
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 26, 2024

Random Access to Grammar-Compressed Strings and Trees

Bille, Philip; Landau, Gad M.; Raman, Rajeev; Sadakane, Kunihiko; Satti, Srinivasa Rao; Weimann, Oren

Published in:
SIAM Journal on Computing

Link to article, DOI:
10.1137/130936889

Publication date:
2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Bille, P., Landau, G. M., Raman, R., Sadakane, K., Satti, S. R., & Weimann, O. (2015). Random Access to
Grammar-Compressed Strings and Trees. SIAM Journal on Computing, 44(3), 513-539.
https://doi.org/10.1137/130936889

https://doi.org/10.1137/130936889
https://orbit.dtu.dk/en/publications/797f32fc-cb0b-4f9f-857d-2f60545f52bb
https://doi.org/10.1137/130936889


RANDOM ACCESS TO GRAMMAR-COMPRESSED STRINGS AND
TREES∗

PHILIP BILLE † , GAD M. LANDAU ‡ , RAJEEV RAMAN § , KUNIHIKO SADAKANE ¶,

SRINIVASA RAO SATTI ‖, AND OREN WEIMANN ∗∗

Abstract. Grammar based compression, where one replaces a long string by a small context-free
grammar that generates the string, is a simple and powerful paradigm that captures (sometimes with
slight reduction in efficiency) many of the popular compression schemes, including the Lempel-Ziv
family, Run-Length Encoding, Byte-Pair Encoding, Sequitur, and Re-Pair. In this paper, we present
a novel grammar representation that allows efficient random access to any character or substring
without decompressing the string.

Let S be a string of length N compressed into a context-free grammar S of size n. We present
two representations of S achieving O(logN) random access time, and either O(n·αk(n)) construction
time and space on the pointer machine model, or O(n) construction time and space on the RAM.
Here, αk(n) is the inverse of the kth row of Ackermann’s function. Our representations also efficiently
support decompression of any substring in S: we can decompress any substring of length m in the
same complexity as a single random access query and additional O(m) time. Combining these
results with fast algorithms for uncompressed approximate string matching leads to several efficient
algorithms for approximate string matching on grammar compressed strings without decompression.
For instance, we can find all approximate occurrences of a pattern P with at most k errors in time
O(n(min{|P |k, k4 + |P |}+ logN) + occ), where occ is the number of occurrences of P in S. Finally,
we generalize our results to navigation and other operations on grammar-compressed ordered trees.

All of the above bounds significantly improve the currently best known results. To achieve these
bounds, we introduce several new techniques and data structures of independent interest, includ-
ing a predecessor data structure, two “biased” weighted ancestor data structures, and a compact
representation of heavy paths in grammars.

Key words. grammar-based compression, straight-line program, approximate string matching,
tree compression

AMS subject classifications. 68P05, 68P30

1. Introduction. Modern textual or semi-structured databases, e.g. for biolog-
ical and WWW data, are huge, and are typically stored in compressed form. A query
to such databases will typically retrieve only a small portion of the data. This presents
several challenges: how to query the compressed data directly and efficiently, without
the need for additional data structures (which can be many times larger than the
compressed data), and how to retrieve the answers to the queries. In many practical
cases, the naive approach of first decompressing the entire data and then process-
ing it is completely unacceptable – for instance XML data compresses by an order
of magnitude on disk [25] but expands by an order of magnitude when represented
in-memory [22]; as we will shortly see, this approach is very problematic from an
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2 Bille et al.

asymptotic perspective as well. Instead we want to support this functionality directly
on the compressed data.

We focus on two data types, strings and ordered trees, and consider the former
first. Let S be a string of length N from an alphabet Σ, given in a compressed repre-
sentation S of size n. The random access problem is to compactly represent S while
supporting fast random access queries, that is, given an index i, 1 ≤ i ≤ N , report
S[i]. More generally, we want to support substring decompression, that is, given a pair
of indices i and j, 1 ≤ i ≤ j ≤ N , report the substring S[i] · · ·S[j]. The goal is to use
little space for the representation of S while supporting fast random access and sub-
string decompression. Once we obtain an efficient substring decompression method,
it can also serve as a basis for a compressed version of classical pattern matching. For
example, given an (uncompressed) pattern string P and S, the compressed pattern
matching problem is to find all occurrences of P within S more efficiently than to
naively decompress S into S and then search for P in S. An important variant of the
pattern matching problem is when we allow approximate matching (i.e., when P is
allowed to appear in S with some errors).

a b
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Fig. 1.1. (a) A context-free grammar generating the string abaababa. (b) The corresponding
parse tree. (c) The acyclic graph defined by the grammar.

We consider these problems in the context of grammar-based compression, where
one replaces a long string by a small context-free grammar (CFG) that generates this
string (and this string only). We assume without loss of generality that the grammars
are in fact straight-line programs (SLPs) and so on the righthand side of each grammar
rule there are either exactly two variables or one terminal symbol, see Fig. 1.1(a)).
Such grammars capture many popular compression schemes including the Lempel-
Ziv family [64, 66, 67], Sequitur [55], Run-Length Encoding, Re-Pair [45], and many
more [6–8, 29, 41, 42, 60, 65]. All of these are or can be transformed into equivalent
grammar-based compression schemes with little expansion [17,57]. In general, the size
of the grammar, defined as the total number of symbols in all derivation rules, can be
exponentially smaller than the string it generates. From an algorithmic perspective,
the properties of compressed data were used to accelerate the solutions to classical
problems on strings including exact pattern matching [4,39,46,48,61] and approximate
pattern matching [3, 9, 12,14,16,21,34,38,39,47,53].

We also consider the problem of representing an ordered rooted tree T (of arbi-
trary degree) with N nodes. We assume that T is represented as a balanced parenthesis
sequence [50], which is obtained by traversing T in pre-order and outputting ‘(’ upon
entering a node for the first time, and ‘)’ upon leaving it. We assume that this bal-
anced parenthesis sequence is given as an SLP of size n, and consider the problem of
performing operations on T .

This compression method may seem a little artificial, but it is in fact a powerful
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technique that captures existing tree compression methods. For example, a popular
tree compression method is to represent it by the minimal DAG obtained by sharing
identical subtrees, giving a DAG with e edges (see Fig. 8.1 in Section 8). We note
that this DAG can be represented as an SLP of size O(e) that generates the BP
sequence of the tree. However, the SLP representation of the BP string can be much
smaller than the minimal DAG: for example, if T is just a line with N nodes, then
DAG compression is completely ineffective, but the BP sequence of T , namely (

N
)
N

,
is generated by an SLP of size O(logN). In fact, recently, Navarro and Pereira [54]
implemented a practical variant of this idea and showed its effectiveness for highly
repetitive text collections.

Our Results. We present new representations of grammar compressed strings
and trees. We consider two models, the pointer machine [62] and the word RAM
(henceforth just RAM) [32]. We further make the assumption that all memory cells
can contain logN -bit integers – this many bits are needed just to represent the input
to a random access query. Let αk(n) be the inverse of the kth row of Ackermann’s
function1. For strings, we show:

Theorem 1.1. For a CFG S of size n representing a string of length N we can
decompress a substring of length m in time O(m+ logN)

(i) after O(n · αk(n)) preprocessing time and space, for any fixed k, or,
(ii) after O(n) preprocessing time and space on the RAM model.

Next, we show how to combine Theorem 1.1 with any black-box (uncompressed)
approximate string matching algorithm to solve the corresponding compressed ap-
proximate string matching problem over grammar-compressed strings. We obtain the
following connection between classical (uncompressed) and grammar compressed ap-
proximate string matching. Let t(m) and s(m) be the time and space bounds of some
(uncompressed) approximate string matching algorithm on strings of lengths O(m),
and let occ be the number of occurrences of P in S.

Theorem 1.2. Given a CFG S of size n representing a string of length N and
a string P of length m we can find all approximate occurrences of P in S in time
O(n(m+ t(m) + logN) + occ) and

(i) in space O(n · αk(n) + m + s(m)) on the pointer machine model, for any
fixed k, and

(ii) in space O(n+m+ s(m) + occ) on the RAM model.

Coming to the tree representation problem, suppose that nodes of the uncom-
pressed tree T are numbered 1, . . . , N in pre-order, and T is represented as an SLP
that generates its BP sequence. We are mainly concerned with navigation operations
in the tree such as parent(i) and lca(i, j), which return the (pre-order) numbers of
the node that is the parent of i or the LCA of i and j, respectively (a full list of
navigation operations can be found in Table 1). We show:

Theorem 1.3. Given an SLP of size n that represents the BP sequence of a
rooted ordered tree T with N nodes, we can support the navigation operations given
in Table 1 in O(logN) time using:

(i) O(nαk(n)) words and preprocessing time on the pointer machine model, for
any fixed k, and

(ii) O(n) words and preprocessing time on the RAM model.

1The inverse Ackermann function αk(n) can be defined by αk(n) = 1 + αk(αk−1(n)) so that
α1(n) = n/2, α2(n) = logn, α3(n) = log∗ n, α4(n) = log∗∗ n and so on. Here, log∗∗ n is the number
of times the log∗ function is applied to n to produce a constant.
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Table 1.1
Navigational Operations on an Ordered Tree.

parent(x) parent of node x
first child(x) first child of node x
last child(x) last child of node x

next sibling(x) next (previous) sibling of node x
(prev sibling(x))

depth(x) depth of node x
level anc(x, i) ancestor of node x that is i levels above x, for i ≥ 0

desc(x) number of descendants (subtree size) of node x
height(x) returns the height of the subtree rooted at node x
LCA(x, y) returns the lowest common ancestor of the nodes x and y

left leaf(x) leftmost (rightmost) leaf of the subtree rooted at node x
(right leaf(x))
rankPRE/POST(x) position of x in the preorder or postorder traversal of the tree

selectPRE/POST(j) j-th node in the preorder or postorder traversal of the tree
level left(i) first (last) node visited in a preorder traversal among all the

(level right(i)) nodes whose depths are i
level succ(x) level successor (predecessor) of node x, i.e. the node visited

(level pred(x)) immediately after (before) node x in a preorder traversal
among all the nodes that are at the same level as node x.

Remark: In the discussed applications above, it is more appropriate to consider labelled
trees [25], where each node is labelled with a character from some alphabet Σ. A
basic operation on the labels is access(i), which returns the symbol associated with
node i. This can be readily implemented in O(logN) time by SLP-compressing the
string that comprises the labels of T in pre-order, and using Theorem 1.1. Note that
separately SLP-compressing the tree structure and the labels of T in pre-order cannot
be asymptotically worse than SLP-compressing (say) a “labelled” parenthesis string,
obtained by outputting ‘(c’ upon entering a node labelled c, and ‘)c’ upon leaving it.

Related Work. We now describe how our work relates to existing results.

The random access problem. If we use O(N) space we can access any char-
acter in constant time by storing S explicitly in an array. Alternatively, we can
compute and store the sizes of strings derived by each grammar symbol in S. This
only requires O(n) space and allows to simulate a top-down search expanding the
grammar’s derivation tree in constant time per node. Consequently, a random ac-
cess takes time O(h), where h is the height of the derivation tree and can be as
large as Ω(n). Although any SLP of size n generating a string of length N can be
converted into an SLP with derivation tree height O(logN) [17, 57], the size of the
SLP may increase to O(n logN). Thus, the simple top-down traversal either has
poor worst-case performance or uses non-linear space. Surprisingly, the only known
improvement to the simple top-down traversal is a recent succinct representation of
grammars, due to Claude and Navarro [19]. They reduce the space from O(n logN)
bits to O(n log n) +n logN bits at the cost of increasing the query time to O(h log n).

The substring decompression problem. Using the simple random access
trade-off we get an O(n) space solution that supports substring decompression in
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O(hm) time. Gasieniec et al. [30,31] showed how to improve the decompression time
to O(h+m) while maintaining O(n) space. The key idea in their solution is to use and
extend the simple top-down traversal to the first character of the substring with a fast
traversal of the derivation tree of the remaining substring. Also, the representation of
Claude and Navarro [19] supports substring decompression in time O((h+m) log n).

The compressed pattern matching problem. In approximate pattern match-
ing, we are given two strings P and S and an error threshold k. The goal is to find all
ending positions of substrings of S that are “within distance k” of P under some met-
ric, e.g. the edit distance metric, where the distance is the number of edit operations
needed to convert one substring to the other.

In classical (uncompressed) approximate pattern matching, a simple algorithm [59]
solves this problem (under edit distance) in O(Nm) time and O(m) space, where N
and m are the lengths of S and P respectively. Several improvements of this re-
sult are known (see e.g. [52]). Two well-known improvements for small values of k
are the O(Nk) time algorithm of Landau and Vishkin [44] and the O(Nk4/m + N)
time algorithm of Cole and Hariharan [20]. Both of these can be implemented in
O(m) space. The use of compression led to many speedups using various compression
schemes [3,9,12,14,16,21,34,38–40,47,53]. The most closely related to our work is ap-
proximate pattern matching for LZ78 and LZW compressed strings [12,38,53], which
can be solved in time O(n(min{mk, k4 +m}) + occ) [12], where n is the compressed
length under the LZ compression.

Theorem 1.2 gives us the first non-trivial algorithms for approximate pattern
matching over any grammar compressed string. For instance, if we plug in the Landau-
Vishkin [44] or Cole-Hariharan [20] algorithms in Theorem 1.2(i) we obtain an algo-
rithm with O(n(min{mk, k4 + m} + logN) + occ) time and O(n · αk(n) + m + occ)
space. Note that any algorithm (not only the above two) and any distance metric
(not only edit distance) can be applied to Theorem 1.2. For example, under the
Hamming distance measure we can combine our algorithm with a fast algorithm for
the (uncompressed) approximate string matching problem for the Hamming distance
measure [5].

Tree Compression. There is a long history of tree compression algorithms, but
there appears to be little work on rapidly navigating the compressed representation
without decompresson. In particular, the DAG compression approach has recently
been applied successfully to compress XML documents [13, 15] and [13] also note
that this representation aids the matching of XPath patterns, but their algorithm
partially decompresses the DAG. Indeed [15, p468] specifically mention the problem
of navigating the XML tree without decompressing the DAG, and present algorithms
whose running time is linear in the grammar size for randomly accessing the nodes
of the tree. Jansson et al. [37] give an ordered tree representation that supports a
wide variety of navigational operations on a compressed ordered tree. However, their
compression method is relatively weak—it is based solely on the degree distribution
of the nodes in the tree—and cannot fully exploit repeated substructure in trees.

Overview. Before diving into technical details, we give an outline of the paper
and of the new techniques and data structures that we introduce and believe to be of
independent interest. We first focus on the string random acccess problem. Let S be
a SLP of size n representing a string of length N . We begin in Section 2 by defining a
forest H of size n that represents the heavy paths [33] in the parse tree of S. We then
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combine the forest H with an existing weighted ancestor data structure2, leading to a
first solution with O(logN log logN) access time and linear space (Lemma 2.1). The
main part of the paper focuses on reducing the random access time to O(logN).

In Section 3, we observe that it is better to replace the doubly-logarithmic weighted
ancestor search in Lemma 2.1 by a (logarithmic) biased ancestor search. In a bi-
ased search, we want to find the predecessor of a given integer p in a set of integers
0 = l0 < l1 < . . . < lk = U , in O(log(U/x)) time, where x = |successor(p) –
predecessor(p)|.3. Using biased search, the O(logN) predecessor queries on H add up
to just O(logN) time overall. Our main technical contribution is to design two new
space-efficient data structures that perform biased searches on sets defined by any path
from a node u ∈ H to the root of u’s tree. In Section 3 we describe the central build-
ing block of the first data structure – the interval-biased search tree, which is a new,
simple linear-time constructible, linear space, biased search data structure. We can-
not directly use this data structure on every node-to-root path in H, since that would
take O(n2) preprocessing time and space. In Section 4 we first apply a heavy-path
decomposition to H itself and navigate between these paths using weighted ancestor
queries on a related tree L. This reduces the preprocessing time to O(n log n). To
further reduce the preprocessing, we partition L into disjoint trees in the spirit of
Alstrup et al. [2]. One of these trees has O(n/ log n) leaves and can be pre-processed
using the solution above. The other trees all have O(log n) leaves and we handle them
recursively. However, before we can recurse on these trees they are modified so that
each has O(log n) vertices (rather than leaves). This is done by another type of path
decomposition (i.e. not a heavy-path decomposition), called branching decomposition
of L. By carefully choosing the sizes of the recursive problems we get Theorem 1.1(i)
(for the case m = 1).

For the RAM model, in Section 5, we generalize biased skip lists [10] to biased
skip trees, where every path from a node u ∈ H to u’s root is a biased skip list,
giving the required time complexity. While a biased skip list takes linear space [35], a
biased skip tree may have Ω(n logN) pointers and hence non-linear space, since in a
biased skip list, “overgrown” nodes (those with many more pointers than justified by
their weight) are amortized over those ancestors which have an appropriate number
of pointers. When used in H, however, the parent of an “overgrown” node may have
many “overgrown” children, all sharing the same set of ancestors, and the amortization
fails. We note that no node will have more than O(logN) pointers, and use a sequence
of O(logN) succinct trees [51] of O(|H|) = O(n) bits each to represent the skip list
pointers, using O(n logN) bits or O(n) words in all. These succinct trees support in
O(1) time a new coloured ancestor query – a natural operation that may find other
uses – using which we are able to follow skip list pointers in O(1) time, giving the
bounds of Theorem 1.1(ii) (for the case m = 1).

We extend both random access solutions to the substring decompression in Sec-
tion 6, and in Section 7 we combine our substring decompression result with a tech-
nique of [12] to obtain an algorithm for approximate matching grammar compressed
strings (giving the bounds of Theorem 1.2). The algorithm computes the approximate
occurrences of the pattern in a single bottom-up traversal of the grammar. At each

2A weighted ancestor query (v, p) asks for the lowest ancestor of v whose weighted distance from
v is at least p.

3Note that we need a slightly different property than so-called optimum binary search trees [43,49]
– we do not want to minimize the total external path length but rather ensure that each item is at
its ideal depth as in [11]
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step we use the substring decompression algorithm to decode a relevant small portion
of the string, thus avoiding a full decompression.

Finally, in Section 8, we describe the differences between the random access op-
eration in trees from that in strings. The structure of the trees is represented by a
balanced parenthesis string, which is assumed to be stored in a compressed represen-
tation as an SLP. Although the basic approach is very much the same as that for
random access on strings, the key new operation we support on SLP-encoded bal-
anced parenthesis strings is excess search [51, 58]. Along the way, we show how to
extend the random access representation to support rank and select operations [36]
on a binary string encoded as an SLP.

2. Fast Random Access in Linear Space and O(logN log logN) Access
Time. In the rest of the paper, we let S denote an SLP of size n representing a
string of length N , and let T be the corresponding parse tree (see Fig. 1.1(b)). In this
section we present an O(n) space representation of S that supports random access
in O(logN log logN) time, which also introduces the general framework. To achieve
this we partition S into disjoint paths according to a heavy path decomposition [33],
and from these form the heavy path suffix forest, which is of size O(n).

Heavy Path Decompositions. Similar to Harel and Tarjan [33], we define the
heavy path decomposition of the parse tree T as follows. For each node v define T (v)
to be the subtree rooted at v and let size(v) be the number of descendant leaves of
v. We classify each node in T as either heavy or light based upon size(v).4 The root
is light. For each internal node v we pick a child of maximum size and classify it as
heavy. The heavy child of v is denoted heavy(v). The remaining children are light.
An edge to a light child is a light edge and an edge to a heavy child is a heavy edge.
Removing the light edges we partition T into heavy paths. A heavy path suffix is a
simple path v1, . . . , vk from a node v1 to a leaf in T (v1), such that vi+1 = heavy(vi),
for i = 1, . . . , k − 1. If u is a light child of v then size(u) ≤ size(v)/2 since otherwise
u would be heavy. Consequently, the number of light edges on a path from the root
to a leaf is at most O(logN) [33].

We extend heavy path decomposition of trees to SLPs in a straightforward man-
ner. We consider each grammar variable v as a node in the directed acyclic graph
defined by the grammar (see Fig. 1.1(c)). For a node v in S let S(v) be the substring
induced by the parse tree rooted at v and define the size of v to be the length of
S(v). We define the heavy paths in S as in T from the size of each node. Since the
size of a node v in S is the number of leaves in T (v) the heavy paths are well-defined
and we may reuse all of the terminology for trees on SLPs. In a single O(n) time
bottom-up traversal of S we can compute the sizes of all nodes and hence the heavy
path decomposition of S.

Fast Random Access in Linear Space. Our data structure represents the
following information for each heavy path suffix v1, . . . , vk in S.

• The length size(v1) of the string S(v1).
• The index z of vk in the left-to-right order of the leaves in T (v1) and the

character S(v1)[z].

4 Note that our definition of heavy paths is slightly different than the usual one. We construct
our heavy paths according to the number of leaves of the subtrees and not the total number nodes.
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v1

v2

v3

v4

1

l0 = 1 r0 = 1

13 2

l1 = 4
l2 = 4
l3 = 5
l4 = 5

r1 = 1
r2 = 3
r3 = 3
r4 = 3

size(v1) = 7 z = 5

Fig. 2.1. Ancestor search in H. The left and right size sequences for a heavy path suffix
v1, v2, v3, v4. The dotted edges are to light subtrees and the numbers in the bottom are subtree
sizes. A search for p = 5 returns the stored character for S(v1)[z]. A search for p = 4 computes
the predecessor l2 of 4 in the left size sequence. The search continues in the left subtree of v3 for
position p− l2 +1 = 4−4+1 = 1. A search for p = 6 computes the predecessor r1 of 7−6 = 1 in the
right size sequence. The search continues in the right subtree of v2 for position p− z = 6− 5 = 1.

• A predecessor data structure for the left size sequence l0, l1, . . . , lk, where li
is the sum of 1 plus the sizes of the light-left children (i.e., each light node
that is a left child of its parent) of the first i nodes in the heavy path suffix.

• A predecessor data structure for the right size sequence r0, . . . , rk, where ri
is the sum of 1 plus the sizes of the light-right children of the first i nodes in
the heavy path suffix.

With this information we perform a top down search of T as follows. Suppose
that we have reached node v1 with heavy path suffix v1, . . . , vk and our goal is to
access the character S(v1)[p]. We then compare p with the index z of vk. There are
three cases (see Fig. 2.1 for an example):

1. If p = z we report the stored character S(v1)[z] and end the search.
2. If p < z we compute the predecessor li of p in the left size sequence. We

continue the top down search from the left child u of vi+1. The position of p
in T (u) is p− li + 1.

3. If p > z we compute the predecessor ri of size(v1)−p in the right size sequence.
We continue the top down search from the right child u of vi+1. The position

of p in T (u) is p− (z +
∑k
j=i+2 size(vj)) (note that we can compute the sum

in constant time as rk − ri+2).

The total length of all heavy path suffixes is O(n2), thus making it unattractive
to treat each suffix independently. We show how to compactly represent all of the
predecessor data structures from the algorithm of the previous section in O(n) space,
and introduce the heavy path suffix forest H of S. The nodes of H are the nodes of S
and a node u is the parent of v in H iff u is the heavy child of v in S. Thus, a heavy
path suffix v1, . . . , vk in S is a sequence of ancestors from v1 in H. We label the edge
from v to its parent u by a left weight and right weight defined as follows. If u is the
left child of v in S the left weight is 0 and the right weight is size(v′) where v′ is the
right child of v. Otherwise, the right weight is 0 and the left weight is size(v′) where
v′ is the left child of v. Heavy path suffixes in S consist of unique nodes and therefore
H is a forest. A heavy path suffix in S ends at one of |Σ| leaves in S and therefore
H consists of up to |Σ| trees each rooted at a unique character of Σ. The total size
of H is O(n) and we may easily compute it from the heavy path decomposition of S
in O(n) time. An example of a heavy path decomposition and corresponding heavy
path suffix forest is shown in Fig. 2.2.
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Fig. 2.2. Heavy path decomposition of a derivation tree and corresponding heavy path suffix
forest. Dashed edges in the derivation tree are light and solid edges are heavy. In this case, the
heavy path suffix forest consists of |Σ| = 3 paths.

A predecessor query on a left size sequence and right size sequence of a heavy path
suffix v1, . . . , vk is now equivalent to a weighted ancestor query on the left weights and
right weights of H, respectively. Farach-Colton and Muthukrishnan [24] showed how
to support weighted ancestor queries in O(log logN) time after O(n) space and prepro-
cessing time. Hence, if we plug this into our algorithm we obtain O(logN log logN)
query time with O(n) preprocessing time and space. In summary, we have the follow-
ing result.

Lemma 2.1. For an SLP S of size n representing a string of length N we can
support random access in time O(logN log logN) after O(n) preprocessing time and
space.

3. Interval-Biased Search Trees – Removing the O(log logN) Factor.
In this section we reduce the O(logN log logN) random access time on an SLP
S in Lemma 2.1 to O(logN). Recall that O(logN log logN) was a result of per-
forming O(logN) predecessor(p) queries, each in O(log logN) time. In this sec-
tion, we introduce a new predecessor data structure – the interval-biased search tree.
Each predecessor(p) query on this data structure requires O(log U

x ) time, where x =
successor(p) – predecessor(p), and U is the universe. The same result can be achieved
using a general biased search tree, e.g. [11], with weights corresponding to difference
between pair of consecutive points. If we allow non-pointer based techniques it is even
possible to achieve O(log log U

x ) [56]. Our new construction specialized to interval is
quite simple and may be of independent interest.

To see the advantage of O(log U
x ) predecessor queries over O(log logN), suppose

that after performing the predecessor query on the first heavy path of T we discover
that the next heavy path to search is the heavy path suffix originating in node u.
This means that the first predecessor query takes O(log N

|S(u)| ) time. Furthermore,

the elements in u’s left size sequence (or right size sequence) are all from a universe

{0, 1, . . . , |S(u)|}. Therefore, the second predecessor query takes O(log |S(u)|x ) where
x = |S(u′)| for some node u′ in T (u). The first two predecessor queries thus re-

quire time O(log N
|S(u)| + log |S(u)|x ) = O(log N

x ). The time required for all O(logN)

predecessor queries telescopes similarly for a total of O(logN).

We next show how to construct an interval-biased search tree in linear time and
space. Simply using this tree on each heavy path suffix of S already results in a
structure for an SLP S of size n representing a string of length N that can support



10 Bille et al.

random access in time O(logN) after O(n2) preprocessing time and space.

A Description of the Tree. We now define the interval-biased search tree
associated with n̂ integers l1 ≤ . . . ≤ ln̂ from a universe {0, 1, . . . , N̂}. For simplicity,
we add the elements l0 = 0 and ln̂+1 = N̂ . The interval-biased search tree is a binary
tree that stores the intervals [l0, l1], [l1, l2], . . . , [ln̂, ln̂+1] with a single interval in each
node. The tree is described recursively:

1. Let i be such that (ln̂+1 − l0)/2 ∈ [li, li+1]. The root of the tree stores the
interval [li, li+1].

2. The left child of the root is the interval-biased search tree storing the inter-
vals [l0, l1], . . . , [li−1, li], and the right child is the interval-biased search tree
storing the intervals [li+1, li+2], . . . , [ln̂, ln̂+1].

Notice that the total length of the intervals for the left and right subtrees is at
most N̂/2. Inductively, the total size of the intervals at depth j is at most N̂/2j .
Hence, any interval of length x such that N̂/2j ≤ x ≤ N̂/2j+1 must be stored in a
node of depth at most j.

When we search the tree for a query p and reach a node corresponding to the
interval [li, li+1], we compare p with li and li+1. If li ≤ p ≤ li+1 then we return
li as the predecessor. If p < li (resp. p > li+1) we continue the search in the left
child (resp. right child). Since the interval [li, li+1] of length x = li+1 − li such that
N̂/2j ≤ x ≤ N̂/2j+1 is stored in a node of depth at most j, the search terminates at

a node of depth at most j. The query time is thus j ≤ 1 + log N̂
x = O(log N̂

x ) which
is exactly what we desire as x = successor(p) – predecessor(p). We now give an O(n̂)
time and space algorithm for constructing the tree.

A Linear-Time Construction of the Tree. We describe an O(n̂) time and
space top-down construction of the interval-biased search tree storing the intervals
[lj , lj+1], . . . , [lk, lk+1]. We focus on finding the interval [li, li+1] to be stored in its
root. The rest of the tree is constructed recursively so that the left child is a tree
storing the intervals [lj , lj+1], . . . , [li−1, li] and the right child is a tree storing the
intervals [li+1, li+2], . . . , [lk, lk+1].

We are looking for an interval [li, li+1] such that i is the largest value where
li ≤ (lk+1 + lj)/2 holds. We can find this interval in O(log(k − j)) time by doing a
binary search for (lk+1 + lj)/2 in the subarray lj , lj+1, . . . , lk+1. However, notice that
we are not guaranteed that [li, li+1] partitions the intervals in the middle. In other
words, i− j can be much larger than k − i and vice versa. This means that the total
time complexity of all the binary searches we do while constructing the entire tree can
amount to O(n log n) and we want O(n). To overcome this, notice that we can find
[li, li+1] in min{log(i− j), log(k− i)} time if we use a doubling search from both sides
of the subarray. That is, if prior to the binary search, we narrow the search space by
doing a parallel scan of the elements lj , lj+2, lj+4, lj+8, . . . and lk, lk−2, lk−4, lk−8, . . ..
This turns out to be crucial for achieving O(n) total construction time as we now
show.

To verify the total construction time, we need to bound the total time required
for all the binary searches. Let T (n̂) denote the time complexity of all the binary
searches, then T (n̂) = T (i) + T (n̂ − i) + min{log i, log(n̂ − i)} for some i. Setting
d = min{i, n̂− i} ≤ n̂/2 we get that T (n̂) = T (d) +T (n̂−d) + log d for some d ≤ n̂/2,
which is5 O(n̂).

5By an inductive assumption that T (n̂) < 2n̂− log n̂− 2 we get that T (n̂) is at most 2d− log d−
2 + 2(n̂ − d) − log(n̂ − d) − 2 + log d = 2n̂ − log(n̂ − d) − 4, which is at most 2n̂ − log n̂ − 3 since
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Fig. 4.1. The parse tree T of an SLP (left), the heavy path suffix forest H (middle), and the
light representation L of H (right). The heavy path decomposition of H is marked (in green) and
defines the vertex set of L.

Final Tuning. We need one last important property of the interval-biased search
tree. Suppose that right before doing a predecessor(p) query we know that p > lk for

some k. We can reduce the query time to O(log N̂−lk
x ) by computing for each node

its lowest common ancestor with the node [ln̂, ln̂+1], in a single traversal of the tree.
Then, when searching for p, we can start the search in the lowest common ancestor of
[lk, lk+1] and [ln̂, ln̂+1] in the interval-biased search tree. We will need this property
to efficiently perform biased searches on suffixes of paths in the following sections. In
summary, we have the following result.

Lemma 3.1. Given a sequence of n̂ integers l1 ≤ . . . ≤ ln̂ from a universe
{0, 1, . . . , U}, we can support predecessor search for a point p in time O(log U

x ) ,
where x = successor(p) – predecessor(p), and linear space. Furthermore, if we have a
pointer to lk and p > lk, we can support predecessor search in time O(log U−lk

x ).

4. Closing the Time-Space Tradeoffs for Random Access. In this section
we will use the interval-biased search tree to achieve O(logN) random access time but
near-linear space usage and preprocessing time (instead of O(n2) as in Lemma 2.1).
We design a novel weighted ancestor data structure on H via a heavy path decompo-
sition of H itself. We use interval-biased search trees for each heavy path P in this
decomposition: one each for the left and right size sequences. It is easy to see that
the total size of all these interval-biased search trees is O(n). We focus on queries of
the left size sequence, the right size sequence is handled similarly.

Let P be a heavy path in the decomposition, let v be a vertex on this path,
and let w(v, v′) be the weight of the edge between v and its child v′. We denote
by b(v) the weight of the part of P below v and by t(v) the weight above v. As an
example, consider the green heavy path P = (v5-v4-v8-v9) in Fig. 4.1, then b(v4) =
w(v4, v8) + w(v8, v9) and t(v4) = w(v5, v4). In general, if P = (vk-vk−1-· · · -v1) then
v1 is a leaf in H and b(vi+1) is the i’th element in P ’s predecessor data structure.
The b(·) and t(·) values of all vertices can easily be computed in O(n) time.

Recall that given any vertex u in H and any 0 ≤ p ≤ N we need to be able
to find the lowest ancestor v of u whose weighted distance from u is at least p.
If we want the total random access time to be O(logN) then finding v should be

d ≤ n̂/2.
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done in O
(

log |S(u)|w(v,v′)

)
time where v′ is the child of v which is also an ancestor of

u. If both u and v are on the same heavy path P in the decomposition, a single

predecessor(p′) query on P would indeed find v in O(log t(u)
w(v,v′) ) = O

(
log |S(u)|w(v,v′)

)
time, where p′ = p+ b(u). This follows from the property we described at the end of
Section 3.

The problem is thus to locate v when, in the decomposition of H, v is on the
heavy path P but u is not. To do so, we first locate a vertex w that is both an
ancestor of u and belongs to P . Once w is found, if its weighted distance from u is
greater than p then v = w. Otherwise, a single predecessor(p′′) query on P finds v

in O(log t(w)
w(v,v′) ) time, which is O

(
log |S(u)|w(v,v′)

)
since t(w) ≤ |S(u)|. Here, p′′ = p -

weight(path from u to w in H) + b(w). We are therefore only left with the problem
of finding w and the weight of the path from u to w.

A Light Representation of Heavy paths. In order to navigate from u up to
w we introduce the light representation L of H. Intuitively, L is a (non-binary) tree
that captures the light edges in the heavy-path decomposition of H. Every path P in
the decomposition of H corresponds to a single vertex P in L, and every light edge in
the decomposition of H corresponds to an edge in L. If a light edge e in H connects a
vertex w with its child then the weight of the corresponding edge in L is the original
weight of e plus t(w). (See the edge of weight w(v4, v3) + w(v5, v4) in Fig. 4.1).

The problem of locating w in H now translates to a weighted ancestor query on
L. Indeed, if u belongs to a heavy-path P ′ then P ′ is also a vertex in L and locating w
translates to finding the lowest ancestor of P ′ in L whose weighted distance from P ′

is at least p− t(u). As a weighted ancestor data structure on L would be too costly,
we utilize the important fact that the height of L is only O(log n) – the edges of L
correspond to light edges of H – and construct, for every root-to-leaf path in L, an
interval-biased search tree as its predecessor data structure. The total time and space
for constructing these data structures is O(n log n). A query for finding the ancestor
of P ′ in L whose weighted distance from P ′ is at least p − t(u) can then be done in

O(log |S(u)|t(w) ) time. This is O
(

log |S(u)|w(v,v′)

)
as w(v, v′) ≤ t(w). We summarize this with

the following lemma.

Lemma 4.1. For an SLP S of size n representing a string of length N we can sup-
port random access in time O(logN) after O(n log n) preprocessing time and space.

As noted in the Introduction, the further reduction to O(nαk(n)) space and pre-
processing time is achieved through a further decomposition of L. Intuitively, we
partition L into disjoint trees in the spirit of Alstrup et al. [2]. One of these trees
has O(n/ log n) leaves and can be pre-processed using the solution above. The other
trees all have O(log n) leaves and we want to handle them recursively. However, for
the recursion to work we will need to modify these trees so that each has O(log n)
vertices (rather than leaves). As described in the following subsection, this is done by
another type of path decomposition – a branching decomposition.

An Inverse-Ackerman Type bound. We have just seen that after O(n log n)
preprocessing we can support random access in O(logN) time. This superlinear
preprocessing originates in the O(n log n)-sized data structure that we construct on

L for O
(

log |S(u)|w(v,v′)

)
-time weighted ancestor queries. We now turn to reducing the

preprocessing to be arbitrarily close to linear by recursively shrinking the size of this
weighted ancestor data structure on L.

In order to do so, we perform a decomposition of L that was originally introduced
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by Alstrup, Husfeldt, and Rauhe [2] for solving the the marked ancestor problem:
Given the rooted tree L of n nodes, for every maximally high node whose subtree
contains no more than log n leaves, we designate the subtree rooted at this node a
bottom tree. Nodes not in a bottom tree make up the top tree. It is easy to show that
the top tree has at most n/log n leaves and that this decomposition can be done in
linear time.

Notice that we can afford to construct, for every root-to-leaf path in the top
tree, an interval-biased search tree as its predecessor data structure. This is be-
cause there will be only n/log n such data structures and each is of size height(L)
= O(log n). In this way, a weighted ancestor query that originates in a top tree

node takes O
(

log |S(u)|w(v,v′)

)
time as required. The problem is therefore handling queries

originating in bottom trees.

To handle such queries, we would like to recursively apply our O(n log n) weighted
ancestor data structure on each one of the bottom trees. This would work nicely if
the number of nodes in a bottom tree was O(log n). Unfortunately, we only know this
about the number of its leaves. We therefore use a branching representation B for
each bottom tree. The number of nodes in the representation B is indeed log n and
it is defined as follows.

We partition a bottom tree into disjoint paths according to the following rule:
A node v belongs to the same path as its child unless v is a branching-node (has
more than one child). We associate each path P in this decomposition with a unique
interval-biased search tree as its predecessor’s data structure. The branching repre-
sentation B is defined as follows. Every path P corresponds to a single node in B.
An edge e connecting path P ′ with its parent-path P corresponds to an edge in B
whose weight is e’s original weight plus the total weighted length of the path P ′ (See
Fig. 4.2).

log n nodeslog n leaves

3

2

7

5

17

Fig. 4.2. A bottom tree and its branching representation B. On the left is some bottom tree
– a weighted tree with logn leaves. The bottom tree can be decomposed into logn paths (marked in
red) each with at most one branching node. Replacing each such path with a single node we get the
branching representation B as depicted on the right. The edge-weight 17 is obtained by the original
weight 3 plus the weighted path 2+7+5.

Each internal node in B has at least two children and therefore the number
of nodes in B is O(log n). Furthermore, similarly to Section 4, our only remaining
problem is weighted ancestor queries onB. Once the correct node is found inB, we can

query the interval-biased search tree of its corresponding path in L in O
(

log |S(u)|w(v,v′)

)
time as required.

Now that we can capture a bottom tree with its branching representation B of
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logarithmic size, we could simply use our O(n log n) weighted ancestor data structure
on every B. This would require an O(log n log log n)-time construction for each one of
the n/log n bottom trees for a total of O(n log log n) construction time. In addition,
every bottom tree node v stores its weighted distance d(v) from the root of its bottom
tree. After this preprocessing, upon query v, we first check d(v) to see whether the
target node is in the bottom tree or the top tree. Then, a single predecessor query on

the (bottom or top) tree takes O
(

log |S(u)|w(v,v′)

)
time as required.

It follows that we can now support random access on an SLP in time O(logN) af-
ter onlyO(n log log n) preprocessing. In a similar manner we can use thisO(n log log n)
preprocessing recursively on every B to obtain an O(n log log log n) solution. Conse-
quently, we can reduce the preprocessing to O(n log∗ n) while maintaining O(logN)
random access. Notice that if we do this naively then the query time increases by
a log∗ n factor due to the log∗ n d(v) values we have to check. To avoid this, we
simply use an interval-biased search tree for every root-to-leaf path of log∗ n d(v) val-
ues. This only requires an additional O(n log∗ n) preprocessing and the entire query

remains O
(

log |S(u)|w(v,v′)

)
.

Finally, we note that choosing the recursive sizes more carefully (in the spirit
of [1, 18]) can reduce the log∗ n factor down to αk(n) for any fixed k. This gives the
following theorem.

Theorem 4.2. For an SLP S of size n representing a string of length N we can
support random access in time O(logN) after O(n · αk(n)) preprocessing time and
space for any fixed k on the pointer machine model.

5. Biased Skip Trees. In this section we give an alternate representation of
the heavy path suffix forest H, that supports the “biased” predecessor search of the
biased interval search tree; the space and preprocessing are both O(n), but the data
structure uses the more powerful word RAM model with word size O(logN) bits.
For convenience of description, the predecessor search is expressed a little differently:
suppose that we aim to access the p-th symbol of S(v) for some node v, and suppose
that u is an ancestor of v in H (i.e. u is a heavy descendant of v in the parse tree);
assume as previously that the desired symbol is not the symbol associated with the
root of the tree in which v is. We say that a test at u is “true” if the desired symbol is
in u’s heavy child, and “false” otherwise; this test is perfomed in O(1) time by storing
l and r values as before. Our objective is to find the lowest ancestor u in H of v such
that the test at u is “false”; this search should take O(log(Wv/wu) + 1) time, where
for all nodes u ∈ H, wu = size(u′), where u′ is the light child of u, and Wv = size(v).

Our solution uses a static version of biased skip lists [10], generalized to trees.
The initial objective is to assign a non-negative integral color cv to each node in v ∈ H
and there is a (logical) uni-directional linked list that points up the tree, such that all
nodes on a leaf-to-root path whose color is at least c are linked together by a series
of color-c pointers. We defer the implementation of color-c pointers to later, but note
here only that we can follow a pointer in O(1) time.

The biased search starting at a node v will proceed essentially as in a skip list.
Let cmaxv denote the maximum color of any ancestor of v, and cmax the maximum
color of any node in H. The search first tests v – if the answer is “false” we are done,
otherwise, we set c = cmaxv , set the current node to v, and suppose v′ = nca(v, c),
where nca(v, c) denotes the lowest ancestor of v in the tree whose color is ≥ c. We
test at v′; if the outcome is “true” then we set the current node to v′; otherwise we
check that v′ is not the final answer by testing the appropriate child of v′. If v′ is not



Random Access to Grammar-Compressed Strings and Trees 15

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

�������� ���� ���� ���� ���� ���� ���� ����

������������ ������������ ������������
���������������������������� ����������������������������

����������������������������������������������������������

������������

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

root leaf

Fig. 5.1. Diagram showing the colors assigned to a sequence of vertices with ranks 1 (root),
2, 1, 1, 1, 1, 1, 3, 1 (leaf). The unshaded portion of the tower of a vertex represents its rank;
the shaded portion is the “additional” pointers added by the algorithm. Solid pointers show explicit
color-c pointers that would be stored in a biased skip list; dotted pointers shown are examples of
pointers that are available implicitly through the nca operation.

the final answer then we set c = c− 1 and continue.
We now describe how we select the colors of the nodes in T . For any node v,

denote the rank of v to be rv = blog2 wvc + 1. We perform a pre-order traversal of
each tree in H. When visiting v, we initially set cv = rv. Then, while the nearest
ancestor of v with color greater than or equal to cv has color exactly cv, we increment
cv by one (see Figure 5 for an example). We now show:

Lemma 5.1. (1) For 1 ≤ i ≤ cmax − 1, between any two consecutive nodes of
color i there is a node of color greater then i; there is exactly one node of color cmax.
(2) cmaxv ≤ 1 + log2Wv; cmax ≤ 1 + log2N . (3) For any vertex v and ancestor u of
v, cmaxv − cu = O(log(Wv/wu)).

Proof. (1) follows by construction. For (2) and (3), consider any path in H
from a node v to the root, and as in [10], define Ni = |{u ∈ anc(v) : ru = i}| and
N ′i = |{u ∈ anc(v) : ru ≤ i and cu ≥ i}| where anc(x) denotes the set of all ancestors

of node x. We now show that N ′i+1 ≤ Ni+1 +
⌊
N ′

i

2

⌋
from which (2) and (3) follow as

in [10]. First,

N ′i+1 = |{u ∈ anc(v) : ru ≤ i+ 1 and cu ≥ i+ 1}|
≤ |{u ∈ anc(v) : ru = i+ 1}|+ |{u ∈ anc(v) : ru ≤ i and cu ≥ i+ 1}|
= Ni+1 + |{u ∈ N ′i : cu ≥ i+ 1}|

Thus, it is enough to prove that |{u ∈ N ′i : cu ≥ i + 1}| ≤
⌊
N ′

i

2

⌋
. In other words,

we need to show that at most half the nodes in N ′i have their colors strictly larger

than i. Suppose this is not true. Then there are at least bN
′
i

2 c + 1 nodes among N ′i
whose colours are incremented to a value above i during the coloring procedure. In
this case, there exist two nodes, say x and y, that belong to N ′i such that cx ≥ i+ 1,
cy ≥ i + 1, and there are no nodes along the path from x to y that belong to N ′i .
W.l.o.g., assume that x is an ancestor of y, and let z be the node strictly between x
and y with the largest colour. If cz < i or if z does not exist, then the nearest ancestor
with colour at least cy is x. Since ry ≤ i, the colouring procedure will not increase
the colour of y. Otherwise, if cz = i, then z belongs to N ′i , which is a contradiction.
Finally, if cz > i, the colouring procedure will not increment the colour of y above i
as in the earlier case. This leads to a contradiction since cy ≥ i+ 1.

From parts (1) and (3) of Lemma 5.1, it follows that a search that starts at a
node v and ends in a node u takes O(1 + log(Wv/wu)) time. The following lemma
shows that one can assign colors to all the nodes in H in linear time.
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Lemma 5.2. Given H and the weights of the nodes, we can compute all node
colors in O(n) time.

Proof. To assign the colors, keep a cmax-bit counter (which fits into one word);
the counter is initialized to 0. We perform a pre-order traversal of H, and when we
have visited a node v, the counter contains a 1 in bit position i (the least significant
bit is position 1 and the most significant is position cmax) if there is an ancestor of
v (including v itself) with color i, such that there is no other node with color > i
between v and this ancestor. Upon arriving at a node v for the first time, we first
compute rv. Taking the value of the counter at v’s parent to be x, we set the lowest-
order rv − 1 bits of x to 1, and add 1 to the result, giving a value x′. The counter
value for v is in fact x′, and is stored with v. To compute the color of v, we compute
the bit-wise exclusive-OR of x and x′, and find the position of the most significant 1
bit in the result. The implementation of the above in constant time requires standard
O(1)-time bit-wise operations, most notably the O(1)-time computation of the MSB
of a single word [26,27].

Nearest Colored Ancestor Problem. We consider the following problem:
Given a rooted ordered tree T with n nodes, each of which is assigned a color from
{1, 2, . . . , σ}, preprocess T to answer the following query in O(1) time:

nca(v, c): given a node v ∈ T and a color c, find the lowest ancestor of v in T whose
color is ≥ c.

We will use this data structure for every tree in H; clearly, the nca operation
simulates following color-c pointers, thus enabling biased search. To address our
application, we consider the problem in the setting where word size w is equal to
the number of colors, σ. Our goal is to preprocess T in O(n) time, and store it in a
data structure of size O(n) words (i.e., O(nσ) bits) to support in O(1)-time not only
nca() but also navigation queries, such as finding the distance between an ancestor
and descendant, and choosing the i-th level-ancestor of a given node.

We partition the string BP of length 2n that stores the balanced parenthesis
sequence of the given n-node tree into blocks of size b = min{σ, lg n}. Each parenthesis
in BP corresponds to a node in the tree, and every node in the tree corresponds to
one open and one close parenthesis in BP. Hence every node in the tree belongs to
either one or two different blocks to which its corresponding parentheses in BP belong.
For each block we identify a representative node which is the LCA of all the nodes
whose corresponding parentheses (either one or both) are in that block. Thus there
are O(n/b) representative nodes. Our main idea is to preprocess each block so that
queries whose answer lies within the block can be answered efficiently, as summarized
in the following lemma. In addition, in linear time we compute and store all the
answers for all the representative nodes.

Lemma 5.3. Given a block containing b nodes where each node is associated with
a color from the range [1, σ], one can construct a O(n lg σ)-bit structure in o(b) time
such that nca queries whose answer lies within the same block can be answered in
constant time.

Proof. Our first step is to reduce the set of colors within a block from σ to
O(b). (If σ = b, this step is omitted.) For each block, we obtain a sorted list of
all colors that appear in that block. This can be done in linear time by sorting the
pairs 〈block number, colori〉, where colori is the color of the i-th node (i.e., the node
corresponding to the i-th parenthesis) in the block, using radix sort.

Let c1 < c2 < · · · < ck, for some k ≤ b, be the set of all distinct colors that appear
in a given block. Define succ(c) to be the smallest ci such that ci ≥ c. Observe that
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nca(x, c) = nca(x, succ(c)), if the answer is within the block. For each block, we store
the sorted sequence c1, c2, . . . , ck of all distinct colors that appear in the block using
an atomic heap [28], to support succ() queries in constant time.

The range of colors in each block is now reduced to at most b. Thus, we need to
answer the nca() query in a block of size b where the nodes are associated with colors
in the range [1, b]. Using b lg b bits, we store the string consisting of the “reduced”
colors of the nodes, in the same order as the nodes in the block. For each color c,
1 ≤ c ≤ b, we build a o(b)-bit auxiliary structure that enables us to answer the query
nca(x, c) in constant time, for any node x in the block if the answer lies within the
block.

We divide each block (of size b = lg n) into sub-blocks of size s = ε lg n/ lg lg n,
for some positive constant ε < 1. If the answer to an nca() query lies in the same sub-
block as the query node, then we can find the answer using pre-computed tables, as
all the information related to a sub-block (the parenthesis sequence and the ‘reduced’
color information of the nodes) fits in O(lg n) bits – the constant factor can be made
less than 1/2 by choosing the parameter ε in the sub-block size appropriately. If the
answer to the query does not lie in the same sub-block, but within the same block,
then we first determine the sub-block (within the block) that contains the answer. To
do this efficiently, we store the following additional information, for each block.

Given a reduced color c in the block and a position i within the block (corre-
sponding to a node x), we define the colored excess of the position (with respect
to the representative of the block) as the number of nodes with color c in the path
from x to rep(x). For every reduced color in the range [1 . . . b] and every sub-block,
we compute and store the minimum and maximum colored excess values within the
sub-block. Using this information for all the sub-blocks within a block, and for any
particular color, we can find the sub-block containing the answer to a query with
respect to that color (in constant time, using precomputed tables of negligible size).
As there are b/s sub-blocks and b colors within each block, and the values stored
for each sub-block are in the range [0 . . . b], the information stored for each block
is O((b/s)b lg b) = O(b(lg lg n)2) bits. Thus, over all the blocks, the space used is
O(n(lg lg n)2) bits, which is o(n) words. The computation of this information for all
the sub-blocks can be performed in O(n) time as explained below.

The total size of the information we need to store for each sub-block isO(s(lg lg n)2) =
O(b lg lg n) bits, and we need to be able to read the information corresponding to all
the sub-blocks within a block, corresponding to any particular color, by reading a
constant number of O(lg n)-bit “words”. For this, we divide the range of colors (i.e.,
the range [1 . . . b]) into chunks of size d = s/ lg lg n, and write down the information
corresponding to all the sub-blocks within a block, and of all the colors within a chunk,
which fits in O(lg n) bits. Thus we can read the information corresponding to all the
sub-blocks within a block, corresponding to any particular color, by reading these
O(lg n)-bits. We use precomputed tables to produce the information corresponding
to each sub-block, and for all the colors within each chunk. Hence each sub-block
has to be “processed” O(b/d) times (as there are b/d chunks). Thus the total time
spent producing the information for all the sub-blocks and for all the chunks for each
block is O((b/s)(b/d)) = O(lg lgn)3. Thus the overall time spent for all the blocks is
O((n/b)(lg lg n)3) = o(n).

For each representative node x, we will store an array A of size σ such that
Ax[c] = nca(x, c), for 1 ≤ c ≤ σ. As there are O(n/b) representative nodes, and each
entry in Ax takes lg n bits, the total space used by arrays of all the representative
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nodes is O((n/b)σ lg n) bits which is O(nσ). We will now describe how these arrays
can be constructed with linear preprocessing time.

We first prove the following properties about the representative nodes.
Lemma 5.4. For each node x, at least one of these three statements is true: (i)

nca(x, c) lies in the (first) block to which x belongs, (ii) nca(x, c) = rep(x), or (iii)
nca(x, c) = nca(rep(x), c).

Proof. The lemma follows from the following two observations:
• Either nca(x, c) = parent(x), or nca(x, c) = nca(parent(x), c).
• rep(x) is either the highest ancestor of x that is within the block containing
x, or the lowest ancestor of x that is outside the block containing x. (This
follows from the fact that any block that contains nodes x and y also contains
all the nodes along the path between x and y in the tree.)

Lemma 5.5. Each representative node (except the root) has an ancestor, within
a height of at most b from its level, which is a representative node.

Proof. Consider the lowest b− 1 ancestors of a representative node x. Either the
highest node, y, among these which is within the same block as x, or y’s parent, z is
a representative node. Note that y is the LCA of all nodes between x and y, and if
the block contains a sibling of y, then z is the LCA of all nodes in the block.

The root of the tree is a representative node, and the array for it consists of all
null pointers. Traverse the tree in preorder, skipping all the non-representative nodes.
When a representative node x is reached, we will scan its ancestors starting from x up
to its lowest ancestor, y, that is also a representative. Let Ay be the array stored at
node y. During this upward scan, we will generate an array B of length σ as follows.

We keep track of the largest color value cmax encountered at any point during the
upward scan, and the first cmax entries of the array B are filled. In each step of the
scan, if we encounter a node whose color value is at most cmax, we simply skip this
node. On the other hand, if we encounter a node whose color value, c, is larger than
cmax, then we set the entries B[cmax+ 1], . . . , B[c] to be pointers to the current node.
We also update the value cmax to be the new value c. We now copy Ay to another
array, and overwrite the first cmax values of Ay with the first cmax values of B. The
resulting array is the array Ax that will be stored at node x. Generating the array B
takes O(lg n + b) time, as the length of B is O(lg n), and it is “extended” at most b
times. Entries of B are written using bit operations on words (note that the word size
is σ). Thus the overall running time to generate all the arrays at the representative
nodes is O((n/b)(b+ lg n)) = O(n).

By plugging in this data structure in place of interval biased search trees, we get
part(ii) of Theorems 1.1, 1.2 and 1.3.

6. Substring Decompression. We now extend our random access solutions to
efficiently support substring decompression. Note that we can always decompress a
substring of length m using m random access computations. In this section we show
how to do it using just 2 random access computations and additional O(m) time.
This immediately implies Theorem 1.1.

We extend the representation of S as follows. For each node v in S we add
a pointer to the next descendant node on the heavy path suffix for v whose light
child is to the left of the heavy path suffix and to the right of the heavy path suffix,
respectively. This increases the space of the data structure by only a constant factor.
Furthermore, we may compute these pointers during the construction of the heavy
path decomposition of S without increasing the asymptotic complexity.
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We decompress a substring S[i, j] of length m = j−i as follows. First, we compute
the lowest common ancestor v of the search paths for i and j by doing a top-down
search for i and j in parallel. (Note that one of these search paths passes through
the node v, without skipping over it, since that path takes follows a light child from
v.) We then continue the search for i and j independently. Along each heavy-path
on the search for i we collect all subtrees to the right of the heavy path in a linked
list using the above pointers. The concatenation of the linked list is the sequence of
roots of subtrees to right of the search path from v to i. Similarly, we compute the
linked list of subtrees to the left of the search path from v to j. Finally, we decode
the subtrees from the linked lists, thereby producing the string S[i, j].

With our added pointers we construct the linked lists in time proportional to the
length of the lists which is O(m). Decoding each subtree uses time proportional to
the size of the subtree. The total sizes of the subtrees is O(m) and therefore decoding
also takes O(m) time. Adding the time for the two random access computations for
i and j we obtain Theorem 1.1.

7. Compressed Approximate String Matching. We now show how to ef-
ficiently solve the compressed approximate string matching problem for grammar-
compressed strings. Let P and be string of length m and let k be an error threshold.
We assume that the algorithms for the uncompressed problem produces the matches
in sorted order of the text positions (as is the case for all solution that we are aware
of). Otherwise, additional time for sorting should be included in the bounds.

To find all approximate occurrences of P within S without decompressing S
we combine our substring decompression solution from the previous section with a
technique for compressed approximate string matching on LZ78 and LZW compressed
string [12].

We find the occurrences of P in S in a single bottom-up traversal of S using an
algorithm for (uncompressed) approximate string matching as a black-box. At each
node v in S we compute the matches of P in S(v). If v is a leaf we decompress
the single character string S(v) in constant time and run our approximate string
matching algorithm. Otherwise, suppose that v has left child vl and right child vr.
We have that S(v) = S(vl) ·S(vr). We decompress the substring S′ of S(v) consisting
of the min{|S(vl)|,m + k} last characters of S(vl) and the min{|S(vr)|,m + k} first
characters of S(vr) and run our approximate string matching algorithm on P and S′.
We compute the set of matches of P in S(v) by merging the list of matches from
the matches of P in S(vl), S(vr), S

′ (we assume here that our approximate string
matching algorithm produces list of matches in sorted order). This suffices since any
approximate match with at most k errors starting in S(vl) and ending in S(vr) must
be contained within S′.

For each node v in S we decompress a substring of length O(m+k) = O(m), solve
an approximate string matching problem between two strings of length O(m), and
merge lists of matches. Since there are n nodes in S, we do n substring decompressions
and approximate string matching computations on strings of length m in total. The
merging is done on disjoint matches in S and therefore takes O(occ) time, where occ
is the total number of matches of P in S. With our substring decompression result
from Theorem 1.1 and an arbitrary approximate string matching algorithm we obtain
Theorem 1.2.

8. Random Access to Compressed Trees. We now consider the problem
of performing operations on “SLP-compressed” trees. The raw data is an ordered
rooted tree T (of arbitrary degree) with N nodes. We assume that the nodes of
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Fig. 8.1. A compressed tree given as a DAG and its balanced parentheses representation.

T are numbered from 1 to N in pre-order, and that T is represented by an SLP S
that generates the balanced parenthesis (BP) sequence of T [50]. As noted in the
introduction, this model captures existing tree compression methods. We illustrate
this by showing that the SLP can asymptotically match a common tree compression
technique, where T is compressed by sharing identical subtrees, giving a DAG with n
nodes (see Fig. 8.1):

Lemma 8.1. Given a rooted ordered tree T with N nodes that is compressed to a
rooted DAG G with e edges and O(e) nodes, the BP string of T can be represented by
an SLP of size O(e).

Proof. Create an SLP that generates the balanced parentheses string of the tree
T as follows. For each node x of the DAG G with k ≥ 0 children, we create k + 1
non-terminal nodes x0, . . . , xk. The nodes x0 and xk have ’(’ and ’)’ as their left and
right child, respectively. The node xi (0 ≤ i ≤ k − 1) has xi+1 as its right child, and
the node xj (1 ≤ j ≤ k) has the corresponding representation of the j-th child of the
node x of G (see Fig. 8.2). Clearly, the size of this SLP is O(e).

We first consider computing some functions on a (binary) string S, when the
string is given as an SLP S.

rank(S, i): Returns the number of 1s in S[1] . . . S[i].
select(S, i): Returns the position of the i-th 1 in S.
excess(S, i): Returns the difference between the number of 1s and the number of 0s

in S[1] . . . S[i].

We omit the first argument if it is clear from the context. In addition, we will use
excess to denote both the mathematical quantity as well as the operation above. If
S is a balanced parenthesis string representing a tree T , with ‘(’ encoded as 1 and ‘)’
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Fig. 8.2. The SLP representing the balanced parenthesis string of the tree in Fig. 8.1 – numbers
above an internal node (non-terminal) represent the lengths of strings output by that non-terminal.
Heavy paths are shown by red arrows – there are three in all.

encoded as 0, then excess(i), if the position i is such that S[i] = ‘(’, is just the depth
of the node represented by that opening parenthesis.

We now introduce some notation. For any binary string s, denote the number of 1s
in s by weight(s), and for convenience define sum(s) = excess(s, |s|) = 2·weight(s)−|s|
as the difference between the number of 1s and 0s in s. We now show:

Lemma 8.2. For an SLP S of size n representing a binary string S of length N
we can support the operations rank, select and excess in O(logN) time, and O(nαk)
space and preprocessing time in the pointer machine model, and in linear space and
preprocessing time on the RAM model.

Proof. In what follows, we will use T to denote the parse tree of the given string
to avoid confusion with the rooted ordered tree T that we eventually aim to represent.
For any node v ∈ T , abbreviate weight(S(v)) and sum(S(v)) as weight(v) and sum(v)
respectively. If we store sum(v) and weight(v) values at each node in T in addition
to the size values, it is straightforward to perform rank(i) and excess(i) by walking
down the T to the i-th symbol and accumulating weight/sum values from nodes to
the left of the search path in O(h) time, where h is the height of T , and O(N) space.

To do this in O(logN) time with O(n) space, we represent the heavy path suffix
forest of S as in either Theorem 1.1(i) or (ii) and again traverse the DAG of S as if we
were accessing the i-th symbol of S. However, now with each node v in the DAG with
heavy path suffix v = v0, v1, . . . , vk, we store the total weight and total sum of the
right and light children of v1, . . . , vk (and do the same for the left and light children).
Using this information it is easy to simulate the naive algorithm above by maintaining
the invariant that after every biased search on a heavy path, upon exiting to a light
node v, the accumulated values should be the same as the values accumulated by the
naive algorithm at the time it reaches the node corresponding to v in T .

It is also straightforward to perform select in O(h) time on the parse tree T by
using the weight values to guide the search to the i-th 1, and accumulating size values
from the nodes to the left of the search path in order to keep track of the position
of this 1 in S. In order to simulate this in O(logN) time, we perform a new heavy-
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path decomposition on S using weight(v) to determine if v is a heavy or light child.
In addition we keep with each heavy path suffix, the sums of size values to the light
nodes on the right and left sides of the heavy path suffix, and simulate the naive select
algorithm using biased search on the heavy path suffix forest as described above.

A major tool for navigating in trees represented as a BP sequence is excess search.
Specifically, the operations to be supported are:

fwd search(i, δ): Given a position i and an integer δ (δ may be positive, negative or
zero), returns the smallest j > i such that excess(j) = excess(i) + δ and −1
if no such position exists.

bwd search(i, δ): As fwd search, except that it returns the largest j < i.

In addition, the following operations on the BP sequence are useful in supporting
a few additional navigational operations on the tree [58].

rmq(i, j): Return the minimum value of excess(k), where i ≤ k ≤ j.
rmqi(i, j): Return an index k such that i ≤ k ≤ j and excess(k) = rmq(i, j).
RMQ(i, j): Return the maximum value of excess(k), where i ≤ k ≤ j.
RMQi(i, j): Return an index k such that i ≤ k ≤ j and excess(k) = RMQ(i, j).

We now introduce some further notation. Define M (s) = RMQ(1, |s|) as the
maximum excess value attained at any position in s. Define m(s) = rmq(1, |s|)
analogously as the minimum excess value attained at any position in s. Note that s
need not be a binary string representing a balanced parenthesis sequence, so m(s) can
be negative. The excess range of a string s is [m(s),M (s)]. As consecutive prefixes
of s have excess values that differ by ±1, every excess value within the excess range
of s will be achieved by some prefix of s. We now show:

Lemma 8.3. For an SLP S of size n representing a binary string S of length N
we can support the operations fwd search, bwd search, rmq, rmqi, RMQ and RMQi,
all in O(logN) time, and using O(nαk) space and preprocessing time in the pointer
machine model, and in linear space and preprocessing time on the RAM model.

Proof. The basic idea is to simulate excess search in a manner similar to the
min-max tree [58], with the difference that the (logical) min-max tree is built upon
the parse tree itself, and also that excess search in the min-max tree when it is
represented as a DAG introduces some additional challenges. Our description focuses
on fwd search(i, δ), as bwd search(i, δ) is symmetric (however, note that fwd search
may use bwd search and vice-versa).

For any node v in the DAG of S with heavy path suffix v = v0, v1, . . . , vk, let
Sl(v) (Sr(v)) be the concatenation of the strings generated by the left and light
(right and light) children of vi, i = 0, . . . , k (see Figure 8.3). We store the following
data with v, in addition to the data already stored for random access: m(Sr(v)),
M (Sr(v)), sum(Sl(v)) and sum(Sr(v)), abbreviated as mr(v),Mr(v), suml(v) and
sumr(v) (the asymmetry is because we focus on fwd search for now). Finally, suppose
that v’s light child u is a right child. Then define M̄r(v) as the maximum excess
obtained within S(u), when S(u) is considered as a substring of Sr(v), i.e. M̄r(v) =
M (S(u)) + sumr(w), where w = v1 is the heavy child of v. If v’s light child is a left
child, we take M̄r(v) as −∞. Define m̄r(v) analogously. Create a range maximum
query data structure [33] on each heavy path (if using the data structure of Section 4),
or a tree range maximum query data structure [23] (if using the biased skip tree of
Section 5), over the values M̄r(v), and similarly create a range minimum data structure
for m̄r(v). These data structures do not increase the asymptotic space complexity and
answer any range minimum/maximum queries that we require in O(1) time.

The operation fwd search(i, δ) is done in three phases. First, we search for the
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Fig. 8.3. Left: Sl(v) and Sr(v) for a node in T . Also shown with the descendants of v
with right and light children are the values suml, sumr,mr,Mr, m̄r, M̄r. Right: Search (downward)
moving from one heavy path to another.

i-th parenthesis. Next, we retrace the path taken in the search backwards (in the
direction of the root of T ), looking for the node in S that represents the lowest
common ancestor (LCA) in T of i and j, where j is the (unknown) position sought.
Finally, we search downwards to j.

The first step proceeds as previously. By construction, this path passes through
O(logN) light edges: we record these edges. In the second, consider first the retracing
of a light edge (v, w), where v is an ancestor of w, and assume that it has been
previously checked that the LCA of i and j is a proper ancestor of w. We first check
that v is not the desired LCA, by checking the excess range at the right heavy child
of v (if v has no right heavy child it is anyway not the LCA). Now suppose that v
is not the desired LCA and that (v′, w′) is the next light edge to consider. Then w′

is a heavy ancestor of v, and we need to check if the LCA lies on the heavy path
w′ → v. This is done by performing a range maximum and minimum query on the
path w′ → v, to find the largest value M ∗ of M̄r and the smallest value m∗ of m̄r

achieved on this path. If the sought excess value does not lie in the interval [m∗,M ∗]
then the LCA does not lie on the path w′ → v and we consider (v′, w′) as before. If
the sought excess value lies within [m∗,M ∗] then the sought LCA lies on the path
w′ → v (the correctness of this argument relies on the fact that excess values change
by ±1 per position). Once we have determined that the sought LCA lies on the path
w′ → v, we can find the LCA using binary search in O(logN) time using the range
minimum/maximum queries as above. If the LCA does not lie on the path w′ → v
we next consider the light edge (v′, w′).

Once the LCA x is found, we move to x’s right light child y and begin a series of
biased searches along y’s heavy path suffix, essentially as in the random access case.
We first check to see if the desired excess is achieved in Sl(y), and if not, if it is at
the non-terminal at the root of the heavy path (if neither, it must be achieved in
Sr(y)). This check can be done by looking at the excess range of the light child of
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y. If the desired excess is in Sr(y), we need to find the node z on the heavy path
that is closest to the root of the heavy-path tree that still has the desired excess in
[mr(z),Mr(z)]. The biased search is easily adapted to this scenario, and the desired
node can be found in O(log(S(x)/S(z))) time as required.

A few details need to be taken into account. Firstly, the excess range data that
we store associated with Sl(v) for a node v are in fact based on backward excesses:
rather than calculating excesses of prefixes of Sl(v), we calculate excesses on suffixes
of Sl(v). This is necessary so that meaningful values can be used for m̄l(v) and M̄l(v).
Secondly, we often need to adjust the target excess values appropriately. For example,
in Figure 8.3, if the target excess value sought in the heavy path suffix containing v
was j, the target excess value sought in S(w) after following the light edge (v, w) is
j′ = j + sumr(u) where u is v’s left child. If this target value is found not to lie in
Sl(w) then the target excess value to be searched for in Sr(u) is j′ + suml(w) ± 1
(depending on whether the heavy path suffix containing w ends in a terminal labelled
0 or 1).

The operations rmq(i, j) and RMQ(i, j) can be supported in a manner similar
to fwd search starting from position i, and keeping track of the m∗ and M∗ val-
ues encountered so far during the retracing of the path, and limiting the search to
within position j. The operations rmqi and RMQi can be immediately translated into
fwd search search once we find the rmq and RMQ values respectively (to return the
leftmost indices satisfying the required conditions).

Given an SLP S of size n representing the BP sequence of a rooted ordered tree T
with N nodes, we represent S using the data structures Lemma 8.2 and Lemma 8.3.
Now, we can support the navigational operations on tree T by using the translations of
these operations to some combinations of the operations supported by Lemma 8.2 and
Lemma 8.3 (namely, rank, select, excess, fwd search, bwd search, rmq, rmqi, RMQ
and RMQi), as described in [58, Section 3]. This completes the proof of Theorem 1.3.

9. Conclusions. Given a string S of length N that is generated by a grammar
of size n, we have shown how to perform random access to a position in the string and
to decompress an arbitrary substring of length m in time O(logN) and O(m+ logN)
time respectively. We have also shown how to perform a wide variety of operations
in O(logN) time on an N -node ordered tree represented as grammar of size n that
generates a balanced parenthesis string representing the tree. The data structures take
O(n) space and preprocessing time on the RAM model (near-linear on the weaker
pointer machine model). These are the first time complexities for these problems
that do not have a linear dependency on the height of the grammar. Using our
substring decompression as a black-box, we have given the first non-trivial results on
approximate string matching in grammar-compressed strings. Our black-box method
is still the fastest one to date.

Recently, Verbin and Yu [63] have described a family of strings of sizeN , generated
by a grammar of size n, such that any data structure that uses nO(1) words of space
must take Ω((logN)1−ε) time, for some constant ε > 0, to support random access
on strings from this family. They also give another family of strings of length N ,
generated by a grammar of size n = Ω(N1−ε), for some constant ε > 0, such that any
data structure that uses n(log n)O(1) words of space must take Ω(logN/ log logN)
time to support random access on strings from this family. Both these lower bounds
apply to our random access result since they are obtained on the cell probe model
with word size Θ(logN), which is stronger than the two models we use.
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