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6, avenue Victor-le-Gorgeu, CS 93837, 29238 Brest cedex 3, France.

2School of Mathematics and Statistics, Shandong University (Weihai), Weihai 264209, P. R. China.;

3School of Mathematics, Shandong University, Jinan 250100, P. R. China.

E-mails: rainer.buckdahn@univ-brest.fr, juanli@sdu.edu.cn, peng@sdu.edu.cn.

August 15, 2013

Abstract The purpose of this paper is to study 2-person zero-sum stochastic differential games, in which

one player is a major one and the other player is a group of N minor agents which are collectively playing,

statistically identical and have the same cost-functional. The game is studied in a weak formulation; this

means in particular, we can study it as a game of the type “feedback control against feedback control”. The

payoff/cost functional is defined through a controlled backward stochastic differential equation, for which

driving coefficient is assumed to satisfy strict concavity-convexity with respect to the control parameters.

This ensures the existence of saddle point feedback controls for the game with N minor agents. We study

the limit behavior of these saddle point controls and of the associated Hamiltonian, and we characterize

the limit of the saddle point controls as the unique saddle point control of the limit mean-field stochastic

differential game.
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1 Introduction

In this paper we study a particular type of 2-person zero-sum stochastic differential games, where one

player is a major one, who plays against a group of N collectively acting minor agents which each of them

participate with the same percentage and are statistically identical. We study the stochastic differential game

in its weak formulation and with a pay-off/cost-functional given through a backward stochastic differential

equation (BSDE), which allows to consider the game of the type “feedback control against feedback control”.

Under suitable assumptions on the driving coefficient of the BSDE we show for the game with N minor agents

the existence of saddle point feedback controls, which can be characterized as Stackelberg feedback strategy,

where the major player is the leader and the collectively acting minor agents are the follower. We investigate

the limit of these saddle point feedback controls and of the associated Hamiltonian of stochastic differential

game and characterize the limit saddle point controls as unique saddle point controls of the limit stochastic

differential game which turns out to be of mean-field type.
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BS2011SF010, JQ201202), Program for New Century Excellent Talents in University (NCET, 2012), 111 Project (No. B12023).
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Mean-field stochastic differential games obtained as limit of stochastic differential games between N

statistically identical players were studied by Lasry and Lions in a series of pioneering papers ([12], [13],

[14], [15]). In their papers they investigated so-called approximate Nash equilibria, obtained as distributed

closed-loop strategies given by solving the limit problem. This limit problem consists of a coupled system,

formed by a Hamilton-Jacobi-Bellman equation and an equation of Kolmogorov type, the first one with a

terminal and the second one with an initial condition. In subsequent works several authors studied different

applications coming from such different domains as, for instance, Statistical Mechanics and Physics, finance

and management of exhaustible resources. On the other hand, motivated by problems occurring in large

communication networks but also in stochastic differential games involving a large number of players, Huang,

Malhamé and Caines [11] introduced a similar concept, that of Nash Certainty Equivalence.

The problem of investigating stochastic differential games with a large number of players or with one

major player at one side and N minor players on the other side, which participate each of them in the same

proportion and in a symmetric way at the game, leads in the limit, as N tends to infinity, to an averaging over

the minor players and, thus, to a mean-field limit game. Such a problem, without the control part, relates with

the McKean-Vlasov theory of chaos propagation (we refer the reader to the scholarly paper by Sznitman

[18]). In [5] and [6] Carmona and Delarue, and Carmona, Delarue and Lachapelle, respectively, study

approximate Nash-equilibria for N -person non-zero stochastic games with mean-field interaction between

the players and they discuss the limit behavior as the number of players converges to infinity. In [5] the

authors embed the Mean-Field Game strategy developed by Lasry and Lions, in an analytical approach into

a purely probabilistic framework, which transforms the strongly coupled system consisting of a Hamilton-

Jacobi-Bellman equation with terminal condition and a Kolmogorov-type equation with initial condition,

considered by Lasry and Lions, into a strongly coupled forward-backward stochastic differential equation

(FBSDE) of McKean-Vlasov type. The authors of [5] show that the solutions of this FBSDE together with

the associated FBSDE value function allow to obtain a set of distributed strategies which turn out to be

an εN -approximate Nash equilibrium for the N -person non-zero sum stochastic differential game, where ε

converges to zero as N tends to infinity. Such a kind of argument, but for simpler models can be also

found in [1] an in [4]. In [6] Carmona, Delarue and Lachapelle make comparing studies between stochastic

differential games with mean-field interactions on one side and the characterization of optimal strategies for

the associated mean-field linear-quadratic McKean-Vlasov stochastic control problem on the other side.

In their recent work [16] Nourian and Caines study with a different approach that those chosen by

Lasry and Lions and Carmona and Delarue ε-Mean-Field games. They consider N + 1-person non-zero

sum stochastic differential games with one major player and N symmetric minor players. The stochastic

dynamics are non-linear and with mean-field interaction, the forward equation for each player is driven by its

own Brownian motion and each player control only his own dynamics and his own running cost; the running

cost are non-linear and with mean-field interaction. The study of εN -Nash equilibriums for the N + 1-

person game for large N leads the authors to a strongly coupled stochastic mean-field system composed of

a stochastic Hamilton-Jacobi-Bellman equation with terminal condition and two McKean-Vlasov equations

with stochastic coefficients, describing the state of the major player as well as the measure determining the

mean-field behavior of the minor agents. Let us emphasize that the paper [16] represent an extension to

the framework of non-linear mean-field stochastic differential equations, which was preceded by papers by

Huang [10] but also by Huang together with Caines and Malhamé [11] and with Nourian [17], in order to

mention only these important works of a longer list of papers.

In the present work we study a somehow different framework which, although is related with the

works discussed above, in particular with [16]. But unlike [16] we consider the N minor agents as collectively

acting, with a common cost functional. This allows to consider the game as 2-person zero-sum stochastic

differential game. Moreover, it will be studied in a weak form. Stochastic differential games in the weak

form have been studied by Hamadène and Lepeltier [9] but also by Hamadène in different works, see, e.g.,

[7] and [8].

In order to be more precise, for independent Brownian motions W̃ 0, W̃ 1, . . . , W̃N and given initial
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positions x(N) = (x0, x1, . . . , xN ) we consider the weak solution X(N) = (X0,N , X1,N , . . . , XN,N) of the

following system of dynamics with given feedback controls u = u(X(N)) - for the major player and v(N)(=

(v1, . . . , vN )) = v(X(N)) for the N collectively acting minor agents:

dX0,N
s = σ0(X

0,N)dW̃ 0
s +

1

N

N∑

ℓ=1

b0(X
0,N
s , Xℓ,N

s , Z0,N
s )usds, X0,N

t = x0,

dXj,N
s = σ1(X

j,N)dW̃ j
s +

εN
N

N∑

ℓ=1

b1(X
0,N
s , Xℓ,N

s , Zj,N
s )vℓsds, Xj,N

t = xj ,

(1.1)

1 ≤ j ≤ N, and we associate the nonlinear payoff/cost functional J(t, x;u, v) := Y N
t defined through the

following BSDE:

dY N
s = − 1

N

N∑

ℓ=1

f(X0,N
s , Xℓ,N

s , Y N
s , Z0,N

s , Zℓ,N
s , us, v

ℓ
s)ds+

N∑

ℓ=0

Zℓ,N
s dW̃ ℓ

s , s ∈ [t, T ],

Y N
T =

1

N

N∑

ℓ=1

Φ(X0,N
T , Xℓ,N

T ).

(1.2)

We see that here the major player can control his own dynamics X0,N , and each of the minor agents controls

his dynamics but also those of all the other minor agents and, together with the major player; moreover,

all players can control the pay-off/cost-functional J(t, x;u, v). While the objective of the major player is to

maximize J(t, x;u, v), the collectively acting minor agents want to minimize their common cost functional

J(t, x;u, v).

The choice of the weak formulation of the problem of stochastic differential games allows to shift with

the help of a Girsanov transformation the doubly controlled drift terms of the dynamics of the game with N

collectively acting minor players into the BSDE defining the pay-off/cost functional. This reduces the study

of the limit behavior of the game and of the saddle point feedback controls for this game to the investigation

of the limit behavior of the corresponding BSDEs with non-feedback controls and the limiting Mean-Field

BSDE. In order to guarantee the existence of saddle point controls we impose on the driving coefficient f

of the BSDE a strict concavity-convexity assumption with respect to the control parameters (u, v). The

specificity of our approach using the Girsanov transformation necessitates the factor εN which is supposed

to be of order O(N−3/4), as N → +∞.

The problem of a limit approach for mean-field BSDEs as well as mean-field BSDEs themselves were

studied by the authors in [3] (together with Djehiche) and in [2], but unlike here without controls.

The paper is organized as follows: In Section 2 a short recall for the convergence of the above system

(1.1) and (1.2) in the case without control will be given. In Section 3 the stochastic differential game with

one major player and N collectively acting minor agents is introduced, the assumptions on the coefficients

are given and the existence of saddle points controls which are of feedback form is discussed. They are

characterized as a Stackelberg feedback strategy. This characterization admits estimates for the saddle point

feedback controls which will be used in what follows. Section 5 is devoted to the study of the limit mean-field

game. For this the convergence of the saddle point controls for the game with N minor agents is proved and

the limit controls are shown to be the unique saddle point controls of the limit game. In order to improve

the readability of the work, the proofs of several lemmas have been postponed to the Appendix.

2 Preliminaries. The N+1 players system without control

In this short section we consider first briefly the case of a “stochastic differential game with N minor

agents” without control and recall its limit behavior. We restrict for this to the (particular) case we will

need for our discussion in the Sections 3 and 4. The more interested reader is referred to [18], and for the

BSDE part, for instance, to [3].
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Let (Ω,F , P ) be a complete probability space, endowed with a sequence of independent d-dimensional

Brownian motions W j = (W j
s )s∈[0,T ], j ≥ 0, where T > 0 is an arbitrarily fixed time horizon. We denote

by F = (Ft)t∈[0,T ] the filtration generated by W j, j ≥ 0, and augmented by the P -null sets. Given

bounded Lipschitz coefficients b0 : Rd × R
d → R

d, σ0 : Rd × R
d → R

d×d, b1 : Rd × R
d × R

d → R
d×d and

σ1 : Rd × R
d × R

d → R
d×d, we consider for an arbitrarily chosen initial time t ∈ [0, T ] and initial positions

x0, . . . , xN ∈ R
d the system of N ≥ 2 d-dimensional coupled stochastic differential equations (SDEs):

dX0,N
s = 1

N

∑N
ℓ=1 b0(X

0,N
s , Xℓ,N

s )ds+ 1
N

∑N
ℓ=1 σ0(X

0,N
s , Xℓ,N

s )dW 0
s , s ∈ [t, T ],

X0,N
t = x0,

(2.1)

dXj,N
s = 1

N

∑N
ℓ=1 b1(X

0,N
s , Xj,N

s , Xℓ,N
s )ds+ 1

N

∑N
ℓ=1 σ1(X

0,N
s , Xj,N

s , Xℓ,N
s )dW j

s , s ∈ [t, T ],

Xj,N
t = xj , 1 ≤ j ≤ N,

(2.2)

associated with the backward stochastic differential equation (BSDE):

dY N
s = − 1

N

∑N
ℓ=1 f(X

0,N
s , Xℓ,N

s , Y N
s , Z0,N

s , Zℓ,N
s )ds+ Z0,N

s dW 0
s +

∑N
j=1 Z

j,N
s dW j

s , s ∈ [t, T ],

Y N
T = 1

N

∑N
ℓ=1 Φ(X

0,N
T , Xℓ,N

T ),
(2.3)

where the functions f : Rd ×R
d × R×R

d × R
d → R and Φ : Rd × R

d → R are assumed to be bounded and

Lipschitz in all its variables.

Let us now discuss the forward equation (2.1)-(2.2) and the backward equation (2.3) separately.

2.1 Limit behavior of the forward stochastic system

The objective of this section is to discuss briefly the limit behavior of the system (2.1) and (2.2):

dX0,N
s = 1

N

∑N
ℓ=1 b0(X

0,N
s , Xℓ,N

s )ds+ 1
N

∑N
ℓ=1 σ0(X

0,N
s , Xℓ,N

s )dW 0
s , s ∈ [t, T ],

X0,N
t = x0;

dXj,N
s = 1

N

∑N
ℓ=1 b1(X

0,N
s , Xj,N

s , Xℓ,N
s )ds+ 1

N

∑N
ℓ=1 σ1(X

0,N
s , Xj,N

s , Xℓ,N
s )dW j

s , s ∈ [t, T ],

Xj,N
t = xj , 1 ≤ j ≤ N,

as N tends to +∞. The limit behavior of such systems as well as the associated limit McKean-Vlasov SDEs

have been already largely discussed in the literature. For completeness we first state the following classical

existence and uniqueness result.

Proposition 2.1. Under our standard assumptions, that is, the coefficients are bounded and Lipschitz in

their variables, we have for any initial datum (t, x(N)) ∈ [0, T ] × (Rd)N+1, x(N) = (x0, x1, . . . , xN ), the

existence and the uniqueness of the solution X(N) = (X0,N , X1,N , . . . , XN,N) in the space S2
F
(t, T ;Rd)N+1,

where S2
F
(t, T ;Rd) denotes the space of all continuous F-adapted, Rd-valued processes which supremum of the

Euclidean norm over the interval [t, T ] is square integrable.

Let us now suppose that (xj)j≥0 ⊂ R
d is such that, for some x ∈ R

d,

1

N

N∑

j=1

|xj − x|2 → 0, as N → +∞. (2.4)

In order to justify the choice of this condition, we let P2(R
d) be the space of the Borel probability measures

on R
d with finite second moments. Wishing that the convergence of the above system (2.1)-(2.2) can be

measured in terms of the (Monge-Kantorovich-)Wasserstein distance d2 of second order,

d2(µ, ν) := inf {E[|ξ − η|2] : ξ, η ∈ L0(F ;Rd) with Pξ = µ, Pη = ν}, µ, ν ∈ P2(R
d).

We define νN = 1
N

∑N
j=1 δxj

, with δxj
denoting the Dirac measure with mass in xj . Given another probability

ν ∈ P2(R
d), the convergence d2(ν

N , ν) → 0, as N → +∞, is equivalent to the weak convergence of νN to ν

4



as well as that of their second moments. Preferring, for simplicity, the choice ν = δx, for some x ∈ R
d, the

convergence d2(ν
N , ν) → 0 is equivalent to (2.4).

The L2-limit system of the above systems of SDEs (2.1)-(2.2) (see Proposition 2.2) is given by

dX
0

s = b0(X
0

s, µs)ds+ σ0(X
0

s, µs)dW
0
s , s ∈ [t, T ], X

0

t = x0,

dX
j

s = b1(X
0

s, X
j

s, µs)ds+ σ1(X
0

s, X
j

s, µs)dW
j
s , s ∈ [t, T ], X

j

t = x, j ≥ 1,
(2.5)

where

µs(dy) = P{X1

s ∈ dy | FW 0

T } (2.6)

is the conditional distribution law of X
1

s knowing the σ-field FW 0

T which is generated by W 0 over the time

interval [0, T ] and augmented by all P -null sets.

Given a bounded measurable function h over Rd we use the notation h(µs) =
∫
Rd h(x)µs(dx). By L

we denote the second order operator

L[µ, x]ϕ(x′) :=
1

2
tr
(
σ1σ

∗
1(x, x

′, µ)D2ϕ(x′)
)
+ b1(x, x

′, µ)Dϕ(x′), x, x′ ∈ R
d, (2.7)

defined for probability measures µ on R
d and functions ϕ ∈ C2

K(Rd), and by L(x, µ)∗ we denote its dual op-

erator applying to the probability measures on R
d. It is well known that µ = (µs)s∈[t,T ]) can be characterized

as the weak solution of the PDE with stochastic coefficients

d

ds
µs = L[µs, X

0

s]
∗µs, s ∈ (t, T ], µt(dy) = δx(dy), (2.8)

i.e.,
d

ds
〈µs, ϕ〉 = 〈µs, L[µs, X

0

s]ϕ〉 = 〈L[µs, X
0

s]
∗µs, ϕ〉, for all ϕ ∈ C2

K(Rd) (2.9)

(C2
K(Rd) denotes the space of C2-functions with compact support in R

d).

Let us first remark the following proposition.

Proposition 2.2. Under our standard assumptions the above system (2.5) has a unique solution X
j
=

(X
j

s)s∈[t,T ] ∈ S2
F
(t, T ;Rd), j ≥ 0. Moreover, (2.5) can be equivalently rewritten in the following form:

dX
0

s = E[b0(X
0

s, X
ℓ0
s )|FW 0

T ]ds+ E[σ0(X
0

s, X
ℓ0
s )|FW 0

T ]dW 0
s , X

0

t = x0,

dX
j

s = E[b1(X
0

s, X
j

s, X
ℓj
s )|FW 0,W j

T ]ds+ E[σ1(X
0

s, X
j

s, X
ℓj
s )|FW 0,W j

T ]dW j
s , X

j

t = x, j ≥ 1,
(2.10)

where s runs the time interval [t, T ) and ℓj ≥ 1 is arbitrary but different from j, j ≥ 0.

The equivalence between the first equation of (2.5) and that of (2.10) is evident, since we can replace

X
1
in (2.6) by X

ℓ1
without changing µs. The equivalence between the second equation of (2.5) and that

of (2.10) follows from the fact that X
ℓj

defined by (2.10) is F
W 0,W ℓj

-adapted and, knowing FW 0

T its law

doesn’t depend on ℓj ≥ 1. Hence, since, for ℓj ≥ 1 different from j, W 0,W j and W ℓj are independent,

P{Xℓj
s ∈ dy

∣∣∣ FW 0,W j

T } = P{Xℓj
s ∈ dy

∣∣∣ FW 0

T } = µs(dy).

Proof. The proof is a direct consequence of the above observation. Indeed, we have

dX
0

s = E[b0(X
0

s, X
1

s)|FW 0

T ]ds+ E[σ0(X
0

s, X
1

s)|FW 0

T ]dW 0
s , X

0

t = x0,

dX
1

s = E[b1(X
0

s, X
1

s, X
2

s)|FW 0,W 1

T ]ds+ E[σ1(X
0

s, X
1

s, X
2

s)|FW 0,W 1

T ]dW 1
s , X

1

t = x,

dX
2

s = E[b1(X
0

s, X
2

s, X
1

s)|FW 0,W 2

T ]ds+ E[σ1(X
0

s, X
2

s, X
1

s)|FW 0,W 2

T ]dW 2
s , X

2

t = x;

(2.11)

it’s a finite-dimensional SDE with Lipschitz coefficients, and standard estimates to show the existence and

the uniqueness. Once having the processes X
0
, X

1
and X

2
, we can obtain the unique solution processes

X
j
, j ≥ 3, in (2.10) by choosing, for instance, ℓj = 1.
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The limit system (2.5), or equivalently (2.10), is related with (2.1) and (2.2) through the following

convergence property.

Proposition 2.3. Under our standard assumptions we have that, for all m ≥ 1, there is some constant

Cm ∈ R+ such that, for all N ≥ 0, 0 ≤ ℓ ≤ N,

E[ sup
r∈[t,T ]

(
|Xℓ,N

r −X
ℓ

r|2 +
1

N

N∑

ℓ=1

|Xℓ,N
r −X

ℓ

r|2
)m

] ≤ Cm

Nm
+ Cm(

1

N

N∑

ℓ=1

|xℓ − x|2)m. (2.12)

For the reader’s convenience we give the proof in Appendix 1. By adapting the argument of the proof

of the above proposition we also see the following lemma.

Lemma 2.1. Under our standard assumptions we have, for all bounded Lipschitz functions h : Rd×R
d → R

and g : Rd → R, and for all m ≥ 1, the existence of a real constant Cm such that, for all N ≥ 1,

sup
s∈[t,T ]

E[
∣∣∣
1

N

N∑

ℓ=1

h(X0,N
s , Xℓ,N

s )− E[h(X
0

s, X
1

s)|FW 0

T ]
∣∣∣
2m

] ≤ Cm(
1

N
+

1

N

N∑

ℓ=1

|xℓ − x|2)m, (2.13)

and

E[
∣∣∣
1

N

N∑

ℓ=1

g(Xℓ,N
s )− E[g(X

1

s)|FW 0

T ]
∣∣∣
2m

|FW 0

T ] ≤ Cm(
1

N
+

1

N

N∑

ℓ=1

|xℓ − x|2)m, s ∈ [t, T ]. (2.14)

After having reviewed the limit behavior of the forward equation (2.1)-(2.2) let us come now to the

backward one.

2.2 Limit behavior of the backward stochastic differential equations

In this subsection we discuss briefly the limit behavior of the solution (Y N , ZN = (Zj,N )0≤j≤N ) ∈
S2
F
(t, T )× L2

F
(t, T ;Rd)N+1 of BSDE

dY N
s = − 1

N

∑N
ℓ=1 f(X

0,N
s , Xℓ,N

s , Y N
s , Z0,N

s , Zℓ,N
s )ds+

∑N
j=0 Z

j,N
s dW j

s , s ∈ [t, T ],

Y N
T = 1

N

∑N
ℓ=1 Φ(X

0,N
T , Xℓ,N

T ),
(2.15)

as N tends to infinity, and we show (Y N , Z0,N ) converges to the unique solution (Y , Z
0
) ∈ S2

FW0 (t, T ) ×
L2
FW0 (t, T ;Rd) of the BSDE:

dY s = −f(X0

s, µs, Y s, Z
0

s, 0)ds+ Z
0

sdW
0
s , s ∈ [t, T ],

Y T = Φ(X
0

T , µT );
(2.16)

and Zℓ,N converges to 0, for every ℓ ≥ 1 (recall that µs(dy) = P{X1

s ∈ dy | FW 0

T }). We refer to the fact that

it is by now standard that under our assumptions on the coefficients the BSDEs (2.15) and (2.16) have a

unique solution. In analogy to the forward system we also see that the limit BSDE (2.16) can be equivalently

written in the form

Y s = E[Φ(X
0

T , X
ℓ

T )|FW 0

T ] +

∫ T

s

E[f(X
0

r, X
ℓ

r, Y r, Z
0

r, 0)|FW 0

T ]dr −
∫ T

s

Z
0

rdW
0
r , s ∈ [t, T ], (2.17)

for any ℓ ≥ 1. Moreover, we can have the following statement on convergence:

Proposition 2.4. Under our standard assumptions on the coefficients we have for all m ≥ 1 the existence

of a constant Cm such that

E
[
sups∈[t,T ] |Y N

s − Y s|2m +
(∫ T

t |Z0,N
s − Z

0

s|2ds+
∑N

ℓ=1

∫ T

t |Zℓ,N
s |2dr

)m]

≤ Cm

(
1
N + 1

N

∑N
ℓ=1 |xℓ − x|2

)m
, for all N ≥ 1.

(2.18)

For the reader’s convenience the proof is given in the Appendix 2.
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3 The stochastic differential game with N+1 participants

Let U = R
k be the control state space for the major player and V = R

m for the minor agents. To

simplify the notation, we will suppose from now on that the dimension d used in the preceding section is

equal to 1.

Our objective is to study the limit behavior of the stochastic differential game between a major player

and N collectively behaving minor agents, when N → +∞.

We denote by F
N the filtration generated by the Brownian motion W (N) = (W 0,W 1, . . . ,WN) and

augmented by all P -null sets, and by L∞
N (t, T ;Rℓ) (ℓ ≥ 1) we denote the space of all bounded, mea-

surable functionals γ : [t, T ] × C([t, T ]) → R
ℓ which are non-anticipating, i.e., for all s ∈ [t, T ] and all

ψ, ψ′ ∈ C([t, T ]) with ψ(r) = ψ′(r), r ∈ [t, s], it holds γr(ψ) = γr(ψ
′), r ∈ [t, s]. Given initial positions

x(N) = (x0, x1, . . . , xN ), a feedback control u ∈ L∞
N (t, T ;U) of the major player, and feedback controls

vj ∈ L∞
N (t, T ;V ), 1 ≤ j ≤ N, for the N minor agents, the dynamics of the major player X0,N and those of

the minor agents Xℓ,N are defined by the system

dX0,N
s = σ0(X

0,N
s )dW̃ 0

s + 1
N

∑N
ℓ=1 b0(X

0,N
s , Xℓ,N

s , Z0,N
s )us(X

(N)
· )ds, X0,N

t = x0,

dXj,N
s = σ1(X

j,N
s )dW̃ j

s + εN
N

∑N
ℓ=1 b1(X

0,N
s , Xℓ,N

s , Zj,N
s )vℓs(X

(N)
· )ds, Xj,N

t = xj ,
(3.1)

1 ≤ j ≤ N, driven by an N + 1-dimensional Brownian motion (W̃ 0, W̃ 1, · · · , W̃N ). And the nonlinear

payoff/cost functional is defined through the BSDE

dY N
s = − 1

N

∑N
ℓ=1 f(X

0,N
s , Xℓ,N

s , Y N
s , Z0,N

s , Zℓ,N
s , (us, v

ℓ
s)(X

(N)
· ))ds +

∑N
ℓ=0 Z

ℓ,N
s dW̃ ℓ

s , s ∈ [t, T ],

Y N
T = 1

N

∑N
ℓ=1 Φ(X

0,N
T , Xℓ,N

T ).

(3.2)

Here X(N) = (X0,N , . . . , XN,N), and εN > 0 is a factor which converges to zero, as N tends to ∞ (its role

will be discussed later). We want to study the above system in a weak sense, i.e., we allow the driving

N -dimensional Brownian motion (W̃ 0, . . . , W̃N ) to depend on the control processes. Assuming for simplicity

that σ0 ≡ 1, σ1 ≡ 1, we use the Girsanov transformation

dW̃ 0
s = dW 0

s − I[t,T ](s)
1
N

∑N
ℓ=1 b0(X

0,N
s , Xℓ,N

s , Z0,N
s )us(X

(N)
· )ds,

dW̃ j
s = dW j

s − I[t,T ](s)
εN
N

∑N
ℓ=1 b1(X

0,N
s , Xℓ,N

s , Zj,N
s )vℓs(X

(N)
· )ds,

in order to reduce the study of the above system to the resolution of the following simplified system:

Xj,N
s = Xj

s = xj +W j
s −W j

t , 0 ≤ j ≤ N,

dY N
s = −{ 1

N

∑N
ℓ=1 f(X

0,N
s , Xℓ,N

s , Y N
s , Z0,N

s , Zℓ,N
s , us, v

ℓ
s) + ( 1

N

∑N
ℓ=1 b0(X

0,N
s , Xℓ,N

s , Z0,N
s )us)Z

0,N
s

+
∑N

j=1(
εN
N

∑N
ℓ=1 b1(X

0,N
s , Xℓ,N

s , Zj,N
s )vℓs

)
Zj,N
s }ds+

∑N
ℓ=0 Z

ℓ,N
s dW ℓ

s , s ∈ [t, T ],

Y N
T = 1

N

∑N
ℓ=1 Φ(X

0,N
T , Xℓ,N

T ).

(3.3)

Here us := us(x
(N) +W

(N)
· −W

(N)
t ), vℓs := vℓs(x

(N) +W
(N)
· −W

(N)
t ), s ∈ [t, T ], 1 ≤ ℓ ≤ N , are now

open-loop controls, and we can work for the system (3.3) with open-loop controls u ∈ UN := L∞
FN (t, T ;U)

and vℓ ∈ VN := L∞
FN (t, T ;V ), 1 ≤ ℓ ≤ N , as long as our saddle point controls are feedback controls.

Our objective is to study this latter stochastic differential game and its limit behavior as N → +∞.

In order to abbreviate the notation, given ξ(N) := (x(N) = (x0, . . . , xN ), y, z(N) = (z0, . . . , zN )) ∈ R
N+1 ×

R× R
N+1, u ∈ U and v(N) = (v1, ..., vN ) ∈ V N , we denote the driving coefficient of the BSDE in (3.3) by

HN (ξ(N), u, v(N))

=
1

N

N∑

ℓ=1

f(x0, xℓ, y, z0, zℓ, u, vℓ) +

(
1

N

N∑

ℓ=1

b0(x0, xℓ, z0)u

)
z0 + εN

N∑

i=1

(
1

N

N∑

ℓ=1

b1(x0, xℓ, zi)vℓ

)
zi.

Let us make throughout our paper the following assumptions on the coefficients involved in the definition of

the Hamiltonian HN :

Assumptions. 1) f = f(x0, x1, y, z0, z1, u, v) : R
5 × U × V → R is a continuous function with f(ξ, ., .) ∈

C1, ξ := (η, z1) ∈ R
5, η := (x0, x1, y, z0) ∈ R

4, such that
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• Ai) For some λ > 0 :

(
(Duf)(ξ, u, v)− (Duf)(ξ, u

′, v), u − u′
)

≤ −λ|u− u′|2,(
(Dvf)(ξ, u, v)− (Dvf)(ξ, u, v

′), v − v′
)

≥ λ|v − v′|2,
(3.4)

for all ξ ∈ R
5, (u, v), (u′, v′) ∈ U × V ;

• Aii) For some constants C > 0 and µ (0 < µ < λ),

|f(ξ, 0, 0)| ≤ C;

|f(ξ, u, v)− f(ξ′, u, v)| ≤ C|ξ − ξ′|;
|(Duf)(ξ, u, v)− (Duf)(ξ

′, u′, v′)| ≤ C(|ξ − ξ′|+ |u− u′|) + µ|v − v′|, |(Duf)(ξ, 0, 0)| ≤ C;

|(Dvf)(ξ, u, v)− (Dvf)(ξ
′, u′, v′)| ≤ C(|η − η′|+ |v − v′|) + µ|u− u′|, |(Dvf)(ξ, 0, 0)| ≤ C;

(3.5)

2) The coefficients b0 : R3 → U and b1 : R3 → V are bounded and continuous, such that bi(x0, x1, z)z is

bounded and Lipschitz in (x0, x1, z), i = 0, 1.

3) The function Φ : R → R is bounded and Lipschitz.

Remark 3.1. 1. From Ai) we see f(ξ, ·, ·) : U × V → R is a strictly concave-convex function. This

strict concavity-convexity will be crucial for the study of saddle point controls for the associated stochastic

differential game and the study of their behavior, as N tends to +∞.

An easy example for such a function f satisfying our assumptions Ai) and Aii) is the following one

for k = m = 1 :

f(ξ, u, v) = f0(ξ, u, v)− 1
2α|u|2 + 1

2γ|v|2,
where α, γ > 0 are strictly positive and f0 ∈ C1,2,2

b (R5 × U × V ) is such that D2
uuf0(ξ, u, v) ≤ (α− λ)IU (u)

and D2
vvf0(ξ, u, v) ≥ (λ − γ)IV (v), (ξ, u, v) ∈ R

5 × U × V , for some λ > 0, and |D2
uvf0(ξ, u, v)| ≤ µ,

(ξ, u, v) ∈ R
5 × U × V , for some µ < λ.

2. Let us also give an example of a function bi(x0, x1, z) satisfying Assumptions 2): For this let

b̃i : R
3 → R be a bounded Lipschitz function and consider

bi(x0, x1, z) = b̃i(x0, x1, z) ·
1

1 + |z| .

We also observe that from our assumptions on the function f we get

i) |f(ξ, u, v)| ≤ C(1 + |u|2 + |v|2);
ii) |f(ξ, u, v)− f(ξ̃, ũ, ṽ)| ≤ C|ξ − ξ̃|+ C(|u|+ |ũ|+ |v|+ |ṽ|)(|u − ũ|+ |v − ṽ|), (3.6)

for all ξ = (x0, x1, y, z0, z1), ξ̃ = (x̃0, x̃1, ỹ, z̃0, z̃1) ∈ R
5 and u, ũ ∈ U, v, ṽ ∈ V. Hence, taking into account

the above assumption on the coefficients b0 and b1, we see that, for all ξ
(N) = (x(N) = (x0, . . . , xN ), y, z(N) =

(z0, . . . , zN)), ξ̃(N) = (x̃(N) = (x̃0, . . . , x̃N ), ỹ, z̃(N) = (z̃0, . . . , z̃N)), ξ(N,0) = (x(N) = (x0, . . . , xN ), y, 0) ∈
R

N+1 × R× R
N+1, and u ∈ U, v(N) ∈ V N , we have

• |HN (ξ(N,0), u, v(N))| ≤ C(1 + |u|2 + 1
N |v(N)|2);

• |HN (ξ(N), u, v(N))−HN (ξ̃(N), u, v(N))|
≤ C

(
1 + |u|+ εN

∑N
ℓ=1 |vℓ|

)(
|x0 − x̃0|+ |y − ỹ|+ |z0 − z̃0|+ 1

N

∑N
ℓ=1(|xℓ − x̃ℓ|+ |zℓ − z̃ℓ|)

)

+CεN
∑N

ℓ=1 |vℓ||xℓ − x̃ℓ|.

The above properties of HN allow to apply the classical result on the existence and uniqueness of the

solution for BSDE:

Proposition 3.1. For any admissible controls u ∈ UN = L∞
FN (t, T ;U) and v(N) = (v1,N , . . . , vN,N) ∈ VN

N =

L∞
FN (t, T ;V )N , the BSDE in (3.3) admits a unique solution (Y N , ZN = (Z0,N , . . . , ZN,N)) ∈ S2

FN (t, T ) ×
L2
FN (t, T )

N+1. In order to indicate that this solution is associated with the controls (u, v(N)), we also write

(Y u,v(N)

, Zu,v(N)

= (Z0,u,v(N)

, . . . , ZN,u,v(N)

)) := (Y N , ZN = (Z0,N , . . . , ZN,N)).
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As already explained, we have two objectives: First we want to study for each fixed N ≥ 1 saddle

point controls for our stochastic differential game with N collectively acting minor agents playing against

one major player, i.e, we are looking for a couple of controls (uN , v(N) = (v1,N , . . . , vN,N)) ∈ UN ×VN
N such

that

Y u,v(N)

t ≤ Y uN ,v(N)

t ≤ Y uN ,v(N)

t , for all (u, v(N)) ∈ UN × VN
N . (3.7)

In a second step we are interested in the limit behavior of the saddle point controls (uN , v(N)) when N

tends to +∞, and we want to characterize the limit controls as saddle point controls for the limit stochastic

differential game.

Let us begin with the study of the existence of saddle point controls and its characterization for

the game with N + 1 participants. For this end, we have first to point out some useful properties of the

Hamiltonian HN . So we observe that, as a direct consequence of the above assumptions on our coefficients,

we have (
(DuHN )(ξ(N), u, v(N))− (DuHN )(ξ(N), ũ, v(N)), u− ũ

)
≤ −λ|u− ũ|2;(

(Dv(N)HN )(ξ(N), u, v(N))− (Dv(N)HN )(ξ(N), u, ṽ(N)), v(N) − ṽ(N)
)

≥ λ
N

∑N
l=1 |vl − ṽl|2 = λ

N |v(N) − ṽ(N)|2.
(3.8)

From (3.8) it follows immediately that, for all ξ(N) ∈ R
N+1 × R× R

N+1, the function HN (ξ(N), ·, ·) :
U × V N → R has a unique saddle point. More precisely, there exists a couple of Borel measurable feedback

controls (ūN , v̄(N)) : RN+1 × R× R
N+1 → U × V N , such that for all (u, v(N)) ∈ U × V N ,

HN (ξ(N), u, v̄(N)(ξ(N))) ≤ HN (ξ(N), ūN(ξ(N)), v̄(N)(ξ(N))) ≤ HN (ξ(N), ūN (ξ(N)), v(N)). (3.9)

However, the special form of our Hamiltonian HN allows to compute the form of this saddle point in a

more precise manner. For this end, we let ṽ(N) = (ṽN1 , · · · , ṽNN ) : RN+1 × R× R
N+1 × U → V N be a Borel

measurable function such that

HN (ξ(N), u, ṽ(N)(ξ(N), u)) = inf v(N)∈V NHN (ξ(N), u, v(N))

=
1

N

N∑

l=1

inf vl∈V {f(x0, xl, y, z0, zl, u, vl) + εN

N∑

i=1

b1(x0, xl, zi)zivl}+
1

N

( N∑

l=1

b0(x0, xl, z0)z0

)
u,

(3.10)

and ṽN : R× R× R× R
N+1 × U → V a measurable function with

f(ξℓ, u, ṽN(ξ
(N)
ℓ , u)) + εN

N∑

i=1

b1(x0, xℓ, zi)ziṽN (ξ
(N)
ℓ , u)

= inf vl∈V (f(ξℓ, u, vℓ) + εN

N∑

i=1

b1(x0, xl, zi)zivℓ),

(3.11)

for all ξ
(N)
ℓ = (x0, xℓ, y, z

(N)) and all u ∈ U. Obviously,

ṽNℓ (ξ(N), u) = ṽN (ξ
(N)
ℓ , u), 1 ≤ ℓ ≤ N. (3.12)

Let us also consider a measurable function ũN : RN+1 × R× R
N+1 −→ U such that

HN (ξ(N), ũN(ξ(N)), ṽ(N)(ξ(N), ũN(ξ(N))))

= supu∈U HN (ξ(N), u, ṽ(N)(ξ(N), u))
(
= supu∈U inf v(N)∈V NHN (ξ(N), u, v(N))

)
,

(3.13)

for all ξ(N) ∈ R
N+1 × R× R

N+1.

For the above introduced functions we have the following result:
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Lemma 3.1. Under our standard assumptions the unique saddle point (ūN (ξ(N)), v̄(N)(ξ(N))) of HN (ξ(N), ·, ·)
is of the form

(ūN(ξ(N)), v̄(N)(ξ(N))) = (ũN (ξ(N)), ṽ(N)(ξ(N), ũN(ξ(N)))), ξ(N) ∈ R
N+1 × R× R

N+1, (3.14)

i.e., it corresponds to a Stackelberg feedback strategy for a 2-player zero-sum game with the major player as

leader and the collectively acting minor agents as followers; it is the optimal feedback strategy for the major

player, if the collectively acting minor agents react in an optimal way.

For the convenience of the reader we give the proof in Appendix 3.

With the help of our standard assumptions and Lemma 3.1 we can now derive the following estimates

for our saddle point controls:

Lemma 3.2. There exists some constant C ∈ R such that, for all N ≥ 1, ξ(N) = (x(N), y, z(N)), ξ̃(N) =

(x̃(N), ỹ, z̃(N)) ∈ R
N+1 × R× R

N+1,

(i) |uN (ξ(N))| ≤ min{C(1 + εN
∑N

i=1 |zi|), C(1 + εNN)};
(ii) |v̄Nℓ (ξ(N))|(= |ṽN (ξ

(N)
ℓ , ũN(ξ(N)))|) ≤ min{C(1 + εN

∑N
i=1 |zi|), C(1 + εNN)}, 1 ≤ ℓ ≤ N.

(3.15)

And

(iii)|ūN (ξ(N))− ūN(ξ̃(N))| ≤ C(|x0 − x̃0|+ |y − ỹ|+ |z0 − z̃0|)
+C(1 + εNN)(|x0 − x̃0|+ 1

N

∑N
ℓ=1 |xℓ − x̃ℓ|+ 1

N

∑N
ℓ=1 |zℓ − z̃ℓ|);

(iv)|v̄Nℓ (ξ(N))− v̄Nℓ (ξ̃(N))| ≤ C(|x0 − x̃0|+ |y − ỹ|+ |z0 − z̃0|)
+C(1 + εNN)(|x0 − x̃0|+ |xℓ − x̃ℓ|+ 1

N

∑N
i=1(|xi − x̃i|+ |zi − z̃i|)).

(3.16)

For the proof of this lemma the reader is referred to Appendix 3.

With the help of the couple of feedback saddle point controls (uN , v(N) = (vN1 , . . . , v
N
N )) we now

introduce the function

HN (ξ(N)) := HN (ξ(N), ūN (ξ(N)), v̄(N)(ξ(N))), ξ(N) ∈ R
N+1 × R× R

N+1,

which has the following properties:

Lemma 3.3. 1) Using the notation ξ(N,0) = (x(N), y, (z0, 0, · · · , 0)) ∈ R
N+1 ×R×R

N+1, we have, for some

constant C ∈ R independent of N ≥ 1,

|HN (ξ(N,0))| ≤ C.

2) There is a constant CN (depending on N ≥ 1) such that, for all ξ(N), ξ̃(N) ∈ R
N+1 × R× R

N+1,

|HN (ξ(N))−HN (ξ̃(N))| ≤ CN |ξ(N) − ξ̃(N)|.

The proof of this lemma follows immediately from the assumptions on b0 and b1, and our estimates

(3.6) for f , combined with the estimates given in Lemma 3.2. Consequently, we can have the following result:

Lemma 3.4. Under our assumptions, there exists a unique solution (Y
N
, Z

(N)
= (Z

0,N
, . . . , Z

N,N
)) ∈

S2
FN (t, T )× L2

FN (t, T )N+1 of the BSDE

dY
N

s = −HN (X
(N)
s , Y

N

s , Z
(N)

s )ds+
∑N

j=0 Z
j,N

s dW j
s , s ∈ [t, T ],

Y
N

T = 1
N

N∑
ℓ=1

Φ(X0
T , X

ℓ,N
T ).

(3.17)

By putting

uNs := uN (X(N)
s , Y

N

s , Z
(N)

s ), v(N)
s := v(N)(X(N)

s , Y
N

s , Z
(N)

s ), s ∈ [t, T ],
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and uNs := u, v
(N)
s := v(N), s ∈ [0, t), for arbitrarily chosen u ∈ U and v(N) ∈ V N , we define admissible

control processes uN ∈ UN , v
(N) = (v(1,N), . . . , v(N,N)) ∈ VN

N (abusing notation we use nearly the same

notations as for the corresponding feedback controls). The following statement is now a standard statement

following from the uniqueness of the solution of BSDE in (3.3), from (3.9) and the comparison theorem for

BSDEs.

Proposition 3.2. The above introduced couple of admissible controls (uN , v(N)) ∈ UN ×VN
N forms a saddle

point for the pay-off/cost functional UN × VN
N ∋ (u, v(N)) → Y u,v(N)

t . More precisely, we even have

Y u,v(N)

s ≤ Y uN ,v(N)

s ≤ Y uN ,v(N)

s , s ∈ [t, T ],

P -a.s., for all (u, v(N)) ∈ UN × VN
N . Moreover,

(Y uN ,v(N)

, ZuN ,v(N)

) = (Y
N
, Z

(N)
).

4 The limit game

4.1 The limit backward stochastic differential equation

After having shown in the preceding subsection the existence of saddle point controls (uN , v(N)) ∈
UN ×VN

N for the game with N +1 agents, the objective of this subsection is to introduce a BSDE, for which

we will prove later that it is the limit of the BSDEs for N + 1 participants, if the saddle point controls are

played, and we will study the associated saddle point control processes for this limit BSDE.

Let us begin with the introduction of the Hamiltonian for our limit BSDE. For this end, we observe

that Assumption Ai) allows to select a measurable function v : R4 × U → V such that

f(ξ, u, v(ξ, u)) = inf v∈V f(ξ, u, v), (ξ = (x0, x1, y, z0, 0), u) ∈ R
5 × U. (4.1)

To shorten the notation, we identify in what follows ξ = (x0, x1, y, z0, 0) with (x0, x1, y, z0) and we put

fv(ξ, u) := f(ξ, u, v(ξ, u)). From a straight-forward computation using the assumptions Ai) and Aii) on f ,

we obtain

Lemma 4.1. Under our standard assumptions on f , we have:

1. There is some C ∈ R such that, for all (ξ, u), (ξ′, u′) ∈ R
4 × U,

|v̄(ξ, u)| ≤ C + µ
λ |u|;

|v̄(ξ, u)− v̄(ξ′, u′)| ≤ C|ξ − ξ′|+ µ
λ |u− u′|. (4.2)

2. For all ξ ∈ R
4, fv(ξ, .) ∈ C1 and

(Dufv̄)(ξ, u) = (Duf)(ξ, u, v̄(ξ, u)), (ξ, u) ∈ R
4 × U. (4.3)

With the help of the function fv̄ we introduce the Hamiltonian

H(s, x0, y, z0, u) : = E[fv̄(x0, X
1

s, y, z0, 0, u) + b0(x0, X
1

s, z0)z0 · u|FW 0

T ]

= E[fv̄(x0, X
1

s, y, z0, 0, u)|FW 0

T ] + E[b0(x0, X
1

s, z0)z0|FW 0

T ] · u.
(4.4)

We observe that H(s, x0, y, z0, u) is a continuous random field which, for every fixed (x0, y, z0, u), is F
W 0

-

progressively measurable. Moreover, we have the following further properties of H :

Lemma 4.2. 1) There exists some constant C ∈ R such that, P -a.s., for all ξ, ξ′ ∈ R
3, u, u′ ∈ U ,

i) |H(s, ξ, u)| ≤ C(1 + |u|2);
ii) |H(s, ξ, u)−H(s, ξ′, u′)| ≤ C(1 + |u|+ |u′|)(|ξ − ξ′|+ |u − u′|). (4.5)
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2) P -almost all trajectories of H(s, ξ, u) are continuously differentiable in u, and

(DuH)(s, ξ, u) = E[(Duf)(ξ,X
1

s, u, v̄(ξ,X
1

s, u)) + b0(x0, X
1

s, z0)z0|FW 0

T ], (4.6)

for all ξ := (x0, y, z0), where, with our convention for ξ, (ξ,X
1

s) := (x0, X
1

s, y, z0, 0).

3) We have, P -a.s., for all (s, ξ) and all u, u′ ∈ U ,

(
(DuH)(s, ξ, u)− (DuH)(s, ξ, u′), u− u′

)
≤ −(λ

2−µ2

λ )|u − u′|2. (4.7)

For the proof the reader is referred to Appendix 4.

A consequence of the preceding lemma is the strict concavity of the function H(s, ξ, .) : U → R,

uniform in (s, ξ = (x0, y, z0)) ∈ [0, T ] × R
3 and uniform over Ω. This implies that the random field u :

Ω × [0, T ] × R
3 → U , FW 0

-progressively measurable for frozen ξ = (x0, y, z0), is uniquely defined by the

relation

H(s, ξ, ū(s, ξ)) = sup
u∈U

H(s, ξ, u), (s, ξ) ∈ [0, T ]× R
3. (4.8)

Lemma 4.3. Under our standard assumptions ū : Ω× [0, T ]× R
3 → U has the following properties:

|ū(s, ξ)| ≤ C

|ū(s, ξ)− ū(s, ξ′)| ≤ C|ξ − ξ′|, (4.9)

for some constant C ∈ R not depending on s ∈ [0, T ], ξ, ξ′ ∈ R
3.

For the proof the reader is referred to Appendix 4.

Let us now introduce the Hamiltonian of our limit BSDE: We put

H(s, ξ) = H(s, ξ, ū(s, ξ)), ξ = (x0, y, z0) ∈ R
3. (4.10)

Then we get immediately from the Lemmas 4.2 and 4.3 that, for some constant C independent of s ∈ [0, T ],

ξ, ξ′ ∈ R
3,

|H(s, ξ)| ≤ C;

|H(s, ξ)−H(s, ξ′)| ≤ C|ξ − ξ′|. (4.11)

Consequently, as H(., ξ) is FW 0

-progressively measurable, we have the following

Lemma 4.4. There exists a unique solution (Y , Z
0
) ∈ S2

FW0 (t, T )× L2
FW0 (t, T ) of the BSDE

dY s = −H(s,X0
s , Y s, Z

0

s)ds+ Z
0

sdW
0
s , s ∈ [t, T ), Y T = E[Φ(X0

T , X
1

T )|FW 0

T ]. (4.12)

4.2 The convergence to the limit game

The main result in this subsection concerns the convergence of the pay-off/cost functional of the game

with N +1 participants under saddle point controls to the solution of BSDE (4.12). More precisely, we have

Theorem 4.1. Let (Y , Z
0
) ∈ S2

FW0 (t, T ) × L2
FW0 (t, T ) be the unique solution of the BSDE (4.12) and

(Y
N
, Z

(N)
= (Z

0,N
, . . . , Z

N,N
)) ∈ S2

FN (t, T )× L2
FN (t, T )

N+1 that of the BSDE (3.17) introduced in Lemma

3.4. Then, under the assumption that εN = O(N−3/4), as N → +∞, there exists a constant C ∈ R, N0 ≥ 1

and, for all m ≥ 1, a constant Cm ∈ R, such that for all N ≥ N0,

i) |Y N

s − Ys| ≤ C(
1

N
+

1

N

N∑

l=1

|xl − x|2) 1
2 , s ∈ [t, T ];

ii) E[(

∫ T

t

|Z0,N

s − Z
0

s|2ds+
N∑

l=1

∫ T

t

|Zl,N

s |2ds)m|FW 0

t ] ≤ Cm(
1

N
+

1

N

N∑

l=1

|xl − x̄|2)m.
(4.13)
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Taking into account that we have supposed that 1
N

∑N
l=1 |xl − x̄|2 → 0, as N → +∞, an obvious

consequence of the theorem is the following

Corollary 4.1. Under our standard assumptions on the coefficients as well as the condition that εN =

O(N−3/4), as N → +∞, we have for all m ≥ 1, in Lm,

|Y N

s − Ys|2 +
∫ T

t

|Z0,N

s − Z
0

s|2ds+
N∑

l=1

∫ T

t

|Z l,N

s |2ds −→ 0.

The proof of the theorem is prepared by two auxiliary lemmas. The first lemma analyzes the limit

behavior of the couple of saddle point controls

uNs = uN (X(N)
s , Y

N

s , Z
(N)

s ), v(N)
s = (v(ℓ,N)

s = vNℓ (X(N)
s , Y

N

s , Z
(N)

s ))1≤ℓ≤N , (4.14)

as the number N of collectively playing minor agents tends to infinity. Putting

us := u(s,X0
s , Y s, Z

0

s), vjs = v(X0
s , X

j

s, Y s, Z
0

s, us), s ∈ [t, T ], (4.15)

(recall the definition of u(.) by (4.8) and that of v(.) by (4.1)), we can establish the following result:

Lemma 4.5. Under our standard assumption of Lipschitz continuity on the coefficients we have

|uNs − us|+ |v(j,N)
s − vjs|

≤ C(|Y N

s − Y s|+ |Z0,N

s − Z
0

s|+ (1 + εN ·N) 1
N

∑N
ℓ=1 |Z

ℓ,N

s |) +RN
s ,

(4.16)

s ∈ [t, T ], 1 ≤ j ≤ N, N ≥ 1, where, for all m ≥ 1, the remainder RN
s satisfies the following estimate for

some constant Cm only depending on m:

E[|RN
s |2m|FW 0

T ] ≤ Cm(
1

N
+

1

N

N∑

ℓ=1

|xℓ − x|2)m, s ∈ [t, T ], N ≥ 1.

The proof of this lemma is presented in Appendix 5.

The above lemma allows to characterize the limit behavior of the Hamiltonian

HN (ξ(N)) := HN (ξ(N), uN (ξ(N)), vN (ξ(N))) (4.17)

along the saddle points (uN (ξ(N)), vN (ξ(N))), as N tends +∞.

Lemma 4.6. Under the standard assumptions on the coefficients the following estimate with some suitable

constant C holds true:

|HN (X
(N)
s , Y

N

s , Z
(N)

s )−H(s,X0
s , Y s, Z

0

s)|
≤ C(|Y N

s − Y s|+ |Z0,N

s − Z
0

s|) + C( 1
N + εN + ε2NN)

∑N
ℓ=1 |Z

ℓ,N

s |+RN
s .

(4.18)

As in Lemma 4.5, the remainder RN
s satisfies the following estimate:

E[|RN
s |2m|FW 0

T ] ≤ Cm(
1

N
+

1

N

N∑

ℓ=1

|xℓ − x|2)m, s ∈ [t, T ], N ≥ 1, m ≥ 1.

The proof of this lemma is given in Appendix 5.

With the both preceding lemmas we are now able to prove Theorem 4.1.
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Proof. (of Theorem 4.1). Recall that (Y
N
, Z

(N)
) is introduced in Lemma 3.4 as the unique solution of the

BSDE (3.17) with Hamiltonian HN , while the couple of processes (Y , Z
0
) is the unique solution of BSDE

(4.12) with Hamiltonian H. By applying Itô formula to |Y N

s − Y s|2, we get from BSDE standard estimates

|Y N

s − Y s|2 + E[
∫ T

s
|Z0,N

r − Z
0

r|2r +
∑N

ℓ=1

∫ T

s
|Zℓ,N

r |2dr|FW 0

s ]

≤ CE[| 1N
∑N

ℓ=1 Φ(X
0
T , X

ℓ
T )− E[Φ(X0

T , X
ℓ

T )|FW 0

T ]|2|FW 0

s ]

+CE[
∫ T

s |Y N

r − Y r||HN (X
(N)
r , Y

N

r , Z
(N)

r )−H(r,X0
r , Y r, Z

0

r)|dr|FW 0

s ].

(4.19)

From Lemma 2.1 we know that

E[| 1N
∑N

ℓ=1 Φ(X
0
T , X

ℓ
T )− E[Φ(X0

T , X
ℓ

T )|FW 0

T ]|2|FW 0

s ] ≤ C( 1
N + 1

N

∑N
ℓ=1 |xℓ − x|2).

Consequently, Lemma 4.6 yields that, for ρ > 0 small (we will specify ρ later) and a constant Cρ depending

on ρ,

|Y N

s − Y s|2 + E[
∫ T

s |Z0,N

r − Z
0

r |2dr +
∑N

ℓ=1

∫ T

s |Zℓ,N

r |2dr|FW 0

s ]

≤ Cρ(
1
N + 1

N

∑N
ℓ=1 |xℓ − x|2) + Cρ

∫ T

s
E[|Y N

r − Y r|2|FW 0

s ]dr + 1
2E[

∫ T

s
|Z0,N

r − Z
0

r|2dr|FW 0

s ]

+Cρ

∫ T

s
E[|RN

r |2|FW 0

s ]dr + ρ( 1
N + εN + ε2NN)2E[

∫ T

s
(
∑N

ℓ=1 |Z
ℓ,N

r |)2dr|FW 0

s ],

(4.20)

where the estimate of the remainder RN
r , r ∈ [t, T ], is given by Lemma 4.6. Obviously,

( 1
N

+ εN + ε2NN
)2( N∑

ℓ=1

|Zℓ,N

r |
)2 ≤ C

( 1
N

+Nε2N +N3ε4N
) N∑

ℓ=1

|Zℓ,N

r |2,

and it is here, where we have to use our assumption that εN = O(N−3/4), as N → ∞. Indeed, this

assumption allows to get

ρ
( 1
N

+ εN + ε2NN
)2( N∑

ℓ=1

|Zℓ,N

s |
)2 ≤ 1

2

N∑

ℓ=1

|Zℓ,N

s |2, N ≥ 1, s ∈ [t, T ],

for a sufficiently small chosen ρ > 0. Hence, with such a choice of ρ we obtain

|Y N

s − Y s|2 + E[
∫ T

s |Z0,N

r − Z
0

r|2dr +
∑N

ℓ=1

∫ T

s |Zℓ,N

r |2dr|FW 0

s ]

≤ C( 1
N + 1

N

∑N
ℓ=1 |xℓ − x|2) + CE[

∫ T

s
|Y N

r − Y r|2dr|FW 0

s ], s ∈ [t, T ], N ≥ 1.

Consequently, from Gronwall’s inequality we have for all N ≥ 1, P -a.s.,

|Y N

s −Y s|2+E
[ ∫ T

s

|Z0,N

r −Z0

r|2dr+
N∑

ℓ=1

∫ T

s

|Zℓ,N

r |2dr|FW 0

s

]
≤ C

( 1
N

+
1

N

N∑

ℓ=1

|xℓ−x|2
)
, s ∈ [t, T ], (4.21)

i.e., estimate (4.13)-i) is proved. It still remains to show ii). For this end, we consider the difference between

the BSDEs solved by (Y
N
, Z

(N)
) and by (Y , Z

0
), and we apply to this difference the Burkholder-Davis-

Gundy inequality. Thus, using Lemma 2.1 and Lemma 4.6, we get, for every m ≥ 1 and some constant Cm

depending on m,

E[(
∫ s+δ

s
|Z0,N

r − Z
0

r|2dr +
∑N

ℓ=1

∫ s+δ

s
|Zℓ,N

r |2dr)m|FW 0

t ]

≤ CmE[supr∈[s,s+δ]

∣∣ ∫ r

s
(Z

0,N

v − Z
0

v)dW
0
v +

∑N
ℓ=1

∫ r

s
Z

ℓ,N

v dW ℓ
v |2m|FW 0

t ]

≤ CmE
[
supr∈[s,s+δ] |Y

N

r − Y r|2m +
( ∫ s+δ

s
|HN (X

(N)
r , Y

N

r , Z
(N)

r )−H(r,X0
r , Y r, Z

0

r)|dr
)2m|FW 0

t

]

≤ Cm( 1
N + 1

N

∑N
ℓ=1 |xℓ − x|2)m + CmE

[( ∫ s+δ

s
(|Z0,N

r − Z
0

r|+( 1
N +εN+ε2NN)

∑N
ℓ=1|Z

ℓ,N

r |)dr
)2m|FW 0

t

]

≤ Cm( 1
N + 1

N

∑N
ℓ=1 |xℓ − x|2)m + Cmδ

mE[(
∫ s+δ

s
|Z0,N

r −Z0

r |2dr +
∑N

ℓ=1

∫ s+δ

s
|Zℓ,N

r |2dr)m|FW 0

t ],

(4.22)

for all t ≤ s < s+ δ ≤ T and all N ≥ N0, for some N0 ≥ 1 large enough (recall that εN = O(N−3/4)). Now

inequality (4.13)-ii) follows easily.
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After having proved Theorem 4.1, we can combine it with Lemma 4.5, in order to improve its statement

concerning the convergence of the saddle point controls of the game with N collectively acting minor agents,

when N tends to +∞. Then we obtain easily the following result:

Theorem 4.2. Under our standard assumptions as well as the condition that εN = O(N−3/4), as N → +∞,

we have that for all m ≥ 1 there is a constant Cm ∈ R, such that for all N ≥ N0,

i) E[(
∫ T

t (|uNs − us|+ |v(j,N)
s − vjs|)2ds)m|FW 0

t ] ≤ Cm( 1
N + 1

N

∑N
ℓ=1 |xℓ − x|2)m, 1 ≤ j ≤ N ;

ii) E[(
∫ T

t
| 1N
∑N

ℓ=1 ψ(v
ℓ,N
s )− E[ψ(vs)|FW 0

T ]|2ds)m|FW 0

t ]

≤ Cm( 1
N + 1

N

∑N
ℓ=1 |xℓ − x|2)m, 1 ≤ j ≤ N, for all bounded Lipschitz functions ψ,

(4.23)

where vs := v(X0
s , X

1

s, Y s, Z
0

s, us), s ∈ [t, T ] (recall that vjs = v(X0
s , X

j

s, Y s, Z
0

s, us)). As, due to our

assumption, 1
N

∑N
ℓ=1 |xℓ − x|2 → 0, this means in particular, that the left-hand sides of the above estimates

converge to zero, as N tends to +∞.

Remark 4.1. Theorem 4.2 describes the limit behavior of the saddle point controls of the game with N

collectively acting minor agents. While statement i) says that the saddle point control of the major player

uN and, for all j ≥ 1, that of the j-th minor agent vj,N converge, for all m ≥ 1, in Lm(Ω, L2([t, T ]))

to the processes u and vj, respectively, statement ii) says that, if we identify in the limit the collectively

acting minor agents with a limit player, whose dynamics is X
1

s = x + W 1
s − W 1

t , s ∈ [t, T ], we get the

associated control process vs = v(X0
s , X

1

s, Y s, Z
0

s, us) as a weak limit. More precisely, with the convention

E[δvs
|FW 0

T ](ψ) = E[δvs
(ψ)|FW 0

T ] = E[ψ(vs)|FW 0

T ], for ψ ∈ Cb(R),

1

N

N∑

ℓ=1

δvℓ,N
s

→ E[δvs
|FW 0

T ] weakly, in Lm(Ω, L2([t, T ])).

Proof. Statement i) is a direct consequence from Lemma 4.5 combined with Theorem 4.1, while statement

ii) of the theorem follows easily from i) and Lemma 2.1.

Recall the definition of u and also that

vs = v(X0
s , X

1

s, Y s, Z
0

s, us), s ∈ [t, T ]. (4.24)

From Lemma 4.1 and the boundedness of the process u (Lemma 4.3) it follows that of the process v.

Consequently, from (4.23) we have, for all m ≥ 1 and all N ≥ N0,

E[(

∫ T

t

| 1
N

N∑

ℓ=1

vℓ,Ns − E[vs|FW 0

T ]|2ds)m|FW 0

t ] ≤ Cm(
1

N
+

1

N

N∑

ℓ=1

|xℓ − x|2)m. (4.25)

Our objective is to characterize the couple (u, v) obtained in Theorem 4.2 as saddle point control for a limit

2-person zero-sum stochastic differential game.

In order to define this 2-person zero-sum game, we introduce the function

F (x0, x1, y, z0, u, v) := f(x0, x1, y, z0, 0, u, v) + b0(x0, x1, z0)z0u, (4.26)

(x0, x1, y, z0, u, v) ∈ R
4 × U × V . We consider as space of admissible controls for Player 1 the set U =

L∞
FW0 (t, T ;U) and for Player 2 the set V = L∞

F1(t, T ;V )(= L∞
FW0,W1 (t, T ;V ) (recall that FN is the filtration

generated by the Brownian motions W 0,W 1, . . . ,WN and augmented by all P -null sets). Given a couple of

admissible controls (u, v) ∈ U × V, we consider the BSDE

dY
u,v

s = −E[F (X0
s , X

1

s, Y
u,v

s , Z
u,v

s , us, vs)|FW 0

T ]ds+ Z
u,v

s dW 0
s , s ∈ [t, T ],

Y
u,v

T = E[Φ(X0
T , X

1

T )|FW 0

T ],
(4.27)
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governed by
X0

s = x0 +W 0
s −W 0

t –the dynamics of Player 1 (the major player)

X
1

s = x+W 1
s −W 1

t –the dynamics of Player 2 (the collectively acting minor agents
who, in the averaging limit, amalgamate to a single player).

From our standard assumptions on the functions f and b0 we have

|F (x0, x1, y, z0, u, v)| ≤ C(1 + |u|2 + |v|2),
|F (x0, x1, y, z0, u, v)− F (x0, x1, y

′, z′0, u, v)| ≤ C(1 + |u|)(|y − y′|+ |z0 − z′0|),
for all (x0, x1, u, v), y, y

′ and z0, z
′
0. Consequently, from standard BSDE arguments we have

Lemma 4.7. Under our standard assumptions, for any (u, v) ∈ U × V, BSDE (4.27) has a unique solution

(Y
u,v
, Z

u,v
) ∈ S2

FW0 (t, T )×L2
FW0 (t, T ). Moreover, for the controls (u, v) ∈ U×V defined respectively in (4.15)

and (4.24), the couple (Y
u,v
, Z

u,v
) coincides with the unique solution (Y , Z

0
) of BSDE (4.12).

Proof. The fact that BSDE (4.27) has a unique solution (Y
u,v
, Z

u,v
) ∈ S2

FW0 (t, T ) × L2
FW0 (t, T ) is an easy

consequence of the above properties of the function F .

Indeed, thanks to them, given (u, v) ∈ U ×V , the coefficient E[F (X0
s , X

1

s, y, z0, us, vs)|FW 0

T ] is, for all

(y, z0) ∈ R
2, FW 0

-progressively measurable, Lipschitz in (y, z0) and bounded, uniformly in (s, ω) ∈ [0, T ]×Ω.

The second part of the statement, the assertion that (Y
u,v
, Z

u,v
) = (Y , Z

0
), follows the fact that the driving

coefficients of the both corresponding BSDEs coincide. Indeed, taking into account the definition of the

controls u and v, we have

E[F (X0
s , X

1

s, Y s, Z
0

s, ūs, v̄s)|FW0

T ] = E[fv̄(X
0
s , X

1

s, Y s, Z
0

s, ūs) + b0(X
0
s , X

1

s, Z
0

s)Z
0

s.ūs|FW0

T ]

= H(s,X0
s , Y s, Z

0

s, ūs) = H(s,X0
s , Y s, Z

0

s) (from (4.10)), s ∈ [t, T ]

(recall that due to our convention fv(x0, x1, y, z0, u) = fv(x0, x1, y, z0, 0, u)).

The stated result follows now from the uniqueness of the solution for BSDE (4.12).

With the help of BSDE (4.27) let us now introduce the pay-off/cost functional for our 2-person zero-

sum limit game:

J(u, v) := Y
u,v

t , (u, v) ∈ U × V . (4.28)

Player 1 (the major player) wants to maximize his payoff J(u, v) through the controls u ∈ U , while Player 2—
the amalgamated collectively acting minor agents—wants to minimize the loss J(u, v) by using the controls

v ∈ V.
For the such defined game we have the following characterization:

Theorem 4.3. The limit (u, v) ∈ U × V in the sense of Theorem 4.2 of the couples of saddle point controls

(uN , v(N)) of the game with N minor agents is a saddle point control for the limit stochastic differential

game defined above:

Y
u,v

s ≤ Y
u,v

s ≤ Y
u,v

s , s ∈ [t, T ], P -a.s., (u, v) ∈ U × V , (4.29)

i.e., in particular, it holds

J(u, v) ≤ J(u, v) ≤ J(u, v), (u, v) ∈ U × V.

Proof. Step 1: Y
u,v

s ≤ Y
u,v

s , s ∈ [t, T ], P -a.s., v ∈ V.
Indeed, given any v ∈ V , we have

F (X0
s , X

1

s, Y s, Z
0

s, ūs, v̄s) = fv̄(X
0
s , X

1

s, Y s, Z
0

s, 0, ūs) + b0(X
0
s , X

1

s, Z
0

s)Z
0

sūs

≤ f(X0
s , X

1

s, Y s, Z
0

s, 0, ūs, vs) + b0(X
0
s , X

1

s, Z
0

s)Z
0

sūs

= F (X0
s , X

1

s, Y s, Z
0

s, ūs, vs), s ∈ [t, T ],
and, thus,

E[F (X0
s , X

1

s, Y s, Z
0

s, ūs, v̄s)|FW 0

T ] ≤ E[F (X0
s , X

1

s, Y s, Z
0

s, ūs, vs)|FW 0

T ], s ∈ [t, T ].
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This allows to conclude with the help of the comparison theorem for BSDEs.

Step 2: Y
u,v

s ≤ Y
u,v

s , s ∈ [t, T ], P -a.s., u ∈ U .
Let u ∈ U . Then, using the definition (us)0≤s≤T and (vs)0≤s≤T in (4.15) and (4.24), respectively, we have

F (X0
s , X

1

s, Y s, Z
0

s, us, v̄s) = F (X0
s , X

1

s, Y s, Z
0

s, us, v̄(X
0
s , X

1

s, Y s, Z
0

s, ū(s,X
0
s , Y s, Z

0

s)))

= Fv̄(s,X
0
s , X

1

s, Y s, Z
0

s, us),
(4.30)

with

Fv̄(s, x0, x1, y, z0, u) := F (x0, x1, y, z0, u, v̄(x0, x1, y, z0, ū(s, x0, y, z0)).

From the properties of f, b0 and those of ū, v̄ we obtain

(1) |Fv̄(s, ξ, u)− Fv̄(s, ξ
′

, u)| ≤ C(1 + |u|)|ξ − ξ
′ |, ξ = (x0, x1, y, z), ξ

′

= (x
′

0, x
′

1, y
′

, z
′

),

(2) |Fv̄(s, ξ, u)| ≤ C(1 + |u|2). (4.31)

Putting

RN
s (x0, y, z0, u) := |E[Fv̄(s, x0, X

1

s, y, z0, u)|FW 0

T ]− 1

N

N∑

ℓ=1

Fv̄(s, x0, X
ℓ
s , y, z0, u)|, (4.32)

we have from Lemma 2.1

E[|RN
s (x0, y, z0, u)|2|FW 0

T ] ≤ CK(
1

N
+

1

N

N∑

ℓ=1

|xℓ − x̄|2), (4.33)

for all N ≥ 1, s ∈ [t, T ], x0, y, z0 ∈ R and u ∈ K, where K ⊂ U is an arbitrary compact subset of U .

Consequently, for all u ∈ U ,

E[|RN
s (X0

s , Y s, Z
0

s, us)|2|FW 0

T ] ≤ Cu(
1

N
+

1

N
|xl − x̄|2), (4.34)

and with the notation

RN,u
s := RN

s (X0
s , Y s, Z

0

s, us), (4.35)

it follows from (4.30) and (4.32) that

E[F (X0
s , X

1

s, Y s, Z
0

s, us, v̄s)|FW 0

T ] ≤ 1
N

∑N
ℓ=1 Fv̄(s,X

0
s , X

ℓ
s, Y s, Z

0

s, us) + RN,u
s

= 1
N

∑N
ℓ=1 F (X

0
s , X

ℓ
s, Y s, Z

0

s, us, v̄(X
0
s , X

ℓ
s , Y s, Z

0

s, ū(s,X
0
s , Y s, Z

0

s))) +RN,u
s

= 1
N

∑N
ℓ=1 F (X

0
s , X

ℓ
s, Y s, Z

0

s, us, v̄(X
0
s , X

ℓ
s , Y s, Z

0

s, ūs)) +RN,u
s

≤ 1
N

∑N
ℓ=1 F (X

0
s , X

ℓ
s, Y s, Z

0

s, us, v̄(X
0
s , X

ℓ
s , Y s, Z

0

s, ū
N,0
s )) +RN,u

s + Cu|ūs − ūN,0
s |,

(4.36)

where

ūN,0
s := ūN (X

(N)
s , Y

N

s , (Z
0,N

s , 0, · · · , 0)).
The latter estimate was obtained thanks to the Lipschitz continuity of F (x0, x1, y, z0, u, v) in v and that of

v̄(x0, x1, y, z0, u) in u.

Thus, using the uniform Lipschitz continuity of f and b0(x0, x1, z0)z0 in (y, z0), we get

E[F (X0
s , X

1

s, Y s, Z
0

s, us, v̄s)|FW 0

T ]

≤ 1
N

∑N
ℓ=1 F (X

0
s , X

ℓ
s, Y s, Z

0

s, us, v̄(X
0
s , X

ℓ
s, Y s, Z

0

s, ū
N,0
s )) + RN,u

s + Cu|ūs − ūN,0
s |

≤ 1
N

∑N
ℓ=1 F (X

0
s , X

ℓ
s, Y

N

s , Z
0,N

s , us, v̄(X
0
s , X

ℓ
s, Y

N

s , Z
0,N

s , ūN,0
s )) +RN,u

s

+C(|Y N

s − Y s|+ |Z0,N

s − Z
0

s|) + Cu|ūs − ūN,0
s |.

(4.37)

Observe that from (3.12) we have

v̄N,0
ℓ,s := v̄Nℓ (X

(N)
s , Y

N

s , (Z
0,N

s , 0, · · · , 0)))
= ṽN (X0

s , X
ℓ
s, Y

N

s , (Z
0,N

s , 0, · · · , 0), ūN,0
s )

= v̄(X0
s , X

ℓ
s, Y

N

s , Z
0,N

s , ūN,0
s ).

(4.38)
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The latter equality follows from the fact that, if zℓ = 0, 1 ≤ ℓ ≤ N , then the minimizer v(ξ, u) of f(ξ, u, .)

(see (4.1)) and the minimizer ṽN (ξ, u) in (3.11) satisfy the relation

ṽN (x0, xℓ, y, (z0, 0, . . . , 0), u) = v(x0, xℓ, y, z0, u).

Therefore, using definition (4.26) of F , we can write

E[F (X0
s , X

1

s, Y s, Z
0

s, us, v̄s)|FW 0

T ]

≤ ( 1
N

∑N
ℓ=1 f(X

0
s , X

ℓ
s, Y

N

s , Z
0,N

s , 0, us, v̄
N,0
ℓ,s ) + 1

N

∑N
ℓ=1 b0(X

0
s , X

ℓ
s, Z

0,N

s )Z
0,N

s .us)

+RN,u
s + C(|Y N

s − Y s|+ |Z0,N

s − Z
0

s|) + Cu|ūs − ūN,0
s |

= HN (X
(N)
s , Y

N

s , (Z
0,N

s , 0, · · · , 0), us, v̄N,0
s ) +RN,u

s + C(|Y N

s − Y s|+ |Z0,N

s − Z
0

s|) + Cu|ūs − ūN,0
s |

≤ HN (X
(N)
s , Y

N

s , (Z
0,N

s , 0, · · · , 0), ū0,Ns , v̄N,0
s ) +RN,u

s + C(|Y N

s − Y s|+ |Z0,N

s − Z
0

s|) + Cu|ūs − ūN,0
s |.
(4.39)

Here we have used that (ūNs , v̄
N,0
s = (v̄N,0

1,s , . . . , v̄
N,0
N,s)) is the saddle point control for the Hamiltonian

HN (X
(N)
s , Y

N

s , (Z
0,N

s , 0, . . . , 0), ·, ·). On the other hand, since the controls uN,0 and u are bounded by some

constant not depending on N (see Lemma 3.2 and take into account that here zℓ = 0, 1 ≤ ℓ ≤ N), we obtain

HN(X
(N)
s , Y

N

s , (Z
0,N

s , 0, · · · , 0), ūN,0
s , v̄N,0

s )

= 1
N

∑N
ℓ=1 fv̄(X

0
s , X

ℓ
s , Y

N

s , Z
0,N

s , 0, ūN,0
s ) + 1

N

∑N
ℓ=1 b0(X

0
s , X

ℓ
s, Z

0,N

s )Z
0,N

s .ūN,0
s

≤ 1
N

∑N
ℓ=1 fv̄(X

0
s , X

ℓ
s , Y s, Z

0

s, 0, ūs) +
1
N

∑N
ℓ=1 b0(X

0
s , X

ℓ
s, Z

0

s)Z
0

s.ūs

+C(|Y N

s − Y s|+ |Z0,N

s − Z
0

s|) + C|ūN,0
s − ūs|

≤ E[fv̄(X
0
s , X

1

s, Y s, Z
0

s, 0, ūs) + b0(X
0
s , X

1

s, Z
0

s)Z
0

s.ūs|FW 0

T ] + C(|Y N

s − Y s|+ |Z0,N

s − Z
0

s|)
+C|ūN,0

s − ūs|+RN
s

= E[F (X0
s , X

1

s, Y s, Z
0

s, ūs, v̄s)|FW 0

T ] +RN
s + C(|Y N

s − Y s|+ |Z0,N

s − Z
0

s|) + C|ūN,0
s − ūs|,

(4.40)

where E[(RN
s )2|FW 0

T ] ≤ C( 1
N + 1

N

∑N
ℓ=1 |xℓ − x̄|2), and we have used Lemma 2.1 for the latter estimate.

Hence, combining the above estimates of Step 2, we get

E[F (X0
s , X

1

s, Y s, Z
0

s, us, v̄s)|FW 0

T ]

≤ E[F (X0
s , X

1

s, Y s, Z
0

s, ūs, v̄s)|FW 0

T ] + C(|Y N

s − Ys|+ |Z0,N

s − Z
0

s|) + C|ūN,0
s − ūs|+RN

s ,
(4.41)

where

E[(RN
s )2|FW 0

T ] ≤ C( 1
N + 1

N

∑N
ℓ=1 |xℓ − x̄|2), N ≥ 1, s ∈ [t, T ].

But, since due to Lemma 4.5 (recall that uN,0
s = uN (X

(N)
s , Y

N

s , (Z
0,N

s , 0 . . . , 0))),

|ūN,0
s − ūs| ≤ C(|Y N

s − Ys|+ |Z0,N

s − Z
0

s|) +RN
s .

we conclude

E[F (X0
s , X

1

s, Y s, Z
0

s, us, v̄s)|FW 0

T ]

≤ E[F (X0
s , X

1

s, Y s, Z
0

s, ūs, v̄s)|FW 0

T ] + C(|Y N

s − Ys|+ |Z0,N

s − Z
0

s|) +RN
s ,

(4.42)

and, thanks to Theorem 4.1, as N → ∞,

E[F (X0
s , X

1

s, Y s, Z
0

s, us, v̄s)|FW 0

T ] ≤ E[F (X0
s , X

1

s, Y s, Z
0

s, ūs, v̄s)|FW 0

T ], dsdP -a.e. (4.43)

Consequently, from the comparison theorem for BSDEs we have

Y
ū,v̄

s = Y s ≥ Y
u,v̄

s , s ∈ [t, T ], u ∈ U ,

and the proof is complete now.
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While we have seen in Theorem 4.3 that (u, v) is a saddle point control of our limit 2-person zero-sum

game, it turns out that it is even the unique saddle point control. Indeed, we have the following uniqueness

result:

Theorem 4.4. Let (u′, v′), (u′′, v′′) ∈ U × V be two couples of saddle point controls in the sense that, for

all (u, v) ∈ U × V ,
J(u, v′) ≤ J(u′, v′) ≤ J(u′, v),

J(u, v′′) ≤ J(u′′, v′′) ≤ J(u′′, v).

Then (u′s, v
′
s) = (u′′s , v

′′
s ), dsdP -a.e.

Proof. Let (u′, v′), (u′′, v′′) ∈ U × V be two couples of saddle point controls in the above sense.

Step 1. Let u ∈ U . Then J(u′, v′) ≥ J(u, v′), P -a.s., and it follows that Y
u′,v′

s ≥ Y
u,v′

s , s ∈ [t, T ], and

E[F (X0
s , X

1

s, Y
u′,v′

s , Z
u′,v′

s , u′s, v
′
s)|FW 0

T ] ≥ E[F (X0
s , X

1

s, Y
u′,v′

s , Z
u′,v′

s , us, v
′
s)|FW 0

T ], dsdP-a.e.

Indeed, putting γs := I{E[F (X0
s , X

1

s, Y
u′,v′

s , Z
u′,v′

s , u′s, v
′
s)|FW 0

T ] ≥ E[F (X0
s , X

1

s, Y
u′,v′

s , Z
u′,v′

s , us, v
′
s)|FW 0

T ]},
the process ũs := u′sγs + us(1− γs), s ∈ [t, T ], defines an admissible control in U , and

E[F (X0
s , X

1

s, Y
u′,v′

s , Z
u′,v′

s , ũs, v
′
s)|FW 0

T ] ≥ E[F (X0
s , X

1

s, Y
u′,v′

s , Z
u′,v′

s , u′s, v
′
s)|FW 0

T ], s ∈ [t, T ].

Consequently, the comparison theorem yields Y
ũ,v′

s ≥ Y
u′,v′

s , P-a.s., s ∈ [t, T ]. But, since on the other hand,

J(ũ, v′) ≤ J(u′, v′), it follows from the converse comparison theorem that Y
ũ,v′

s = Y
u′,v′

s , P-a.s., s ∈ [t, T ],

and

E[F (X0
s , X

1

s, Y
u′,v′

s , Z
u′,v′

s , ũs, v
′
s)|FW 0

T ] = E[F (X0
s , X

1

s, Y
u′,v′

s , Z
u′,v′

s , u′s, v
′
s)|FW 0

T ], dsdP-a.e.

But this implies

E[F (X0
s , X

1

s, Y
u′,v′

s , Z
u′,v′

s , us, v
′
s)|FW 0

T ] ≤ E[F (X0
s , X

1

s, Y
u′,v′

s , Z
u′,v′

s , u′s, v
′
s)|FW 0

T ], dsdP-a.e.,

from where we see that Y
u′,v′

s ≥ Y
u,v′

s , s ∈ [t, T ], and u′s is a maximum point of u → E[F (X0
s , X

1

s, Y
u′,v′

s ,

Z
u′,v′

s , u, v′s)|FW 0

T ], dsdP-a.e. On the other hand, let us also observe that, from the definition of F and the

assumptions on f ,

(
DuE[F (X0

s , X
1

s, Y
u′,v′

s , Z
u′,v′

s , u1, v′s)|FW 0

T ]−DuE[F (X0
s , X

1

s, Y
u′,v′

s , Z
u′,v′

s , u2, v′s)|FW 0

T ], u1 − u2
)

≤ −λ|u1 − u2|2, u1, u2 ∈ U.

Consequently, u′s is the unique maximum point of u→ E[F (X0
s , X

1

s, Y
u′,v′

s , Z
u′,v′

s , u, v′s)|FW 0

T ].

Step 2. Let v ∈ V . Following the argument in Step 1, but with putting

γs := I{F (X0
s , X

1

s, Y
u′,v′

s , Z
u′,v′

s , u′s, v
′
s) ≤ F (X0

s , X
1

s, Y
u′,v′

s , Z
u′,v′

s , u′s, vs)}

and ṽs := v′sγs + vs(1 − γs), s ∈ [t, T ], we have ṽ ∈ V , and

F (X0
s , X

1

s, Y
u′,v′

s , Z
u′,v′

s , u′s, ṽs) ≤ F (X0
s , X

1

s, Y
u′,v′

s , Z
u′,v′

s , u′s, v
′
s), s ∈ [t, T ].

Consequently, from the comparison theorem it follows that Y
u′,ṽ

s ≤ Y
u′,v′

s , P-a.s., s ∈ [t, T ], and since on the

other hand, J(u′, ṽ) ≥ J(u′, v′), the converse comparison theorem implies Y
u′,ṽ

s = Y
u′,v′

s , P-a.s., s ∈ [t, T ],

and

E[F (X0
s , X

1

s, Y
u′,v′

s , Z
u′,v′

s , u′s, ṽs)|FW 0

T ] = E[F (X0
s , X

1

s, Y
u′,v′

s , Z
u′,v′

s , u′s, v
′
s)|FW 0

T ], dsdP-a.e.
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Thus,

F (X0
s , X

1

s, Y
u′,v′

s , Z
u′,v′

s , u′s, ṽs) = F (X0
s , X

1

s, Y
u′,v′

s , Z
u′,v′

s , u′s, v
′
s), dsdP-a.e.,

and

F (X0
s , X

1

s, Y
u′,v′

s , Z
u′,v′

s , u′s, vs) ≥ F (X0
s , X

1

s, Y
u′,v′

s , Z
u′,v′

s , u′s, v
′
s), dsdP-a.e.,

which implies that Y
u′,v′

s ≤ Y
u′,v

s , s ∈ [t, T ], but also that v′s is a minimum point of v → F (X0
s , X

1

s,

Y
u′,v′

s , Z
u′,v′

s , u′s, v). On the other hand, since

(
DvF (X

0
s , X

1

s, Y
u′,v′

s , Z
u′,v′

s , u′, v1)−DvF (X
0
s , X

1

s, Y
u′,v′

s , Z
u′,v′

s , u′, v2), v1 − v2
)

≥ λ|v1 − v2|2, v1, v2 ∈ V,

it follows that v′s is the unique minimum point of v → F (X0
s , X

1

s, Y
u′,v′

s , Z
u′,v′

s , u′s, v).

Step 3. Let (u′, v′), (u′′, v′′) ∈ U × V be two couples of saddle point controls. Then, combining our results

from the Steps 1 and 2 we have

Y
u′,v′

s ≥ Y
u′′,v′

s ≥ Y
u′′,v′′

s ≥ Y
u′,v′′

s ≥ Y
u′,v′

s , s ∈ [t, T ],

i.e.,

Y
u′,v′

s = Y
u′′,v′

s = Y
u′′,v′′

s = Y
u′,v′′

s = Y
u′,v′

s , s ∈ [t, T ].

But from Y
u′,v′

s = Y
u′′,v′

s , s ∈ [t, T ], and the uniqueness of the semimartingale decomposition of this process

we deduce that Z
u′,v′

s = Z
u′′,v′

s dsdP-a.e., and also

E[F (X0
s , X

1

s, Y
u′,v′

s , Z
u′,v′

s , u′′s , v
′
s)|FW 0

T ] = E[F (X0
s , X

1

s, Y
u′,v′

s , Z
u′,v′

s , u′s, v
′
s)|FW 0

T ], dsdP-a.e.

But this means that also u′′s is a maximum point of E[F (X0
s , X

1

s, Y
u′,v′

s , Z
u′,v′

s , ., v′s)|FW 0

T ], dsdP-a.e., and,

thus, due to Step 1, u′s = u′′s , dsdP-a.e.

Let us now show that also v′s = v′′s , dsdP -a.e. As we have seen already above, Y
u′,v′

s = Y
u′′,v′′

s , s ∈
[t, T ], and from the uniqueness of the semimartingale decomposition of this process we get Z

u′,v′

s = Z
u′′,v′′

s ,

dsdP-a.e., and

E[F (X0
s , X

1

s, Y
u′,v′

s , Z
u′,v′

s , u′′s , v
′′
s )|FW 0

T ] = E[F (X0
s , X

1

s, Y
u′,v′

s , Z
u′,v′

s , u′, v′s)|FW 0

T ], dsdP-a.e.

Since, on the other hand, for v = v′′ in Step 2,

F (X0
s , X

1

s, Y
u′,v′

s , Z
u′,v′

s , u′s, v
′′
s ) ≥ F (X0

s , X
1

s, Y
u′,v′

s , Z
u′,v′

s , u′s, v
′
s), dsdP-a.e.,

it follows that

F (X0
s , X

1

s, Y
u′,v′

s , Z
u′,v′

s , u′s, v
′′
s ) = F (X0

s , X
1

s, Y
u′,v′

s , Z
u′,v′

s , u′s, v
′
s), dsdP-a.e.,

i.e., also v′′s is a minimum point of F (X0
s , X

1

s, Y
u′,v′

s , Z
u′,v′

s , u′s, .), dsdP-a.e. But due to Step 2, the unique

minimum point is v′s. Consequently, v
′
s = v′′s , dsdP-a.e.

Since we have already shown that u′s = u′′s , dsdP-a.e., we conclude that the saddle point controls

(u′, v′) and (u′′, v′′) coincide.

5 Appendix

5.1 Appendix 1

Appendix 1 is devoted to the proof of Proposition 2.3.
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Proof. (of Proposition 2.3). Without loss of the generality, we may suppose that b0 = 0 and b1 = 0. We

note that with this convention and with the notation

σ1,j,N
u :=

1

N

N∑

ℓ=1

σ1(X
0,N
u , Xj,N

u , Xℓ,N
u )− E[σ1(X

0

u, X
j

u, X
j+1

u )|FW 0,W j

T ],

for t ≤ r ≤ s ≤ T,

Xj,N
r −X

j

r = (xj − x) +

∫ r

t

σ1,j,N
u dW j

u ,

from where we deduce
1
N

∑N
j=1 |Xj,N

r −X
j

r|2
≤ 2

N

∑N
j=1 |xj − x|2 + 2

N

∑N
j=1 |

∫ r

t σ
1,j,N
u dW j

u |2
= 2

N

∑N
j=1 |xj − x|2 + 2|M (N)

r |2,
(5.1)

where

M (N)
r =

N∑

j=1

ej

∫ r

t

1√
N
σ1,j,N
u dW j

u , r ∈ [t, T ],

is an ℓ2(R
d)-valued F-martingale, and ej = (δj,k)k≥1 is the element of ℓ2 with δj,j = 1 and δj,k = 0, k 6= j.

Consequently, due to the Burkholder-Davis-Gundy Inequality, for some constant Cm ∈ R which can vary

from line to line but doesn’t depend on N ,

E[supr∈[t,s](
1
N

∑N
j=1 |Xj,N

r −X
j

r|2)m]

≤ Cm( 1
N

∑N
j=1 |xj − x|2)m + CmE[supr∈[t,s] |M

(N)
r |2m]

≤ Cm( 1
N

∑N
j=1 |xj − x|2)m + CmE[〈M (N)〉ms ],

(5.2)

where

〈M (N)〉s =
1

N

N∑

j=1

∫ s

t

|σ1,j,N
u |2du, s ∈ [t, T ],

is the quadratic variation process of the martingale M (N) = (M
(N)
s )s∈[t,T ]. Hence, with the notation

ζ1,j,ℓ(r) := σ1(X
0

r, X
j

r, X
ℓ

r)− E[σ1(X
0

r, X
j

r, X
ℓ

r)|FW 0,W j

T ], (5.3)

we have

E[supr∈[t,s](
1
N

∑N
j=1 |Xj,N

r −X
j

r|2)m]

≤ Cm( 1
N

∑N
j=1 |xj − x|2)m + CmE[( 1

N

∑N
j=1

∫ s

t
|σ1,j,N

r |2dr)m]

≤ Cm( 1
N

∑N
j=1 |xj − x|2)m

+CmE[(
∫ s

t
|X0,N

r −X
0

r|2dr)m] (=: J1,N
s )

+CmE[( 1
N

∑N
j=1

∫ s

t
|Xj,N

r −X
j

r|2dr +
∫ s

t
( 1
N

∑N
ℓ=1 |Xℓ,N

r −X
ℓ

r|2)dr)m](=: J2,N
s )

+CmE[( 1
N

∑N
j=1

∫ s

t | 1N
∑N

ℓ=1,ℓ 6=j ζ1,j,ℓ(r)|2dr)m] (=: J3,N
s )

+ Cm

N2m .

(5.4)

The term J2,N
s will be handled by Gronwall’s Lemma. Let us begin with estimating J1,N

s . Obviously, putting

σ0,N
r := 1

N

∑N
ℓ=1 σ0(X

0,N
r , Xℓ,N

r )− E[σ0(X
0

r , X
1

r)|FW 0

T ], and

ζ0,ℓ(r) := σ0(X
0

r, X
ℓ

r)− E[σ0(X
0

r , X
ℓ

r)|FW 0

T ], r ∈ [t, T ],
(5.5)

we obtain,

E[supr∈[t,s] |X0,N
r −X

0

r|2m] ≤ CmE[(
∫ s

t
|σ0,N

r |2dr)m]

≤ CmE[(
∫ s

t
|X0,N

r −X
0

r|2dr)m] + CmE[( 1
N

∑N
ℓ=1

∫ s

t
|Xℓ,N

r −X
ℓ

r|2dr)m]

+CmE[(
∫ s

t
| 1N
∑N

ℓ=1 ζ0,ℓ(r)|2dr)m] (=: J4,N
s ).

(5.6)

The following estimates of J3,N
s and J4,N

s allow to complete the proof by applying Grownwall’s Lemma to

the system (5.4)-(5.6).
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Lemma 5.1. For some constant Cm independent of N ≥ 1, with the notation Λj,N := {1, . . . , N} \ {j}, we
have

E[
∣∣∣

N∑

ℓ=1

ζ0,ℓ(r)
∣∣∣
2m

|FW 0

T ] ≤ CmN
m, E[

∣∣∣
∑

ℓ∈Λj,N

ζ1,j,ℓ(r)
∣∣∣
2m

|FW 0,W j

T ] ≤ CmN
m, N ≥ 1. (5.7)

Proof. We give the proof only for E[
∣∣∣
∑

ℓ∈Λj,N
ζj,ℓ(r)|2m|FW 0,W j

T ], that for E[
∣∣∣
∑N

ℓ=1 ζ0,ℓ(r)
∣∣∣
2m

|FW 0

T ] is anal-

ogous. For simplifying the argument we assume that d = 1. For the multi-dimensional case d > 1 the random

variable ζ1,j,ℓ(r) is matrix-valued and the argument we develop shall be applied component-wise. For our

argument we will need the set

Γm,N,j := {(ℓ1, . . . , ℓ2m) ∈ Λ2m
j,N | ∀i(1 ≤ i ≤ 2m), ∃i′ ∈ {1, . . . , 2m} \ {i} : ℓi = ℓi′}.

Remark that the cardinal number of Γm,N,j satisfies the estimate

card(Γm,N,j) ≤ CmN
m, N ≥ 1,

for some Cm ∈ R not depending on N .

We begin the proof of the lemma by remarking that knowing FW 0,W j

T the processes X
ℓ
, ℓ ≥ 1 with

ℓ 6= j, are conditionally i.i.d. Consequently, also the random variables ζ1,j,ℓ(r), ℓ ∈ {1, . . . , N} \ {j}, are
conditionally i.i.d., knowing FW 0,W j

T . Moreover, E[ζ1,j,ℓ(r)|FW 0 ,W j

T ] = 0. Thus,

E[
∣∣∣ 1√

N

∑
ℓ∈Λj,N

ζ1,j,ℓ(r)
∣∣∣
2m

|FW 0,W j

T ] = 1
Nm

∑
ℓ1,...,ℓ2m∈Λj,N

E[
∏2m

p=1 ζ1,j,ℓp(r)|F
W 0,W j

T ]

= 1
Nm

∑
(ℓ1,...,ℓ2m)∈Γm,N,j

E[
∏2m

p=1 ζ1,j,ℓp(r)|F
W 0 ,W j

T ]

≤ 1
Nm

∑
(ℓ1,...,ℓ2m)∈Γm,N,j

∏2m
p=1(E[

∣∣∣ζ1,j,ℓp(r)
∣∣∣
2m

|FW 0,W j

T ])
1

2m .

(5.8)

In virtue of the boundedness of σ1 and the estimate of the cardinal number of Γm,N,j this yields

E[
∣∣∣

1√
N

∑

ℓ∈Λj,N

ζ1,j,ℓ(r)
∣∣∣
2m

|FW 0,W j

T ] ≤ Cm, (5.9)

for some Cm ∈ R independent of N ≥ 1. The statement of the lemma follows easily from this.

5.2 Appendix 2

This appendix is devoted to the proof of Proposition 2.4.

Proof. (of Proposition 2.4). Taking the difference between the BSDE for Y N and that for Y we obtain

Y N
s − Y s = { 1

N

N∑

ℓ=1

Φ(X0,N
T , Xℓ,N

T )− E[Φ(X
0

T , X
1

T )|FW 0

T ]} (:= η1,N )

+

∫ T

s

(
1

N

N∑

ℓ=1

(f(X0,N
r , Xℓ,N

r , Y N
r , Z0,N

r , Zℓ,N
r )− f(X

0

r , X
ℓ

r, Y
N
r , Z0,N

r , Zℓ,N
r )))dr (:=

∫ T

s
η2,Nr dr)

+

∫ T

s

(
1

N

N∑

ℓ=1

(f(X
0

r, X
ℓ

r, Y
N
r , Z0,N

r , Zℓ,N
r )− f(X

0

r, X
ℓ

r, Y r, Z
0

r, 0)))dr (:=
∫ T

s
η3,Nr dr)

+

∫ T

s

(
1

N

N∑

ℓ=1

f(X
0

r, X
ℓ

r, Y r, Z
0

r, 0)− E[f(X
0

r , X
1

r, Y r, Z
0

r, 0)|FW 0

T ])dr (:=
∫ T

s
η4,Nr dr)

−
∫ T

s

(Z0,N
r − Z

0

r)dW
0
r −

N∑

ℓ=1

∫ T

s

Zℓ,N
r dW ℓ

r , s ∈ [t, T ].

(5.10)
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From Proposition 2.3 and Lemma 2.1 we know already that

E[|η1,N |2m] ≤ Cm(
1

N
+

1

N

N∑

ℓ=1

|xℓ − x|2)m, N ≥ 1, (5.11)

for some constant Cm independent of N . Furthermore, again from Proposition 2.3 we have

E[
∫ T

t |η2,Nr |2mdr] ≤ CmE[supr∈[t,T ](|X0,N
r −X

0

r|2 + 1
N

∑N
ℓ=1 |Xℓ,N

r −X
ℓ

r|2)m]

≤ Cm( 1
N + 1

N

∑N
ℓ=1 |xℓ − x|2)m.

(5.12)

As concerns the convergence of

∫ T

s

η4,Nr dr =

∫ T

s

(
1

N

N∑

ℓ=1

f(X
0

r , X
ℓ

r, Y r, Z
0

r , 0)− E[f(X
0

r, X
1

r, Y r, Z
0

r, 0)|FW 0

T ])dr, (5.13)

the same argument as that for the proof of Lemma 5.1 can be used. Indeed, recalling that the function f

is bounded and that the processes X
0
, Y and Z

0
are F

W 0

-adapted, we can use the fact that the processes

X
ℓ
, ℓ ≥ 1, are conditionally i.i.d., knowing FW 0

T , in order to conclude that

E[

∫ T

t

|η4,Nr |2mdr] ≤ Cm

Nm
, N ≥ 1. (5.14)

The above estimates allow now to get by a BSDE standard argument that

E[sups∈[t,T ] |Y N
s − Y s|2m + (

∫ T

t |Z0,N
s − Z

0

s|2ds+
∑N

ℓ=1

∫ T

t |Zℓ,N
s |2ds)m]

≤ Cm(
1

N
+

1

N

N∑

ℓ=1

|xℓ − x|2)m.
(5.15)

The proof is complete.

5.3 Appendix 3

Proof. (of Lemma 3.1). For convenience we omit the dependence on ξ(N), we deduce from the fact that

(uN , v(N)) is the saddle point of HN and the definition of (ũN , ṽ(N)) at one hand

HN (uN , v(N)) ≥ HN (ũN , v(N)) ≥ HN (ũN , ṽ(N)(ũN ))

≥ HN (uN , ṽ(N)(uN )) ≥ HN (uN , v(N)),

i.e., for all u ∈ U,

HN (ũN , v(N)) = HN (uN , v(N)) ≥ HN (u, v(N)).

Consequently, ũN , uN ∈ U are both maximum points of the strict concave function HN (., v(N)) (see (3.8)).

This implies ũN = uN . On the other hand, using this equality we have

HN (uN , ṽ(N)(ũN )) = HN (ũN , ṽ(N)(ũN)) ≤ HN (ũN , v) = HN (uN , v),

i.e., ṽ(N)(ũN) ∈ V N is a minimum point of the strict convex function HN (uN , .) (see (3.8) again), and it

follows that ṽ(N)(ũN) = v(N).

We continue with the proof of Lemma 3.2.
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Proof. (of Lemma 3.2). Let ξ(N) = (x(N) = (x0, . . . , xN ), y, z(N) = (z0, . . . , zN)), ξ
(N)
ℓ = (x0, xℓ, y, z

(N))

and, given an arbitrary u ∈ U , ṽN,ℓ := ṽN (ξ
(N)
ℓ , u), 1 ≤ ℓ ≤ N. Since the function v(N) → HN (ξ(N), u, v(N))

achieves its minimum at ṽ(N)(ξ(N), u), we have, for all 1 ≤ ℓ ≤ N ,

0 = N(DvℓHN )(ξ(N), u, ṽ(N)(ξ(N), u))

= (Dvℓf)(x0, xℓ, y, z0, zℓ, u, ṽN,ℓ) + εN
∑N

i=1 b1(x0, xℓ, zi)zi.
(5.16)

Thus,

0 =
(
(Dvℓf)(x0, xℓ, y, z0, zℓ, u, ṽN,ℓ)− (Dvℓf)(x0, xℓ, y, z0, zℓ, u, 0), ṽN,ℓ

)

+
(
(Dvℓf)(x0, xℓ, y, z0, zℓ, u, 0) + εN

∑N
i=1 b1(x0, xℓ, zi)zi, ṽN,ℓ

)
,

(5.17)

and using that

|
N∑

i=1

b1(x0, xℓ, zi)zi| ≤ min{C
N∑

i=1

|zi|, CN}, for all (x0, xℓ, zi) ∈ R
3, (5.18)

we deduce

|ṽN (ξ
(N)
ℓ , u)| ≤ C +

µ

λ
|u|+ CεN min{

N∑

i=1

|zi|, N}. (5.19)

On the other hand, since u → HN (ξ(N), u, v(N)(ξ(N))) achieves a maximum at ũN(ξ(N))(= uN (ξ(N))), with

the notation ξℓ = (x0, xℓ, y, z0, zℓ) it holds

0 = 1
N

∑N
ℓ=1

(
(Duf)(ξℓ, ũ

N (ξ(N)), v̄Nℓ (ξ(N))) − (Duf)(ξℓ, 0, v̄
N
ℓ (ξ(N))), ũN (ξ(N))

)

+
(

1
N

∑N
ℓ=1(Duf)(ξℓ, 0, v̄

N
ℓ (ξ(N))) + 1

N

∑N
ℓ=1 b0(x0, xℓ, z0)z0, ũ

N (ξ(N))
)

≤ −λ|ũN(ξ(N))|2 + (C + µ
N

∑N
ℓ=1 |v̄Nℓ (ξ(N))|)|ũN (ξ(N))|.

(5.20)

Hence,

|ũN (ξ(N))| ≤ C + µ
λ

1
N

∑N
ℓ=1 |v̄Nℓ (ξ(N))|

= C + µ
λ

1
N

∑N
ℓ=1 |ṽN (ξ

(N)
ℓ , ũN (ξ(N)))|

≤ C + µ
λ

1
N

∑N
ℓ=1(C + µ

λ |ũN (ξ(N))|) + εNNC

≤ C + CεNN + (µλ )
2|ũN(ξ(N))|.

(5.21)

From µ < λ, it follows that

|ũN(ξ(N))| ≤ C(1 + εNN), (5.22)

and since v̄(N)(ξ(N)) = (ṽN (ξ
(N)
l , ũN(ξ(N))))1≤l≤N , we conclude that

|v̄Nℓ (ξ(N))| ≤ C(1 + εNN), 1 ≤ ℓ ≤ N, i.e.,

|v̄(N)(ξ(N))| ≤
√
NC(1 + εNN).

(5.23)

On the other hand, from (5.20),

0 ≤ −λ|ũN (ξ(N))|2 + (C +
µ

N

N∑

ℓ=1

|ṽN (ξ
(N)
ℓ , ũN(ξ(N)))|)|ũN (ξ(N))|,

we see that

|ũN(ξ(N))| ≤ C +
µ

λ
(C +

µ

λ
|ũN (ξ(N))|+ CεN

N∑

i=1

|zi|),

from where, since 0 < µ < λ, we get that

|ũN(ξ(N))| ≤ C(1 + εN

N∑

i=1

|zi|). (5.24)
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Finally, putting (5.19), (5.22) and (5.24) together, we complete the proof of the growth conditions (i) and

(ii) for the saddle point control.

It remains to prove the Lipschitz properties (iii) and (iv). For this end, we observe that, since

0 = (Dvℓf)(ξℓ, u, ṽN (ξ
(N)
ℓ , u)) + εN

N∑

i=1

b1(x0, xℓ, zi)zi, 1 ≤ ℓ ≤ N,

we get from Assumption Ai), for all u, ũ ∈ U,

0 =
(
(Dvℓf)(ξℓ, u, ṽN (ξ

(N)
ℓ , u))− (Dvℓf)(ξ̃ℓ, ũ, ṽN (ξ̃

(N)
ℓ , ũ)), ṽN (ξ

(N)
ℓ , u)− ṽN (ξ̃

(N)
ℓ , ũ)

)

+εN
∑N

i=1

(
b1(x0, xℓ, zi)zi − b1(x̃0, x̃ℓ, z̃i)z̃i, ṽN (ξ

(N)
ℓ , u)− ṽN (ξ̃

(N)
ℓ , ũ)

)

≥ λ|ṽN (ξ
(N)
ℓ , u)− ṽN (ξ̃

(N)
ℓ , ũ)|2

−|(Dvlf)(ξℓ, u, ṽN (ξ̃
(N)
ℓ , ũ))− (Dvℓf)(ξ̃ℓ, ũ, ṽN (ξ̃

(N)
ℓ , ũ))||ṽN (ξ

(N)
ℓ , u)− ṽN (ξ̃

(N)
ℓ , ũ)|

−εN
∑N

i=1 |b1(x0, xℓ, zi)zi − b1(x̃0, x̃ℓ, z̃i)z̃i||ṽN (ξ
(N)
ℓ , u)− ṽN (ξ̃

(N)
ℓ , ũ)|

≥ λ|ṽN (ξ
(N)
ℓ , u)− ṽN (ξ̃

(N)
ℓ , ũ)|2 − (C|ηℓ − η̃ℓ|+ µ|u− ũ|)|ṽN (ξ

(N)
ℓ , u)− ṽN (ξ̃

(N)
ℓ , ũ)|

−εN
{
N(|x0 − x̃0|+ |xℓ − x̃ℓ|) +

∑N
i=1 |zi − z̃i|

}
|ṽN (ξ

(N)
ℓ , u)− ṽN (ξ̃

(N)
ℓ , ũ)|,

and, consequently,

|ṽN (ξ
(N)
ℓ , u)− ṽN (ξ̃

(N)
ℓ , ũ)| ≤ C|ηℓ − η̃ℓ|+ µ

λ |u− ũ|+ CεNN(|x0 − x̃0|+ |xℓ − x̃ℓ|)

+CεN

N∑

i=1

|zi − z̃i|,
(5.25)

where ηℓ := (x0, xℓ, y, z0), η̃ℓ := (x̃0, x̃ℓ, ỹ, z̃0). With a similar argument, using again Assumption Ai) but

exploiting now the strict concavity of f in u, we deduce from

0 =
1

N

N∑

ℓ=1

(Duf)(ξℓ, ū
N (ξ(N)), v̄Nℓ (ξ(N))) +

1

N

N∑

ℓ=1

b0(x0, xℓ, z0)z0

that

|ūN (ξ(N))− ūN(ξ̃(N))| ≤ µ
Nλ

∑N
ℓ=1 |v̄Nℓ (ξ(N))− v̄Nℓ (ξ̃(N))|

+C
{
|x0 − x̃0|+ |y − ỹ|+ |z0 − z̃0|+ 1

N

∑N
ℓ=1(|xℓ − x̃ℓ|+ |zℓ − z̃ℓ|)

}
.

(5.26)

Hence, recalling that v̄Nℓ (ξ(N)) = ṽN (ξ
(N)
ℓ , ūN(ξ(N))) and using (5.25) as well as µ/λ < 1, we obtain

|ūN (ξ(N))− ūN (ξ̃(N))|
≤ C(|x0 − x̃0|+ |y − ỹ|+ |z0 − z̃0|) + C(1 + εNN){|x0 − x̃0|+ 1

N

∑N
ℓ=1(|xℓ − x̃ℓ|+ |zℓ − z̃ℓ|)},

and combining the latter result with (5.25) we have

|v̄Nℓ (ξ(N))− v̄Nℓ (ξ̃(N))| = |ṽN (ξ
(N)
ℓ , ūN(ξ(N)))− ṽN (ξ̃

(N)
ℓ , ūN(ξ̃(N)))|

≤ C|ηℓ − η̃ℓ|+ µ
λ |ūN (ξ(N))− ūN(ξ̃(N))|+ CεNN(|x0 − x̃0|+ |xℓ − x̃ℓ|) + CεN

∑N
i=1 |zi − z̃i|

≤ C|ηℓ − η̃ℓ|+ C(1 + εNN)(|x0 − x̃0|+ |xℓ − x̃ℓ|+ 1
N

∑N
i=1(|xi − x̃i|+ |zi − z̃i|)).

(5.27)

With the relations (5.26) and (5.27) we have gotten the Lipschitz property stated for the saddle point control

in the lemma. The proof is complete.

5.4 Appendix 4

Proof. (of Lemma 4.2). The statement 1) for H is a direct consequence of the estimates for f in (3.6) and

for v (see Lemma 4.1). In order to prove statement 2), it suffices to consider the function

H0(s, ξ, u) := E[fv̄(ξ,X
1

s, u)|FW 0

T ], (s, ξ, u) ∈ [0, T ]× R
3 × U,
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and to determine its derivative with respect to u. For this note that, for all h ∈ U ,

H0(s, ξ, u+ h)−H0(s, ξ, u) = E[
∫ 1

0 ((Dufv̄)(ξ,X
1

s, u+ δh), h)dδ|FW 0

T ]

=
(
E[(Duf)(ξ,X

1

s, u, v̄(ξ,X
1

s, u))|FW 0

T ], h
)

+E[
∫ 1

0

(
(Duf)(ξ,X

1

s, u+ δh, v̄(ξ,X
1

s, u+ δh))− (Duf)(ξ,X
1

s, u, v̄(ξ,X
1

s, u)), h
)
dδ|FW 0

T ]

=
(
E[(Duf)(ξ,X

1

s, u, v̄(ξ,X
1

s, u))|FW 0

T ], h
)
+ ρ(h),

where, due to Lemma 4.1,

|ρ(h)| ≤ |h|E[

∫ 1

0

(C|h|+ µ|v̄(ξ,X1

s, u+ δh)− v̄(ξ,X
1

s, u)|)dδ|FW 0

T ] ≤ C|h|2.

Hence,

(DuH0)(s, ξ, u) = E[(Duf)(ξ,X
1

s, u, v̄(ξ,X
1

s, u))|FW 0

T ],

and statement 2) of the lemma follows.

Now by using this relation and the assumptions on f and the Lipschitz property of v (Lemma 4.1),

we get
(
(DuH)(s, ξ, u)− (DuH)(s, ξ, u′), u− u′

)
=
(
(DuH0)(s, ξ, u)− (DuH0)(s, ξ, u

′), u− u′
)

= E[
(
(Duf)(ξ,X

1

s, u, v̄(ξ,X
1

s, u))− (Duf)(ξ,X
1

s, u
′, v̄(ξ,X

1

s, u)), u− u′
)
|FW 0

T ]

+E[
(
(Duf)(ξ,X

1

s, u
′, v̄(ξ,X

1

s, u))− (Duf)(ξ,X
1

s, u
′, v̄(ξ,X

1

s, u
′)), u − u′

)
|FW 0

T ]

≤ −λ|u− u′|2 + µE[|v̄(ξ,X1

s, u)− v̄(ξ,X
1

s, u
′)||FW 0

T ]|u − u′|
≤ −λ|u− u′|2 + µ2

λ |u− u′|2 = −(λ− µ2

λ )|u− u′|2.
The proof is complete now.

We continue with the proof of Lemma 4.3.

Proof. (of Lemma 4.3). From the definition of u(s, ξ) as the maximum point of the C1-function H(s, ξ, .) :

U → R it follows that, for all (s, ξ) ∈ [t, T ]× R
3,

0 =
(
(DuH)(s, ξ, ū(s, ξ)), ū(s, ξ)

)

=
(
(DuH)(s, ξ, ū(s, ξ))− (DuH)(s, ξ, 0), ū(s, ξ)

)

+
(
E[(Duf)(ξ,X

1

s, 0, v̄(ξ,X
1

s, 0))|FW 0

T ] + E[b0(x0, X
1

s, z0)z0|FW 0

T ], ū(s, ξ)
)

≤ −(λ− µ2

λ )|ū(s, ξ)|2 + C(1 + E[µ|v̄(ξ,X1

s, 0)|])|ū(s, ξ)|
≤ −(λ− µ2

λ )|ū(s, ξ)|2 + C|ū(s, ξ)|,
(see Lemmas 4.2 and 4.1), i.e.,

|ū(s, ξ)| ≤ C, (s, ξ) ∈ [t, T ]× R
3.

For the same reason, using Lemmas 4.2 and 4.1 again, we also have

0 =
(
(DuH)(s, ξ, ū(s, ξ))− (DuH)(s, ξ′, ū(s, ξ′)), ū(s, ξ)− ū(s, ξ′)

)

≤ −(λ− µ2

λ )|ū(s, ξ)− ū(s, ξ′)|2 +
(
(DuH)(s, ξ, ū(s, ξ′))− (DuH)(s, ξ′, ū(s, ξ′)), ū(s, ξ)− ū(s, ξ′)

)

≤ −(λ− µ2

λ )|ū(s, ξ)− ū(s, ξ′)|2 + {E[|(Duf)(ξ,X
1

s, ū(s, ξ
′), v̄(ξ,X

1

s, ū(s, ξ
′)))

−(Duf)(ξ
′, X

1

s, ū(s, ξ
′), v̄(ξ′, X

1

s, ū(s, ξ
′)))||FW 0

T ]

+E[|b0(x0, X
1

s, z0)z0 − b0(x
′
0, X

1

s, z
′
0)z

′
0||FW 0

T ]}|ū(s, ξ)− ū(s, ξ′)|
≤ −(λ− µ2

λ )|ū(s, ξ)− ū(s, ξ′)|2
+C
(
|ξ − ξ′|+ E[µ|v̄(ξ,X1

s, ū(s, ξ
′))− v̄(ξ′, X

1

s, ū(s, ξ
′))||FW 0

T ]
)
|ū(s, ξ)− ū(s, ξ′)|

≤ − 1
2 (λ− µ2

λ )|ū(s, ξ)− ū(s, ξ′)|2 + C|ξ − ξ′|2.

This proves the Lipschitz continuity of u(s, .), uniformly with respect to s ∈ [0, T ].
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5.5 Appendix 5

Let us begin with the proof of Lemma 4.5.

Proof. (of Lemma 4.5). Step 1. Recalling the definition of ṽN in (3.11) and that of v in (4.1), we see that

ṽN (x0, x1, y, (z0, 0, . . . , 0), u) = v(x0, x1, y, z0, u). (5.28)

On the other hand, from (5.25),

|ṽN (x0, x1, y, (z0, z1, . . . , zN), u)− ṽN (x0, x1, y, (z0, 0, . . . , 0), u)| ≤ CεN

N∑

i=1

|zi|,

for all (x0, x1, y, z0, (z1, . . . , zN), u) ∈ R
N+4 × U. Consequently,

|ṽN (x0, x1, y, z
(N), u)− v(x0, x1, y, z0, u)| ≤ CεN

N∑

i=1

|zi|. (5.29)

Step 2. The objective of this step is to estimate the difference between the controls uN and u.

Let us use here in our computations the notations ξ := (x0, y, z0) and (ξ, x1) := (x0, x1, y, z0). Recall

also the notations ξ(N) = (x(N), y, z(N)) and ξ(N,0) = (x(N), y, (z0,N , 0, . . . , 0)).

From the definition of u (see (4.8)) we get (see also (4.6):

0 = (DuH)(s, ξ, ū(s, ξ))

= E[(Duf)(ξ,X
1

s, ū(s, ξ), v̄(ξ,X
1

s, ū(s, ξ))) + b0(x0, X
1

s, z0)z0|FW 0

T ].
(5.30)

On the other hand, from the definition of uN as one of the both saddle point feedback controls forHN (ξ(N), ., .),

from Lemma 3.1 and from (5.28) we obtain

0 = (DuHN )(ξ(N,0), uN (ξ(N,0)), vN (ξ(N,0)))

= 1
N

∑N
ℓ=1(Duf)(ξ, xℓ, 0, u

N (ξ(N,0)), ṽN (ξ, xℓ, 0, u
N (ξ(N,0))))

+ 1
N

∑N
ℓ=1 b0(x0, xℓ, z0)z0

= 1
N

∑N
ℓ=1(Dufv)(ξ, xℓ, 0, u

N(ξ(N,0))) + 1
N

∑N
ℓ=1 b0(x0, xℓ, z0)z0.

(5.31)

Let us use the notations Θs = (X0
s , Y s, Z

0

s, 0), Θ
N

s = (X0
s , Y

N

s , Z
0,N

s , 0), and, with abusing notation

we also write (Θ
N

s , X
ℓ
s) = (X0

s , X
ℓ
s, Y

N

s , Z
0,N

s , 0). Moreover, let Ξ
(N)
s = (X

(N)
s , Y

N

s , Z
N

s ) and Ξ
(N,0)
s =

(X
(N)
s , Y

N

s , (Z
0,N

s , 0, . . . , 0)). Then subtracting (5.30) from (5.31) yields

0 =
(
( 1
N

∑N
ℓ=1(Dufv)(Θ

N
, Xℓ

s, u
N (Ξ

(N,0)
s )) + 1

N

∑N
ℓ=1 b0(X

0
s , X

ℓ
s , Z

0,N

s )Z
0,N

s )

−E[(Dufv)(Θs, X
1

s, u(s,Θs)) + b0(X
0
s , X

1

s, Z
0

s)Z
0

s|FW 0

T ], uN (Ξ
(N,0)
s )− ū(s,Θs)

)

= 1
N

∑N
ℓ=1

(
(Dufv)(Θ

N

s , X
ℓ
s, u

N (Ξ
(N,0)
s ))− (Dufv)(Θ

N

s , X
ℓ
s, u(s,Θs)), u

N (Ξ
(N,0)
s )− u(s,Θs)

)
(=: IN1 )

+ 1
N

∑N
ℓ=1

(
(Dufv)(Θ

N

s , X
ℓ
s , u(s,Θs))− (Dufv)(Θs, X

ℓ
s , u(s,Θs)), u

N (Ξ
(N,0)
s )− u(s,Θs)

)
(=: IN2 )

+
(

1
N

∑N
ℓ=1 b0(X

0
s , X

ℓ
s, Z

0,N

s )Z
0,N

s − E[b0(X
0
s , X

1

s, Z
0

s)Z
0

s|FW 0

T ], uN (Ξ
(N,0)
s )− u(s,Θs)

)
(=: IN3 )

+
(

1
N

∑N
ℓ=1(Dufv)(Θs, X

ℓ
s, u(s,Θs))− E[(Dufv)(Θs, X

1

s, u(s,Θs))|FW 0

T ], uN (Ξ
(N,0)
s )− u(s,Θs)

)
.(=: IN4 )

Let us estimate the expressions INk , 1 ≤ k ≤ 4. We begin with that of IN1 .

• Estimate for IN1 : By standard estimates using our assumptions on f we have
(
(Dufv)(ξ, x1, 0, u)− (Dufv̄)(ξ, x1, 0, u

′), u− u′
)

=
(
(Duf)(ξ, x1, 0, u, v(ξ, x1, 0, u))− (Duf)(ξ, x1, 0, u

′, v(ξ, x1, 0, u)), u− u′
)

+
(
(Duf)(ξ, x1, 0, u

′, v(ξ, x1, 0, u))− (Duf)(ξ, x1, 0, u
′, v(ξ, x1, 0, u

′)), u− u′
)

≤ −λ|u− u′|2 + µ|v(ξ, x1, 0, u)− v(ξ, x1, 0, u
′)||u− u′|

≤ −(λ− µ2

λ )|u− u′|2
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(recall that we have supposed that µ < λ). Consequently,

IN1 ≤ −(λ− µ2

λ
)|ūN (Ξ(N,0)

s )− u(s,Θs)|2. (5.32)

• Estimate for IN2 : From (4.3) and Assumption Aii) on Duf we have, for arbitrarily small given δ > 0 and

a constant Cδ only depending on δ,

IN2 ≤ C|ΘN

s −Θs||uN (Ξ
(N,0)
s )− u(s,Θs)|

≤ Cδ(|Y
N

s − Y s|2 + |Z0,N

s − Z
0

s|2) + δ|uN (Ξ
(N,0)
s )− u(s,Θs)|2.

(5.33)

• Estimate for IN3 : Using the Lipschitz continuity of z0 7→ b0(x0, x1, z0)z0, uniformly with respect to (x0, x1),

we obtain that for any small δ > 0 there is a constant Cδ such that

IN3 ≤ Cδ|Z
0,N

s − Z
0

s|2 + δ|uN (Ξ
(N,0)
s )− u(s,Θs)|2

+Cδ| 1N
∑N

ℓ=1 b0(X
0
s , X

ℓ
s , Z

0

s)Z
0

s − E[b0(X
0
s , X

1

s, Z
0

s)Z
0

s|FW 0

T ]|2.
(5.34)

Recalling that |b0(x0, x1, z0)z0 − b0(x0, x
′
1, z0)z0| ≤ C|x1 −x′1|, we can use (2.14), in order to deduce that for

all m ≥ 1, there is some constant Cm such that

E[| 1
N

N∑

ℓ=1

b0(x0, X
ℓ
s, z0)z0 − E[b0(x0, X

1

s, z0)z0|FW 0

T ]|2m|FW 0

T ] ≤ Cm(
1

N
+

1

N

N∑

ℓ=1

|xℓ − x|2)m,

for all N ≥ 1, s ∈ [t, T ], (x0, z0) ∈ R
2. Hence, as X0

s and Z
0

s are FW 0

s -measurable,

E[| 1N
∑N

ℓ=1 b0(X
0
s , X

ℓ
s, Z

0

s)Z
0

s − E[b0(X
0
s , X

1

s, Z
0

s)Z
0

s|FW 0

T ]|2m|FW 0

T ]

≤ Cm( 1
N + 1

N

∑N
ℓ=1 |xℓ − x|2)m.

(5.35)

• Estimate for IN4 : Obviously, for all δ > 0 there is Cδ > 0 such that

IN4 ≤ δ|uN (Ξ
(N,0)
s )− u(s,Θs)|2

+Cδ| 1N
∑N

ℓ=1(Dufv)(Θs, X
ℓ
s, u(s,Θs))− E[(Dufv)(Θs, X

1

s, u(s,Θs))|FW 0

T ]|2.
(5.36)

Noting that |(Dufv)(ξ, x1, 0, u)−(Dufv)(ξ, x
′
1, 0, u)| ≤ C|x1−x′1| and observing that Θs is FW 0

s -measurable,

we obtain similarly to the estimate for IN3 from (2.14) that, for all m ≥ 1 there is some Cm ∈ R with

E[| 1N
∑N

ℓ=1(Dufv)(Θs, X
ℓ
s, u(s,Θs))− E[(Dufv)(Θs, X

1

s, u(s,Θs))|FW 0

T ]|2m|FW 0

T ]

≤ Cm( 1
N + 1

N

∑N
ℓ=1 |xℓ − x|2)m.

(5.37)

Now, choosing δ = 1
6 (λ− µ2

λ ) > 0, and combing the above estimates for INk , 1 ≤ k ≤ 4, we obtain

0 = IN1 + IN2 + IN3 + IN4
≤ −3δ|uN (Ξ

(N,0)
s )− u(s,Θs)|2

+C(|Y N

s − Y s|2 + |Z0,N

s − Z
0

s|2) + |RN (s,Θs, u(s,Θs))|2,
(5.38)

where
RN (s, ξ, u) : = C 1

N

∑N
ℓ=1 |(Dufv)(ξ,X

ℓ
s , u)− E[(Dufv)(ξ,X

ℓ

s, u)|FW 0

T ]|
+C 1

N

∑N
ℓ=1 |b0(x0, Xℓ

s, z0)z0 − E[b0(x0, X
1

s, z0)z0|FW 0

T ]|,
(5.39)

and

E[|RN (s,Θs, u(s,Θs))|2m|FW 0

T ] ≤ Cm(
1

N
+

1

N

N∑

ℓ=1

|xℓ − x|2)m.
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We recall that uNs = uN (Ξ
(N)
s ) (= uN (X

(N)
s , Y

N

s , Z
(N)

)), and we put uN,0
s = uN (Ξ

(N,0)
s ) (= uN (X

(N)
s , Y

N

s ,

(Z
0,N

, 0, . . . , 0))) and us = u(s,Θs) (= u(s,X0
s , Y s, Z

0

s)).

Then, taking into account that by Lemma 3.2 (iii) we have

|ūNs − ūN,0
s | ≤ C(1 + εN ·N)

1

N

N∑

l=ℓ

|Zℓ,N

s |,

we obtain from (5.38)

|uNs − us| ≤ |uNs − uN,0
s |+ |uN,0

s − us|
≤ C(|Y N

s − Y s|+ |Z0,N

s − Z
0

s|+ (1 + εN ·N) 1
N

∑N
ℓ=1 |Z

ℓ,N

s |) + C|RN (s,Θs, us)|,
(5.40)

where

E[RN (s,Θs, us)|2m|FW 0

T ] ≤ Cm(
1

N
+

1

N

N∑

ℓ=1

|xℓ − x|2)m.

Step 3. Basing on the results of above steps we prove now the limit behavior of the controls process v
(N)
s =

(v1,Ns , . . . , vN,N
s ), as N tends to +∞. For this end, we recall from Lemma 3.1 that

vℓ,Ns = vNℓ (X(N)
s , Y

N

s , Z
(N)

s ) = ṽN (X0
s , X

ℓ
s, Y

N

s , Z
(N)

s , us), s ∈ [t, T ], 1 ≤ ℓ ≤ N.

Thus, due to the estimates (5.29) in Step 1 and (5.40) in Step 2 as well as Lemma 4.1 we have

|vℓ,Ns − vℓs|
≤ |ṽN (X0

s , X
ℓ
s , Y

N

s , Z
(N)

s , uNs )− v(X0
s , X

ℓ
s, Y

N

s , Z
0,N

s , uNs )|
+|v(X0

s , X
ℓ
s, Y

N

s , Z
0,N

s , uNs )− v(X0
s , X

ℓ
s, Y s, Z

0

s, us)|
≤ CεN

∑N
ℓ=1 |Z

ℓ,N

s |+ C(|Y N

s − Y s|+ |Z0,N

s − Z
0

s|+ |uNs − us|)
≤ C(|Y N

s − Y s|+ |Z0,N

s − Z
0

s|+ (1 + εN ·N) 1
N

∑N
ℓ=1 |Z

ℓ,N

s |) + C|RN (s,Θs, us)|

We recall that an estimate for RN (s,Θs, us) is given in (5.40) in Step 2. The proof is complete now.

Let us come, finally, to the proof of Lemma 4.6.

Proof. (of Lemma 4.6). Let us keep notations introduced in the preceding proof. So we recall that, in

particular, uN,0
s = uN (Ξ

(N,0)
s ) (= uN (X

(N)
s , Y

N

s , (Z
0,N

, 0, . . . , 0))), and we introduce in the same sense the

notation vℓ,N,0
s = vNℓ (X

(N)
s , Y

N

s , (Z
0,N

s , 0, . . . , 0)). Then, using our assumptions on f (see (3.6)) we get

|f(X0
s , X

ℓ
s, Y

N

s , Z
0,N

s , 0, uN,0
s , vℓ,N,0

s )− f(X0
s , X

ℓ
s, Y s, Z

0

s, 0, us, v
ℓ
s)|

≤ C(|Y N

s − Y s|+ |Z0,N

s − Z
0

s|+ |uN,0
s − us|+ |vℓ,N,0

s − vℓs|).
(5.41)

Indeed, from (3.15) of Lemma 3.2 we know that the processes uN,0 and vℓ,N,0 are bounded by a constant

not depending on N . On the other hand, from Lemma 4.3 we have the boundedness of process u, and from

the Lemmas 4.3 and 4.1 we obtain also that of the process vℓ.

Moreover, from Lemma 4.5 it follows that

|uN,0
s − us|+ |vℓ,N,0

s − vℓs| ≤ C(|Y N

s − Y s|+ |Z0,N

s − Z
0

s|) +RN
s . (5.42)

Hence,

|f(X0
s , X

ℓ
s, Y

N

s , Z
0,N

s , 0, uN,0
s , vℓ,N,0

s )− f(X0
s , X

ℓ
s, Y s, Z

0

s, 0, us, v
ℓ
s)|

≤ C(|Y N

s − Y s|+ |Z0,N

s − Z
0

s|) +RN
s ,

(5.43)
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with RN
s satisfying the estimate given in Lemma 4.5. We also note that, by using the assumptions on b0, we

can show with similar arguments that

|b0(X0
s , X

ℓ
s, Z

0,N

s )Z
0,N

s uN,0
s − b0(X

0
s , X

ℓ
s, Z

0

s)Z
0

sus|
≤ C|Z0,N

s − Z
0

s|+ C|uN,0
s − us|

≤ C(|Y N

s − Y
0

s|+ |Z0,N

s − Z
0

s|) +RN
s , s ∈ [t, T ], N ≥ 1.

(5.44)

Consequently, recalling the notations introduced for this proof and for the preceding one, and by using the

fact that (uN(ξ(N)), vN (ξ(N))) is a saddle point of the Hamiltonian HN (ξ(N), ·, ·) and (uN (ξ(N,0)), vN (ξ(N,0)))

is one of HN (ξ(N,0), ·, ·)(= HN (x(N), y, (z0, 0, . . . , 0, ., .))), we observe

HN (Ξ
(N)
s ) := HN (Ξ

(N)
s , uNs , v

N
s ) ≤ HN (Ξ

(N)
s , uNs , v

N,0
s )

= HN (Ξ
(N,0)
s , uNs , v

N,0
s ) + 1

N

∑N
ℓ=1

(
f(X0

s , X
ℓ
s, Y

N

s , Z
0,N

s , Z
ℓ,N

s , uNs , v
ℓ,N,0
s )

−f(X0
s , X

ℓ
s , Y

N

s , Z
0,N

s , 0, uNs , v
ℓ,N,0
s )

)
+ εN

1
N

∑N
ℓ=1(

∑N
i=1 b1(X

0
s , X

ℓ
s, Z

i,N

s )Z
i,N

s )vℓ,N,0
s

≤ HN (Ξ
(N,0)
s , uNs , v

N,0
s ) + C

(
1
N + εN

)∑N
ℓ=1 |Z

ℓ,N

s |
≤ HN (Ξ

(N,0)
s , uN,0

s , vN,0
s ) + C

(
1
N + εN

)∑N
ℓ=1 |Z

ℓ,N

s |.

(5.45)

On the other hand, estimating HN (Ξ
(N)
s ) in the opposite direction by using similar arguments as above and

the fact that |vℓ,Ns | ≤ C(1 +NεN) (see Lemma 3.2), we obtain

HN (Ξ
(N)
s ) = HN (Ξ

(N)
s , uNs , v

N
s ) ≥ HN (ΞN

s , u
N,0
s , vNs )

= HN (Ξ
(N,0)
s , uN,0

s , vNs ) + 1
N

∑N
ℓ=1(f(X

0
s , X

ℓ
s, Y

N

s , Z
0,N

s , Z
ℓ,N

s , uN,0
s , vℓ,Ns )

−f(X0
s , X

ℓ
s, Y

N

s , Z
0,N

s , 0, uN,0
s , vℓ,Ns ) + εN

1
N

∑N
ℓ=1(

∑N
i=1 b1(X

0
s , X

ℓ
s , Z

i,N

s )Z
i,N

s )vℓ,Ns

≥ HN (Ξ
(N,0)
s , uN,0

s , vNs )− C 1
N

∑N
ℓ=1 |Z

ℓ,N

s | − CεN (1 +NεN)
∑N

i=1 |Z
i,N

s |
≥ HN (Ξ

(N,0)
s , uN,0

s , vNs )− C( 1
N + εN +Nε2N )

∑N
ℓ=1 |Z

ℓ,N

s |
≥ HN (Ξ

(N,0)
s , uN,0

s , vN,0
s )− C( 1

N + εN +Nε2N )
∑N

ℓ=1 |Z
ℓ,N

s |.

(5.46)

By combining (5.45) and (5.46) we obtain

|HN (Ξ(N)
s )−HN (Ξ(N,0)

s )| ≤ C(
1

N
+ εN +Nε2N )

N∑

ℓ=1

|Zℓ,N

s |. (5.47)

Finally, from (5.43) and (5.44) we see

|HN (Ξ
(N,0)
s )− ( 1

N

∑N
ℓ=1 f(X

0
s , X

ℓ
s, Y s, Z

0

s, 0, us, v
ℓ
s) +

1
N

∑N
ℓ=1 b0(X

0
s , X

ℓ
s, Z

0

s)Z
0

sus)|
≤ C(|Y N

s − Y s|+ |Z0,N

s − Z
0

s|) +RN
s , s ∈ [t, T ], N ≥ 1.

(5.48)

Recalling that the functions xℓ → f(x0, xl, y, z0, u), and xl → b0(x0, xl, z0)z0 are Lipschitz, uniformly with

respect to (x0, y, z0), and that |us| ≤ C, we can apply Lemma 2.1, and we get for

R
N

1 (s, x0, y, z0, u) := | 1N
∑N

ℓ=1 f(x0, X
ℓ
s, y, z0, 0, u, v

ℓ
s)− E[f(x0, X

1

s, y, z0, 0, u, v
ℓ
s)|FW 0

T ]|;
R

N

2 (s, x0, z0) := | 1N
∑N

ℓ=1 b0(x0, X
ℓ
s, z0)z0 − E[b0(x0, X

1

s, z0)z0|FW 0

T ]|,
R

N
(s, x0, y, z0, u) := R

N

1 (s, x0, y, z0, u) +R
N

2 (s, x0, z0)u,

the estimate

E[|RN
(s,X0

s , Y s, Z
0

s, us)|2m|FW 0

T ] ≤ Cm(
1

N
+

1

N

N∑

ℓ=1

|xℓ − x|2)m, where s ∈ [t, T ], N ≥ 1, m ≥ 1.

The statement of the lemma follows now easily from the latter estimates and (5.48).
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