
COMPOSING SCALABLE NONLINEAR ALGEBRAIC SOLVERS

PETER R. BRUNE∗, MATTHEW G. KNEPLEY† , BARRY F. SMITH∗, AND XUEMIN TU‡

Abstract. Most efficient linear solvers use composable algorithmic components, with the most common model being the
combination of a Krylov accelerator and one or more preconditioners. A similar set of concepts may be used for nonlinear
algebraic systems, where nonlinear composition of different nonlinear solvers may significantly improve the time to solution. We
describe the basic concepts of nonlinear composition and preconditioning and present a number of solvers applicable to nonlinear
partial differential equations. We have developed a software framework in order to easily explore the possible combinations
of solvers. We show that the performance gains from using composed solvers can be substantial compared with gains from
standard Newton-Krylov methods.

AMS subject classifications. 65F08, 65Y05, 65Y20, 68W10

Key words. iterative solvers; nonlinear problems; parallel computing; preconditioning; software

1. Introduction. Large-scale algebraic solvers for nonlinear partial differential equations (PDEs) are
an essential component of modern simulations. Newton-Krylov methods [23] have well-earned dominance.
They are generally robust and may be built from preexisting linear solvers and preconditioners, including fast
multilevel preconditioners such as multigrid [5, 7, 9, 67, 73] and domain decomposition methods [55, 63, 64,
66]. Newton’s method starts from whole-system linearization. The linearization leads to a large sparse linear
system where the matrix may be represented either explicitly by storing the nonzero coefficients or implicitly
by various “matrix-free” approaches [11, 42]. However, Newton’s method has a number of drawbacks as a
stand-alone solver. The repeated construction and solution of the linearization cause memory bandwidth
and communication bottlenecks to come to the fore with regard to performance. Also possible is a lack
of convergence robustness when the initial guess is far from the solution. Luckily, a large design space for
nonlinear solvers exists to complement, improve, or replace Newton’s method. Only a small part of this
space has yet been explored either experimentally or theoretically.

In this paper we consider a wide collection of solvers for nonlinear equations. In direct equivalence to the
case of linear solvers, we use a small number of algorithmic building blocks to produce a vast array of solvers
with different convergence and performance properties. Two related solver techniques, nonlinear composition
and preconditioning, are be used to construct these solvers. The contributions of this paper are twofold:
introduction of a systematic approach to combining nonlinear solvers mathematically and in software and
demonstration of the construction of efficient solvers for several problems of interest. Implementations of the
solvers in this paper are available in the PETSc library and may be brought to bear on relevant applications,
whether simulated on a laptop or on a supercomputer.

2. Background. We concern ourselves with the solution of nonlinear equations of the form

F(x) = b (2.1)

for a general discretized nonlinear function F : Rn → Rn and right hand side (RHS) b. We define the
nonlinear residual as

r(x) = F(x)− b. (2.2)

We retain both notations as certain solvers (Section 5.3) require the RHS to be modified. We will use

J(x) =
∂F(x)

∂x
(2.3)

to denote the Jacobian of F(x).

∗prbrune@mcs.anl.gov and bsmith@mcs.anl.gov, Mathematics and Computer Science Division, Argonne National Labora-
tory, 9700 S. Cass Ave., Argonne, IL 60439
†knepley@rice.edu, Department of Computational and Applied Mathematics, Rice University, Duncan Hall, 6100 S. Main

St., Houston, TX 77005
‡xtu@math.ku.edu, Department of Mathematics, University of Kansas, 1460 Jayhawk Blvd., Lawrence, KS 66045

1

ar
X

iv
:1

60
7.

04
25

4v
1

 [
m

at
h.

N
A

]
 1

4
Ju

l 2
01

6

2 BRUNE ET AL.

The linear system

Ax = b

with residual

r(x) = Ax− b

is an important special case from which we can derive valuable insight into solvers for the nonlinear problem.
Stationary solvers for linear systems repeatedly apply a linear operator in order to progressively improve the
solution. The application of a linear stationary solver by defect correction may be written as

xi+1 = xi −P−1 (Axi − b) , (2.4)

where P−1 is a linear operator, called a preconditioner, whose action approximates, in some sense, the inverse
of A. The Jacobi, Gauss-Seidel, and multigrid iterations are all examples of linear stationary solvers.

composition of linear preconditioners P−1 and Q−1 may proceed in two different ways, producing two
new stationary solvers. The first is the additive combination

xi+1 = xi −
(
αPP

−1 + αQQ−1
)

(Axi − b) ,

with weights αP and αQ. The second is the multiplicative combination

xi+1/2 = xi −P−1 (Axi − b)

xi+1 = xi+1/2 −Q−1
(
Axi+1/2 − b

)
.

compositions consisting of P−1 and Q−1 are an effective acceleration strategy if P−1 eliminates a portion
of the error space and Q−1 handles the rest. A now mature theory for these compositions was developed in
the 1980s and 1990s in the context of domain decomposition methods [62, 66].

Linear left- and right-preconditioning, when used in conjunction with Krylov iterative methods [58], is
standard practice for the parallel solution of linear systems of equations. We write the use of a linear Krylov
method as K(A,x,b), where A is the matrix, x the initial solution, and b the RHS.

Linear left-preconditioning recasts the problem as

P−1(Ax− b) = 0,

while right-preconditioning takes two stages,

AP−1y = b

P−1y = x,

where one solves for the preconditioned solution y and then transforms y using P−1 to the solution of the
original problem.

3. Nonlinear Composed Solvers. We take the basic patterns from the previous section and apply
them to the nonlinear case. We emphasize that unlike the linear case, the nonlinear case requires the
approximate solution as well as the residual to be defined both in the outer solver and in the preconditioner.
With this in mind, we will show how composition and preconditioning may be systematically transferred to
the nonlinear case.

We use the notation xi+1 = M(r,xi) for the action of a nonlinear solver. In most cases, but not
always, r = r(xi), that is, r is simply the most recent residual. It is also useful to consider the action
of a solver that is dependent on the previous m approximate solutions and the previous m residuals and
as xi+1 = M(r,xi−m+1, · · · ,xi, ri−m+1, · · · , ri). Methods that store and use information from previous
iterations such as previous solutions, residuals, or step directions will have those listed in the per-iteration
inputs as well.

COMPOSING NONLINEAR SOLVERS 3

Nonlinear composition consists of a sequence or series of two (or more) solution methods M and N,
which both provide an approximate solution to (2.1). Nonlinear preconditioning, on the other hand, may be
cast as a modification of the residual r through application of an inner method N. The modified residual is
then provided to an outer solver M, which solves the preconditioned system.

An additive composition may be written as

xi+1 = xi + αM (M(r,xi)− xi) + αN (N(r,xi)− xi) (3.1)

for weights αM and αN. The multiplicative composition is

xi+1 = M(r,N(r,xi)) = M(r(N(r(xi),xi),N(r(xi),xi)), (3.2)

which simply states: update the solution using the current solution and residual with the first solver and
then update the solution again using the resulting new solution and new residual with the second solver..
Nonlinear left-preconditioning may be directly recast from the linear stationary solver case:

P−1 (Ax− b) = 0, (3.3)

which we can rewrite as a fixed-point problem

x−P−1 (Ax− b) = x (3.4)

with nonlinear analog

x = N(r,x) (3.5)

so the equivalent preconditioned nonlinear problem can be reached by subtracting x from both sides, giving

x−N(r,x) = 0. (3.6)

Thus, the left-preconditioned residual is given by

rl(x) = x−N(r,x). (3.7)

Under the certain circumstances the recast system will have better conditioning and less severe nonlinear-
ities than the original system. The literature provides several examples of nonlinear left-preconditioning:
nonlinear successive over relaxation (SOR) has been used in place of linear left-applied SOR [19], addi-
tive Schwarz-preconditioned inexact Newton (ASPIN) [16] uses an overlapping nonlinear additive Schwarz
method to provide the left-preconditioned problem for a Newton’s method solver. Walker and Ni’s fixed-
point preconditioned Anderson mixing [69] uses a similar methodology. Many of these methods or variants
thereof are discussed and tested later in this paper.

Nonlinear right-preconditioning1 involves a different recasting of the residual. This time, we treat the
nonlinear solver N as a nonlinear transformation of the problem to one with solution y, as x = P−1y is a
linear transformation of x. Accordingly, the nonlinear system in (2.1) can be rewritten as the solution of the
system perturbed by the preconditioner

F(N(F,y)) = b (3.8)

and the solution by outer solver M as

yi+1 = M(r(N(F, ·)),xi) (3.9)

followed by

xi+1 = N(r,yi+1).

1Note that nonlinear right preconditioning is a misnomer because it does not simplify to right linear preconditioning in
the linear case. It actually results in the new linear system A(I − P−1A)y = (I − AP−1)b. However, as with linear right
preconditioning, the inner solver is applied before the function (matrix-vector product in the linear case) evaluation, hence the
name.

4 BRUNE ET AL.

Nonlinear right-preconditioning may be interpreted as M putting preconditioner N “within striking distance”
of the solution. Once can solve for y in (3.8) directly, with an outer solver using residual r(N(r,x)). However,
the combination of inner solve and function evaluation is significantly more expensive than computing F(x)
and should be avoided. We will show that when M(r,x) is a Newton-Krylov solver, (3.9) is equivalent to
(3.2). Considering them as having similar mathematical and algorithmic properties is appropriate in general.

In the special case of Newton’s method, nonlinear right-preconditioning is referred to by Cai [15] and Cai
and Li [17] as nonlinear elimination [45]. The idea behind nonlinear elimination is to use a local nonlinear
solver to fully resolve difficult localized nonlinearities when they begin to cause difficulties for the global
Newton’s method; see Section 4.4. Grid sequencing [41, 65] and pseudo-transient [39] continuation methods
work by a similar principle, using precursor solves to put Newton’s method at an initial guess from which
it has fast convergence. Alternating a global linear or nonlinear step with local nonlinear steps has been
studied as the LATIN method [20, 43, 44]. Full approximation scheme (FAS) preconditioned nonlinear
GMRES (NGMRES), discussed below, for recirculating flows [72] is another application of nonlinear right-
preconditioning, where the FAS iteration is stabilized and accelerated by constructing a combination of
several previous FAS iterates.

For solvers based on a search direction, left-preconditioning is much more natural. In fact, general line
searches may be expressed as left-preconditioning by the nonlinear Richardson method. Left-preconditioning
also has the property that for problems with poorly scaled residuals, the inner solver may provide a tenable
search direction when one could not be found based on the original residual. A major difficulty with the
left-preconditioned option is that the function evaluation may be much more expensive. Line searches
involving the direct computation of x −M(r,x) at points along the line may be overly expensive given
that the computation of the residual now requires nonlinear solves. Line searches over x −M(r,x) may
also miss stagnation of weak inner solvers and must be monitored. One may also base the line search on
the unpreconditioned residual. The line search based on x −M(r,x) is often recommended [37] and is the
“correct” one for general left-preconditioned nonlinear solvers.

Our basic notation for compositions and preconditioning is described in Table 3.1.

Table 3.1: Nonlinear compositions and preconditioning given outer and inner solver M and N.

Composition Type Symbol Statement Abbreviation
Additive Composite + x + αM (M(r,x)− x) + αN (N(r,x)− x) M + N

Multiplicative Composite ∗ M(r,N(r,x)) M ∗N
Left-Preconditioning −L M(x−N(r,x),x) M−L N

Right-Preconditioning −R M(r(N(r,x)),x) M−R N
Inner Linearization Inversion \ y = J(x)−1r(x) = K(J(x),y0, r(x)) NEWT\K

4. Solvers. We now introduce several algorithms, the details of their implementation and use, and an
abstract notion of how they may be composed. We first describe outer solution methods and how composition
is applied to them. We then move on to solvers used primarily as inner methods. The distinction is arbitrary
but leads to the discussion of decomposition methods in Section 5.

4.1. Line Searches. The most popular strategy for increasing robustness or providing globalization
in the solution of nonlinear PDEs is the line search. Given a functional f(x), a starting point xi, and a
direction d, we compute λ ≈ arg min

µ>0
f(xi + µd). The functional f(·) may be ‖r(·)‖22 or a problem-specific

objective function. Theoretical guarantees of convergence may be made for many line search procedures if d
is a descent direction. In practice, many solvers that do not converge when only full or simply damped steps
are used converge well when combined with a line search. Different variants of line searches are appropriate
for different solvers. We may organize the line searches into two groups based on a single choice taken
in the algorithm: whether the full step is likely to be sufficient (for example, with Newton’s method near
the solution) or not. If it is likely to be sufficient, the algorithm should default to taking the full step in
a performance-transparent way. If not, and some shortening or lengthening of the step is assumed to be
required, the line search begins from the premise that it must determine this scaling factor.

In the numerical solution of nonlinear PDEs, we generally want to guarantee progress in the minimization

COMPOSING NONLINEAR SOLVERS 5

of f(x) = ‖r‖22 at each stage. However, ∇‖r‖22 is not r, but instead 2J>(x)r(x). With Newton’s method,
the Jacobian has been computed and iteratively inverted before the line search and may be used in the
Jacobian-vector product. Also note that the transpose product is not required for the line search, since the
slope of f(x) in the direction of step y may be expressed as the scalar quantity s = r(x)T (J(x)y). A cubic
backtracking (BT) line search as described in Dennis and Schnabel [25] is used in conjunction with methods
based on Newton’s method in this work. The one modification necessary is that it is modified to act on the
optimization problem arising from ‖r(x)‖22. BT defaults to taking the full step if that step is sufficient with
respect to the Wolfe conditions [74], and does no more work unless necessary. The backtracking line search
may stagnate entirely for ill-conditioned Jacobian [68]. For a general step BT is not appropriate for a few
reasons. First, steps arising from methods other than Newton’s method are more likely to be ill-scaled, and
as such the assumption that the full-step is appropriate is generally invalid. For this reason we only use BT in
the case of Newton’s method. Second, there are also cases where we lose many of the other assumptions that
make BT appropriate. Most of the algorithms described here, for example, do not necessarily assemble the
Jacobian and require many more iterations than does Newton’s method. Jacobian assembly, just to perform
the line search, in these cases would become extremely burdensome. This situation removes any possibility
of using many of the technologies we could potentially import from optimization, including safeguards and
guarantees of minimization. However, in many cases one can still assume that the problem has optimization-
like qualities. Suppose that r(x) is the gradient of some (hidden) objective functional f(x) instead of ‖r‖22.
Trivially, one may minimize the hidden f(x + λy) by finding its critical points, which are roots of

y>r(x + λy) =
df(x + λy)

dλ
,

by using a secant method. The resulting critical point (CP) line search is outlined in Alg. 1.

1: procedure CP(r,y, λ0, n)
2: λ−1 = 0
3: for i = 0 do n− 1

4: λi+1 = λi − y>r(x+λiy)(λi−λi−1)
y>r(x+λiy)−y>r(x+λi−1y)

5: end for
6: return λn

Alg. 1: CP Line Search

CP differs from BT in that it will not minimize ‖r(x + λy)‖2 over λ. However, CP shows much more
rapid convergence than does L2 for certain solvers and problems. Both line searches may be started from λ0

as an arbitrary or problem-dependent damping parameter, and λ−1 = 0. In practice, one iteration is usually
satisfactory. For highly nonlinear problems, however, overall convergence may be accelerated by a more
exact line search corresponding to a small number of iterations. CP has also been suggested for nonlinear
conjugate gradient methods [61].

If our assumption of optimization-like qualities in the problem becomes invalid, then we can do little
besides attempt to find a minimum of ‖r(x + λy)‖2. An iterative secant search for a minimum value of
‖r(x + λy‖2 is defined in Alg. 2.

1: procedure L2(r,y, λ0, n)
2: λ−1 = 0
3: for i = 0 do n− 1

4: ∇y‖r(x + λiy)‖22 =
3‖r(x+λiy)‖22−4‖r(x+ 1

2 (λi+λi−1)y)‖22+‖r(x+λi−1y))‖22
(λi−λi−1)

5: ∇y‖r(x + λi−1y)‖22 =
‖r(x+λiy)‖22−4‖r(x+ 1

2 (λi+λi−1)y)‖22+3‖r(x+λi−1y))‖22
(λi−λi−1)

6: λi+1 = λi − ∇y‖r(x+λiy)‖22(λi−λi−1)

∇y‖r(x+λiy)‖22−∇y‖r(x+λi−1y)‖22
7: end for
8: return λn

Alg. 2: L2 Line Search

6 BRUNE ET AL.

When converged, L2 is equivalent to an optimal damping in the direction of the residual and will forestall
divergence. ∇y is calculated by polynomial approximation, requiring two additional residual evaluations per
application. In practice and in our numerical experiments the number of inner iterations n is 1.

4.2. Nonlinear Richardson (NRICH). The nonlinear analogue to the Richardson iteration is merely
the simple application of a line search. NRICH takes a step in the negative residual direction and scales
that step sufficiently to guarantee convergence. NRICH is known as steepest descent [32] in the optimization
context where r is the gradient of a functional f(·) noted above. NRICH is outlined in Alg. 3.

1: procedure NRICH(r,xi)
2: d = −r(xi)
3: xi+1 = xi + λd . λ determined by line search

4: return xi+1

Alg. 3: Nonlinear Richardson Iteration

NRICH is often slow to converge for general problems and stagnates quickly. However, different step
directions than r may be generated by nonlinear preconditioning and can improve convergence dramatically.

1: procedure NRICH(x−M(r,x),xi)
2: d = M(r,xi)− xi
3: xi+1 = xi + λd . λ determined by line search

4: return xi+1

Alg. 4: Nonlinear Richardson Iteration: Left-Preconditioned by M()

As shown in Alg. 4, we replace the original residual equation r(x) with x−M(r,x) and apply NRICH to
the new problem. There are two choices for r in the line search. The first is based on minimizing the original
residual, as in the unpreconditioned case; the second minimizes the norm of the preconditioned residual
instead. Minimizing the unpreconditioned residual with a preconditioned step is more likely to stagnate,
as there is no guarantee that the preconditioned step is a descent direction with respect to the gradient of
‖r(x)‖22.

4.3. Anderson Mixing (ANDERSON). ANDERSON[2] constructs a new approximate solution as
a combination of several previous approximate solutions and a new trial.

1: procedure ANDERSON(r,xi · · ·xi−m+1)
2: xMi = xi + λr(xi)

3: minimize
∥∥∥r(
(

1−∑i−1
k=i−m αk

)
xMi +

∑i−1
k=i−m αkxk)

∥∥∥
2

over {αi−m · · ·αi}

4: xi+1 =
(

1−∑i
k=i−m αk

)
xMi +

∑i−1
k=i−m αkx

M
k

5: return xi+1

Alg. 5: Anderson Mixing

In practice, the nonlinear minimization problem in Alg. 5 is simplified. The αi are computed by consid-
ering the linearization

r((1−
i−1∑

k=i−m

αk)xMi +

i−1∑
k=i−m

xMk) ≈ (1−
i−1∑

k=i−m

αk)r(xMi) +

i−1∑
k=i−m

r(xMk) (4.1)

and solving the related linear least squares problem

[r(xj)− r(xM)]>[r(xi)− r(xM)]αj = r(xi)
>[r(xi)− r(xM)]. (4.2)

COMPOSING NONLINEAR SOLVERS 7

ANDERSON solves (4.2) by dense factorization. The work presented here uses the SVD-based least-squares
solve from LAPACK in order to allow for potential singularity of the system arising from stagnation to be
detected outside of the subsystem solve. A number of related methods fall under the broad category of
nonlinear series accelerator methods. These include Anderson mixing as stated above. Nonlinear GMRES
NGMRES [71] is a variant that includes conditions to avoid stagnation and direct inversion in the iterative
subspace (DIIS) [54], which formulates the minimization problem in an alternative fashion. Both right-
and left-preconditioning can be applied to Anderson mixing. With right-preconditioning the computation
of xMi = xi−1 + λd is replaced with xM = M(r,xi−1) and r(xi) with r(xM). This incurs an extra function
evaluation, although this is usually included in the nonlinear preconditioner application. Left-preconditioning
can be applied by replacing r with rl. Right-preconditioned NGMRES has been applied for recirculating flows
[72] using FAS and in stabilizing lagged Newton’s methods [18, 59]. Simple preconditioning of NGMRES has
also been proposed in the optimization context [22]. Preconditioned Anderson mixing has been leveraged as
an outer accelerator for the Picard iteration [47, 70].

We can use the same formulation expressed in (4.2) to determine αM and αN (or any number of
weights) in (3.1), using the solutions and final residuals from a series of inner nonlinear solvers instead of the
sequence of previous solutions. This sort of residual-minimizing technique is generally applicable in additive
compositions of solvers. All instances of additive composition in the experiments use this formulation.

4.4. Newton-Krylov Methods (NEWT\K). In Newton-Krylov methods, the search direction is
determined by inexact iterative inversion of the Jacobian applied to the residual by using a preconditioned
Krylov method.

1: procedure NEWT\K(r,xi)
2: d = J(xi)

−1r(xi) . approximate inversion by Krylov method
3: xi+1 = xi + λd . λ determined by line search

4: return xi+1

Alg. 6: Newton-Krylov Method

NEWT\K cannot be guaranteed to converge far away from the solution, and it is routinely enhanced by a
line search. In our formalism, NEWT\K with a line search can be expressed as NRICH left-preconditioned by
NEWT\K coming from Alg. 4. However, we will consider line-search globalized NEWT\K as the standard,
and will omit the outer NRICH when using it, leading to Alg. 6. Other globalizations, such as trust-region
methods, are also often used in the context of optimization but will not be covered here.

NEWT\K is the general-purpose workhorse of a majority of simulations requiring solution of nonlinear
equations. Numerous implementations and variants exist, both in the literature and as software [12, 27].
The general organization of the components of NEWT\K is shown in Fig. 4.1. Note that the vast majority
of potential customization occurs at the level of the linear preconditioner and that access to fast solvers is
limited to that step.

8 BRUNE ET AL.

Newton

Krylov

Preconditioner

Subdomain Multilevel Block Composite
PC PC

PCPC

PC

Algebraic

Direct

PC PCPC ... PCPC

Fig. 4.1: Organization of a Newton-Krylov solver with potential points of customization. Although one can
alter the type, parameters, or tolerances of Newton’s method, the Krylov solver, or the line search, we see
that the majority of the potential customization and composition occurs at the level of the preconditioner.
Possibilities include the use of algebraic preconditioners, such as direct solvers or sparse factorizations, or
domain decomposition, multigrid, or composite solvers, which all have subcomponent solvers and precondi-
tioners. These divisions may either be by subdomain, as with the additive Schwarz methods, or by physics
field components, as with block preconditioners (for example, one block for pressures and one for velocities).

Nonlinear right-preconditioning of Newton’s method may take two forms. We describe our choice and
comment on the alternative. At first glance, right-preconditioning of Newton’s method requires construction
or application of the right-preconditioned Jacobian

∂F(M(r,y))

∂y
= J(M(r,y))

∂M(r,y)

∂y
, (4.3)

and we note that the computation of ∂M(r,yi)
∂yi

is generally impractical. Consider the application of nonlinear
right preconditioning on an iteration of Newton’s method, which would proceed in two steps:

yi+1 = xi − λ
(
∂M(r,xi)

∂xi

)−1

J (M(r,xi))
−1

r(M(r,xi))

xi+1 = M(r,yi+1).

We may nest these two steps as

xi+1 = M(r,xi − λ
(
∂M(r,xi)

∂xi

)−1

J(M(r,xi))
−1r(M(r,xi))), (4.4)

and by Taylor expansion one may say that

M(r,x− λd) = M(r,x)− λ
(
∂M(r,x)

∂x

)
d + ...,

giving us the simplification

xi+1 ≈M(r,xi)− λ
(
∂M(r,xi)

∂xi

)(
∂M(r,xi)

∂xi

)−1

J(M(r,xi))
−1r(M(r,xi)))

= M(r,xi)− λJ(M(r,xi))
−1r(M(r,xi))

In this form, NEWT\K(F(M(r,x)),x) is easily implemented, as shown in Alg. 7.

COMPOSING NONLINEAR SOLVERS 9

1: procedure NK(r(M(r,x)),xi)
2: xi+ 1

2
= M(r,xi)

3: d = J(xi+ 1
2
)−1r(xi+ 1

2
)

4: xi+1 = xi+ 1
2

+ λd . λ determined by line search

5: return xi+1

Alg. 7: Right-Preconditioned Newton-Krylov Method

Note that NEWT\K −R M is merely M ∗ NEWT\K in this form: one solver runs after the other.
The connection between composition and preconditioning in Newton’s method provides an inkling of the
advantages afforded to NEWT\K as an inner composite solver combined with other methods. An alternative
approach applies an approximation to (4.3) directly [4]. The approximation is

F(M(r,yi)) = J(M(r,yi))

(
∂M(r,yi)

∂yi

)
(yi+1 − yi)

≈ J(M(r,yi))(M(r,yi + [yi+1 − yi])− xi),

which is solved for [yi+1 − yi]. Right-preconditioning by the approximation requires an application of the
nonlinear preconditioner for every inner Krylov iterate and limits our choices of Krylov solver to those
tolerant of nonlinearity, such as flexible GMRES [57].

1: procedure NEWT\K(x−M(r,x),xi)

2: d = ∂(xi−M(r,xi))
∂xi

−1
(xi −M(r,xi)) . approximate inversion by Krylov method

3: xi+1 = xi + λd . λ determined by line search

4: return xi+1

Alg. 8: Left-Preconditioned Newton-Krylov Method

For nonlinear left-preconditioning, shown in Alg. 8, we replace the computation r(xi) with xi−M(r,xi)
and take the Jacobian of the function as an approximation of

∂(xi −M(r,xi))

xi
= I− ∂M(r,xi)

∂xi
, (4.5)

where now the Jacobian is a linearization of M(r,x) and impractical to compute in most cases. In the
particular case where the preconditioner is the nonlinear additive Schwarz method (NASM) (Section 5.2),
this is known as ASPIN. In the case of NASM preconditioning, one has local block Jacobians, so the
approximation of the preconditioned Jacobian as

∂(x−M(r,x))

∂x
=
∂(x− (x−∑b J

b(xb)−1rb(xb)))

∂x
≈
∑
b

Jb(xb∗)−1J(x) (4.6)

is used instead. The iteration requires only one inner nonlinear iteration and some small number of block
solves, per outer nonlinear iteration. By contrast, direct differencing would require one inner iteration at
each inner linear iteration for the purpose of repeated approximate Jacobian application. Note the similarity
between ASPIN and the alternative form of right-preconditioning in terms of required components, with
ASPIN being more convenient in the end.

4.5. Quasi-Newton (QN). The class of methods for nonlinear systems of equations known as quasi-
Newton methods [24] uses previous changes in residual and solution or other low-rank expansions [40] to form
an approximation of the inverse Jacobian by a series of low rank updates. The approximate Jacobian inverse
is then used to compute the search direction. If the update is done directly, it requires storing and updating
the dense matrix K ≈ J−1, which is impractical for large systems. One may overcome this limitation by
using limited-memory variants of the method [46, 51, 14, 49], which apply the approximate inverse Jacobian

10 BRUNE ET AL.

by a series of low-rank updates. The general form of QN methods is similar to that of NEWT\K and is
shown in Alg. 9.

1: procedure QN(r,xi, si−1 · · · si−m,yi−1 · · ·yi−m)
2: xi+1 = xi − λKi(K0, si−1...si−m,yi−1..yi−m)r(xi) . λ determined by line search
3: si = xi+1 − xi
4: yi = r(xi+1)− r(xi)

5: return xi+1

Alg. 9: Quasi-Newton Update

A popular variant of the method, L-BFGS, can be applied efficiently by a two-loop recursion [51]:

1: procedure Ki(K0, si−1...si−m,yi−1...yi−m, r(xi))
2: d1 = r(xi)
3: for k = i− 1 do i−m
4: αk =

s>k d1

y>k sk

5: d1 = d1 − αkyk
6: end for
7: d2 = K0d1

8: for k = i−m do i− 1

9: βk =
y>k d2

y>k sk

10: d2 = d2 + (αk − βk)sk
11: end for
12: return d2

Alg. 10: Two-Loop Recursion for L-BFGS

Note that the update to the Jacobian in Alg. 10 is symmetric and shares many of the same limitations as
nonlinear conjugate gradients (NCG) (Section 4.6). It may be perplexing, from an optimization perspective,
to see L-BFGS and NCG applied to nonlinear PDEs as opposed to optimization problems. However, their
exclusion from our discussion would be as glaring as leaving conjugate gradient methods out of a discussion of
Krylov solvers for linear PDEs. In this paper we adhere to the limitations of NCG and QN and use them only
for problems with symmetric Jacobians. In the case where L-BFGS is inapplicable, Broyden’s “good” and
“bad” methods [13] have efficient limited memory constructions [14, 26, 29] and are recommended instead
[52]. The overall performance of all these methods, however, may rival that of Newton’s method [38] in
many cases. QN methods also have deep connections with Anderson mixing [28]. Anderson mixing, and the
Broyden methods belong to a general class of Broyden-like methods [29].

The initial approximate inverse Jacobian K0 is often taken as the weighted [60] identity. However, one
also can take K0 = J−1

0 for lagged Jacobian J0. Such schemes greatly increase the robustness of lagged
Newton’s methods when solving nonlinear PDEs [10]. Left-preconditioning for QN is trivial, and either the
preconditioned or unpreconditioned residual may be used with the line search.

4.6. Nonlinear Conjugate Gradients. Nonlinear conjugate gradient methods [31] are a simple ex-
tension of the linear CG method but with the optimal step length in the conjugate direction determined by
a line search rather than the exact formula that works in the linear case. NCG is outlined in Alg. 11. NCG
requires storage of one additional vector for the conjugate direction ci but has significantly faster convergence
than does NRICH for many problems.

COMPOSING NONLINEAR SOLVERS 11

1: procedure NCG(r,xi, ci−1, ri−1)
2: ri = r(xi)

3: βi =
r>i (ri−ri−1)

r>i−1ri−1

4: ci = −r(xi) + βici−1

5: xi+1 = xi + λci . λ determined by line search

6: return xi+1

Alg. 11: Nonlinear CG

Several choices exist for constructing the parameter βi [21, 30, 31, 35]. We choose the Polak-Ribière-
Polyak [53] variant. The application of nonlinear left-preconditioning is straightforward. Right-preconditioning
is not conveniently applicable as is the case with QN in Section 4.5 and linear CG.

NCG has limited applicability because it suffers from the same issues as its linear cousin for problems
with non-symmetric Jacobian. A common practice when solving nonlinear PDEs with NCG is to rephrase
the problem in terms of the normal equations, which involves finding the root of rN (x) = J>r(x). Since
the Jacobian must be assembled and multiplied at every iteration, however, the normal equation solver is
not a reasonable algorithmic choice, even with drastic lagging of Jacobian assembly. The normal equations
also have a much worse condition number than does the original PDE. In our experiments, we use the
conjugacy-ensuring CP line search.

5. Decomposition Solvers. An extremely important class of methods for linear problems is based on
domain or hierarchical decomposition, and so we consider nonlinear variants of domain decomposition and
multilevel algorithms. We introduce three different nonlinear solver algorithms based on point-block solves,
local subdomain solves, and coarse-grid solves.

These methods require a trade-off between the amount of computation dedicated to solving local or
coarse problems and the communication for global assembly and convergence monitoring. Undersolving the
subproblems wastes the communication overhead of the outer iteration, and oversolving exacerbates issues of
load imbalance and quickly has diminishing returns with respect to convergence. The solvers in this section
exhibit a variety of features related to these trade-offs.

The decomposition solvers do not guarantee convergence. While they might converge, the obvious
extension is to use them in conjunction with the global solvers as nonlinear preconditioners or accelerators.
As the decomposition solvers expose more possibilities for parallelism or acceleration, their effective use in
the nonlinear context should provide similar benefits to the analogous solvers in the linear context. A major
disadvantage of these solvers is that each of them requires additional information about the local problems,
a decomposition, or hierarchy of discretizations of the domain.

5.1. Gauss-Seidel-Newton (GSN). Effective methods may be constructed by exact solves on sub-
problems. Suppose that the problem easily decomposes into nb small block subproblems. If Newton’s method
is applied multiplicatively by blocks, the resulting algorithm is known as Gauss-Seidel-Newton and is shown
in Alg. 12. Similar methods are commonly used as nonlinear smoothers [33, 34]. To construct GSN, we
define the individual block Jacobians Jb(xb) and residuals rb(xb); Rb, which restricts to a block; and Pb,
which injects the solution to that block back into the overall solution. The point-block solver runs until the
norm of the block residual is less than εb or mb steps have been taken.

12 BRUNE ET AL.

1: procedure GSN(r,xi)
2: xi+1 = xi
3: for b = 1 do nb
4: xbi,0 = Rbxi+1

5: while ‖rb‖2 > εb and j < mb do
6: j = j + 1

7: xbi,j = xbi,j−1 − Jb(xbi,j−1)−1rbi,j−1 . direct inversion of block Jacobian

8: rbi,j = rb(xbi,j)
9: end while

10: xi+1 = xi+1 −Pb(xbi,0 − xbi,j)
11: end for
12: return xi+1

Alg. 12: Gauss-Seidel-Newton

GSN solves small subproblems with a fair amount of computational work per degree of freedom and
thus has high arithmetic intensity. It is typically greater than two times the work per degree of freedom of
NRICH for scalar problems, and even more for vector problems where the local Newton solve is over several
local degrees of freedom.

When used as a solver, GSN requires one reduction per iteration. However, stationary solvers, in both the
linear and nonlinear case, do not converge robustly for large problems. Accordingly, GSN would typically be
used as a preconditioner, making monitoring of global convergence, within the GSN iterations, unnecessary.
Thus, in practice there is no synchronization; GSN is most easily implemented with multiplicative update
on serial subproblems and additively in parallel.

5.2. Nonlinear Additive Schwarz Method. GSN can be an efficient underlying kernel for sequential
nonlinear solvers. For parallel computing, however, an additive method with overlapping subproblems has
desirable properties with respect to communication and arithmetic intensity. The nonlinear additive Schwarz
methods allow for medium-sized subproblems to be solved with a general method, and the corrections from
that method summed into a global search direction. Here we limit ourselves to decomposition by subdomain
rather than splitting the problem into fields. While eliminating fields might be tempting, the construction
of effective methods of this sort is significantly more involved than in the linear case, and many interesting
problems do not have such a decomposition readily available. Using subdomain problems FB , restrictions
RB , injections PB , and solvers MB , Alg. 13 outlines the NASM solver with nB subdomains.

1: procedure NASM(r,xi)
2: for B = 1 do nB
3: xB0 = RBxi
4: xB = MB(rB ,xB0)
5: yB = xB0 − xB

6: end for

7: xi+1 = xi −
nB∑
B=1

PByB

8: return xi+1

Alg. 13: Nonlinear Additive Schwarz

Two choices exist for the injections PB in the overlapping regions. We will use NASM to denote the
variant that uses overlapping injection corresponding to the whole subproblem step. The second variant,
restricted additive Schwarz (RAS), injects the step in a non-overlapping fashion. The subdomain solvers are
typically Newton-Krylov, but the other methods described in this paper are also applicable.

5.3. Full Approximation Scheme. FAS [6] accelerates convergence by advancing the nonlinear so-
lution on a series of coarse rediscretizations of the problem. As with standard linear multigrid, the cycle

COMPOSING NONLINEAR SOLVERS 13

may be constructed either additively or multiplicatively, with multiplicative being more effective in terms
of per-iteration convergence. Additive approaches provide the usual advantage of allowing the coarse-grid
corrections to be computed in parallel. We do not consider additive FAS in this paper.

Given the smoother Ms(r,x) at each level, as well as restriction (R), prolongation (P) and injection
(R̂) operators, and the coarse nonlinear function FH , the FAS V-cycle takes the form shown in Alg. 14.

1: procedure FAS(r,xi)
2: xs = Ms(r,xi)
3: xHi = R̂xs
4: bH = R[b− F(xs)] + FH(xHi)
5: xc = xs + P[FAS(FH − bH ,xHi)− xHi]
6: xi+1 = Ms(r,xc)

7: return xi+1

Alg. 14: Full Approximation Scheme

The difference between FAS and linear multigrid is the construction of the coarse RHS bH . In FAS it
is guaranteed that if an exact solution x∗ to the fine problem is found,

FAS(rH − bH , R̂x∗)− R̂x∗ = 0. (5.1)

The correction is not necessary in the case of linear multigrid. However, FAS is mathematically identical to
standard multigrid when applied to a linear problem.

The stellar algorithmic performance of linear multigrid methods is well documented, but the arithmetic
intensity may be low. FAS presents an interesting alternative to NEWT\K−MG, since it may be configured
with high arithmetic intensity operations at all levels. The smoothers are themselves nonlinear solution
methods. FAS-type methods are applicable to optimization problems as well as nonlinear PDEs [8], with
optimization methods used as smoothers [50].

5.4. Summary. We have now introduced the mathematical construction of nonlinear composed solvers.
We have also described two classes of nonlinear solvers, based on solving either the global problem or some
partition of it. The next step is to describe a set of test problems with different limitations with respect to
which methods will work for them, construct a series of instructive example solvers using composition of the
previously defined solvers, and test them. We have made an effort to create flexible and robust software for
composed nonlinear solvers. The organization of the software is in the spirit of PETSc and includes several
interchangeable component solvers, including NEWT\K; iterative solvers such as ANDERSON and QN that
may contain an inner preconditioner; decomposition solvers such as NASM and FAS, which are built out
of subdomain solvers; and metasolvers implementing compositions . A diagram enumerating the composed
solver framework analogous to that of the preconditioned NEWT\K case is shown in Fig. 5.1.

Composite
NPC

Solver

Decomposition

SolverFAS GSNNASM Line Search

Solver
S S S S Solver

Solver

Solver

Newton QN NGMRES NCG NRICH

...

Fig. 5.1: Organization of the components of a composed nonlinear solver. We discard the difference between
solvers and preconditioners and see that the nesting and potential for recursive customization lives at every
level of the tree. Possibilities include iterative solvers (including Newton’s method) with nonlinear precondi-
tioning, composite solvers consisting of several subsolvers, or decomposition solvers consisting of subdomain
or coarse nonlinear solvers.

14 BRUNE ET AL.

6. Experiments. We will demonstrate the efficacy nonlinear composition and preconditioning by ex-
periments with a suite of nonlinear partial differential equations that show interesting behavior in regimes
with difficult nonlinearities. These problems are nonlinear elasticity, the lid-driven cavity with buoyancy,
and the p-Laplacian.

One goal of this paper is to be instructive. We first try to solve the problem efficiently with the standard
solvers, then choose a subset of the above solvers for each problem and show how to gain advantage by using
composition methods. Limitations of discretization or problem regime are noted, and we discuss how the
solvers may be used under these limitations. We also explain how readers may run the examples in this
paper and experiment with the solvers both on the test examples shown here and on their own problems.
We feel we have no “skin in the game” and are not trying to show that some approaches are better or worse
than others.

6.1. Methods. Our set of test algorithms is defined by the preconditioning of an iterative solver
with a decomposition solver, or the composition of two solvers with different advantages. In the case of
the decomposition solvers, we choose one or two configurations per test problem, in order to avoid the
combinatorial explosion of potential methods that already is apparent from the two forms of composition
combined with the multitude of methods.

Our primary measure of performance is time to solution, which is both problem and equipment de-
pendent. Since it depends strongly on the relative cost of function evaluation, Jacobian assembly, matrix
multiplication, and subproblem or coarse solve, we also record number of nonlinear iterations, linear itera-
tions, linear preconditioner applications, function evaluations, Jacobian evaluations, and nonlinear precon-
ditioner applications. These measures allow us to characterize efficiency disparities in terms of major units
of computational work.

We make a good faith effort to tune each method for performance while keeping subsolver parameters
invariant. Occasionally, we err on the side of oversolving for the inner solvers, to make the apples-to-apples
comparison more consistent between closely related methods. The results here should be taken as a rough
guide to improving solver performance and robustness. The test machine is a 64-core AMD Opteron 6274-
based [1] machine with 128 GB of memory. The problems are run with one MPI process per core. Plots of
convergence are generated with Matplotlib [36], and plots of solutions are generated with Mayavi [56].

6.2. Nonlinear Elasticity. A Galerkin formulation for nonlinear elasticity may be stated as

∫
Ω

F · S : ∇v dΩ +

∫
Ω

b · v dΩ = 0 (6.1)

for all test functions v ∈ V; F = ∇u + I is the deformation gradient. We use the Saint Venant-Kirchhoff
model of hyperelasticity with second Piola-Kirchhoff stress tensor S = λtr(E)I + 2µE for Lagrangian Green
strain E = F>F−I and Lamé parameters λ and µ, which may be derived from a given Young’s modulus and
Poisson ratio. We solve for displacements u ∈ V, given a constant load vector b imposed on the structure.

The domain Ω is a 60◦ cylindrical arch of inner radius 100 m. Homogeneous Dirichlet boundary conditions
are imposed on the outer edge of the ends of the arch. The goal is to “snap through” the arch, causing it to
sag under the load rather than merely compressing it. To cause the sag, we set b = −ey and set the Lamé
constants consistent with a Young’s modulus of 100 and a Poisson ratio of 0.2. The nonlinearity is highly
activated during the process of snapping through and may be tuned to present a great deal of difficulty
to traditional nonlinear solvers. The problem is discretized by using hexahedral Q1 finite elements on a
logically structured grid, deformed to form the arch. The grid is 401x9x9, and therefore the problem has
97,443 degrees of freedom. The problem is a three-dimensional extension of a problem put forth by Wriggers
[75]. The unstressed and converged solutions are shown in Fig. 6.1.

COMPOSING NONLINEAR SOLVERS 15

Fig. 6.1: Unstressed and stressed configurations for the elasticity test problem. Coloration indicates vertical
displacement in meters.

For 3D hexahedral FEM discretizations, GSN and related algorithms are inefficient because for each
degree of freedom each element in the support of the degree of freedom must be visited, resulting in eight
visits to an interior element per sweep. Instead, we focus on algorithms requiring only a single visit to each
cell, restricting us to function and Jacobian evaluations. Such approaches are also available in the general
unstructured FEM case, and these experiments may guide users in regimes where no decomposition solvers
are available.

For the experiments, we emphasize the role that nonlinear composition and series acceleration may play
in the acceleration of nonlinear solvers. The problem is amenable to NCG, ANDERSON, and NEWT\K
with an algebraic multigrid preconditioner. We test a number of combinations of these solvers. Even though
we have a logically structured grid, we approach the problem as if no reasonable grid hierarchy or domain
decomposition were available. The solver combinations we use are listed in Table 6.1. In all the following
tables, Solver denotes outer solver, LPC denotes the linear PC when applicable, NPC denotes the nonlinear
PC when applicable, Side denotes the type of preconditioning, Smooth denotes the level smoothers used in
the multilevel method (MG/FAS), and LS denotes line search.

Table 6.1: Series of solvers for the nonlinear elasticity test problem.

Name Solver LPC NPC Side Smooth LS
NCG NCG CP

NEWT\K−MG NEWT\K MG – – SOR BT
NCG−L (NEWT\K−MG) NCG – NEWT\K−MG L SOR CP

NGMRES−R (NEWT\K−MG) NGMRES – NEWT\K−MG R SOR CP
NCG(10) + (NEWT\K−MG) NCG,NEWT\K MG – – SOR CP/BT
NCG(10) ∗ (NEWT\K−MG) NCG,NEWT\K MG – – SOR CP/BT

For the NEWT\K methods, we precondition the inner GMRES solve with a smoothed aggregation
algebraic multigrid method provided by the GAMG package in PETSc. The relative tolerance for the
GMRES solve is 10−3. For all instances of the NCG solver, the CP line search initial guess for λ is the
final value from the previous nonlinear iteration. In the case of NGMRES −R (NEWT\K−MG) the inner
line search is L2. NGMRES stores up to 30 previous solutions and residuals for all experiments. The outer
line search for NCG −L (NEWT\K −MG) is a second-order secant approximation rather than first-order
as depicted in Alg. 1. For the composite examples, 10 iterations of NCG are used as one of the subsolvers,
denoted NCG(10). The additive composition ’s weights are determined by the ANDERSON minimization
mechanism as described in Section 4.3.

16 BRUNE ET AL.

The example, SNES ex16.c, can be run directly by using a default PETSc installation. The command
line used for these experiments is

./ex16 -da_grid_x 401 -da_grid_y 9 -da_grid_z 9 -height 3 -width 3
-rad 100 -young 100 -poisson 0.2 -loading -1 -ploading 0

0 10 20 30 40 50 60

Time (sec)

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

104
‖r

(x
)‖

2

(NEWT\K−MG)
NCG

Fig. 6.2: (NEWT\K−MG) and NCG convergence.

Table 6.2: (NEWT\K−MG) and NCG results.

Solver T N. It L. It Func Jac PC NPC
(NEWT\K−MG) 23.43 27 1556 91 27 1618 –

NCG 53.05 4495 0 8991 – – –

The solvers shown in Table 6.2 converge slowly. NEWT\K − MG takes 27 nonlinear iterations and
1,618 multigrid V-cycles to reach convergence. NCG requires 8,991 function evaluations and since it is
unpreconditioned, scales unacceptably with problem size with respect to number of iterations. Note in
Fig. 6.2 that while NCG takes an initial jump and then decreases at a constant rate, NEWT\K −MG is
near stagnation until the end, when it suddenly drops into the basin of attraction.

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex16.c.html

COMPOSING NONLINEAR SOLVERS 17

0 2 4 6 8 10 12 14 16 18

Time (sec)

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

‖r
(x

)‖
2

NCG(10)+(NEWT\K−MG)
NCG(10)*(NEWT\K−MG)

Fig. 6.3: NCG(10) + (NEWT\K−MG) and NCG(10) ∗ (NEWT\K−MG) convergence.

Table 6.3: NCG(10) + (NEWT\K−MG) and NCG(10) ∗ (NEWT\K−MG) results.

Solver T N. It L. It Func Jac PC NPC
NCG(10) + (NEWT\K−MG) 14.92 9 459 218 9 479 –
NCG(10) ∗ (NEWT\K−MG) 16.34 11 458 251 11 477 –

Results for composition are listed in Table 6.3. Additive and multiplicative composite combination
provides roughly similar speedups for the problem, with more total outer iterations in the additive case. As
shown in Fig. 6.3, neither the additive nor multiplicative methods stagnate. After the same initial jump
and convergence at the pace of NCG, the basin of attraction is reached, and the entire iteration converges
quadratically as should be expected with NEWT\K.

0 2 4 6 8 10

Time (sec)

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

‖r
(x

)‖
2

ANDERSON−R(NEWT\K−MG)
NCG−L(NEWT\K−MG)

Fig. 6.4: NGMRES−R (NEWT\K−MG) and NCG−L (NEWT\K−MG) convergence.

18 BRUNE ET AL.

Table 6.4: NGMRES−R (NEWT\K−MG) and NCG−L (NEWT\K−MG) results.

Solver T N. It L. It Func Jac PC NPC
NGMRES−R (NEWT\K−MG) 9.65 13 523 53 13 548 13

NCG−L (NEWT\K−MG) 9.84 13 529 53 13 554 13

Left-preconditioning of NCG and ANDERSON with NEWT\K−MG provides even greater benefits, as
shown in Fig. 6.4 and Table 6.4. The number of iterations is nearly halved from the unpreconditioned case,
and the number of linear preconditioner applications is only slightly increased compared with the composition
cases. In Fig. 6.4, we see that the Newton’s method-preconditioned nonlinear Krylov solvers never dive as
NEWT\K did but maintain rapid, mostly constant convergence instead. This constant convergence is a
significantly more efficient path to solution than the NEWT\K−MG solver alone.

6.3. Driven Cavity. The driven cavity formulation used for the next set of experiments can be stated
as

−∆u−∇× Ω = 0 (6.2)

−∆Ω +∇ · (uΩ)−Gr∇xT = 0 (6.3)

−∆T + Pr∇ · u = 0. (6.4)

The fluid motion is driven in part by a moving lid and in part by buoyancy. A Grashof number Gr = 2e4,
Prandtl number Pr = 1, and lid velocity of 100 are used in these experiments. No-slip, rigid-wall Dirichlet
conditions are imposed for u. Dirichlet conditions are used for Ω, based on the definition of vorticity,
Ω = ∇ × u, where along each constant coordinate boundary the tangential derivative is zero. Dirichlet
conditions are used for T on the left and right walls, and insulating homogeneous Neumann conditions are
used on the top and bottom walls. A finite-difference approximation with the usual 5-point stencil is used
to discretize the boundary value problem in order to obtain a nonlinear system of equations. Upwinding is
used for the divergence (convective) terms and central differencing for the gradient (source) terms.

In these experiments, we emphasize the use of ANDERSON, MG or FAS, and GSN. The solver com-
binations are listed in Table 6.5. The multilevel methods use a simple series of structured grids, with the
smallest being 5x5 and the largest being 257x257. With four fields per grid point, we have an overall system
size of 264,196 unknowns. In NEWT\K −MG, the Jacobian is rediscretized on each level. GSN is used as
the smoother for FAS and solves the four-component block problem corresponding to (6.2) per grid point in
a simple sweep through the processor local part of the domain.

The example, SNES ex19.c, can be run directly by using a default PETSc installation. The command
line used for these experiments is

./ex19 -da_refine 6 -da_grid_x 5 -da_grid_y 5 -grashof 2e4 -lidvelocity 100 -prandtl 1.0

and the converged solution using these options is shown in Fig. 6.5.

Table 6.5: Solvers for the lid driven cavity problem.

Name Solver LPC NPC Side MG/FASSmooth. LS
(NEWT\K−MG) NEWT\K MG – – SOR BT

NGMRES−R (NEWT\K−MG) NGMRES MG NEWT\K R SOR –
FAS FAS – – – GSN –

NRICH−L FAS NRICH – FAS L GSN L2
NGMRES−R FAS NGMRES – FAS R GSN –

FAS ∗ (NEWT\K−MG) FAS/NEWT\K MG – – SOR/GSN BT
FAS + (NEWT\K−MG) FAS/NEWT\K MG – – SOR/GSN BT

All linearized problems in the NEWT\K iteration are solved by using GMRES with geometric multigrid
preconditioning to a relative tolerance of 10−8. There are five levels, with Chebychev−SOR smoothers on

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex19.c.html

COMPOSING NONLINEAR SOLVERS 19

each level. For FAS, the smoother is GSN(5). The coarse-level smoother is five iterations of NEWT\K-LU;
chosen for robustness. In the case of NGMRES −R (NEWT\K −MG) and FAS + (NEWT\K −MG), the
NEWT\K −MG step is damped by one half. Note that acting alone, this damping would cut the rate of
convergence to linear with a rate constant 1

2 . The ideal step size is recovered by the minimization procedure.
NEWT\K−MG is undamped in all other tests.

Fig. 6.5: ux, uy, and temperature profiles for the lid driven cavity solution.

In these experiments we emphasize the total number of V-cycles, linear and nonlinear, since they domi-
nate the runtime and contain the lion’s share of the communication and floating-point operations.

0 2 4 6 8 10

Time (sec)

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

105

‖r
(x

)‖
2

ANDERSON−R(NEWT\K−MG)

(NEWT\K−MG)

Fig. 6.6: NGMRES−R (NEWT\K−MG) and (NEWT\K−MG) convergence.

Table 6.6: NGMRES−R (NEWT\K−MG) and (NEWT\K−MG) results.

Solver T N. It L. It Func Jac PC NPC
NGMRES−R (NEWT\K−MG) 7.48 10 220 21 50 231 10

(NEWT\K−MG) 9.83 17 352 34 85 370 –

In Table 6.6, we see that Newton’s method converges in 17 iterations, with 370 V-cycles. Using NGMRES
instead of a line search provides some benefit, as NGMRES− (NEWT\K−MG) takes 231 V-cycles and 10
iterations.

20 BRUNE ET AL.

0 1 2 3 4 5 6 7

Time (sec)

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

105

‖r
(x

)‖
2

ANDERSON−RFAS
NRICH−LFAS

FAS

Fig. 6.7: NGMRES−R FAS, NRICH−L FAS, and FAS convergence.

Table 6.7: NGMRES−R FAS, NRICH−L FAS, and FAS results.

Solver T N. It L. It Func Jac PC NPC
NGMRES−R FAS 1.91 24 0 447 83 166 24

NRICH−L FAS 3.20 50 0 1180 192 384 50
FAS 6.23 162 0 2382 377 754 –

NRICH −L FAS takes 50 V-cycles, at the expense of three more fine-level function evaluations per
iteration. NGMRES−R FAS reduces the number of V-cycles to 24 at the expense of more communication.

0 1 2 3 4 5 6 7 8 9

Time (sec)

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

105

‖r
(x

)‖
2

FAS*(NEWT\K−MG)
FAS+(NEWT\K−MG)

Fig. 6.8: FAS ∗ (NEWT\K−MG) and FAS + (NEWT\K−MG) convergence.

COMPOSING NONLINEAR SOLVERS 21

Table 6.8: FAS ∗ (NEWT\K−MG) and FAS + (NEWT\K−MG) results.

Solver T N. It L. It Func Jac PC NPC
FAS ∗ (NEWT\K−MG) 4.01 5 80 103 45 125 –
FAS + (NEWT\K−MG) 8.07 10 197 232 90 288 –

Composed nonlinear methods are shown in Table 6.8. Multiplicative composition consisting of FAS and
NEWT\K−MG reduces the total number of V-cycles to 130. Additive composition using the least-squares
minimization is less effective, taking 298 V-cycles. Note in Fig. 6.8 that both the additive and multiplicative
solvers show that combining FAS and NEWT\K-MG may speed solution, with multiplicative combination
being significantly more effective.

6.4. Tuning the Solvers to Obtain Convergence. We now show how the composed and precondi-
tioned solves may be tuned for more difficult nonlinearities where the basic methods fail to converge using
the same model problem. For Grashof number Gr < 104 and Prandtl number Pr = 1.0, Newton’s method
converges well:

lid velocity = 100, prandtl # = 1, grashof # = 10000
0 SNES Function norm 715.271
1 SNES Function norm 623.41
2 SNES Function norm 510.225
.
.
.

6 SNES Function norm 0.269179
7 SNES Function norm 0.00110921
8 SNES Function norm 1.12763e-09

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 8
Number of SNES iterations = 8

For higher Grashof number, Newton’s method stagnates

./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -pc_type lu -snes_monitor_short -snes_converged_reason
lid velocity = 100, prandtl # = 1, grashof # = 50000

0 SNES Function norm 1228.95
1 SNES Function norm 1132.29

.

.

.
29 SNES Function norm 580.937
30 SNES Function norm 580.899

It also fails with the standard continuation strategy from coarser meshes (not shown). We next try
nonlinear multigrid, in the hope that multiple updates from a coarse solution are sufficient, using GS as the
nonlinear smoother,

./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short -snes_converged_reason -snes_type fas
-fas_levels_snes_type ngs -fas_levels_snes_max_it 6 -snes_max_it 25

lid velocity = 100, prandtl # = 1, grashof # = 50000
0 SNES Function norm 1228.95
1 SNES Function norm 574.793
2 SNES Function norm 513.02
3 SNES Function norm 216.721
4 SNES Function norm 85.949
5 SNES Function norm 108.24
6 SNES Function norm 207.469
.
.
.

22 SNES Function norm 131.866
23 SNES Function norm 114.817
24 SNES Function norm 71.4699
25 SNES Function norm 63.5413

But the residual norm just jumps around and the method does not converge. We then accelerate the method
with ANDERSON and obtain convergence.

22 BRUNE ET AL.

./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short -snes_converged_reason -snes_type anderson
-npc_snes_max_it 1 -npc_snes_type fas -npc_fas_levels_snes_type ngs -npc_fas_levels_snes_max_it 6

lid velocity = 100, prandtl # = 1, grashof # = 50000
0 SNES Function norm 1228.95
1 SNES Function norm 574.793
2 SNES Function norm 345.592
3 SNES Function norm 155.476
4 SNES Function norm 70.2302
5 SNES Function norm 40.3618
6 SNES Function norm 29.3065
7 SNES Function norm 14.2497
8 SNES Function norm 4.80462
9 SNES Function norm 4.15985

10 SNES Function norm 2.13428
11 SNES Function norm 1.57717
12 SNES Function norm 0.60919
13 SNES Function norm 0.150496
14 SNES Function norm 0.0355709
15 SNES Function norm 0.00705481
16 SNES Function norm 0.00164509
17 SNES Function norm 0.000464835
18 SNES Function norm 6.02035e-05
19 SNES Function norm 1.11713e-05

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 19
Number of SNES iterations = 19

We can restore the convergence to a few iterates by increasing the power of the nonlinear smoothers
in FASẆe replace GSN by six iterations of Newton using the default linear solver of GMRES plus ILU(0).
Note that as a solver alone this does not converge but it performs very well as a smoother for FAS.

./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short -snes_converged_reason -snes_type anderson
-npc_snes_max_it 1 -npc_snes_type fas -npc_fas_levels_snes_type newtonls -npc_fas_levels_snes_max_it 6
-npc_fas_levels_snes_linesearch_type basic -npc_fas_levels_snes_max_linear_solve_fail 30
-npc_fas_levels_ksp_max_it 20

lid velocity = 100, prandtl # = 1, grashof # = 50000
0 SNES Function norm 1228.95
1 SNES Function norm 0.187669
2 SNES Function norm 0.0319743
3 SNES Function norm 0.00386815
4 SNES Function norm 2.24093e-05
5 SNES Function norm 5.38246e-08

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 5
Number of SNES iterations = 5

Thus we have demonstrated how one may experimentally add composed solvers to go from complete
lack of convergence to convergence with a small number of iterations.

6.5. p-Laplacian. The regularized p-Laplacian formulation used for these experiments is

−∇ · ((ε2 +
1

2
|∇u|2)(p−2)/2∇u) = c,

where ε = 10−5 is the regularization parameter and p the exponent of the Laplacian. When p = 2 the
p-Laplacian reduces to the Poisson equation. We consider the case where p = 5 and c = 0.1. The domain is
[−1, 1]× [−1, 1] and the initial guess is u0(x, y) = xy(1− x2)(1− y2). The grid used is 385x385, leading to
a total of 148,225 unknowns in the system. The initial and converged solutions are shown in Fig. 6.9.

COMPOSING NONLINEAR SOLVERS 23

Fig. 6.9: Initial and converged solutions to the p = 5 p-Laplacian.

The example, SNES ex15.c, can be run directly by using a default PETSc installation. The command
line used for these experiments is

./ex15 -da_refine 7 -da_overlap 6 -p 5.0 -lambda 0.0 -source 0.1

Table 6.9: Solvers for the p-Laplacian problem. SubPC denotes the linear solver at the block level.

Name Solver LPC NPC Side SubPC LS
NEWT\K−ASM NEWT\K ASM – – LU BT

QN QN – – – CP
RAS RAS – – – LU CP

RAS + (NEWT\K−ASM) RAS/NEWT\K ASM – – LU BT
RAS ∗ (NEWT\K−ASM) RAS/NEWT\K ASM – – LU BT

ASPIN NEWT\K – NASM L LU BT
NRICH−L (RAS) NRICH – RAS L LU CP

QN−L (RAS) QN – RAS L LU CP

We concentrate on additive Schwarz and QN methods, as listed in Table 6.9. We will show that combi-
nation has distinct advantages. This problem has difficult local nonlinearity that may impede global solvers,
so the local solvers should be an efficient remedy. We also consider a composition of Newton’s method
with RAS and nonlinear preconditioning of Newton’s method in the form of ASPIN. NASM, RAS, and
linear ASM all have single subdomains on each processor that overlap each other by six grid points. We
use the L-BFGS variant of QN as explained in Section 4.5. Note that the function evaluation is inexpensive
for this problem and methods that use many evaluations perform well. The advantage of such methods is
exacerbated by the large number of iterations required by Newton’s method. All the NEWT\K solvers use
an inner GMRES iteration with a relative tolerance of 10−5. GMRES for ASPIN is set to have an inner
tolerance of 10−3.

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex15.c.html

24 BRUNE ET AL.

0 5 10 15 20 25 30 35

Time (sec)

10−11

10−9

10−7

10−5

10−3

10−1

101

103

105

‖r
(x

)‖
2

QN
RAS
(NEWT\K−ASM)

Fig. 6.10: QN, RAS, and (NEWT\K−ASM) convergence.

Table 6.10: QN, RAS, and (NEWT\K−ASM) results.

Solver T N. It L. It Func Jac PC NPC
QN 12.24 2960 0 5921 – – –

RAS 12.94 352 0 1090 352 352 –
(NEWT\K−ASM) 34.57 124 3447 423 124 3574 –

Table 6.10 contains results for the uncomposed solvers. The default solver, NEWT\K − ASM, takes
a large number of outer Newton iterations and inner GMRES − ASM iterations. In addition, the line
search is consistently activated, causing an average of more than three function evaluations per iteration.
Unpreconditioned QN is able to converge to the solution efficiently and will be hard to beat. QN stores up
to 10 previous solutions and residuals. RAS set to do one local Newton iteration per subdomain per outer
iteration proves to be efficient on its own after some initial problems, as shown in Fig. 6.10.

0 2 4 6 8 10 12 14

Time (sec)

10−11

10−9

10−7

10−5

10−3

10−1

101

103

105

‖r
(x

)‖
2

RAS*(NEWT\K−ASM)
RAS+(NEWT\K−ASM)

Fig. 6.11: RAS ∗ (NEWT\K−ASM) and RAS + (NEWT\K−ASM) convergence.

COMPOSING NONLINEAR SOLVERS 25

Table 6.11: RAS ∗ (NEWT\K−ASM) and RAS + (NEWT\K−ASM) results.

Solver T N. It L. It Func Jac PC NPC
RAS ∗ (NEWT\K−ASM) 9.69 24 750 142 48 811 –
RAS + (NEWT\K−ASM) 12.78 33 951 232 66 1023 –

In Table 6.11 and Fig. 6.11, we show how Newton’s method may be dramatically improved by composition
with RAS and NASM. The additive composition reduces the number of outer iterations substantially. The
multiplicative composition is even more effective, reducing the number of outer iterations by a factor of 5
and decreasing runtime by a factor of around 4.

0 5 10 15 20 25 30 35

Time (sec)

10−11

10−9

10−7

10−5

10−3

10−1

101

103

105

‖r
(x

)‖
2

QN−LRAS

ASPIN
NRICH−LRAS

Fig. 6.12: QN−L RAS , ASPIN, and NRICH−L RAS convergence.

Table 6.12: QN−L RAS , ASPIN, and NRICH−L RAS results.

Solver T N. It L. It Func Jac PC NPC
QN−L RAS 7.02 92 0 410 185 185 185

ASPIN 9.30 13 332 307 179 837 19
NRICH−L RAS 32.10 308 0 1889 924 924 924

The results for left-preconditioned methods are shown in Table 6.12 and Fig. 6.12. ASPIN is competitive,
taking 13 iterations and having performance characteristics similar to those of the multiplicative composition
solver listed in Table 6.11. The subdomain solvers for ASPIN are set to converge to a relative tolerance of
10−3 or 20 inner iterations. Underresolving the local problems provides an inadequate search direction and
causes ASPIN to stagnate. The linear GMRES iteration also is converged to 10−3.

The most impressive improvements can be achieved by using a RAS as a nonlinear preconditioner.
Simple NRICH acceleration does not provide much benefit compared with raw RAS with respect to outer
iterations, and the preconditioner applications in the line search cause significant overhead. However, QN
using inexact RAS as the left-preconditioned residual proves to be the most efficient solver for this problem,
taking 185 Newton iterations per subdomain. Both NRICH and QN stagnate if the original residual is used
in the line search instead of the preconditioned one. Subdomain QN methods [48] have been proposed before
but built by using block approximate Jacobian inverses instead of working on the preconditioned system like
ASPIN. As implemented here, QN −L RAS and ASPIN both construct left-preconditioned residuals and
approximate preconditioned Jacobian constructions; both end up being very efficient.

26 BRUNE ET AL.

7. Conclusion. The combination of solvers using nonlinear composition, when applied carefully, may
greatly improve the convergence properties of nonlinear solvers. Hierarchical and multilevel inner solvers
allow for high arithmetic intensity and low communication algorithms, making nonlinear composition a good
option for extreme-scale nonlinear solvers.

Our experimentation, in this document and elsewhere, has shown that what works best when using
nonlinear composition varies from problem to problem. Nonlinear composition introduces a slew of addi-
tional solver parameters at multiple levels of the hierarchy that may be tuned for optimal performance and
robustness. A particular problem may be amenable to a simple solver, such as NCG, or to a combination of
multilevel solvers, such as FAS∗(NEWT\K−MG). The implementation in PETSc [3] allows for considerable
flexibility in user choice of solver compositions.

Admittedly, we have been fairly conservative in the scope of our solver combinations. Our almost-
complete restriction to combinations of a globalized method and a decomposition method is somewhat
artificial in the nonlinear case. Without this restriction, however, the combinatorial explosion of potential
methods would quickly make the scope of this paper untenable. Users may experiment, for their particular
problem, with combinations of some number of iterations of arbitrary combinations of nonlinear solvers, with
nesting much deeper than we explore here.

The use of nonlinear preconditioning allows for solvers that are more robust to difficult nonlinear prob-
lems. While effective linear preconditioners applied to the Jacobian inversion problem may speed the con-
vergence of the inner solves, lack of the convergence of the outer Newton’s method may doom the solve.
With nonlinear preconditioning, the inner and outer treatment of the nonlinear problem allows for very rapid
solution. Nonlinear preconditioning and composition solvers allow for both efficiency and robustness gains,
and the widespread adoption of these techniques would reap major benefits for computational science.

Acknowledgments. This material was based upon worked supported by the U.S. Department of En-
ergy, Office of Science, Advanced Scientific Computing Research, under Contract DE-AC02-06CH11357. We
thank Jed Brown for many meaningful discussions, suggestions, and sample code.

REFERENCES

[1] Advanced Micro Devices, AMD Opteron 6200 series quick reference guide, 2012.
[2] Donald G. Anderson, Iterative procedures for nonlinear integral equations, Journal of the ACM, 12 (1965), pp. 547–560.
[3] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter Brune, Kris Buschelman, Victor Ei-

jkhout, William D. Gropp, Dinesh Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Karl Rupp,
Barry F. Smith, and Hong Zhang, PETSc users manual, Tech. Report ANL-95/11 - Revision 3.5, Argonne Na-
tional Laboratory, 2014.

[4] Philipp Birken and Antony Jameson, On nonlinear preconditioners in Newton-Krylov methods for unsteady flows,
International Journal for Numerical Methods in Fluids, 62 (2010), pp. 565–573.

[5] J. H. Bramble, Multigrid Methods, Longman Scientific and Technical, Essex, England, 1993.
[6] Achi Brandt, Multi-level adaptive solutions to boundary-value problems, Mathematics of Computation, 31 (1977),

pp. 333–390.
[7] Achi Brandt, Multigrid techniques: 1984 guide with applications for fluid dynamics, Tech. Report GMD-Studien Nr. 85,

Gesellschaft fur Mathematik und Dataenverarbeitung, 1984.
[8] A. Brandt and D. Ron, Multigrid solvers and multilevel optimization strategies, in Multilevel Optimization and VLSI-

CAD, Kluwer Academic Publishers, 2003, pp. 1–69.
[9] William L. Briggs, Van Emden Henson, and Steve F. McCormick, A Multigrid Tutorial (2nd ed.), Society for

Industrial and Applied Mathematics, Philadelphia, PA, 2000.
[10] Jed Brown and Peter Brune, Low-rank quasi-Newton updates for robust Jacobian lagging in Newton-type methods, in

International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering,
2013, pp. 2554–2565.

[11] P. Brown and A. Hindmarsh, Matrix-free methods for stiff systems of ODEs, SIAM Journal on Numerical Analysis, 23
(1986), pp. 610–638.

[12] Peter N Brown and Youcef Saad, Convergence theory of nonlinear Newton-Krylov algorithms, SIAM Journal on
Optimization, 4 (1994), pp. 297–330.

[13] Charles G Broyden, A class of methods for solving nonlinear simultaneous equations, Mathematics of computation, 19
(1965), pp. 577–593.

[14] RichardH. Byrd, Jorge Nocedal, and RobertB. Schnabel, Representations of quasi-Newton matrices and their use
in limited memory methods, Mathematical Programming, 63 (1994), pp. 129–156.

[15] X.-C. Cai, Nonlinear overlapping domain decomposition methods, Lecture Notes in Computational Science, 70 (2009),
pp. 217–224.

[16] X.-C. Cai and D. E. Keyes, Nonlinearly preconditioned inexact Newton algorithms, SIAM J. Sci. Comput., 24 (2002),
pp. 183–200.

COMPOSING NONLINEAR SOLVERS 27

[17] X.-C. Cai and X. Li, Inexact Newton methods with restricted additive Schwarz based nonlinear elimination for problems
with high local nonlinearity, SIAM Journal on Scientific Computing, 33 (2011), pp. 746–762.

[18] N. Carlson and K. Miller, Design and application of a gradient-weighted moving finite element code I: In one dimen-
sion, SIAM Journal on Scientific Computing, 19 (1998), pp. 728–765.

[19] T. Chan and K. Jackson, Nonlinearly preconditioned Krylov subspace methods for discrete Newton algorithms, SIAM
Journal on Scientific and Statistical Computing, 5 (1984), pp. 533–542.

[20] Philippe Cresta, Olivier Allix, Christian Rey, and Stphane Guinard, Nonlinear localization strategies for do-
main decomposition methods: Application to post-buckling analyses, Computer Methods in Applied Mechanics and
Engineering, 196 (2007), pp. 1436–1446. Domain Decomposition Methods: recent advances and new challenges in
engineering.

[21] Y. H. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property, SIAM Journal
on Optimization, 10 (1999), pp. 177–182.

[22] Hans De Sterck, Steepest descent preconditioning for nonlinear GMRES optimization, Numerical Linear Algebra with
Applications, 20 (2013), pp. 453–471.

[23] R. Dembo, S. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM Journal on Numerical Analysis, 19 (1982),
pp. 400–408.

[24] J. E. Dennis, Jr. and Jorge J. More, Quasi-Newton methods, motivation and theory, SIAM Review, 19 (1977), pp. 46–
89.

[25] J. E. Dennis Jr. and Robert B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equa-
tions, Prentice-Hall, Englewood Cliffs, NJ, 1983.

[26] Peter Deuflhard, Roland Freund, and Artur Walter, Fast secant methods for the iterative solution of large non-
symmetric linear systems, IMPACT of Computing in Science and Engineering, 2 (1990), pp. 244–276.

[27] Stanley C Eisenstat and Homer F Walker, Globally convergent inexact Newton methods, SIAM Journal on Optimiza-
tion, 4 (1994), pp. 393–422.

[28] V. Eyert, A comparative study on methods for convergence acceleration of iterative vector sequences, J. Comput. Phys.,
124 (1996), pp. 271–285.

[29] Haw-ren Fang and Yousef Saad, Two classes of multisecant methods for nonlinear acceleration, Numer. Linear Algebra
Appl., 16 (2009), pp. 197–221.

[30] Roger Fletcher, Practical Methods of Optimization, Volume 1, Wiley, 1987.
[31] R. Fletcher and C. M. Reeves, Function minimization by conjugate gradients, Computer Journal, 7 (1964), pp. 149–

154.
[32] Allen A Goldstein, On steepest descent, Journal of the Society for Industrial & Applied Mathematics, Series A: Control,

3 (1965), pp. 147–151.
[33] W. Hackbusch, Comparison of different multi-grid variants for nonlinear equations, ZAMM - Journal of Applied Math-

ematics and Mechanics / Zeitschrift fr Angewandte Mathematik und Mechanik, 72 (1992), pp. 148–151.
[34] Van E. Henson, Multigrid methods for nonlinear problems: an overview, Proc. SPIE, 5016 (2003), pp. 36–48.
[35] Magnus R. Hestenes and Eduard Steifel, Methods of conjugate gradients for solving linear systems, J. Research of

the National Bureau of Standards, 49 (1952), pp. 409–436.
[36] J. D. Hunter, Matplotlib: A 2d graphics environment, Computing In Science & Engineering, 9 (2007), pp. 90–95.
[37] F.-N. Hwang and X.-C. Cai, A parallel nonlinear additive Schwarz preconditioned inexact Newton algorithm for incom-

pressible Navier-Stokes equations, J. Comput. Phys., 204 (2005), pp. 666–691.
[38] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia, 1995.
[39] C. T. Kelley and D.E. Keyes, Convergence analysis of pseudo-transient continuation, SIAM J. Numerical Analysis, 35

(1998), pp. 508–523.
[40] Hector Klie and Mary F Wheeler, Nonlinear Krylov-secant solvers, tech. report, Dept. of Mathematics and inst. of

Computational Engineering and Sciences, University of Texas at Austin, 2006.
[41] D. Knoll and P. McHugh, Enhanced nonlinear iterative techniques applied to a nonequilibrium plasma flow, SIAM

Journal on Scientific Computing, 19 (1998), pp. 291–301.
[42] D. A. Knoll and D. E. Keyes, Jacobian-free Newton-Krylov methods: A survey of approaches and applications, J.

Comp. Phys., 193 (2004), pp. 357–397.
[43] P. Ladevèze, J.-C. Passieux, and D. Nron, The LATIN multiscale computational method and the proper generalized

decomposition, Computer Methods in Applied Mechanics and Engineering, 199 (2010), pp. 1287 – 1296. Multiscale
Models and Mathematical Aspects in Solid and Fluid Mechanics.

[44] P. Ladevèze and J.G. Simmonds, Nonlinear computational structural mechanics: New approaches and non-incremental
methods of calculation, Mechanical Engineering Series, Springer, 1999.

[45] Paul J Lanzkron, Donald J Rose, and James T Wilkes, An analysis of approximate nonlinear elimination, SIAM
Journal on Scientific Computing, 17 (1996), pp. 538–559.

[46] Dong C Liu and Jorge Nocedal, On the limited memory BFGS method for large scale optimization, Mathematical
Programming, 45 (1989), pp. 503–528.

[47] P. A. Lott, H. F. Walker, C. S. Woodward, and U. M. Yang, An accelerated Picard method for nonlinear systems
related to variably saturated flow, Advances in Water Resources, 38 (2012), pp. 92–101.

[48] José Mario Mart́ınez, SOR-secant methods, SIAM J. Numer. Anal., 31 (1994), pp. 217–226.
[49] Hermann Matthies and Gilbert Strang, The solution of nonlinear finite element equations, International Journal for

Numerical Methods in Engineering, 14 (1979), pp. 1613–1626.
[50] Stephen G Nash, A multigrid approach to discretized optimization problems, Optimization Methods and Software, 14

(2000), pp. 99–116.
[51] Jorge Nocedal, Updating quasi-Newton matrices with limited storage, Mathematics of Computation, 35 (1980), pp. 773–

782.

28 BRUNE ET AL.

[52] Jorge Nocedal and Stephen J. Wright, Numerical Optimization, Springer-Verlag, New York, 1999.
[53] E Polak and G Ribiere, Note sur la convergence de méthodes de directions conjuguées, Revue franaise dinformatique

et de recherche opérationnelle, série rouge, 3 (1969), pp. 35–43.
[54] Péter Pulay, Convergence acceleration of iterative sequences: The case of SCF iteration, Chemical Physics Letters, 73

(1980), pp. 393–398.
[55] Alfio Quarteroni and Alberto Valli, Domain Decomposition Methods for Partial Differential Equations, Oxford

Science Publications, Oxford, 1999.
[56] P. Ramachandran and G. Varoquaux, Mayavi: 3D Visualization of Scientific Data, Computing in Science & Engi-

neering, 13 (2011), pp. 40–51.
[57] Youcef Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM Journal on Scientific Computing, 14 (1993),

pp. 461–469.
[58] Yousef Saad, Iterative Methods for Sparse Linear Systems, 2nd edition, SIAM, Philadelpha, PA, 2003.
[59] Michael H Scott and Gregory L Fenves, A Krylov subspace accelerated Newton algorithm, in Proc., 2003 ASCE

Structures Congress, 2003.
[60] D. F. Shanno, Conditioning of quasi-Newton methods for function minimization, Mathematics of Computation, 24

(1970), pp. pp. 647–656.
[61] Jonathan R Shewchuk, An introduction to the conjugate gradient method without the agonizing pain, tech. report,

Carnegie Mellon University, Pittsburgh, PA, 1994.
[62] B.F. Smith, Domain decomposition methods for partial differential equations, ICASE LARC Interdisciplinary Series in

Science and Engineering, 4 (1997), pp. 225–244.
[63] Barry F. Smith, Petter Bjørstad, and William D. Gropp, Domain Decomposition: Parallel Multilevel Methods for

Elliptic Partial Differential Equations, Cambridge University Press, 1996.
[64] B. F. Smith and X. Tu, Encyclopedia of Applied and Computational Mathematics, Springer, 2013, ch. Domain Decom-

position.
[65] M.D. Smooke and R.M.M. Mattheij, On the solution of nonlinear two-point boundary value problems on successively

refined grids, Applied Numerical Mathematics, 1 (1985), pp. 463 – 487.
[66] Andrea Toselli and Olof B Widlund, Domain Decomposition Methods: Algorithms and Theory, vol. 34, Springer,

2005.
[67] U. Trottenberg, C.W. Oosterlee, and A. Schüller, Multigrid, Academic Press, 2001.
[68] Raymond S Tuminaro, Homer F Walker, and John N Shadid, On backtracking failure in Newton–GMRES methods

with a demonstration for the Navier–Stokes equations, Journal of Computational Physics, 180 (2002), pp. 549–558.
[69] Homer F. Walker and Peng Ni, Anderson acceleration for fixed-point iterations, SIAM J. Numer. Anal., 49 (2011),

pp. 1715–1735.
[70] Homer F Walker, Carol S Woodward, and Ulrike M Yang, An accelerated fixed-point iteration for solution of

variably saturated flow, in Proc. XVIII International Conference on Water Resources, Barcelona, 2010.
[71] T Washio and CW Oosterlee, Krylov subspace acceleration for nonlinear multigrid schemes, Electronic Transactions

on Numerical Analysis, 6 (1997), pp. 271–290.
[72] T. Washio and C. W. Oosterlee, Krylov subspace acceleration for nonlinear multigrid schemes with application to

recirculating flow, SIAM Journal on Scientific Computing, 21 (2000), pp. 1670–1690.
[73] Pieter Wesseling, An Introduction to Multigrid Methods, R. T. Edwards, 2004.
[74] P. Wolfe, Convergence conditions for ascent methods, SIAM Review, 11 (1969), pp. 226–235.
[75] Peter Wriggers, Nonlinear Finite Element Methods, Springer, 2008.

COMPOSING NONLINEAR SOLVERS 29

Government License. The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of
Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for
itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article
to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government.

