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IS 2K-CONJECTURE VALID FOR FINITE VOLUME METHODS?

WAIXIANG CAO ∗, ZHIMIN ZHANG † , AND QINGSONG ZOU ‡

Abstract. This paper is concerned with superconvergence properties of a class of finite volume
methods of arbitrary order over rectangular meshes. Our main result is to prove 2k-conjecture: at
each vertex of the underlying rectangular mesh, the bi-k degree finite volume solution approximates
the exact solution with an order O(h2k), where h is the mesh size. As byproducts, superconvergence
properties for finite volume discretization errors at Lobatto and Gauss points are also obtained. All
theoretical findings are confirmed by numerical experiments.

1. Introduction. As a popular numerical method for partial differential equa-
tions (PDEs), the finite volume method (FVM) has a wide range of applications and
attracts intensive theoretical studies, see, e.g., [3, 4, 6, 7, 14, 15, 17, 18, 19, 21, 23, 24,
26, 29, 33] for an incomplete list of publications. However, most theoretical studies in
the literature have been focused on linear or quadratic schemes. Recently, arbitrary
order FV schemes have been constructed and analyzed for elliptic problems in [8] and
[30]. The basic idea of in [8, 30] to design a FV scheme of any order k is to choose
standard finite element space as the trial space and construct control volumes with
Gauss points in the primal partition. These FV schemes are shown to be convergent
with optimal rates under both energy and L2 norms.

In 1973 Douglas-Dupont proved that the kth order C0 finite element method
(FEM) to the two-point boundary value problem converges with rate h2k at nodal
points. Since then, it has been conjectured (based on many numerical evidences)
that the same is true for bi-k finite element approximation under rectangular meshes
for the Poisson equation. This conjecture was settled (see [12]) recently after almost
40 years. Our earlier study reveals that a class of finite volume methods of arbitrary
degree have similar (and even better in some special cases) superconvergence property
as counterpart finite element methods in the one dimensional setting [8, 9]. It is
natural to ask whether the 2k-conjecture is valid for finite volume methods? In this
work, we will provide a confirmatory answer to this question. To be more precise, we
shall investigate superconvergence properties of any order FV schemes studied in [30].
In particular, we show that the underlying FVM has all superconvergence properties
of the counterpart FEM.

We begin with a model problem:

−△u = f in Ω, and u = 0, on ∂Ω, (1.1)

where Ω = [a, b]× [c, d] and f is a real-valued function defined on Ω.
Techniques used in [8, 9] are very difficult to be applied to FV schemes in the

two dimensional setting. Inspired by a recent work [12] for the finite element method,
our approach here is to construct a suitable function to correct the error between
the exact solution u and its interpolation uI . Due to different nature of the finite
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volume method, the construction here is different from that of for the FEM, some
novel design has to be make to serve our purpose. In particular, we construct our
correction function by designing some special operators, instead of a complicated
iterative procedure used in the FEM case (see Section 3). In addition, using a special
mapping from the trial space to test space ([30]), the FV bilinear form can be regarded
as a Gauss quadrature of its corresponding FE bilinear form. Then by taking special
cares to the residual term of the Gauss quadrature, we show that our correction
function also has desired properties. Once the correction function is constructed,
superconvergence properties at some special points can be obtained with standard
arguments. Our main results can be summarized as the following.

We first establish superconvergence at nodes : the bi-k degree FV solution uh
superconverges to u with order 2k at any nodal point P , i.e.,

(u− uh)(P ) = O(h2k), (comparing with optimal global rate O(hk+1)) (1.2)

which is termed by Zhou and Lin ([31]) as 2k-conjecture in the finite element regime,
see also, e.g., [5, 27], for the literature along this line.

Our superconvergence results also include

(u− uh)(L) = O(hk+2), (comparing with ‖u− uh‖0 = O(hk+1)) (1.3)

where L is an interior Lobatto point; and

∇(u− uh)(G) = O(hk+1), (comparing with ‖u− uh‖1 = O(hk)) (1.4)

where G is a Gauss point. As the reader may recall, these rates are the same as the
counterpart FEM.

The rest of the paper is organized as follows. In Section 2, we present our FV
scheme for (1.1) and discuss the relationship between FV and FE bilinear forms.
Section 3 is the most technical part, where we construct a correction function and
study its properties. In Section 4, we prove our main results (1.2) – (1.4). Finally,
we provide some carefully designed numerical examples to support our theoretical
findings in Section 5.

Throughout this paper, we adopt standard notations for Sobolev spaces such as
Wm,p(D) on sub-domain D ⊂ Ω equipped with the norm ‖ · ‖m,p,D and semi-norm
|·|m,p,D. When D = Ω, we omit the index D; and if p = 2, we setWm,p(D) = Hm(D),
‖ · ‖m,p,D = ‖ · ‖m,D, and | · |m,p,D = | · |m,D. Notation“A . B” implies that A can
be bounded by B multiplied by a constant independent of the mesh size h. “A ∼ B”
stands for “A . B” and “B . A”.

To end this introduction, we would like to emphasize that this work is a theoretical
investigation. Our intention here is not to provide a practical method or anything
like, rather, we settle a conjecture in convergence rate to the best possible case under
very limited special situation.

Comparing with rich literature on superconvergence of the FEM (see, e.g., [2, 5,
10, 11, 20, 27, 25, 28, 32]), the superconvergence study for the FVM is still in its
infancy, especially for high order schemes.

2. Finite volume schemes of arbitrary order. In this section, we first recall
finite volume schemes introduced in [30], then we discuss briefly the relationship
between the FV and its corresponding FE bilinear forms.

Let Th be a rectangular partition of Ω, where h is the maximum length of all
edges. For any τ ∈ Th, we denote by hxτ , h

y
τ the lengths of x- and y- directional edges
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of τ , respectively. We assume that the mesh Th is quasi-uniform in the sense that
there exist constants c1, c2 > 0 such that

h ≤ c1h
x
τ , h ≤ c2h

y
τ , ∀τ ∈ Th.

We denote by Eh and Nh the set of edges and vertices of Th, respectively.
We construct control volumes using Gauss points described below. Define refer-

ence element τ̂ = [−1, 1] × [−1, 1], and Zr = {1, 2, . . . , r},Z0
r = {0, 1, . . . , r} for all

positive integer r. Let Gj , j ∈ Zk be Gauss points of degree k ( zeros of the Legendre
polynomial Pk) in [−1, 1]. Then gτ̂i,j = (Gi, Gj), i, j ∈ Zk constitutes k2 Gauss points
in τ̂ . Given τ ∈ Th, let Fτ be the affine mapping from τ̂ to τ . Then Gauss points in
τ are :

Gτ = {gτi,j : g
τ
i,j = Fτ (g

τ̂
i,j), i, j ∈ Zk}.

Similarly, let Li, i ∈ Z
0
k be Lobatto points of degree k + 1 on the interval [−1, 1], i.e.,

L0 = −1, Lk = 1 and Li, i ∈ Zk−1 are zeros of P ′
k. Then

Nτ = {lτi,j : l
τ
i,j = Fτ (Li, Lj), i, j ∈ Z

0
k}

constitutes (k + 1)2 Lobatto points on τ . We denote by

N g =
⋃

τ∈Th

Gτ , N l =
⋃

τ∈Th

Nτ

the set of Gauss and Lobatto points on the whole domain, respectively; and N l
0 the

set of interior Lobatto points by excluding Lobatto points on the boundary ∂Ω. For
any P ∈ N l

0, the control volume surrounding P is the rectangle K∗
P formed by four

segments connecting the four Gauss points in N g closest to P . Then

T ∗
h =

⋃

P∈N l

K∗
P

constitutes a dual partition of Th.
Next, we denote Pk as the space of polynomials with degree no more than k; and

ψK∗
P
, the characteristic function of K∗

P . Then the trial and test spaces are defined as

Uh = {v ∈ C(Ω) : v|τ ∈ Pk(x) × Pk(y), τ ∈ Th, v|∂Ω = 0}

and

Vh = Span{ψK∗
P
: P ∈ N l

0},

respectively. We see that Uh is the bi-k degree finite element space, and Vh is the
piecewise constants space with respect to the partition T ∗

h . They both vanish on the
boundary of Ω.

The finite volume method for solving (1.1) is to find uh ∈ Uh satisfying the
following local conservative property

−

∫

∂τ∗

∂uh
∂n

ds =

∫

τ∗

fdxdy, ∀τ∗ ∈ T ∗
h ,

or equivalently,

ah(uh, vh) = (f, vh), ∀vh ∈ Vh, (2.1)
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where the bilinear form is defined for all w ∈ H1
0 (Ω), vh ∈ Vh by

ah(w, vh) = −
∑

E∈ET ∗
h

[vh]E

∫

E

∂w

∂n
ds. (2.2)

Here ET ∗
h

is the set of interior edges of the dual partition T ∗
h , [vh]E = vh|τ2 − vh|τ1

denotes the jump of vh across the common edge E = τ1 ∩ τ2 of two rectangles τ1, τ2 ∈
T ∗
h , and n denotes the normal vector on E pointing from τ1 to τ2.

The inf-sup condition and continuity of the bilinear form ah(·, ·) have been es-
tablished in [30]. Moreover, we have the following convergence and superconvergence
properties.

Lemma 2.1. (cf.[30]) Let u ∈ H1
0 (Ω)∩H

k+2(Ω) be the solution of (1.1), and uh,
the solution of (2.1). Then,

|u− uh|1 . hk|u|k+1, |uh − ũI |1 . hk+1|u|k+2, (2.3)

where ũI ∈ Uh is the function interpolating u at Lobatto points.
We next discuss the relationship between ah(·, ·) and the FE bilinear form ae(·, ·),

which is defined for all v, w ∈ H1(Ω) by

ae(v, w) =

∫

Ω

▽v · ▽w.

We begin with some necessary notations. Let Aj , j ∈ Zk denote the weights of

the Gauss quadrature Qk(F ) =
∑k

j=1 AjF (Gj) for computing the integral I(F ) =
∫ 1

−1 F (x)dx. For all τ ∈ Th and v1, v2 ∈ L2(τ), we define

〈v1, v2〉τ =

k
∑

i,j=1

Ax
τ,iA

y
τ,j(v1v2)(g

τ
i,j),

where

Ax
τ,j =

1

2
hxτAj , A

y
τ,j =

1

2
hyτAj , j ∈ Zk

are Gauss weights associated with τ . Then we can define a discrete inner product on
Ω :

〈v1, v2〉 =
∑

τ∈Th

k
∑

i,j=1

Ax
τ,iA

y
τ,jv1(g

τ
i,j)v2(g

τ
i,j).

Writing ∂x = ∂
∂x
, ∂y = ∂

∂y
for simplicity, we denote, for all w ∈ H1

0 (Ω),

∂−1
x w(x, y) =

∫ x

a

w(x′, y)dx′, ∂−1
y w(x, y) =

∫ y

c

w(x, y′)dy′.

A function vh ∈ Vh can be represented as

vh =
∑

P∈N l
0

(vh)PψK∗
P
=

∑

P∈N l

(vh)PψK∗
P
,
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where (vh)P is a constant on the control volume K∗
P for P ∈ N l. Here we use the

fact (vh)P = 0, P ∈ ∂Ω.
Furthermore, we denote the (double layer) jump of vh at the Gauss point gτi,j , ∀τ ∈

Th, i, j ∈ Zk as

⌊vh⌋gτ
i,j

= (vh)lτ
i,j

+ (vh)lτ
i−1,j−1

− (vh)lτ
i−1,j

− (vh)lτ
i,j−1

.

With above notations, it is straightforward to deduce from (2.2) that

ah(w, vh) = −
∑

τ∈Th

k
∑

i,j=1

(

∂−1
x ∂yw + ∂−1

y ∂xw
)

(gτi,j)⌊vh⌋gτ
i,j
. (2.4)

In [30], a linear mapping Π : Uh → Vh

Πv = vh =:
∑

P∈N l
0

(vh)PψK∗
P
∈ Vh, v ∈ Uh, (2.5)

is defined by letting

⌊vh⌋gτ
i,j

= Ax
τ,iA

y
τ,j∂

2
xyv(g

τ
i,j), ∀gτi,j ∈ N g. (2.6)

Note that although the number of constraints in (2.6) (which equals to the cardinality
of N g) is different from the dimensionality of the test space (which equals to the
cardinality of N l

0), it has been rigourously shown in [30] that Π is well-defined.
With this mapping, we have

ah(w,Πv) = −〈∂−1
x ∂yw, ∂

2
x,yv〉 − 〈∂−1

y ∂xw, ∂
2
x,yv〉.

Since by Green’s formula,

ae(w, v) = −

∫

Ω

(

∂−1
x ∂yw + ∂−1

y ∂xw
)

∂2x,yvdxdy,

therefore, the finite volume bilinear form ah(·,Π·) can be regarded as the Gauss
quadrature of the Galerkin bilinear form ae(·, ·). Note that similar point of view
appeared in the analysis of linear FV schemes in [18].

3. Correction function. Superconvergence analysis at a special point can usu-
ally be reduced to estimating

ah(u− uI ,Πv), ∀v ∈ Uh,

where uI ∈ Uh is an interpolant of u which will be defined in (3.10). A straightforward
analysis using the continuity of ah(·, ·) results in

|ah(u− uI ,Πv)| . hk,

due to the restriction of optimal error bound

|u− uI |1 . hk.

Further analysis based on standard superconvengence argument may lead to

|ah(u− uI ,Πv)| . hk+1,
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an improvement by order one, but is still far from our need. To obtain desired
superconvergence results, more delicate analysis is necessary. In this section, we shall
construct a correction function wh with following properties.

Proposition 3.1. Assume that u ∈ Hα+1(Ω), α = k + 2(or 2k). Then there
exists a function wh ∈ Uh such that wh = 0 at all nodes and

‖wh‖∞ . hk+2|lnh|
1
2 ‖u‖α+1. (3.1)

Furthermore,

|ah(u − uI − wh,Πv)| . hα‖u‖α+1‖v‖1, ∀v ∈ Uh. (3.2)

In the rest of this section, we will first construct wh and then verify that wh

satisfies Proposition 3.1.

3.1. Construction. In this subsection, we construct a suitable correction func-
tion wh by introducing some special operators. Our device is much transparent and
simpler than that in [12] for the finite element method, where a complex iterative
procedure is used.

We begin with notations and preliminaries. Since Th is a partition of rectangles,
there exist a = x0 < x1 < . . . , < xm = b and c = y0 < y1 < . . . , < yn = d such that

Th = {τi,j : τi,j = [xi−1, xi]× [yj−1, yj ], i ∈ Zm, j ∈ Zn}.

We denote by Bx
i = [xi−1, xi]× [c, d], i ∈ Zm, the element-band along x-direction and

By
j = [a, b]× [yj−1, yj ], j ∈ Zn, the element-band along y-direction, respectively. For

any rectangle B ⊂ Ω, we define

Uh(B) = {v ∈ C(Ω) : v|B ∈ Pk(x)× Pk(y), v|∂B = 0}.

Note that when k = 1, Uh(B) = {0}.
For all i ∈ Zm, let LBx

i
: H1

0 (Ω) → Uh(B
x
i ) be the operator which maps w ∈

H1
0 (Ω) to LBx

i
(w) defined by

ah(LBx
i
(w),Πv) = −〈∂−1

y ∂xw, ∂
2
x,yv〉Bx

i
, ∀v ∈ Uh(B

x
i ). (3.3)

Note that on one hand, given w ∈ H1
0 (Ω),

−〈∂−1
y ∂xw, ∂

2
x,yv〉Bx

i
, ∀v ∈ Uh(B

x
i )

is a bounded linear functional on Uh(B
x
i ). On the other hand, the coercivity and

continuity of the bilinear form ah(·,Π·) have been established in [30]. Then by the
Lax-Milgram Lemma, (3.3) has a unique solution and thus the operator LBx

i
is well

defined.
We define a global operator Lx : H1

0 (Ω) → Uh by

Lx(w)|Bx
i
:= LBx

i
(w), ∀i ∈ Zm.

Since LBx
i
(w) = 0 on the boundary ∂Bx

i , L
x(w) = 0 on all ∂Bx

i , i ∈ Zm. Consequently,
Lx(w) = 0 at all vertices.

By a slight modification, we can define another operator L̃x : H1
0 (Ω) → Uh by

letting

L̃x(w)|Bx
i
:= L̃Bx

i
(w), ∀i ∈ Zm,
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where the local operator L̃Bx
i
: H1

0 (Ω) → Uh(B
x
i ) is defined by

ah(L̃Bx
i
(w),Πv) = −〈∂−1

x ∂yw, ∂
2
x,yv〉Bx

i
, ∀v ∈ Uh(B

x
i ). (3.4)

By the same token, we define LB
y

j
, L̃B

y

j
, Ly, and L̃y.

Next we define some projectors. Let Pr, r ≥ 0 be the Legendre polynomial of
degree r and denote by

φ0(t) =
1− t

2
, φ1(t) =

1 + t

2
, φr+1(t) =

∫ t

−1

Pr(s)ds, r ≥ 1,

the series of Lobatto polynomials on the interval [−1, 1]. With these Lobatto poly-
nomials, we have the following expansion for all v ∈ H1(Ω) and (x, y) ∈ Bx

i , i ∈ Zm

along x-direction

v(x, y) =

∞
∑

r=0

br(y)φr(s),

where s = (2x− xi − xi−1)/h
x
i ∈ [−1, 1],

b0(y) = v(xi−1, y), b1(y) = v(xi, y),

and

br(y) =
2r − 1

2

∫ 1

−1

∂sv(x, y)φ
′
r(s)ds, r ≥ 2. (3.5)

Next, we define a projector Qx
p , p ≥ 1 along the x-direction. Given (x, y) ∈ Ω, there

exists an i ∈ Zm such that (x, y) ∈ Bx
i , we then define

(Qx
pv)(x, y) =

p
∑

r=0

br(y)φr(s).

Obviously, Qx
p , p ≥ 1 is a bounded operator and Qx

pv = v for all v(·, y) ∈ Pp. Conse-
quently, by the Bramble-Hilbert lemma, there holds for all (x, y) ∈ Bx

i

|(v −Qx
pv)(x, y)| . hp

∫ xi

xi−1

|∂p+1
x v(x, y)|dx (3.6)

and

|∂x(v −Qx
pv)(x, y)| . hp−1

∫ xi

xi−1

|∂p+1
x v(x, y)|dx. (3.7)

These inequalities will be frequently used in our later analysis. Moreover, by the
properties of Legendre and Lobatto polynomials,

∂x(v −Qx
pv)(·, y)⊥Pp−1, (v −Qx

pv)(·, y)⊥Pp−2, ∀y ∈ [c, d], (3.8)

where P−1 = ∅. Noticing that φr(±1) = 0, r ≥ 2, we have

(Qx
pv)(xi, y) = v(xi, y), (Qx

pv)(xi−1, y) = v(xi−1, y), ∀y ∈ [c, d]. (3.9)
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The projector Qy
p, p ≥ 1 along y-direction can be defined similarly. With (3.9)

and counterpart properties in the y-direction, we define an interpolation

vI = Qx
kQ

y
kv (3.10)

and the residuals

Exv = v −Qx
kv, Eyv = v −Qy

kv,

then we have

(v − vI)(P ) = 0, ∀P ∈ Nh,

and

v − vI = Exv + Eyv − EyExv. (3.11)

We are now in a perfect position to construct our correction function wh. Let

wh = Lx(Exu)+Ly(Eyu)+ L̃x(Exu)+ L̃y(Eyu)−Ly(EyExu)−L̃y(EyExu). (3.12)

Obviously, wh ∈ Uh and wh(P ) = 0 for all P ∈ Nh.

3.2. Analysis. In this subsection, we shall prove wh defined by (3.12) satisfies
all properties listed in Proposition 3.1. For simplicity, we assume in this subsection
that

h = hxτ = hyτ , ∀τ ∈ Th.

Consider Lx(Exu), the first term of wh. For this purpose, we need to present (3.3)
in its linear algebraic form. We begin with a presentation of a basis of Uh(B

x
i ), i ∈ Zm.

For all (x, y) ∈ Bx
i and 0 ≤ p, q ≤ k, let

Ψp,q(x, y) = φp(s)φq(t), (3.13)

where

s = (2x− xi − xi−1)/h, t = (2y − d− c)/(d− c).

Then the function system {Ψp,q, 2 ≤ p, q ≤ k} constitutes a basis of Uh(B
x
i ). Since

LBx
i
(Exu) ∈ Uh(B

x
i ), we have the representation

LBx
i
(Exu) =

k
∑

p,q=2

wp,qΨp,q.

Let

D = (dp,q)(k−1)×(k−1), K = (mp,q)(k−1)×(k−1),

where

dp,q = 〈φ′p, φ
′
q〉[−1,−1], mp,q = −〈∂−1φp, φ

′
q〉[−1,−1], 2 ≤ p, q ≤ k

8



with the discrete inner product defined by

〈v1, v2〉[−1,−1] =

k
∑

r=1

Arv1(Gr)v2(Gr).

By[16](p98, (2.7.12)),

〈v1, v2〉[−1,−1] =

∫ 1

−1

(v1v2)(x)dx − ck(v1v2)
(2k)(ξ), (3.14)

where ck = 22k+1(k!)4

(2k+1)[(2k)!]3 and ξ ∈ (−1, 1). Taking v = Ψr,l, r, l = 2, . . . , k in (3.3), we

derive

k
∑

p,q=2

(

(d− c)2dp,rmq,l + h2dq,lmp,r

)

wp,q = fr,l, (3.15)

where

fr,l = −(d− c)h〈∂−1
y ∂xE

xu, ∂2x,yΨr,l〉Bx
i
. (3.16)

Denote the unknownsX = (X2, . . . Xk)
T and the right-hand side F = (F2, . . . , Fk)

T

with vectors

Xr = (wr,2, . . . , wr,k)
T , Fr = (fr,2, . . . , fr,k)

T , r = 2, . . . , k.

Then (3.15) can be rewritten as
(

(d− c)2(D ⊗K) + h2(K ⊗D)
)

X = F, (3.17)

where for two matrices B1 = (b1p,q)k×k and B2 = (b2p,q)k×k, the tensor product B1⊗B2

is a matrix of k2 × k2 defined by

B1 ⊗B2 = (Bp,q)k×k, Bp,q = b1p,qB2, ∀ p, q ≤ k.

With the linear system (3.17), the study of the properties of Lx(Exu) is reduced
to the estimation of the vector F and the matrix A = (d− c)2(D⊗K) + h2(K ⊗D).

We first estimate the vector F .
Lemma 3.2. If u ∈ Hα+1(Ω), α ≥ k + 1, then

‖Fp‖∞ . hmin(α,2k+2−p)|lnh|
1
2 ‖u‖α+1,Bx

i
, p = 2, . . . , k. (3.18)

Proof. For all τ ∈ Bx
i , i ∈ Zm, we denote Gauss points gτr,l = (gxτ,r, g

y
τ,l), r, l ∈ Zk.

Let Θ = ∂−1
y ∂x(Q

x
α−1E

xu). Note that for any fixed y, ∂2x,yΨp,q(·, y) ∈ Pk−1, by the
orthogonality (3.8) and the fact that Θ = ∂x(Q

x
α−1E

x(∂−1
y u)), we have

∫ xi

xi−1

Θ∂2x,yΨp,qdx =

∫ xi

xi−1

(∂xE
x(∂−1

y u))∂2x,yΨp,qdx = 0,

thus

〈Θ, ∂2x,yΨp,q〉Bx
i
= −

∑

τ∈Bx
i

k
∑

l=1

Ay
τ,le

τ
p,q(g

y
τ,l),

9



where

eτp,q(y) =

∫ xi

xi−1

Θ∂2x,yΨp,qdx−
k
∑

r=1

Ax
τ,r

(

Θ∂2x,yΨp,q

)

(gxτ,r, y)

is the error of Gauss quadrature for calculating the integral of Θ∂2x,yΨp,q in [xi−1, xi].
By (3.14), there exists a point ξi ∈ (xi−1, xi) such that

eτp,q(y) = ck
h2k+1

22k+1
∂2kx

(

Θ∂2x,yΨp,q

)

(ξi, y).

Note that

∂yΨp,q = φ′q = O(1), ∂(r)x Ψp,q =
( 2

h

)r
φ(r)p = O(h−r), ∀ r ≤ p

and

‖∂jxΘ‖∞,Bx
i
. ‖∂j+1

x Ex(∂−1
y u)‖∞,Bx

i
. |u|α−1,∞,Bx

i
, ∀ j < α− 1.

Then, by the Leibnitz formula for derivatives,

|eτp,q| . h2k+1−p|u|α−1,∞,Bx
i
, 2 ≤ q ≤ k,

which implies
∣

∣〈Θ, ∂2x,yΨp,q〉Bx
i

∣

∣ . h2k+1−p|u|α−1,∞,Bx
i
. (3.19)

On the other hand, by the approximation property of Qx
p, p ≥ 1,

|Exu−Qx
α−1E

xu|1,∞,Bx
i
. hα−1|Exu|α,∞,Bx

i
. hα−1|u|α,∞,Bx

i
.

Consequently,
∣

∣〈∂−1
y ∂x(E

xu−Qx
α−1E

xu), ∂2x,yΨp,q〉Bx
i

∣

∣ . hα−1|u|α,∞,Bx
i
. (3.20)

Furthermore, by the definition (3.16),

−
fp,q

h(d− c)
= 〈∂−1

y ∂x(E
xu−Qx

α−1E
xu), ∂2x,yΨp,q〉Bx

i
+ 〈Θ, ∂2x,yΨp,q〉Bx

i
.

Substituting (3.19) and (3.20) into the above equation, we obtain

|fp,q|∞ . hmin(α,2k+2−p)‖u‖α,∞,Bx
i
.

Now recall from standard regularity argument [1],

‖u‖α,∞,Bx
i
. |lnh|

1
2 ‖u‖α+1,Bx

i
,

the desired estimate (3.18) follows.

We next study properties of the matrix A = (d−c)2(D⊗K)+h2(K⊗D). By the
orthogonality of Legendre polynomials and the fact that k-point Gauss quadrature is
exact for polynomials of degree 2k − 1, we have

dp,q = (Pp−1, Pq−1) = 0, p 6= q, dp,p =
2

2p− 1
, p, q = 2, . . . , k.

10



In other words, D is a diagonal matrix. Similarly,

mp,q = −(∂−1φp, φ
′
q) = (φp, φq), p, q ≤ k, p+ q ≤ 2k − 1. (3.21)

By the quasi-orthogonal property of Lobatto polynomials, mp,q 6= 0 only when p−q =
0,±2. Consequently, K is a five-diagonal matrix.

Lemma 3.3. The matrix K is symmetric and positive definite.
Proof. Let K1 = (m1

p,q)(k−1)×(k−1) with m1
p,q = (φp, φq), p, q = 2, . . . , k. By

(3.21),

m1
p,q = mp,q, ∀ p, q ≤ k, p+ q ≤ 2k − 1.

We next study the relationship of m1
k,k and mk,k. Denoting

ek = mk,k −m1
k,k,

we have from (3.14) and the Leibnitz formula for derivatives

ek = ck((∂
−1φk)φ

′
k)

(2k)(ξ) = ck

(

2k

k − 1

)

‖φk‖
2
k,∞ > 0.

Then

K = K1 +K2,

where K2 = (m2
p,q)(k−1)×(k−1), p, q = 2, . . . , k with

m2
k,k = ek > 0, m2

p,q = 0, otherwise.

Since K1 is symmetric and positive definite, K is also symmetric and positive definite.

Note that both D and K are symmetric and positive definite and independent of
h, then both D ⊗K and D ⊗K are also positive definite. By the definition of A, we
have

det(A) = det((d − c)2(D ⊗K)) +O(h2).

Therefore, when h is sufficiently small, detA is positive and uniformly bounded from
below. In other words, when h is sufficiently small

0 < det(A)−1 . C, (3.22)

where C is independent of h.

With the estimate for F and properties of A, we are now ready to estimate
LBx

i
(Exu).
Lemma 3.4. Assume u ∈ Hα+1(Ω), α = k+2(or 2k). Then for sufficiently small

h and all i ∈ Zm

‖Xr‖∞ . hk+2+max(0,α−k−r)|lnh|
1
2 ‖u‖α+1,Bx

i
, r = 2, . . . , k. (3.23)

Consequently,

∥

∥LBx
i
(Exu)

∥

∥

∞
. hk+2|lnh|

1
2 ‖u‖α+1,Bx

i
. (3.24)

11



Proof. Note that

∥

∥LBx
i
(Exu)

∥

∥

∞
.

k
∑

r=2

‖Xr‖∞,

then (3.24) follows from (3.23). We next show (3.23). When u ∈ Hk+3(Ω), By (3.18),
(3.22) and the Cramer’s rule, we have

‖Xr‖∞ . hk+2|lnh|
1
2 ‖u‖k+3,Bx

i
, r = 2 . . . , k.

Then (3.23) is valid for α = k + 2. To prove (3.23) for the case α = 2k, we rewrite A
in its block matrix form A = (Ar,l)(k−1)×(k−1), where each

Ar,l = (d− c)2dr,lK + h2mr,lD, r, l = 2, . . . , k

is a (k − 1)× (k − 1) matrix. Let

A′
r,l = Ar,lh

−|r−l|

and

Yr = Xrh
r−2k−2|lnh|−

1
2 ‖u‖−1

2k+1,Bx
i
, F ′

r = Frh
r−2k−2|lnh|−

1
2 ‖u‖−1

2k+1,Bx
i
.

Then both A′
r,l and F

′
r are independent of h. By (3.18), we have

‖Fr‖∞ . h2k+2−r|lnh|
1
2 ‖u‖2k+1,Bx

i
.

Multiplying the r-th equation of (3.17) with the factor hr−2k−2|lnh|−
1
2 ‖u‖−1

2k+1,Bx
i
,

we have for all r = 2, . . . , k

h4A′
r,r−2Yr−2 +A′

r,rYr +A′
r,r+2Yr+2 = F ′

r , (3.25)

where we use the notations A2,0 = A3,1 = Ak−1,k+1 = Ak,k+2 = 0. Let B =
(Br,l)(k−1)×(k−1) with

Br,l = A′
r,l, r ≤ l, Br,l = h4A′

r,l, otherwise.

Then (3.25) can be written as a linear system BY = F ′. A direct calculation yields

det(B) =
k
∏

r=2

det(A′
r,r) +O(h4),

which means that B is uniformly bounded from below. By Cramer’s rule, each entry
of Y is bounded independent of h. In other words, ‖Yr‖∞ . 1. Consequently,

‖Xr‖∞ . h2k+2−r |lnh|
1
2 ‖u‖2k+1,Bx

i
, r = 2, . . . , k.

This finishes our proof.

To prove Proposition 3.1, we still need to study the residual

(Rx
i (w), v) = −〈∂−1

y ∂xw, ∂
2
x,yv〉Bx

i
− ah(LBx

i
(w),Πv), w ∈ H1

0 (Ω)
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for a general function v ∈ Uh. Note that when v ∈ Uh(B
x
i ), we have (Rx

i (w), v) = 0.
Lemma 3.5. Assume that u ∈ Hα+1(Ω), α = k + 2(or 2k). Then for a general

function v ∈ Uh,

|(Rx
i (E

xu), v)| . hα‖u‖α+1,Bx
i
‖v‖1,Bx

i
, ∀i ∈ Zm. (3.26)

Proof. Note that for all Bx
i ⊂ Ω, i ∈ Zm,

φ0(s) =
xi − x

h
, φ1(s) =

x− xi−1

h
/∈ Uh(B

x
i ),

where s = (2x − xi − xi−1)/h ∈ [−1, 1]. Then a general function v ∈ Uh has the
decomposition

v(x, y) = vh(x, y) + ṽ(x, y), ∀(x, y) ∈ Bx
i ,

where vh ∈ Uh(B
x
i ) and ṽ(x, y) = v(xi−1, y)φ0(s) + v(xi, y)φ1(s). By (3.3),

(Rx
i (E

xu), v) = −〈∂−1
y ∂xE

xu, ∂2x,yṽ〉Bx
i
− ah(LBx

i
(Exu),Πṽ) = −J1 − J2.

We next estimate J1 and J2 separately. Let Φ = ∂−1
y ∂xE

xu. By (3.6)-(3.7) and

the fact that ∂k+1
y Φ = ∂xE

x(∂kyu), we have for all (x, y) ∈ τi,j , (i, j) ∈ Zm × Zn

|(Φ−Qy
kΦ)(x, y)| . hk

∫ yj

yj−1

|∂xE
x(∂kyu)(x, y)|dy

. hα−1

∫ yj

yj−1

∫ xi

xi−1

|∂α+1−k
x Ex(∂kyu)(x, y)|dxdy . hα|u|α+1,τi,j .

Then by the Cauchy-Schwartz inequality, we derive

|〈Φ−Qy
kΦ, ∂

2
x,yṽ〉Bx

i
| . 〈Φ−Qy

kΦ,Φ−Qy
kΦ〉

1
2

Bx
i
〈∂2x,y ṽ, ∂

2
x,yṽ〉

1
2

Bx
i

. hα|u|α+1,Bx
i
‖∂xṽ‖0,Bx

i
.

Here in the last step, we have used the inverse inequality

‖∂2x,yṽ‖0,Bx
i
. h−1‖∂xṽ‖0,Bx

i
.

Note that (Qy
kΦ)∂

2
x,y ṽ(x, ·) ∈ P2k−1, by Gauss quadrature and integrating by part, we

obtain

〈Qy
kΦ, ∂

2
x,yṽ〉Bx

i
= −

∑

τ∈Bx
i

k
∑

l=1

Ax
τ,l

∫ d

c

(∂yQ
y
kΦ)∂xṽ(g

x
τ,l, y)dy

= −
∑

τ∈Bx
i

k
∑

l=1

Ax
τ,l

∫ d

c

∂xE
x(∂yQ

y
k∂

−1
y u)∂xṽ(g

x
τ,l, y)dy.

Let Υ = ∂yQ
y
k∂

−1
y u. Since ṽ is linear with respect to x, we have

∑

τ∈Bx
i

k
∑

l=1

Ax
τ,l

∫ d

c

(∂xQ
x
αE

xΥ)∂xṽ(g
x
τ,l, y)dy =

∫

Bx
i

(∂xQ
x
αE

xΥ)∂xṽdxdy = 0.
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Consequently,

|〈Qy
kΦ, ∂

2
x,yṽ〉Bx

i
| =

∑

τ∈Bx
i

k
∑

l=1

Ax
τ,l

∫ d

c

∣

∣((∂xE
xΥ− ∂xQ

x
αE

xΥ)∂xṽ) (g
x
τ,l, y)

∣

∣ dy

. hα‖∂α+1
x ExΥ‖0,Bx

i
‖∂xṽ‖0,Bx

i
. hα|u|α+1,Bx

i
‖∂xṽ‖0,Bx

i
.

Note that

∂xṽ =
v(xi, y)− v(xi−1, y)

h
= h−1

∫ xi

xi−1

∂xv(x, y)dx,

we have

‖∂xṽ‖0,Bx
i
. ‖v‖1,Bx

i
.

Then

|J1| =
∣

∣〈Φ−Qy
kΦ, ∂

2
x,yṽ〉Bx

i
+ 〈Qy

kΦ, ∂
2
x,yṽ〉Bx

i

∣

∣

. hα|u|α+1,Bx
i
‖v‖1,Bx

i
.

As for J2, recall the bilinear form ah(·,Π·), and we have

J2 = −〈∂−1
y ∂xLBx

i
(Exu), ∂2x,yṽ〉Bx

i
− 〈∂−1

x ∂yLBx
i
(Exu), ∂2x,yṽ〉Bx

i

Note that
∫ xi

xi−1

(∂2x,y ṽ)∂
−1
y ∂xLBx

i
(Exu)dx = 0,

then

〈∂−1
y ∂xLBx

i
(Exu), ∂2x,yṽ〉Bx

i
= 0.

Therefore,

J2 = −〈∂−1
x ∂yLBx

i
(Exu), ∂2x,yṽ〉Bx

i
= −

∫

Bx
i

∂2ṽ

∂x∂y
∂−1
x ∂yLBx

i
(Exu)dxdy.

Since
(

∂−1
x ∂yLBx

i
(Exu)

)

(xi) =
(

∂−1
x ∂yLBx

i
(Exu)

)

(xi−1) = 0, ṽ(x, c) = ṽ(x, d) = 0,

integrating by part, we obtain

J2 = −

∫

Bx
i

ṽ
(

∂2yLBx
i
(Exu)

)

dxdy

= −
k

∑

p,q=2

wp,q

∫

Bx
i

(

v(xi−1, y)φ0(s) + v(xi, y)φ1(s)
)

∂2yΨp,qdxdy.

Note that Ψp,q(·, y) ⊥ P1, p > 3, then only p = 2, 3 in the above equation remain. For
any q = 2, . . . , k, a direct calculation yields
∣

∣

∣

∣

∣

∫

Bx
i

(

v(xi−1, y)φ0(s) + v(xi, y)φ1(s)
)

∂2yΨ2,qdxdy

∣

∣

∣

∣

∣

. h

∫ d

c

|v(xi−1, y) + v(xi, y)| dy

.

∫

Bx
i

|v(x, y)| dy.
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Here in the last step, we have used the inverse inequality

|v(ξi, y)| . h−1

∫ xi

xi−1

|v(x, y)|dx, ∀ξi ∈ [xi−1, xi], v ∈ Uh.

By the same argument, we derive

∣

∣

∣

∣

∣

∫

Bx
i

(

v(xi−1, y)φ0(s) + v(xi, y)φ1(s)
)

∂2yΨ3,qdxdy

∣

∣

∣

∣

∣

. h

∫ d

c

|v(xi−1, y)− v(xi, y)| dy

. h

∫

Bx
i

|∂xv(x, y)| dy.

Substituting the above two inequalities into the formula of J2, we have

|J2| . (‖X2‖∞ + h‖X3‖∞)‖v‖1,1,Bx
i

. hα+
1
2 |lnh|

1
2 ‖u‖α+1,Bx

i
‖v‖1,Bx

i
.

Then the desired result follows by combining J1 with J2.
Similarly, by denoting the residual for all j ∈ Zn

(Ry
j (w), v) = −〈∂−1

y ∂xw, ∂
2
x,yv〉By

j
− ah(LB

y

j
(w),Πv), w ∈ H1

0 (Ω), v ∈ Uh,

we have

|(Ry
j (E

yu), v)| . hα‖u‖α+1,By

j
‖v‖1,By

j
, (3.27)

and

|(Ry
j (E

yExu), v)| . hα‖u‖α+1,By

j
‖v‖1,By

j
. (3.28)

With all the above preparations, we are ready to prove Proposition 3.1.
Proof of Proposition 3.1. As a direct consequence of (3.24), we have

‖Lx(Exu)‖∞ . hk+2|lnh|
1
2 ‖u‖α+1.

Similar results hold true for Ly(Eyu), L̃x(Exu), L̃y(Eyu) and Ly(EyExu), L̃y(EyExu)
by the same arguments. Then (3.1) follows.

Now we turn to prove (3.2). Let R = u − uI . By the orthogonal property, we
have for all v ∈ Uh

ah(uh − uI ,Πv) = ah(u− uI ,Πv)

= −〈∂−1
y ∂xR, ∂

2
x,yv〉 − 〈∂−1

x ∂yR, ∂
2
x,yv〉 = I1 + I2.

From the decomposition (3.11), we have

I1 = −〈∂−1
y ∂xE

xu, ∂2x,yv)− 〈∂−1
y ∂xE

yu, ∂2x,yv〉+ 〈∂−1
y ∂x(E

yExu), ∂2x,yv〉.

Let wh = w1 + w2 with

w1 = Lx(Exu) + Ly(Eyu)− Ly(EyExu),
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and

w2 = L̃x(Exu) + L̃y(Eyu)− L̃y(EyExu).

By (3.26)-(3.28), we derive

|I1 − ah(w1,Πv)| =
∑

Bx
i

|(Rx
i (E

xu), v)|+
∑

B
y

j

∣

∣(Ry
j (E

yu), v)
∣

∣+
∣

∣(Ry
j (E

yExu), v)
∣

∣

. hα‖u‖α+1‖v‖1.

By the same arguments, we have

|I2 − ah(w2,Πv)| . hα‖u‖α+1‖v‖1.

Note that

ah(u− uI − wh,Πv) = I1 − ah(w1,Πv) + I2 − ah(w2,Πv),

then (3.2) follows. ✷

4. Superconvergence. In this section, we shall study superconvergence prop-
erties of uh at three kinds of special points : nodes, Gauss and Lobatto points.

Our first goal is to prove the 2k-conjecture.
Theorem 4.1. Let u ∈ H2k+1(Ω) be the solution of (1.1), and uh the solution

of (2.1). Then,

|(u− uh)(P )| . h2k|lnh|
1
2 ‖u‖2k+1, ∀P ∈ Nh. (4.1)

Proof. By [30], there hold

ah(w,Πv) . ‖w‖1‖v‖1, ah(v,Πv) & ‖v‖21, ∀w, v ∈ Uh. (4.2)

For any v ∈ Uh and Q ∈ Ω, by the Lax-Milgram Lemma, there exists gh ∈ Uh such
that

ah(v,Πgh) = v(Q). (4.3)

Choosing v = gh, we have, from (4.2) and (4.3)

‖gh‖
2
1 ≤ |ah(gh,Πgh)| = |gh(Q)| ≤ ‖gh‖∞.

Since (cf.,[32], p.84, Theorem 2.8)

‖v‖∞ . |lnh|
1
2 ‖v‖1, ∀v ∈ Uh,

we have

‖gh‖1 . |lnh|
1
2 . (4.4)

Letting v = uh − uI − wh ∈ Uh in (4.3) and using (3.2) and (4.4), we obtain

|(uh − uI − wh)(Q)| = |ah(u− uI − wh,Πgh)| . h2k|lnh|
1
2 ‖u‖2k+1. (4.5)

16



Noticing wh = 0 and uI = u at all nodes P ∈ Nh, the desired result (4.1) follows.
We next discuss superconvergence of uh at Gauss and Lobatto points.
Theorem 4.2. Let u ∈ Hk+3(Ω) be the solution of (1.1), and uh the solution of

(2.1). Then,

|(u− uh)(P )| . hk+2|lnh|
1
2 ‖u‖k+3, ∀P ∈ N l, (4.6)

and

|∇(u− uh)(Q)| . hk+1|lnh|
1
2 ‖u‖k+3, ∀Q ∈ N g. (4.7)

Proof. By (3.1)-(3.2) and (4.3), we have

‖uI − uh‖∞ . hk+2|lnh|
1
2 ‖u‖k+3.

By the inverse inequality,

|uI − uh|1,∞ . h−1‖uI − uh‖∞ . hk+1|lnh|
1
2 ‖u‖k+3.

On the other hand, by the definition of uI , we have (see, e.g.,[10, 32])

|(u − uI)(P )| . hk+2|u|k+2,∞, ∀P ∈ N l,

and

|∇(u − uI)(Q)| . hk+1|u|k+2,∞, ∀Q ∈ N g.

The desired statements (4.6)-(4.7) then follows.
Remark 4.3. As a direct consequence of the above theorem, we have

|uh − uI |1 . |uh − uI |1,∞ . hk+1|lnh|
1
2 ‖u‖k+3,

and

‖uI − uh‖0 . ‖uI − uh‖∞ . hk+2|lnh|
1
2 ‖u‖k+3.

It was pointed out in [30] that the FV approximation uh is super-close to the Lobatto
interpolation function ũI . The above inequalities clearly indicate the same for the
interpolation function uI, i.e., uh is also super-close to uI up to a logarithmic factor.

5. Numerical results. In this section, we present numerical examples to sup-
port our theoretical findings in the previous section.

We consider (1.1) with Ω = [0, 1]× [0, 1] and the right-hand side

f(x, y) = [(5π2 − 4y2 − 3) sin(πx) sin(2πy)− 8πy sin(πx) cos(2πy)

−2π cos(πx) sin(2πy)]ex−0.5+y2

.

The exact solution is then

u(x, y) = sin(πx) sin(2πy)ex−0.5+y2

, (x, y) ∈ Ω.

We construct Th with h = 2−s, s = 1, 2, . . . , 8, by dividing Ω into h−1 × h−1

squares, and solve (1.1) by the FV scheme (2.1) with k = 3, 4. For each h and k, we
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Table 5.1

k = 3 k = 4
N eG eL eN eG eL eN
2 2.699e-1 8.851e-3 1.327e-3 4.326e-2 2.044e-4 1.190e-5
4 2.897e-2 2.902e-4 2.761e-5 1.536e-3 5.354e-6 8.178e-8
8 2.224e-3 8.863e-6 5.743e-7 4.979e-5 1.092e-7 3.750e-10
16 1.660e-4 2.701e-7 1.056e-8 1.586e-6 2.397e-9 1.510e-12
32 1.117e-5 8.288e-9 1.919e-10 4.986e-8 4.340e-11 —
64 7.222e-7 2.567e-10 3.309e-12 1.564e-9 7.257e-13 —

measure maximum errors at nodes, Lobatto points, and Gauss points (for gradient
only), respectively. They are defined by

eN = max
P∈Nh

|(u− uh)(P )|, eL = max
P∈N l

|(u− uh)(P )|, eG = max
Q∈Ng

|∇(u − uh)(Q)|.

Numerical data are demonstrated in Table 5.1, and corresponding error curves
are depicted in Figure 5.1 with log-log scale. We observe a convergence slope k + 1
for eG, k+2 for eL, and 2k for eN , respectively. These results confirm our theoretical
findings in Theorem 4.2 and Theorem 4.1: The derivative error is superconvergent
at all Gauss points and the function value error is superconvergent at all Lobatto
points. Moreover, the approximation error at nodes converges with a rate h2k, the
2k-conjecture for our finite volume approximation is verified.
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Fig. 5.1. left: k = 3, right: k = 4.
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[20] M. Kr̆iz̆ek and P. Neittaanmäki. On superconvergence techniques. Acta Appl. Math., 9 : 175-
198, 1987.

[21] R. Li and Z. Chen and W. Wu. The Generalized Difference Methods for Partial differential

Equations. Marcel Dikker, New Youk, 2000.
[22] J. Lv and Y. Li. L2 error estimates and superconvergence if the finite volume element methods

on quadrilateral meshes. Adv. Comput. Math., 37 : 393–416, 2012.
[23] C. Ollivier-Gooch and M. Altena. A high-order-accurate unconstructed mesh finite-volume

scheme for the advection-diffusion equation. J. Comput. Phys., 181 : 729–752, 2002.
[24] M. Plexousakis and G. Zouraris. On the construction and analysis of high order locally conser-

vative finite volume type methods for one dimensional elliptic problems. SIAM J. Numer.

Anal., 42 : 1226–1260, 2004.
[25] A. H. Schatz and I. H. Sloan and L. B. Wahlbin. Superconvergence in finite element methods

and meshes which are symmetric with respect to a point. SIAM J. Numer. Anal., 33 :
505–521, 1996.
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