lemma 2.15 and the first condition of Case III, the number of labels from Z used in $T(v)$ is at most the number of times a vertex u in $T_{X \cup Z}(v)$ was presented as a leaf of $T_{X \cup Y}(u)$ having
eccentricity less than $d-j$ in $T_{X \cup Y}(u)$. Since any leaf added adjacent to a vertex having eccentricity at least $d-j$ will itself have eccentricity at least $d-j$, it suffices to show that growing a subtree of $T_{k, d}$ by iteratively adding one leaf $2\left|V\left(T_{k-1, j}^{*}\right)\right|$ times eventually forces some new leaf to have eccentricity at least $d-j$ at the time of its insertion. Since any leaf whose insertion raises the diameter of the tree has eccentricity equal to the higher diameter, this statement follows from Lemma 2.16

3. Trees with few internal vertices

Recall that $\mathcal{T}^{p, q}$ is the family of trees having at most p internal vertices and diameter at most q. We first exhibit a strategy for Ranker on $\mathcal{T}^{p, q}$ that uses no label larger than $p+q+1$. We can improve this bound for the class of double stars by proving $\stackrel{\circ}{\rho}\left(\mathcal{T}^{2,3}\right)=4$ (since every tree with diameter 3 has exactly two internal vertices, $\mathcal{T}^{2,3}$ is the family of trees with diameter 3). This extends the work of Schiermeyer, Tuza, and Voigt 13, who characterized the families of graphs with on-line ranking number 1, 2, and 3 .
3.1. Upper bound on $\mathcal{T}^{p, q}$. During the on-line ranking game on $\mathcal{T}^{p, q}$, let S be the component of the current graph containing the unlabeled presented vertex v. We give Ranker a procedure for ranking v based solely on S and the labels given to the other vertices of S.

Algorithm 3.1. If v is the only vertex in S, let $f(v)=q+1$. If v is not the only vertex in S, then let m denote the largest label already used on S. If there exists a label smaller than m that completes a ranking when assigned to v, give v the largest such label. Otherwise, let $f(v)=m+1$.

Lemma 3.2. If v arrives as a leaf of a nontrivial component S whose highest ranked vertex has label m, then Algorithm 3.1 will assign v a label smaller than m.
Proof. Suppose that Algorithm 3.1 assigns $f(v)=m+1$. Let $v_{0}=v$. We now select vertices v_{1}, \ldots, v_{j} from S such that $v_{0}, v_{1}, \ldots, v_{j}$ in order form a path P and v_{j} arrived as an isolated vertex. For $i \geq 0$, let v_{i+1} be a vertex with the least label among all vertices that were adjacent to v_{i} when v_{i} was presented, unless v_{i} arrived as an isolated vertex, in which case set $j=i$. Since S is finite, the process must end with some vertex v_{j}. Since v_{i} was presented as a neighbor of v_{i+1}, P is a path.

Note that Algorithm 3.1 assigns $f(u)=a \neq q+1$ only if u arrives as a neighbor of a vertex w such that $f(w) \leq a+1$. Since $f\left(v_{1}\right)=1$ (otherwise $f\left(v_{0}\right)=f\left(v_{1}\right)-1<m$), we must have $f\left(v_{i}\right) \leq i$ for $1 \leq i<j$. Also, $f\left(v_{j}\right)=q+1$ because v_{j} arrived as an isolated vertex. Since v_{j} was chosen as the neighbor with the least label when v_{j-1} arrived, $f(u)>q$ for any such neighbor u. Hence $f\left(v_{j-1}\right) \geq q$. Therefore $j-1 \geq q$, which gives P length $q+1$, contradicting S having diameter at most q.
Theorem 3.3. Algorithm 3.1 uses no label larger than $p+q+1$.
Proof. By Lemma 3.2, the only way for a new largest label greater than $q+1$ to be used on S is for the unlabeled vertex to arrive as an internal vertex. Only the p internal vertices of an element of $\mathcal{T}^{p, q}$ can be presented as such, and each time a new largest label is used it increases the largest used value by 1 , so the largest label that could be used on one of them would be $p+q+1$.
3.2. Double stars. For any forest F, Schiermeyer, Tuza, and Voigt [13] proved $\rho(F)=1$ if and only if F has no edges, $\stackrel{\circ}{\rho}(F)=2$ if and only if F has an edge but no component with more than one edge, and $\stackrel{\rho}{\rho}(F)=3$ if and only if F is a star forest with maximum degree at least 2 or F is a linear forest whose largest component is P_{4}. Since P_{4} is the only member of $\mathcal{T}^{2,3}$ having on-line ranking number less than 4 , proving $\stackrel{\circ}{\rho}\left(\mathcal{T}^{2,3}\right)=4$ only requires a strategy for Ranker, and our result implies $\stackrel{\circ}{\rho}(T)=4$ for any $T \in \mathcal{T}^{2,3}-\left\{P_{4}\right\}$. We now make some observations about the on-line ranking game on $\mathcal{T}^{2,3}$ before giving a strategy for Ranker.

When a vertex u is presented, let $G(u)$ be the graph at that time, and let $T(u)$ be the component of $G(u)$ containing u. When the first edge(s) appear, the presented vertex v is the center of a star; thus $T(v)$ is a star, while $G(v)$ may include isolated vertices in addition to $T(v)$. Let v^{\prime} be the first vertex to complete a path of length 3 . The graph $G\left(v^{\prime}\right)$ is connected and has two internal vertices, properties that remain true as subsequent vertices are presented. Let T be the final tree.

Consider the round when a vertex u is presented. If u is presented after v^{\prime}, or $u=v^{\prime}$ and u is a leaf of $T(u)$, then $G(u)=T(u)$, and u must be a leaf in T. If u is presented after v but before v^{\prime}, then either $T(u)=u$ or $T(u)$ is a star not centered at u. If additionally $G(u)$ is disconnected, then u must wind up as a leaf in T, since T has diameter 3. Call u a forced leaf in this case, the case that u is presented after v^{\prime}, or the case that $u=v^{\prime}$ and u is presented as a leaf of $T(u)$. Otherwise, if u is presented after v but before v^{\prime}, then u is a leaf of $T(u)$, and say that u is undetermined (since u may or may not wind up as a leaf in T). Also call v undetermined, as well as v^{\prime} if v^{\prime} is not a forced leaf.

Algorithm 3.4. Give label 3 to the first vertex presented, label 2 to any subsequent vertex presented before v, and label 1 to any forced leaf. The rest of the algorithm specifies how to rank the undetermined vertices in terms of the labeling of $G(v)$.

If $G(v)=P_{2}$, then give label 4 to v and label 2 to any subsequent undetermined vertex. If $G(v)$ has more than one edge (disconnected or not), and v is adjacent to the vertex labeled 3, then give label 4 to v and label 3 to any subsequent undetermined vertex.

If neither of the previous cases hold, then $G(v)$ is disconnected, and v and v^{\prime} are the only undetermined vertices. If $G(v)$ has exactly one edge, and v is adjacent to the vertex labeled 3, then give label 2 to v and label 4 to v^{\prime}. In the remaining case, v is not adjacent to the vertex labeled 3; give label 3 to v and label 4 to v^{\prime}.

Figure 3. Possibilities for $G(v)$.

Proposition 3.5. $\stackrel{\circ}{\rho}\left(\mathcal{T}^{2,3}\right)=4$.
Proof. Because P_{4} is the only tree with exactly two internal vertices having on-line ranking number at most 3, we need only to verify that Algorithm 3.4 is a valid strategy for Ranker.

If $G(v)=P_{2}$, then every vertex labeled 1 is a leaf, and the only label besides 1 that can be used more than once is 2 . Any two vertices labeled 2 must be separated by one of the first two vertices presented, each of which receives a higher label.

If $G(v)$ has more than one edge, and v is added adjacent to the vertex labeled 3 , then every vertex labeled 1 is a leaf, and the only vertex labeled 4 is v, which is an internal vertex. If the other internal vertex is labeled 3 , then each leaf adjacent to it is labeled 1 or 2 . Any two vertices labeled 3 must be separated from each other by v, which is labeled 4 , and any two vertices labeled 2 must be separated from each other by an internal vertex, which is labeled either 3 or 4 . If the internal vertex besides v is labeled 2 , then each adjacent leaf must be labeled 1 . Any two vertices with the same label of 2 or 3 would have to be separated from each other by v, which is labeled 4 .

If $G(v)$ has exactly one edge but more than two vertices, and v is adjacent to the vertex labeled 3 , then any vertex labeled 1 will be a leaf, only the first vertex presented will be labeled 3 , and any two vertices labeled 2 will be separated from each other by v^{\prime}, which is the only vertex labeled 4 .

If $G(v)$ has more than two vertices, and v is not adjacent to the vertex labeled 3 , then any vertex labeled 1 will be a leaf, and any two vertices with the same label of 2 or 3 will be separated from each other by v^{\prime}, which is the only vertex labeled 4 .

Acknowledgments

Special thanks to Prof. Doug West for his helpful guidance and editing advice. This work was supported by National Science Foundation grant DMS 08-38434 EMSW21-MCTP: Research Experience for Graduate Students.

References

[1] P. M. Gibson, Conversion of the permanent into the determinant, Proc. Amer. Math. Soc., 27 (1971), pp. 471-476.
[2] E. Bruoth and M. Horñ́k, Online-ranking numbers for cycles and paths, Discuss. Math. Graph Theory, 19 (1999), pp. 175-197.
[3] Y.-M. Chen and Y.-L. Lai, An improved on-line node ranking algorithm of trees, Proc. of the 23rd Workshop on Combin. Math. and Comput. Theory (2006), pp. 345-348.
[4] G.Isaak, R. Jamison, R., and D. Narayan, Greedy rankings and arank numbers, Inform. Process. Lett. 109 (2009), no. 15, pp. 825-827.
[5] A. V. Iyer, H. D. Ratliff, and G. Vijayan, Optimal node ranking of trees, Inform. Process. Lett. 28 (1988), no. 5, pp. 225-229.
[6] E. Haque, M. Islam, A. Kashem, and M. R. Rahman, On-line algorithms for vertex-rankings of graphs, Int. Conf. on Inform. and Communication Technology, (2007), pp. 22-26.
[7] R. E. Jamison, Coloring parameters associated with rankings of graphs, Congr. Numer. 164 (2003), pp. 111-127.
[8] J. S. Juan and C. Lee, On-line ranking algorithms for trees, Proc. of Int. Conf. on Foundations of Comput. Sci., Las Vegas (2005), pp. 46-51.
[9] J. S. Juan, C. Lee, and T. Wu, An on-line parallel algorithm for node ranking of trees, Algorithms and Architectures for Parallel Processing (2009), pp. 384-395.
[10] D. McDonald, List rankings and on-line list rankings of graphs, in preparation.
[11] J. Nes̆etřil and P. Ossona de Mendez, Tree-depth, subgraph coloring and homomorphism bounds, European J. Combin. 27 (2006), no. 6, pp. 1022-1041.
[12] G. Semanis̆in and R. Soták, A note on on-line ranking number of graphs, Czechoslovak Math. J. 56(131) (2006), no. 2, pp. 591-599.
[13] I. Schiermeyer, Z. Tuza, and M. Voigt, On-line rankings of graphs, Discrete Math. 212 (2000), pp. 141-147.
[14] Z. Tuza and M. Voigt, Manuscript (1995).

[^0]: E-mail address: dmcdona4@illinois.edu.

