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APPROXIMATING SPECTRAL DENSITIES OF LARGE MATRICES

LIN LIN ∗, YOUSEF SAAD † , AND CHAO YANG ‡

Abstract. In physics, it is sometimes desirable to compute the so-called Density Of States

(DOS), also known as the spectral density, of a real symmetric matrix A. The spectral density can
be viewed as a probability density distribution that measures the likelihood of finding eigenvalues
near some point on the real line. The most straightforward way to obtain this density is to compute
all eigenvalues of A. But this approach is generally costly and wasteful, especially for matrices of large
dimension. There exists alternative methods that allow us to estimate the spectral density function at
much lower cost. The major computational cost of these methods is in multiplying A with a number
of vectors, which makes them appealing for large-scale problems where products of the matrix A

with arbitrary vectors are relatively inexpensive. This paper defines the problem of estimating the
spectral density carefully, and discusses how to measure the accuracy of an approximate spectral
density. It then surveys a few known methods for estimating the spectral density, and proposes some
new variations of existing methods. All methods are discussed from a numerical linear algebra point
of view.

Key words. spectral density, density of states, large scale sparse matrix, approximation of
distribution, quantum mechanics
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1. Introduction. Given an n×n real symmetric and sparse matrix A, scientists
in various disciplines often want to compute its Density Of States (DOS), or spectral
density. Formally, the DOS is defined as

φ(t) =
1

n

n∑

j=1

δ(t− λj), (1.1)

where δ is the Dirac distribution commonly referred to as the Dirac δ-“function” [37, 4,
35], and the λj ’s are the eigenvalues of A, assumed here to be labeled non-decreasingly.
Using the DOS, the number of eigenvalues in an interval [a, b] can be formally ex-
pressed as

ν[a,b] =

∫ b

a

∑

j

δ(t− λj) dt ≡
∫ b

a

nφ(t)dt. (1.2)

Therefore, one can view φ(t) as a probability distribution “function”, which gives
the probability of finding eigenvalues of A in a given infinitesimal interval near t. If
one had access to all the eigenvalues of A, the task of computing the DOS would
become a trivial one. However, in many applications, the dimension of A is large.
The computation of its entire spectrum is prohibitively expensive, and this leads to
the need to develop efficient alternative methods to estimate φ(t) without computing
eigenvalues of A. Since φ(t) is not a proper function, we need to clarify what we
mean by “estimating” φ(t), and this will be addressed in detail shortly. For now we
can use our intuition to argue that φ(t) can be approximated by dividing the interval
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containing the spectrum of A into many sub-intervals and use a tool like Sylvester’s
law of inertia to count the number of eigenvalues within each of these sub-intervals.
This approach yields a histogram of the eigenvalues. Expression (1.2) will then provide
us with an average “value” of φ(t) in each small subinterval [a, b]. As the size of each
subinterval decreases, the histogram approaches the spectral density of A. However,
this is not a practical approach since performing such an inertia count requires us to
compute the LDLT factorization [18] of A− tiI, where the ti’s are the end points of
the subintervals. In general, this approach is prohibitively expensive because of the
large number of intervals needed and the shear cost of each factorization. Therefore,
a procedure that relies entirely on multiplications of A with vectors is the only viable
approach.

Because calculating the spectral density is such an important problem in quantum
mechanics, there is an abundant literature devoted to this problem and research in
this area was extremely active in the 1970s and 1980s, leading to clever and powerful
methods developed by physicists and chemists [12, 42, 10, 44] for this purpose.

In this survey paper, we review two classes of methods for approximating the
spectral density of a real symmetric matrix from a numerical linear algebra perspec-
tive. For simplicity, all methods are presented using real arithmetic operations, i.e.
we assume the matrix is real symmetric. The generalization to Hermitian matrices is
straightforward. The first class of methods contains the Kernel Polynomial Method
(KPM) [39, 43] and its variants. The KPM can be viewed as a formal polynomial
expansion of the spectral density. It uses a moment matching method to derive the
coefficients for the polynomials. The method, which is widely used in a variety of
calculations that require the DOS [13], has continued to receive a tremendous amount
of interest in the last few years [13, 6, 25, 38]. We show that a less well known, but
rather original, method due to Lanczos and known as the “Lanczos spectroscopic”
procedure, which samples the cosine transform of the spectral density, is closely re-
lated to KPM. As another variant of KPM, we present a spectral density probing
method called Delta-Gauss-Legendre method, that can be viewed as a polynomial
expansion of a smoothed spectral density. The second class of methods we consider
uses the classical Lanczos procedure to partially diagonalize A. The eigenvalues and
eigenvectors of tridiagonal matrix are used to construct approximations to the spectral
density.

One of the key ingredients used in most of these methods is a well-established
artifice for estimating the trace of a matrix. For example, the expansion coefficients
in the above-mentioned KPM method can be obtained from the traces of the matrix
polynomials Tk(A), where Tk is the Chebyshev polynomial of degree k. Each of these
is in turn estimated as the mean of vTTk(A)v over a number of random vectors v. This
procedure for estimating the trace has been discovered more or less independently by
statisticians [21] and physicists and chemists [39, 43].

A natural question one would ask is: among all the methods reviewed here, which
is the best method to use? The answer to this question is not simple. Since the
methods discussed in this paper are all based on matrix-vector product operations
(MATVECs) the criterion for choosing the best method should be based on the qual-
ity of the approximation when approximately the same number of MATVECs are
used. In order to determine the quality, we must first establish a way to measure the
accuracy of the approximation. Because the spectral density is defined in terms of
the Dirac δ-“function”s, which are not proper functions but distributions [4, 35], the
standard error metrics used for approximating smooth functions are not appropriate.
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Furthermore, the accuracy measure should depend on the desired resolution. In many
applications, it is not necessary to obtain a high resolution spectral density. If fact
such a high resolution density would be highly discontinuous, if one thinks of our
already mentioned intuitive interpretation in terms of a histogram. For these reasons
our proposed metric for measuring the accuracy of spectral density approximation is
defined in section 2, so as to allow rigorous quantitative comparisons of the differ-
ent spectral density approximation methods, instead of relying on a subjective visual
measure as is often done in practice.

All approximation methods we consider are presented in section 3. We give some
numerical examples in section 4 to compare different numerical methods for approx-
imating spectral densities. We illustrate the effectiveness of our error metric for
evaluating the quality of the approximation, and describe some general observations
we made about the behavior of different methods.

2. Assessing the quality of spectral density approximation. We will de-
note the approximate spectral density by φ̃(t) which is a regular function. The types
of approximate spectral densities we consider in this paper are all continuous func-
tions. However, since φ(t) is defined in terms of a number of Dirac δ-functions that
are not proper functions but distributions, we cannot use the standard Lp-norm, with,
e.g. p = 1, 2, or∞, to evaluate the approximation error defined in terms of φ(t)− φ̃(t),
where we note that in this difference φ̃ is interpreted as a distribution.

We discuss two approaches to get around this difficulty. In the first approach, we
use the fact that δ(t) is a distribution, i.e. it is formally defined through applications
to a test function g:

〈δ(· − λ), g〉 ≡
∫ ∞

−∞
δ(t− λ)g(t)dt ≡ g(λ),

where we use δ(· − λ) to denote a Dirac δ centered at λ, g ∈ C∞(R), and for all
p, k ∈ N,

sup
t∈R

|tpg(k)(t)| <∞.

Here g(k)(t) is the kth derivative of g(t). The test function g is chosen to be a member
of the Schwartz space (or Schwartz class) [35], denoted by S. In other words, the test
function g should be smooth and decays sufficiently fast towards 0 when |t| approaches
infinity. The error is then measured as

ǫ1 = sup
g∈S
|〈φ, g〉 − 〈φ̃, g〉|. (2.1)

In practice, we restrict S to be a subspace of the Schwartz space that allows us to
compute (2.1) at a finite resolution. We will elaborate on the choice of g and S in
section 2.1.

In the second approach, we regularize δ-functions and replace them with contin-
uous and smooth functions such as Gaussians with an appropriately chosen standard
deviation σ. The resulting regularized spectral density, which we denote by φσ(t), is
a well defined function. Hence, it is meaningful to compute the approximation error

ǫ2 = ‖φσ(t)− φ̃(t)‖p, (2.2)

for p = 1, 2, and∞. There is a close connection between the first and second approach,
on which we will elaborate in the next section.
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We should note that the notion of regularization, which is rarely discussed in the
existing physics and chemistry literature, is important for assessing the accuracy of
spectral density approximation. A fully accurate approximation amounts to comput-
ing all eigenvalues of A. But for most applications, one only needs to know the number
of eigenvalues within any small subinterval contained in the spectrum of A. The size
of the interval represents the “resolution” of the approximation. The accuracy of the
approximation is only meaningful up to the desired resolution. When (2.2) is used
to assess the quality of the approximation, the resolution is defined in terms of the
regularization parameter σ. A smaller σ corresponds to higher resolution.

The notion of resolution can also be built into the error metric (2.1) if the trial
function g belongs to a certain class of functions, which we will discuss in the next
section.

2.1. Restricting the test function space S . The fact that the spectral
density φ(t) is defined in terms of Dirac δ-functions suggests that no smooth function
can converge to the spectral density in the limit of high resolution.

To see this, consider ν[a,b] defined in Eq. (1.2) and the associated approximation

obtained from a smooth approximation φ̃(t) as

ν̃[a,b] =

∫ b

a

nφ̃(t)dt.

For simplicity, let the spectral density φ(t) = δ(t) to be a single δ-function, and the
number of eigenvalues n = 1. Infinite resolution means that |ν[a,b] − ν̃[a,b]| should be
small for any choice of [a, b]. Now take a = −ε, b = ε. It is easy to verify that

lim
ε→0+

ν[−ε,ε] = 1, lim
ε→0+

ν̃[−ε,ε] = 0,

In this sense, all smooth approximation of the spectral density results in the same
accuracy, i.e. there is no difference between a carefully designed approximation of the
spectral density and a constant approximation. Hence, the distribution φ(t) behaves
very much like a highly discontinuous function and cannot be approximated by smooth
functions with infinite resolution.

In practice, physical quantities and observables can often be deduced from spectral
density at finite resolution, i.e. the eigenvalue count only needs to be approximately
correct for an interval of a given finite size. For instance, in condensed matter physics,
such information is enough to provide material properties such as the band gap or
the Van Hove singularity [1] within given target accuracy. The reduced resolution
requirement suggests that we may not need to take the test space S in (2.1) to be the
whole Schwartz space. Instead, we can choose functions that have “limited resolution”
as test functions. For example, we may consider using Gaussian functions of the form

gσ(t) =
1

(2πσ2)1/2
e−

t
2

2σ2 , (2.3)

and restrict S to the subspace

S(σ; [λlb, λub]) =
{
g
∣∣∣g(t) ≡ gσ(t− λ), λ ∈ [λlb, λub]

}
,

where λlb and λub are lower and upper bounds of the eigenvalues of A respectively, and
the parameter σ defines the target resolution up to which we intend to measure. The
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use of Gaussian functions in the space S(σ; [λlb, λub]) can be understood as a smooth
way of counting the number of eigenvalues in an interval whose size is proportional
to σ.

Using this choice of the test space, we can measure the quality of any approxima-
tion by the following metric:

E[φ̃;S(σ; [λlb, λub])] = sup
g∈S(σ;[λlb,λub])

|〈φ, g〉 − 〈φ̃, g〉|. (2.4)

We remark that the use of Gaussians is not the only way to restrict the test
space. In some applications, the DOS is often used as a measure for integrating
certain physical quantities of interest. If the quantity of interest can be expressed as

〈φ, g〉 ≡
∫
g(λ)φ(λ)dλ ≡ 1

n

n∑

j=1

g(λj)

for some smooth function g, then S can be chosen to contain only one function g, and
the approximation error is naturally defined as

E[φ̃; g] = |〈φ(t), g〉 − 〈φ̃(t), g〉|, (2.5)

for that particular function g. We give an example of this measure in section 4.3.

2.2. Regularizing the spectral density. The error metric in Eq. (2.4) can
also be understood in the following sense. Let

φσ(t) = 〈φ(·), gσ(· − t)〉 =
n∑

j=1

gσ(t− λj), (2.6)

then φσ(t) is nothing but a blurred or regularized spectral density, and the blurring

is given by a Gaussian function with width σ. Similarly, 〈φ̃(·), gσ(· − t)〉 can be
understood as a blurred version of an approximate spectral density. Therefore the
error metric in Eq. (2.4) is equivalent to the L∞ error between two well defined

functions 〈φ̃(·), gσ(· − t)〉 against φσ(t).
This point of view leads to another way to construct and measure the approxima-

tion to the spectral density function. Instead of trying to approximate φ(t) directly,
which may be difficult due to the presence of δ-functions in φ(t), we first construct
a smooth representation of the δ-function. The representation we choose should be
commensurate with the desired resolution of the spectral density. This regulariza-
tion process allows us to expand smooth functions in terms of other smooth functions
such as orthogonal polynomials, and the approximation error associated with such ex-
pansions can be evaluated directly and without introducing additional regularization
procedure.

The φσ(t) function defined in (2.6) is one way to construct a regularized spectral
density. Again, the parameter σ controls the resolution. Larger values of σ will lead
to smooth curves at the expense of accuracy. Smaller values of σ will lead to rough
curves that have peaks at the eigenvalues and zeros elsewhere. This is illustrated in
Figure 2.1 where σ takes 4 different values. We can see that as σ increases, φσ becomes
smoother. When σ = 0.96, which corresponds to a very smooth spectral density, we
can still see the global profile of the eigenvalue distribution, although local variation
of the spectral density is mostly averaged out.
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Fig. 2.1: The eigenvalues, as well as various regularized DOS φσ obtained by blur-
ring the exact DOS (sum of δ-functions positioned at eigenvalues) of a matrix with
Gaussians of the form (2.3).

We remark that the optimal choice of σ, and therefore the smoothness of the
approximate DOS, is application dependent. On the one hand, σ should be chosen
to be as large as possible so that the regularized DOS φσ is easy to approximate
numerically. On the other hand, increasing σ could cause an undesirable loss of detail
and yield an erroneous result. It is up to the user to select a value of σ that balances
accuracy and efficiency: σ should be chosen to be small enough to reach the target
accuracy, but not too small which would require a large number of MATVECs to
approximate the DOS.

We should also note that (2.6) is not the only way to regularize the DOS. Another
choice is the Lorentzian function defined as

η

(t− λ)2 + η2
= −Im

(
1

t− λ+ iη

)
, (2.7)

where Im(z) denotes the imaginary part of a complex number z, and η is a small
regularization constant that controls the width of the peak centered at λ. As η
approaches zero, (2.7) approaches a Dirac δ-function centered at eigenvalues. This
approach is used in Haydock’s method to be discussed in section 3.2.2. We also
examine the difference between the regularization procedures in section 4 through
numerical experiments.

2.3. Non-negativity condition. Since the DOS can be viewed as a probability
distribution function, it satisfies the non-negativity condition in the sense that

〈φ, g〉 ≥ 0, (2.8)
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for all non-negative function g(t) ≥ 0 in the Schwartz space. Not all numerical
methods described below satisfy the non-negativity condition by construction. We
will see in section 4 that the failure of preserving the non-negativity condition can
possibly lead to large numerical error.

3. Numerical methods for estimating spectral density. In this section, we
review two classes of methods for approximating the DOS of A. We begin with the
KPM, which can be viewed as a polynomial approximation to the DOS. We show
that two other approaches that are derived from different view points are equivalent
to KPM. We then describe the second class of methods which are based on the use
of the familiar Lanczos partial tridiagonalization procedure [27]. These methods use
blurring (or regularization) techniques to construct an approximate DOS from Ritz
values. They differ in the type of blurring they utilize. One of them, which we will
simply call the Lanczos method uses Gaussian blurring, whereas the other method,
which we call the Haydock’s method [20, 3, 31, 5], uses a Lorentzian blurring.

A common characteristic of these methods is that they all use a stochastic sam-
pling and averaging technique to obtain an approximate DOS. The stochastic sampling
and averaging technique is based on the following key result [21, 39, 2].

Theorem 3.1. Let A be a real symmetric matrix of dimension n×n with eigen-

decomposition A =
∑n

j=1 λjuju
T
j , and u

T
i uj = δij , i, j = 1, · · · , n. Here δij is the

Kronecker δ symbol. Let v be a vector of dimension n, and v can be represented as

the linear combination of {ui}ni=1 as

v =
n∑

j=1

βjuj. (3.1)

If each component of v is obtained independently from a normal distribution with zero

mean and unit standard deviation, i.e.

E[v] = 0, E[vvT ] = I, (3.2)

then

E[βiβj ] = δij , i, j = 1, · · · , n. (3.3)

The proof of Theorem 3.1 is straightforward. The theorem suggest that the trace
of a matrix function f(A), which we need to compute in the KPM, for example, can
be obtained by simply averaging vT f(A)v for a number of randomly generated vectors
v that satisfy the conditions given in (3.2) because

E[vT f(A)v] = E[

n∑

j=1

β2
j f(λj)] =

n∑

j=1

f(λj) = Trace[f(A)]. (3.4)

3.1. The Kernel Polynomial Method. The Kernel Polynomial Method (KPM)
was proposed by Silver and Röder [39] and Wang [43] in the mid-1990s to calculate
the DOS. See also [40, 41, 11, 33] among others where similar approaches were also
used.
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3.1.1. Derivation of the origional KPM. The KPM method constructs an
approximation to the exact DOS of a matrix A by formally expanding Dirac δ-
functions in terms of Chebyshev polynomials Tk(t) = cos(k arccos(t)). For simplicity,
we assume that the eigenvalues are in the interval [−1, 1]. As is the case for all meth-
ods which rely on Chebyshev expansions, a change of variables must first be performed
to map an interval that contains [λmin, λmax] to [−1, 1] if this assumption does not
hold. Following the Silver-Röder paper [39], we include, for convenience, the inverse
of the weight function into the spectral density function,

φ̂(t) =
√
1− t2φ(t) =

√
1− t2 × 1

n

n∑

j=1

δ(t− λj). (3.5)

Then we expand the distribution φ̂(t) as

φ̂(t) =
∞∑

k=0

µkTk(t). (3.6)

Eq. (3.6) should be understood in the sense of distributions, i.e. for any test function
g ∈ S,

∫ 1

−1

φ̂(t)g(t) dt =

∫ 1

−1

∞∑

k=0

µkTk(t)g(t) dt.

The same notation applies to the expansion of the DOS using other methods in
the following discussion. By means of a formal moment matching procedure, the
expansion coefficients µk are also defined by

µk =
2− δk0
π

∫ 1

−1

1√
1− t2

Tk(t)φ̂(t)dt

=
2− δk0
π

∫ 1

−1

1√
1− t2

Tk(t)
√

1− t2φ(t)dt

=
2− δk0
nπ

n∑

j=1

Tk(λj). (3.7)

Here δij is the Kronecker δ symbol so that 2− δk0 is equal to 1 when k = 0 and to 2
otherwise.

Thus, apart from the scaling factor (2 − δk0)/(nπ), µk is the trace of Tk(A). It
follows from Theorem 3.1 that

ζk =
1

nvec

nvec∑

l=1

(
v
(l)
0

)T
Tk(A)v

(l)
0 (3.8)

is a good estimation of the trace of Tk(A), for a set of randomly generated vectors

v
(1)
0 , v

(2)
0 , ..., v

(nvec)
0 that satisfy the conditions given by (3.2). Here the subscript 0

is added to indicate that the vectors have not been multiplied by the matrix A. Then
µk can be estimated by

µk ≈
2− δk0
nπ

ζk, (3.9)
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Now we consider the computation of each term
(
v
(l)
0

)T
Tk(A)v

(l)
0 . For simplicity

we drop the superscript l and denote by v0 ≡ v
(l)
0 . The 3-term recurrence of the

Chebyshev polynomial is exploited to compute Tk(A)v0:

Tk+1(A)v0 = 2ATk(A)v0 − Tk−1(A)v0.

So if we let vk ≡ Tk(A)v0, we have

vk+1 = 2Avk − vk−1. (3.10)

Once the scalars {µk} are determined, we would in theory get the expansion for

φ(t) = 1√
1−t2

φ̂(t). In practice, µk decays to 0 as k →∞, and the approximate density

of states will be limited to Chebyshev polynomials of degreeM . So φ is approximated
by:

φ̃M (t) =
1√

1− t2
M∑

k=0

µkTk(t). (3.11)

For a general matrixA whose eigenvalues are not necessarily in the interval [−1, 1],
a linear transformation is first applied to A to bring its eigenvalues to the desired
interval. Specifically, we will apply the method to the matrix

B =
A− cI
d

,

where

c =
λlb + λub

2
, d =

λub − λlb
2

, (3.12)

and λlb, λub are lower and upper bounds of the smallest and largest eigenvalues λmin

and λmax of A respectively.
It is important to ensure that the eigenvalues of B are within the interval [−1, 1].

Otherwise the magnitude of the Chebyshev polynomial, hence the product of Tk(B)
and v0 computed through a three-term recurrence, will grow exponentially with k.

There are a number of ways [9, 47, 30] to obtain good lower and upper bounds
λlb and λub of the spectrum of A. For example, we can set λub to θk+‖(A−θkI)uk)‖,
and λlb to θ1−‖(A− θ1I)u1)‖, where θ1 (resp. θk) is the algebraically smallest (resp.
largest) Ritz value obtained from an k-step Lanczos iteration and u1 (resp. uk) is the
associated normalized Ritz vector. Note that these residual norms are inexpensive to
compute since ‖(A − θjI)uj‖ can be easily expressed from the bottom entry of zj ,
the unit norm eigenvector of the k × k tridiagonal matrix obtained from the Lanczos
process. For details, see Parlett [34, sec. 13.2]. We should point out that λlb and
λub do not have to be very accurate approximations to λmin and λmax respectively.
It is demonstrated in [30] that tight bounds can be obtained from a 20-step Lanczos
iteration for matrices of dimension larger than 100,000.

Because KPM can be viewed as a way to approximate a series of δ-functions which
are highly discontinuous, Gibbs oscillation [24] can be observed near the peaks of the
spectral density. Fig. 3.1 shows an approximation to δ(t) by a Chebyshev polynomial
expansion of the form 3.11 with M = 40. It can been that the approximation oscil-
lates around 0 away from t = 0. As a result, it does not preserve the nonnegativity of
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Algorithm 1: The Kernel Polynomial Method.

Input: Real symmetric matrix A with eigenvalues between [−1, 1]. A set of
points {ti} at which DOS is to be evaluated, the degree M of the ex-
pansion polynomial.

Output: Approximate DOS {φ̃M (ti)}.

1: Set ζk = 0 for k = 0, · · · ,M ;
2: for l = 1 : nvec do

3: Select a new random vector v
(l)
0 ;

4: for k = 0 :M do

5: Compute ζk ← ζk +
(
v
(l)
0

)T

v
(l)
k ;

6: Compute v
(l)
k+1 via the three-term recurrence v

(l)
k+1 = 2Av

(l)
k − v

(l)
k−1 (for k = 0,

v
(l)
1 = Av

(l)
0 );

7: end for

8: end for

9: Set ζk ← ζk/nvec, µk ←
2−δk0

nπ
ζk for k = 0, 1, ...,M ;

10: Evaluate {φ̃M (ti)} using {µk} and Eq. (3.11);

−1 −0.5 0 0.5 1
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t

φ
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Exact
w/o Jackson

w/ Jackson

Fig. 3.1: Chebyshev expansion with and without the Jackson damping for Dirac δ-
function δ(t). The Chebyshev polynomial degree is set to 40.

δ(t). The Gibbs oscillation can be reduced by a technique called the Jackson damp-
ing, which modifies the coefficient of Chebyshev expansion. The details of Jackson
damping is given in Appendix A, and Fig. 3.1 shows that the Jackson damping in-
deed reduces the amount of Gibbs oscillation significantly. However, Jackson damping
tends to oversmooth the approximate DOS and create an approximation to δ(t) that
has a wider spread. We will discuss this again with numerical results in section 4.

We should also point out that it is possible to replace Chebyshev polynomials in
KPM by other orthogonal polynomials such as the Legendre polynomials. We will call
the variant that uses Legendre polynomials to expand the spectral density by KPML.

We also note that the cost for constructing KPM can be reduced by techniques
presented in the Appendix A. Because KPM provides a finite polynomial expansion,
the approximate DOS φ̃ can be evaluated at any arbitrary point t once the µ′

ks have
been determined.

3.1.2. The spectroscopic view of KPM. In his 1956 book titled “Applied
Analysis” [28], Lanczos described a method for computing spectra of real symmetric
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matrices, which he termed “spectroscopic”. This approach, which also relies heavily
on Chebyshev polynomials, is rather unusual in that it assimilates the spectrum of
a matrix to a collection of frequencies and the goal is to detect these frequencies by
Fourier analysis. Because it is not competitive with modern methods for computing
eigenvalues, this technique has lost its appeal. However, we will show below that the
spectroscopic approach is well suited for computing approximate spectral densities,
and it is closely connected to the KPM.

Let us assume that the eigenvalues of the matrix A are in [-1,1]. The spectroscopy
approach takes samples of a function of the form

f(t) =

n∑

j=1

β2
j cos(θjt), (3.13)

where θj ’s are related to eigenvalues of A according to θj = cosλj , at t = 0, 1, 2, ...,M .
Then one can take the Fourier transform of f(t) to reveal the spectral density of A. If
a sufficient number of samples are taken, then the Fourier transform of the sampled
function should have peaks near cosλj , j = 1, 2, ..., n, and an approximate spectral
density can be obtained.

Because λj ’s are not known, (3.13) cannot be evaluated directly. However,M +1
uniform samples of f(t), i.e. f(0), f(1), ..., f(M) can be obtained from the average
of

vT0 v0, v
T
0 T1(A)v0, ..., v

T
0 TM (A)v0, (3.14)

where Tk(t) is the same kth degree Chebyshev polynomial of the first kind we used
in the previous section, and v0 is a random starting vector.

Taking a discrete cosine transform of (3.14) yields

F (p) =
1

2
(f(0) + (−1)pf(M)) +

M−1∑

k=1

f(k) cos
kpπ

M
, p = 0, · · · ,M. (3.15)

Note that, as is customary, the end values are halved to account for the discontinuity
of the data at the interval boundaries. An approximation to the spectral density φ(t)
can be obtained from F (p), p = 0, 1, ...,M through an interpolation procedure.

We now show that the spectroscopic approach is closely connected to KPM. This
connection can be seen by noticing that, the coefficient ζk in Eq. (3.8) essentially gives
an estimate of the following transform of the spectral density φ(t)

f(s) =

∫
cos(s arccos t)φ(t)dt, (3.16)

evaluated at an integer k.
Since t ∈ [−1, 1], we can rewrite (3.16) as the continuous cosine transform of a

related function by introducing an auxiliary variable ξ = arccos t, and define

ψ(ξ) = φ(cos ξ) sin ξ.

It is then easy to verify that (3.16) can be written as

f(s) =

∫ ∞

0

cos(sξ)ψ(ξ) dξ.
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Thus f(s) can indeed by obtained by performing a cosine transform of ψ(ξ).
If f(s) is given, we can obtain ψ(ξ) via the inverse cosine transform

ψ(ξ) =
2

π

∫ ∞

0

cos(sξ)f(s) ds. (3.17)

Substituting ξ = arccos t back into (3.17) yields

φ(t) =
2

π
√
1− t2

∫ ∞

0

cos(s arccos t)f(s) ds. (3.18)

However, since we can only compute f(s) for s = k, k ∈ N through estimating
the trace of Tk(A) by a stochastic averaging technique discussed in section 3.1.1,
the integration in (3.18) can only be performed numerically using, for example, a
composite trapezoidal rule:

φ(t) ≈ 2

nπ
√
1− t2

[
1

2
f(0) +

∑

k=1

f(k)Tk(t) +
1

2
f(M)TM (t)

]
(3.19)

Comparing Eq. (3.19) with Eq. (3.6), we find that (3.19) is exactly the KPM expan-
sion, except that the coefficient for TM (t) is multiplied by a factor 1

2 . Therefore the
spectroscopic method and KPM are essentially equivalent.

3.1.3. The Delta-Gauss-Legendre expansion approach. In some sense, the
spectroscopy method discussed in the previous section samples the “reciprocal” space
of the spectrum by computing vT0 Tj(A)v0, where Tj(t) is the jth degree Chebyshev
polynomial of the first kind, for a number of different randomly generated vectors v0
and j = 0, 1, ...,M . It uses the discrete cosine transform to reveal the spectral density.
In this section, we examine another way to sample or to probe the spectrum of A at
an arbitrary point ti ∈ [−1, 1] directly by computing {vT0 pMi

(A)v0}, where pMi
(t) is

an Mith degree polynomial of the form

pMi
(t) ≡

Mi∑

ki=0

µki
(ti)Tki

(t). (3.20)

The expansion coefficient µki
(ti) in the above expression is chosen, for each ti, to be

µki
(ti) =

2− δk0
π

∫ 1

−1

1√
1− t2

Tki
(t)δ(t− ti)dt =

2− δk0
π

Tki
(ti)√

1− t2i
. (3.21)

The polynomial pMi
(t) defined in (3.20) can be viewed as a polynomial approxi-

mation to the δ-function δ(t − ti), which can be regarded as a spectral probe placed
at ti.

The reason why vT0 pMi
(A)v0 can be regarded as a sample of the spectral density

at ti can be explained as follows. The presence of an eigenvalue at ti can be detected
by integrating δ(t− ti) over the entire spectrum of A with respect to a spectral point
measure defined at eigenvalues only. The integral returns +∞ if ti is an eigenvalue
of A and 0 otherwise. However, in practice, this integration cannot be performed
without knowing the eigenvalues of A in advance.

A practical probing scheme can be devised by replacing δ(t−ti) with a polynomial
approximation such as the one given in (3.20), and performing integration, which
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amounts to evaluating the trace of pMi
(A). This trace evaluation can be done by

using the same stochastic approach we introduced earlier for the KPM. We call this
technique the Delta-Chebyshev method.

If v0 is some random vector normalized to have ‖v0‖ = 1, whose expansion in the
eigenbasis {uj} is given by

v0 =

n∑

j=1

βjuj, (3.22)

then vMi
≡ pMi

(A)v0 will have the expansion

vMi
=

n∑

j=1

βjpMi
(λj)uj . (3.23)

Taking the inner product between v0 and vMi
yields

(vMi
)T v0 =

n∑

j=1

β2
j pMi

(λj). (3.24)

Since
∑n

j=1 β
2
j = 1, (3.24) can be viewed as an integral of pMi

(t) associated with

a point measure {β2
j } defined at eigenvalues of the matrix A. In the case when

β2
j = 1/n for all j, we can then simply rewrite the integral as Trace[pMi

(A)]/n. As we
have already shown in previous sections, such a trace can be approximated by choosing
multiple random vectors v0 that satisfy the conditions (3.2) and averaging vT0 pMi

(A)v0
for all these vectors. The averaged value yields φ̃(ti), which is the approximation to
the spectral density φ(t) at an arbitrary sample point ti.

As we already indicated in section 2, because δ(t − ti) is not a proper function,
constructing a good polynomial approximation directly may be difficult. A more
plausible approach is to “regularize” δ(t − ti) first by replacing it with a smooth
function that has a peak at t = ti, and constructing a polynomial approximation to
this smooth function.

We choose the regularized δ-function to be the Gaussian gσ(t − ti), where gσ is
defined in (2.3), and the standard deviation σ controls the smoothness or the amount
of regularization of the function.

It is possible to expand gσ(t − ti) in terms of Chebyshev polynomials. However,
we found that it is easier to derive an expansion in terms of Legendre polynomials. It
can been shown (see Appendix A) that

gσ(t− ti) =
1

(2πσ2)1/2

∞∑

k=0

(
k +

1

2

)
γk(ti)Lk(t) (3.25)

where Lk(t) is the Legendre polynomial of degree k, and the expansion coefficient
γk(ti) is defined by

γk(ti) =

∫ 1

−1

Lk(s)e
− 1

2
((s−ti)/σ)

2

ds. (3.26)

It can be also shown (see Appendix A) that γk(ti) can be determined by a recursive
procedure that does not require explicitly to compute the integral in (3.26).
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If we take an approximation to gσ(t − ti) to be the first Mi + 1 terms in the
expansion (3.25), i.e.,

φ̃Mi
(t) =

1

(2πσ2)1/2

Mi∑

k=0

(
k +

1

2

)
γk(ti)Lk(t), (3.27)

then a practical scheme for sampling the spectral density of A can be devised by
computing vT0 hMi

(A)v0 for randomly generated and normalized v0’s and averaging
these quantities. Because this scheme is based on regularizing the δ function with a
Gaussian and expanding the Gaussian in Legendre polynomials, we call this scheme
a Delta-Gauss-Legendre (DGL) method and summarize this scheme in Algorithm 2.

Algorithm 2: Multi-point Delta-Gauss-Legendre expansion.

Input: Real symmetric matrix A with eigenvalues between [−1, 1]. A set of
points {ti} at which the DOS is to be evaluated, and Mmax is the max-
imum degree employed for all the points.

Output: Approximate DOS {φ̃M (ti)}.

1: for each ti do
2: Compute and store the expansion coefficients {γk(ti)}

Mi

k=0 using Eq. (3.26);
3: end for

4: Set ζk = 0 for k = 0, · · · ,Mmax;
5: for l = 1 : nvec do

6: Select a new random vector v
(l)
0 ;

7: for k = 0 :Mmax do

8: Compute ζk ← ζk +
(
v
(l)
0

)T

v
(l)
k ;

9: Compute v
(l)
k+1 via the three-term recurrence v

(l)
k+1 = 2k+1

k+1
Av

(l)
k −

k
k+1

v
(l)
k−1 (for

k = 0, v
(l)
1 = Av

(l)
0 );

10: end for

11: end for

12: Set ζk ← ζk/nvec for all k = 0, 1, ...,Mmax;

13: Evaluate φ̃Mi
(ti) using Eq. (3.27) with {ζk} and the stored {γk(ti)};

Note that both the Delta-Chebyshev and the DGL methods compute vT0 pMi
v0 at

sampled point ti within the spectrum of A. This would have been an unacceptably
expensive procedure if it were not for the fact that the same vector sequence {Tk(A)v0}
and {Lk(A)v0} for k = 0, 1, ..., can be used for all points ti at the same time. They
only need to be generated once.

Although the Delta-Chebyshev method and KPM are derived from somewhat
different principles, there is a close connection between the two, which may not be
entirely obvious. The key to recognizing this connection is to notice that the average
value of vT0 pMi

(A)v0 can be viewed as an approximation to Trace(pMi
(A)), which can
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be written as

Trace(pMi
(A)) =

1

n

Mi∑

ki=0

µki
(ti)

n∑

j=1

Tki
(λj)

=
1

n

Mi∑

ki=0

2− δki,0

π

Tki
(ti)√

1− t2i
Trace(Tki

(A))

=

Mi∑

ki=0

[
2− δki,0

nπ
Trace(Tki

(A))

]
Tki

(ti)√
1− t2i

. (3.28)

Note that the coefficients within the square bracket in (3.28) are exactly the same

coefficients as in KPM, which appear in the expansion (3.6) of the function φ̂(t) =√
1− t2φ(t). Therefore, when Mi = M for all i, the Delta-Chebyshev expansion

method is identical to the KPM. Hence, the cost of this approach is the same as that
of KPM if polynomials of the same degree and the same number of sampling vectors
are used at each ti.

When Mi is allowed to vary with respect to i, there is a slight advantage of us-
ing the Delta-Chebyshev method in terms of flexibility. We can use polynomials of
different degrees in different parts of the spectrum to obtain a more accurate approx-
imation. Note that in this situation, if Mmax is the maximum degree employed for
all the points, the number of MATVECs employed remains the same and equal to
Mmax, since we will need to compute for each random vector v0, the vectors Tk(A)v0
for k = 0, · · · ,Mmax as these are needed by the points requiring the highest degree.
However, some of the other calculations (inner products) required to obtain the spec-
tral density can be avoided, though in most cases applying Tk(A) to v0 dominate the
computational cost in the DOS calculation. The computational cost of DGL is similar
to that of the Delta-Chebyshev method. Similarly, one can also show that DGL is
closely related to KPML, i.e., it is expansion of a regularized spectral density in terms
of Legendre polynomials. However, we will omit the alternative derivation here.

The close connection between the Delta-Chebyshev method and KPM also sug-
gests that Gibbs oscillation can be observed in the approximate DOS produced by
Delta-Chebyshev and DGL, especially when σ is small. There is no guarantee that
the non-negativity of φ(t) can be preserved by DGL.

3.2. The Lanczos Algorithm. Because finding a highly accurate DOS essen-
tially amounts to computing all eigenvalues of A, any method that can provide ap-
proximations to the spectrum of A can be used to construct an approximate DOS as
well. Since the Lanczos algorithm yields good approximation to extreme eigenvalues,
it is a good candidate for computing localized spectral densities at least at both ends
of the spectrum. In this section, we show that it is also possible to combine the Lanc-
zos algorithm with multiple randomly generated starting vectors to construct a good
approximation to the complete DOS.

It should be noted that the spectral density φ as a probability distribution is
non-negative, i.e. 〈φ, g〉 ≥ 0 if g ≥ 0 everywhere. This is an important property,
but the KPM and its variants as introduced in previous sections do not preserve the
non-negativity of the spectral density. In contrast, the methods introduced in this
section, including the Lanczos method and the Haydock method do preserve the non-
negativity by construction. This will become a clear advantage for certain spectral
densities as will be illustrated in section 4 through numerical experiments.
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3.2.1. Constructing spectral density approximating from Ritz values

and Gaussian blurring. For a given starting vector v0, an M -step Lanczos proce-
dure for a real symmetric matrix A can be succinctly described by

AVM = VMTM + fMe
T
M , V T

MVM = I, V T
MfM = 0. (3.29)

Here TM is an M ×M tridiagonal matrix, VM is an n ×M matrix, and IM is an
M ×M identity matrix. It is well known that [18] the k-th column of VM can be
expressed as

VMek = pk−1(A)v0, k = 1, · · · ,M.

where {pk(t)}, k = 0, 1, 2, ..,M − 1 is a set of polynomials orthogonal with respect to
the weighted spectral distribution φv0(t) that takes the form

φv0(t) =

n∑

j=1

β2
j δ(t− λj), (3.30)

where βj ’s are the expansion coefficients obtained from expanding v0 in the eigenvector
basis of A as in Eq. (3.22).

It is also well known that these orthogonal polynomials can be generated by a
three-term recurrence whose coefficients are defined by the matrix elements of TM [15].
If (θk, yk), k = 0, 1, 2, . . . ,M are eigenpairs of the tridiagonal matrix TM , and τk is
the first entry of yk, then the following distribution function defined by

M∑

k=0

τ2k δ(t− θk), (3.31)

serves as an approximation to the weighted spectral density function φv0(t), in the
sense that

n∑

j=1

β2
j pq(λj) =

M∑

k=0

τ2kpq(θk), (3.32)

for all polynomials of degree 0 ≤ q ≤ 2M + 1. The moment matching property
described by (3.32) is well known [17], and is related to the Gaussian quadrature
rules [16, 19, 18].

Since in most cases, we are interested in the standard spectral density defined
by (1.1), we would like to choose a starting vector v0 such that β2

j is uniform. However,
this is generally not possible without knowing the eigenvectors {uj} of A in advance.
To address this issue, we resort to the same stochastic approach we used in previous
sections.

We repeat the Lanczos process with multiple randomly generated starting vectors

v
(l)
0 , l = 1, 2, . . . , nvec, that satisfy the conditions given by (3.2). It follows from (3.4)
that

1

nvecn

nvec∑

l=1

(
v
(l)
0

)T
δ(tI −A)v(l)0 =

1

n

n∑

j=1

(
1

nvec

nvec∑

l=1

(
β
(l)
j

)2
)
δ(t− λj) (3.33)

is a good approximation to the standard spectral density φ(t) in Eq. (1.1). Since
each distribution (3.31) generated by the Lanczos procedure is a good approximation
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to (3.30), the average of (3.31) over l, i.e.,

φ̃(t) =
1

nvec

nvec∑

l=1

(
1

n

M∑

k=0

(
τ
(l)
k

)2
δ(t− θ(l)k )

)
(3.34)

should yield a good approximation to the standard spectral density (1.1).

Since (3.34) has far fewer peaks than φ(t), when M is small, a direct comparison
of (3.34) with φ(t) is not very meaningful. However, when φ(t) is regularized by

replacing δ(t−λi) with gσ(t−λi), we can replace δ(t− θ(l)k ) in (3.34) with a Gaussian

centered at the θ
(l)
k to yield a regularized DOS approximation, i.e., we define the

approximate DOS as

φ̃σ(t) =
1

nvec

nvec∑

l=1

(
1

n

M∑

k=0

(
τ
(l)
k

)2
gσ(t− θ(l)k )

)
. (3.35)

This regularization is well justified because in the limit of M = n, all Ritz values are
the eigenvalues, and φ̃σ(t) is exactly the same as the regularized DOS φσ(t) for the
same σ. We will refer to the method that constructs the DOS approximation from
Ritz values obtained from an M -step Lanczos iteration as the Lanczos method in the
following discussion.

Because gσ(t) ≥ 0, the approximate DOS produced by the Lanczos method is
nonnegative. This is a desirable property not shared by KPM, the DGL or the spec-
troscopic method.

An alternative way to refine the Lanczos based DOS approximation from a M -
step Lanczos run is to first construct an approximate cumulative spectral density or
cumulative density of states (CDOS), which is a monotonically increasing function
and then take the derivative of the CDOS through a finite difference procedure or
other means. This technique is discussed in Appendix C.

3.2.2. Haydock’s method. As we indicated earlier, the use of Gaussians is
not the only way to regularize the spectral density. Another possibility is to replace
δ(t−λi) in (1.2) with a Lorentzian of the form (2.7) and centered at λi. The regularized
DOS can be written as

φη(t) =
1

nπ

n∑

j=1

η

(t− λj)2 + η2
.

Consequently, an alternative approximation to the spectral density can be ob-

tained by simply replacing δ(t − θ(k)k ) in (3.34) with a Lorentzian centered at θ
(k)
k ,

i.e.,

φ̃η(t) =
1

nvec

nvec∑

l=1

[
1

n

M∑

k=0

(
τ
(l)
k

)2 η

(t− θ(l)k )2 + η2

]
,

where θ
(l)
k and τ

(l)
k are the same Ritz values and weighting factors that appear in (3.35)

and η is an appropriately chosen constant that corresponds to the resolution of the
spectral density to be approximate. This approximation was first suggested by Hay-
dock, Heine and Kelly [20]. We will refer to this approach as Haydock’s method.
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Haydock’s original method does not require computing Ritz values even though
computing the eigenvalues of a small tridiagonal matrix is by no means costly nowa-
days. The method makes use of the fact that

φη(t) = −
1

nπ
Im

n∑

j=1

1

t− λj + iη
=

1

nπ
Im Trace

[
(tI −A+ iηI)−1

]
.

Hence, once again, the task of approximating φη(t) reduces to that of approximating
the trace of (tI −A+ iηI)−1, which can be obtained by

1

nvec

nvec∑

l=1

(
v
(l)
0

)T
(tI −A+ iηI)−1v

(l)
0 , (3.36)

for nvec randomly generated vectors v
(l)
0 that satisfy the conditions (3.2).

Note that a direct calculation of (3.36) requires solving linear systems of the form
[A − (t + iη)I]z = v0 repeatedly for any point t at which the spectral density is to
be evaluated. This approach can be prohibitively expensive. Haydock’s approach
approximates vT0 (tI − A + iηI)−1v0 for multiple t’s at the cost of performing a sin-
gle Lanczos factorization and some additional calculations that are much lower in
complexity.

If v0 is used as the starting vector of the Lanczos procedure, then it follows from
the shift-invariant property of the Lanczos algorithm that

[A− (t+ iη)I]VM = VM [TM − (t+ iη)I] + feTM+1, (3.37)

where VM and TM are the same orthonormal and tridiagonal matrices respectively
that appear in (3.29). After multiplying (3.37) from the left by [A − (t + iη)I]−1,
from the right by [TM − (t+ iη)I]−1 and rearranging terms, we obtain

[A−(t+iη)I]−1VM = VM [TM−(t+iη)I]−1− [A−(t+iη)I]−1feTM+1[TM−(t+iη)I]−1.

It follows that

vT0 [A− (t+ iη)I])−1v0 = eT1 V
T
M [A− (t+ iη)I]−1VMe1

= eT1 [TM − (t+ iη)I]−1e1 + ξ,

where ξ = −
(
vT0 [A− (t+ iη)I]−1f

) (
eTM+1[TM − (t+ iη)I]−1e1

)
. If ξ is sufficiently

small, computing vT0 (tI − A + iηI)−1v0 reduces to computing the (1, 1)-th entry of
the inverse of TM − (t+ iη)I. It is not difficult to show that this entry is exactly the
same as the expression given in (3.36) up to a constant scaling factor.

Because TM is tridiagonal with α1, α2, ..., αM on the diagonal and β2, β3, ..., βM
on the sub-diagonals and super-diagonals, eT1 (zI − TM )−1e1 can be computed in a
recursive fashion using a continued fraction formula

eT1 (zI − TM )−1e1 =
1

z − α1 +
β2

2

z−α2+···

. (3.38)

This formula can be verified from the identity

(z − TM )−1
1,1 ≡

det(zI − TM )

det(z − T̂M )
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where T̂M is the trailing submatrix starting from the (2, 2) entry of TM (3.38) and
tridiagonal structure of both TM and T̂M matrices.

It is also related to the generation of Sturm sequences which is used in bisection
methods for computing eigenvalues of tridiagonal matrices [34]. Although this is
an elegant way to compute eT1 (TM − zI)−1e1, its cost is not much lower than that
of solving the linear system (TM − zI)w = e1 and taking its first entry. For most
problems, the cost for this procedure is small compared to that required to perform
the Lanczos procedure to obtain TM .

We should point out that the non-negativity of φ(t) is preserved by the Haydock
method. However, the Lorentzian function defined by (2.7) decreases to 0 at a much
slower rate compared to a Gaussian as t moves away from λ. Hence, when a high
resolution approximation is needed, we may need to choose a very small η in order to
produce an accurate approximation.

4. Numerical results. In this section, we compare all methods discussed above
for approximating the spectral density of A through numerical examples. For a given
test problem, we first define the target resolution of the DOS to be approximated by
setting the parameter σ in either (2.2) or (2.4) or the parameter η in (2.7). We use the
metric defined in Eq. (2.4) to measure the approximation errors associated with KPM
and its variants with the exception of DGL. For DGL, Lanczos and Haydock methods,
we simply use the error metric (2.2) with p = ∞. Since the spectroscopic method
is equivalent to KPM, we do not show any numerical results for the spectroscopic
method.

4.1. Modified Laplacian matrix. The first example is a modified 2D Lapla-
cian operator with zero Dirichlet boundary condition defined on the domain [0, 30]×
[0, 30]. The operator is discretized using a five-point finite difference stencil with
∆h = 1. The modification involves adding a diagonal matrix, which can be regarded
as a discretized potential function. The diagonal matrix is generated by adding two
Gaussians, one centered at the point (4,5) of the domain and the other at the point
(25,15). The dimension of the matrix is 750, which is relatively small. We set the pa-
rameter σ and η to 0.35. For all calculations shown in this section, we use nvec = 100
random vectors whenever stochastic averaging is needed. Each calculation is repeated
10 times. Each plotted value is the mean value of the computed quantities produced
from the 10 runs, with the error bar indicating the standard deviation of the 10 runs.

In Fig. 4.1, we compare all methods presented in the previous section. We observe
that the Lanczos method seems to outperform all other methods, especially when M
is relatively small. The use of Jackson damping in KPM does not appear to improve
the accuracy of the approximation. To some extent, this is not surprising because
the true DOS has many sharp peaks (see Fig. 4.2) even after it is regularized. Hence,
using Jackson damping, which tends to over-regularize the KPM approximation, may
not be able to capture these sharp peaks. The DGL method, the KPM and KPML
behave similarly, as is expected.

In Fig. 4.2, we compare φσ(t) and φ̃(t) directly for the Lanczos, Haydock, KPM
with and without Jackson damping. To see the accuracy of different methods more
clearly, we choose a higher resolution by setting σ and η to 0.05. We note that the
meaning of φ̃(t) is different for different methods. For Lanczos, φ̃(t) is the approximate

DOS obtained using the Gaussian blurring. For Haydock, φ̃(t) is the approximate
DOS obtained using the Lorentzian Gaussian blurring. For KPM (with and without

Jackson damping), we first evaluate φ̃(t) as in section 3.1, and then plot instead the
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Fig. 4.1: A comparison of approximation errors of all methods applied to the modified
Laplacian matrix for different M values.

quantity 〈φ̃(·), gσ(·−t)〉. In this sense, the exact and approximate DOS are regularized
on the same footing. The same procedure is adopted for other numerical examples in
this section as well.

We use M = 100, nvec = 100 for all methods. In this case, a visual inspection
of the approximate DOS plots in Fig. 4.2 yields the same conclusion that we reached
earlier based on the measured errors shown in Fig. 4.1. Lanczos appears to be the
most accurate among all methods. The DOS curves generated from both the Lanczos
and the Haydock methods are above zero. The peaks in the DOS curve produced
by the Haydock method are not as sharp as those produced by the Lanczos method.
This is because Haydock uses a Lorentzian to regularize the Dirac δ-function, whereas
the Lanczos method uses a Gaussian function to blur the Dirac δ-function centered
at Ritz values. The KPM method without Jackson damping does not preserve the
non-negativity of the approximate DOS, and Gibbs oscillation is clearly observed in
Fig. 4.2 (d). Finally, KPM with Jackson damping preserves the non-negativity of
the approximate DOS. However, the use of Jackson damping leads to missing several
peaks in the DOS, as is illustrated in Fig. 4.1. The behavior of DGL and KPML are
similar to that of KPM without Jackson damping.

4.2. Other test matrices. In this section, we compare different DOS approxi-
mation methods for two other matrices taken from the Univerisity of Florida Sparse
Matrix collection [8]. The pe3k matrix originates from vibrational mode calculation
of a polyethylene molecule with 3,000 atoms [46]. The shwater matrix originates from
a computational fluid dynamics simulation. The size of the pe3k matrix is 9,000, and
the size of shwater matrix is 81,920. These two test matrices have quite different
characteristics in their DOS. The spectrum of the pe3k matrix contains a large gap as
well as many peaks. The DOS of the shwater matrix is relatively smooth as we will
see below.

We set σ to 0.3 in tests presented in this section. We observe that KPM with
Jackson damping only becomes accurate when the degree of the expanding polynomi-
als (M) is high enough, and the convergence with respect to M is rather slow. The
DGL method, KPM without Jackson damping and KPML behave similarly.

For the shwater matrix, which has a relatively smooth spectral density, the Lanc-
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Fig. 4.2: Comparing the regularized DOS (with σ = 0.05) with the approximate DOS
produced by (a) the Lanczos method (b) the Haydock method (c) the KPM with
Jackson damping (d) the KPM without Jackson damping for M = 100.

zos method is still the most accurate. It only take M = 50 Lanczos steps to reach
10−3 accuracy. The KPM (without Jackson damping) and KPML, as well as the DGL
method all require M > 110 terms to reach the same level of accuracy.

Fig. 4.4 shows that when we setM = 100, nvec = 100, the KPM without Jackson
damping yields accurate approximation to the DOS, whereas the Jackson damping
introduces slightly larger error near the locations of the peaks and valleys of the DOS
curve. This error is due to the use of extra smoothing. The DOS generated by the
Haydock method also has larger error near the peaks and valleys of the DOS curves.
This is due to the use of Lorentzian regularization.

In Fig. 4.5, we zoom into the tail of the DOS curves produced by the Lanczos and
KPM. It can be seen that Lanczos preserves the non-negativity of the DOS, whereas
KPM does not. However, since the DOS is smooth, the Gibbs oscillation is very small,
and can only be seen clearly at the tail of the DOS curve.

For the pe3k matrix, Fig. 4.6 shows that the Lanczos method is significantly more
accurate than other methods, followed by the Haydock method. This difference in
accuracy can be further observed in Fig. 4.7, which compares the regularized DOS
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Fig. 4.3: A comparision of approximation errors of all DOS approximation methods
applied to the shwater matrix for different M values. The regularization parameter σ
is set to 0.3.

with the approximate DOS for the Lanczos method, the Haydock method, and the
KPM with and without Jackson damping. We useM = 100 and nvec = 100. The pe3k
matrix has a large gap between the low and high ends of the spectrum. Without the
use of Jackson damping, the KPM produces large oscillations over the entire spectrum.
We observed similar behavior for DGL and KPML. Adding Jackson damping reduces
oscillation in the approximate DOS. However, it leads to an over-regularized DOS
approximation and is not accurate.

4.3. Application: Heat capacity calculation. At the end of section 2.1 we
discussed that there are different ways for regularizing the DOS depending on the
applications. Here we give an example of the calculation of the heat capacity of a
molecule. The heat capacity is a thermodynamic property and is defined as [32, 45]

Cv =

∫ ∞

0

kB
(~ωc/kBT )

2e−~ωc/kBT

(1− e−~ωc/kBT )2
φ(ω)dω, (4.1)

where kB is the Boltzmann constant, c is the speed of light, ~ is Planck’s constant, T
is the temperature and ω =

√
λ is the vibration frequency.

Here, if we define

g(ω) = kB
(~ωc/kBT )

2e−~ωc/kBT

(1− e−~ωc/kBT )2
, (4.2)

and define the DOS φ(ω) using the square root of the eigenvalues of the Hessian
associated with a molecular potential function with respect to atomic coordinates of
the molecule, we have

Cv = 〈φ, g〉.

Therefore the error can be measured directly using Eq. (2.5).
In the following, we take the Hessian to be the modified Laplacian matrix and

the pe3k matrix, and compute the corresponding heat capacity Cv(T ) for different
temperature values T . We note that here the computed values of Cv(T ) do not carry
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Fig. 4.4: Comparing the regularized DOS (with σ = 0.3) with the approximate DOS
produced by (a) the Lanczos method (b) the Haydock method (c) the KPM with
Jackson damping (d) the KPM without Jackson damping for the shwater matrix.

any physical meaning. They merely serve as a proof of principle for assessing the
accuracy of the estimated DOS. We compare the KPM and the Lanczos method.
All computations are done using M = 40 MATVECs. Each computed Cv is an
averaged value over 100 runs. To facilitate the comparison, we normalize Cv so that
its maximum value is 1. The Lanczos method is also fully flexible when the error
metric is changed. To this end we regularize the distribution obtained from Ritz
values not by Gaussians, but by the function g in this application. In other words, in
Eq. (3.35) we replace gσ by the function g in Eq. (4.2).

Fig. 4.8 shows that both the KPM and the Lanczos method correctly reproduce
the normalized Cv(T ) for the modified Laplacian matrix. We also plot the error
generated in both the KPM and the Lanczos method. We observe that the error
associated with the Lanczos method is slightly smaller. This observation agrees with
previous results that demonstrate the effectiveness and accuracy of both the KPM
and the Lanczos methods for computing a relatively smooth DOS.

Fig. 4.9 shows that, for the pe3k matrix, the KPM approximation of Cv(T ) ex-
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Fig. 4.5: A comparison of approximation errors of the Lanczos method (a) with that
of the KPM without Jackson damping (b) at the higher end of the spectrum of the
shwater matrix.
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Fig. 4.6: A comparison of approximation errors of all DOS approximation methods
applied to the pe3k matrix for different M values. The regularization parameter σ is
set to 0.3.

hibits much larger error than that produced by the Lanczos method. This observation
agrees with the results shown in Figure 4.7, which suggests that the Lanczos method
yields a much more accurate DOS estimate, especially when M is relatively small.

5. Conclusion. We surveyed numerical algorithms for estimating the spectral
density of a real symmetric matrix A from a numerical linear algebra perspective.
The algorithms can be categorized into two classes. The first class contains the KPM
method an its variants. The KPM is based on constructing polynomial approxima-
tions to Dirac δ-“functions” or regularized δ-“functions”. We showed that the Lanczos
spectroscopic method is equivalent to KPM even though it is derived from different
view points. The DGL method is slightly different, but can be viewed as a polyno-
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Fig. 4.7: Comparing the regularized DOS (with σ = 0.3) with the approximate DOS
produced by (a) the Lanczos method (b) the Haydock method (c) the KPM with
Jackson damping (d) the KPM without Jackson damping for the pe3k matrix.

mial expansion of a regularized spectral density. It is more flexible because it allows
polynomials of different degrees to be used at different spectral locations.

The second class of methods is based on the classical Lanczos procedure for par-
tially tridiagonalizing A. Both the Lanczos and the Haydock methods make use of
eigenvalues and eigenvectors of the tridiagonal matrix to construct approximations to
the DOS. They only differ in the type of regularization they use to interpolate spec-
tral density from Ritz values to other locations in the spectrum. The Lanczos method
uses a Gaussian blurring function, whereas the Haydock method uses a Lorentzian.
Because a Lorentzian decreases to zero at a much slower rate than a Gaussian away
from its peak, it is less effective when a high resolution spectral density is needed.

Regularization through the use of Gaussian blurring of δ-“functions” not only
allows us to specify the desired resolution of the approximation, but also allows us to
properly define an error metric for measuring the accuracy of the approximation in a
rigorous and quantitative manner.

The KPM and its variants require estimating the trace of A or p(A) where p(t) is
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Fig. 4.8: A comparison of the approximate heat capacity produced by the Lanczos
and the KPM with the “exact” heat capacity at different temperatures (left) , and
the approximation errors produced by these methods at different temperature values
(right) for the modified Laplacian.
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Fig. 4.9: A comparison of the approximate heat capacity produced by the Lanczos
and the KPM with the “exact” heat capacity at different temperatures (left) , and
the approximation errors produced by these methods at different temperature values
(right) for the pe3k matrix.

a polynomial. An important technique for obtaining such an estimate is the stochas-
tic sampling and averaging of the Rayleigh quotient vT0 p(A)v0/v

T
0 v0. Averaging the

tridiagonal matrices produced by the Lanczos procedure started from randomly gen-
erated starting vectors ensures that the approximation contains equal contributions
from all spectral components of A. This is an important requirement of the Lanczos
and Haydock algorithms.

Our numerical tests show that the Lanczos method consistently outperforms
other methods in term of the accuracy of the approximation, especially when a few
MATVECs are used in the computation. Furthermore, both the Lanczos and Haydock
algorithms guarantee that the approximate DOS is non-negative. This is a desirable
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feature of any DOS approximation. Another nice property of the Lanczos and Hay-
dock algorithms is that in the limit of M = n, they fully recovered a regularized
DOS.

The KPM and its variants appear to work well when the DOS to be approximated
is relatively smooth. They are less effective when the DOS contains many peaks or
when the spectrum of A contains large gaps. We found the use of Jackson damping
can remove the Gibbs oscillation of KPM. However, it tends to over-regularized the
approximate DOS and misses important features (peaks) of the DOS.
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Appendix A. Further discussion on the KPM method.

For KPM, a common approach used to damp the Gibbs oscillations is to use the
Chebyshev-Jackson approximation [22, 36, 23], which modulates the coefficients µk

with a damping factor gMk defined by

gMk =

(
1− k

M+2

)
sin(αM ) cos(kαM ) + 1

M+2 cos(αM ) sin(kαM )

sin(αM )
, (A.1)

where αM = π
M+2 . Consequently, the damped Chebyshev expansion has the form

φ̃M (t) =

M∑

k=0

µkg
M
k Tk(t).

The approximation of Jackson damping is demonstrated in Fig. 3.1.
Another variant can be derived from that Chebyshev polynomials are not the

only types of orthogonal polynomials that can be used in the expansion. We can use
any other type of orthogonal polynomials. The only practical requirement is that we
explicitly know the 3-term recurrence for the polynomials. For example, we can use
the Legendre polynomials Lk(t) which obey the following 3-term recursion

L0(t) = 1, L1(t) = t, (k + 1)Lk+1(t) = (2k + 1)tLk(t)− kLk−1(t).

See, for example [7], for three-term recurrences for a wide class of such polynomials,
e.g., all those belonging to the Jacobi class, which include Legendre and Chebyshev
polynomials as particular cases.

From a computational point of view, some savings in time can be achieved if we
are willing to store more vectors. This is due to the formula:

Tp(t)Tq(t) =
1

2

[
Tp+q(t)− T|p−q|(t)

]
,

from which we obtain

Tp+q(t) = 2 Tp(t)Tq(t) + T|p−q|(t).

For a given k we can use the above formula with p = ⌈k/2⌉ and q = k − p. This
requires that we compute and store vr = Tr(A)v0 for r ≤ p. Then the moments
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vT0 Tr(A)v0 for r ≤ p can be computed in the usual way, and for r = p+ q > p we can
use the formula:

vT0 Tp+q(A)v0 = 2 vTp vq + vT0 v|p−q|.

This saves 1/2 of the matrix-vector products at the expense of storing all the previous
{vr}, and therefore it is not practical for high degree polynomials.

Appendix B. Details on the derivation of the DGL method.

We now calculate the γk’s starting with γ0. Since L0(λ) = 1, a change of variable

t← (s− t)/
√
2σ2 yields

γ0 = σ

√
π

2

[
erf

(
1− t√
2σ

)
− erf

(−1− t√
2σ

)]
= σ

√
π

2

[
erf

(
1− t√
2σ

)
+ erf

(
1 + t√
2σ

)]
,

(B.1)
where we have used the standard error function:

erf(x) =
2√
π

∫ x

0

e−t2dt .

Now consider a general coefficient γk+1 with k ≥ 0. There does not seem to
exist a closed form formula for γk for a general k. However, these coefficients can be
obtained by a recurrence relation. To this end we will need to determine concurrently
the sequence:

ψk =

∫ 1

−1

L′
k(s)e

− 1

2
((s−t)/σ)2ds. (B.2)

From the 3-term recurrence of the Legendre polynomials:

(k + 1)Lk+1(λ) = (2k + 1)λLk(λ) − kLk−1(λ) (B.3)

we get by integration:

(k + 1)γk+1 = (2k + 1)

∫ 1

−1

sLk(s)e
− 1

2
((s−t)/σ)2ds− kγk−1. (B.4)

A useful observation is that the above formula is valid for k = 0 by setting γ−1 ≡ 0.
This comes from (B.3), which is valid for k = 0 by setting L−1(λ) ≡ 0. Next we
expand the integral term in the above equality:

∫ 1

−1

se−
1

2
((s−t)/σ)2Lk(s)ds = σ2

∫ 1

−1

s− t
σ2

e−
1

2
((s−t)/σ)2Lk(s)ds+ tγk (B.5)

= σ2

∫ 1

−1

d

ds
[−e− 1

2
((s−t)/σ)2 ]Lk(s)ds+ tγk. (B.6)

The next step is to proceed with integration by parts for the integral in the above
expression:

∫ 1

−1

d

ds
[−e− 1

2
((s−t)/σ)2 ]Lk(s)ds = −Lk(s)e

− 1

2
((s−t)/σ)2

∣∣∣
1

−1

+

∫ 1

−1

e−
1

2
((s−t)/σ)2L′

k(s)ds. (B.7)
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Noting that Lk(1) = 1 and Lk(−1) = (−1)k for all k, we get

∫ 1

−1

d

ds
[−e−

1

2
((s−t)/σ)2 ]Lk(s)ds = −e

− 1

2
((1−t)/σ)2 + (−1)ke−

1

2
((1+t)/σ)2 + ψk (B.8)

= −e−
1

2
(1+t2)/σ2

[
et/σ

2

− (−1)ke−t/σ2
]
+ ψk (B.9)

≡ ψk − ζk, (B.10)

where we have defined

ψk =

∫ 1

−1

e−
1

2
((s−t)/σ)2L′

k(s)ds,

ζk = e−
1

2
((1−t)/σ)2 − (−1)ke− 1

2
((1+t)/σ)2 .

(B.11)

We note in passing that according to (B.9), ζk can be written as

ζk =

{
2e−

1

2
(1+t2)/σ2

sh(t/σ2) for k even

2e−
1

2
(1+t2)/σ2

ch(t/σ2) for k odd.

Substituting (B.8) into (B.6) and the result into (B.4) yields

(k + 1)γk+1 = (2k + 1)
[
σ2(ψk − ζk) + tγk

]
− kγk−1 (B.12)

The only thing that is left to do is to find a recurrence for the ψk’s. Here we use
the elegant formula which can be found in, e.g., [29, p. 47]

L′
k+1(λ) = (2k + 1)Lk(λ) + L′

k−1(λ). (B.13)

Integrating in [−1, 1] yields the relation:

ψk+1 = (2k + 1)γk + ψk−1 (B.14)

Note that initial values of ψk are ψ0 = 0, ψ1 = γ0. In the end, we obtain the following
recurrence relations:

{
γk+1 = 2k+1

k+1

[
σ2(ψk − ζk) + tγk

]
− k

k+1γk−1

ψk+1 = (2k + 1)γk + ψk−1.
(B.15)

It can be noted that the above formulas work for k = 0 by setting γ−1 = ψ−1 = 0.
The recurrence starts with k = 0, using the initial values γ0 given by (B.1), ψ1 = γ0,
and ψ0 = 0.

An important remark here is that one has to be careful about the application of
the recurrence (B.15). The perceptive reader may notice that such a recurrence runs
the risk of being unstable. In fact we observe the following behavior. For large values
of σ the Gaussian function can be very smooth and as a result a very small degree
of polynomials may be needed, i.e., the value of γk drop to small values quite rapidly
as k increases. If we ask for a high degree polynomial and continue the recurrence
(B.15) beyond the point where the expansion has converged (indicated by small value
of γk) we will essentially iterate with noise. As it turns out, this noise is amplified
by the recurrence. This is because the coefficient ψk − ζk becomes just noise and this
causes the recurrence to diverge. An easy remedy is to just stop iterating (B.15) as
soon as two consecutive γk’s are small. This takes care of two issues at the same
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time. First, it determines a sort of optimal degree to be used. Second, it avoids the
unstable behavior observed by continuing the recurrence. Specifically, a test such as
the following is performed:

|γk−1|+ |γk| ≤ k · tol, (B.16)

where tol is a small tolerance, which can be set to 10−6 for example.
With this we can now easily develop the Delta-Gauss-Legendre (DGL) expansion

algorithm. In the DGL algorithm, we will refer to formula (3.24). But now pM is the
M -degree polynomial

pM (λ) =
1

(2πσ2)1/2

M∑

k=0

(
k +

1

2

)
γkLk(λ), (B.17)

obtained by truncating the sum (3.25) to M + 1 terms.

Appendix C. Cumulative density of states from the Lanczos method.

An alternative way to refine the Lanczos based DOS approximation from a M -
step Lanczos run is to first construct an approximate cumulative spectral density or
cumulative density of states (CDOS), defined as

ψ(t) =

∫ t

∞
φ(s)ds.

Without applying regularization, the approximate CDOS can be computed from the
Lanczos procedure as

ψ̃(t) =

M∑

k=0

η2kδ(t− θk), (C.1)

where η2k =
∑k

i=1 τ
2
i , and θk and τk are eigenvalues and the first components of the

eigenvectors of the tridiagonal matrix TM defined in (3.34). This approximation is
plotted as a staircase function in Figure C.1 for the modified 2D Laplacian. Note that
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Fig. C.1: The approximate cumulative spectral density associated with the modified
2D Laplacian constructed directly from a 20-step Lanczos run (left) and its spline-
interpolated and smooth version (right).

both ψ(t) and ψ̃(t) are monotonically non-decreasing functions. Furthermore, it can
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been shown [26, 14] that ψ(t) − ψ̃(t) has precisely 2M − 1 sign changes within the
spectrum of A. A sign change occurs when ψ(t) crosses either a vertical or horizontal

step of ψ̃(t). These properties allow us to construct an “interpolated” CDOS that

matches ψ(t) and ψ̃(t) at the points where ψ(t) crosses ψ̃(t).
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