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Abstract

A result of Seymour implies that any 3-connected matroid with a
modular 3-point line is binary. We prove a similar characterization
for 3-connected matroids with modular 4-point lines. We show that
such a matroid is either representable over GF(3) or GF(4) or has an
F7-minor and either an F−7 - or (F−7 )∗-minor.

1 Introduction

We call a subset X of the ground set of a matroid M modular if, for every
flat F of M ,

rM(X) + rM(F ) = rM(X ∪ F ) + rM(X ∩ F ).

In many cases, the modularity of X in M forces certain structural prop-
erties of the restriction M |X to be shared by M . For instance, a theorem
of Seymour implies the following characterization of matroids with modular
3-point lines.

Theorem 1.1 (Seymour, [11]). Every 3-connected matroid with a modular
3-point line is binary.

We call a line, or rank-two flat, a k-point line if it is the union of k
points, or rank-one flats (in a simple matroid this is a line with k elements).

∗This research was partially conducted at the University of Waterloo, Waterloo, Ontario,
Canada. Current address: Concordia University, Montréal, Québec, Canada.
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Another example of modularity forcing structure on a matroid is this fact that
also follows from a theorem of Seymour [12]: if M is a vertically 4-connected
matroid with a modular set X such that M |X ∼= M(K4), then M is graphic.
Modularity also plays a role in Geelen, Gerards, and Whittle’s work on
structure theorems for minor-closed classes of matroids representable over a
finite field [4].

Theorem 1.1 can be extended from the binary case to other finite fields
if we consider modular rank-3 sets rather than lines: the main result of [5]
is that if M is a vertically 4-connected matroid with a modular rank-3 set
X, then M is representable over the same set of finite fields as M |X. On the
other hand, it is much more complicated to characterize the structure that is
forced on matroids by modular lines of more than three points. In this paper,
we consider this problem for the case of modular 4-point lines. Our main
theorem is the following.

Theorem 1.2. If M is a 3-connected matroid with a modular 4-point line
then either

(i) M is ternary,

(ii) M is quaternary, or

(iii) M has an F7-minor and either an F−7 - or (F−7 )∗-minor.

We denote by F7 the binary projective plane, also called the Fano matroid,
and by F−7 the non-Fano matroid, which is obtained from F7 by relaxing a
circuit-hyperplane. Since F7 is representable only over fields of characteristic
two and F−7 is representable only over fields of characteristic different from
two, we have this corollary:

Corollary 1.3. Any 3-connected, representable matroid with a modular 4-
point line is representable over GF(3) or GF(4).

Any 4-point line is modular in a ternary matroid, so it is clear that being
ternary should be one of the outcomes of Theorem 1.2. When a 3-connected
matroid M has a modular 4-point line, L, one case in which M is quaternary
is when there is an element e ∈ L such that L \ {e} is modular in M\e. In
this case, L \ {e} is a 3-point line of M\e (because M is simple), and M\e is
also 3-connected, so M\e is binary by Theorem 1.1.

A 4-point line need not be modular in an arbitrary quaternary matroid.
We have seen two cases in which it is: when the matroid is also ternary, and
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when deleting one element yields a binary matroid. It seems likely that if the
matroid is vertically 4-connected, then these are the only two possibilities:

Conjecture 1.4. If M is a simple, vertically 4-connected matroid with a
modular 4-point line, L, then either

(i) M is ternary,

(ii) for some e ∈ L, M\e is binary, or

(iii) M has an F7-minor and either an F−7 - or (F−7 )∗-minor.

This is not the case when M is 3-connected but not vertically 4-connected.
We can construct other examples that are representable over GF(4) by taking
a matroid N that has a 4-point line and is representable over both GF(3)
and GF(4), picking any triangle T of N , and taking the generalized parallel
connection across T of N and a copy of F7 (see [8, Section 11.4] for the
definition of the generalized parallel connection, which was introduced by
Brylawski [2]). Note that in this construction, T may or may not be contained
in the modular line.

It is possible that a variant of Conjecture 1.4 holds even for modular lines
with q + 1 points when q ≤ 5. That is, perhaps any simple, vertically 4-
connected representable matroidM with a modular (q+1)-point line L is either
representable over GF(q) or has an element e ∈ L such that L\{e} is a modular
line of M\e. However, this does not hold for modular lines of seven points; one
of the exceptions comes from the class of Dowling geometries. Given a finite
multiplicative group G, the rank-3 Dowling geometry over G, denoted Q3(G),
can be defined as follows. Its ground set is {a1, a2, a3} ∪G1 ∪G2 ∪G3, where
G1, G2, and G3 are disjoint copies of G; let fi : Gi → G be an isomorphism
for each i = 1, 2, 3. The matroid is simple and has rank 3, so we define it by
its collection of lines, which are

1. Gi ∪ ({a1, a2, a3} \ {ai}), for each i = 1, 2, 3,

2. {ai, g}, for each i = 1, 2, 3 and each g ∈ Gi, and

3. {g1, g2, g3} for each g1 ∈ G1, g2 ∈ G2, and g3 ∈ G3 such that
f1(g1)f2(g2)f3(g3) = 1.

The matroid Q3(G) has three modular (|G|+ 2)-point lines, those of the first
type in the above list. Dowling [3] showed that Q3(G) is representable over a

3



field F if and only if G is isomorphic to a subgroup of the multiplicative group
of F. So when |G| = 5, the smallest field over which Q3(G) is representable is
GF(11), as 11 is the smallest prime power that is one more than a multiple
of 5.

To end this introduction, we point out that a matroid satisfying the third
outcome of Theorem 1.2 and of Conjecture 1.4 can be constructed on only ten
elements. We start with a rank-4 binary spike N ; see [8] for the definition and
discussion of spikes. Let t be the tip of N and C one of the 4-element circuits
that meets every leg. We let M be the spike obtained from N by relaxing
the circuit-hyperplane C. Then for any leg {x, y} with y ∈ C, M/x\y ∼= F7

while M/y\x ∼= F−7 . Finally, choosing a leg {a, b} of M , we can construct a
single-element extension of M by adding an element e that is in the closures
of {t, a, b} and of C \ {a, b}. This matroid has {t, a, b, e} as a modular line.

2 Duals of some small matroids

We follow the notation of Oxley [8]. In this section we present two lemmas
about some matroids N showing that, under certain conditions, a matroid
has an N -minor if and only if it has an N∗-minor. A proof of the first one
can be found in [8, Proposition 12.2.15].

Lemma 2.1 (Oxley, [7]). If M is a 3-connected matroid of rank and corank
at least three, then M has a U2,5-minor if and only if M has a U3,5-minor.

Next, we look at F7- and F ∗7 -minors. We need this corollary of the Splitter
Theorem of Seymour (see [8, Lemma 12.3.11]).

Lemma 2.2. If M is a 3-connected matroid with a 3-connected minor N ,
|E(N)| ≥ 4, and r(M) > r(N), then M has an element e such that si(M/e)
is 3-connected and has an N-minor.

Seymour [9] proved that any 3-connected binary matroid with an F7-minor
is either a copy of F7 or has an F ∗7 -minor (see also [8, Proposition 12.2.3]).
We generalize this fact from binary matroids to matroids with no U2,5-minor.
This lemma implies that F7 is a splitter for the class of matroids with no U2,5-
or F ∗7 -minor.

Lemma 2.3. If M is a 3-connected matroid with an F7-minor and no U2,5-
minor, then either M ∼= F7 or M has an F ∗7 -minor.
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Proof. We let M be a 3-connected matroid with an F7-minor and no U2,5-
minor. Lemma 2.1 implies that M also has no U3,5-minor.

(1) If N is a simple rank-3 matroid with e ∈ E(N) such that N\e = F7, then
N has a U2,5-minor.

Any two lines of F7 intersect in a point. Thus since e is not parallel to an
element of F7, e lies in the closure in N of at most one line of F7. Therefore,
N/e has at most one parallel class of size greater than one. Hence it is a
rank-2 matroid with at least |E(F7)| − 2 = 5 points. This proves (1).

(2) M has a minor N with an element e ∈ E(N) such that N/e ∼= F7, and e
is neither a coloop nor in a series pair of N .

If r(M) = 3 then M ∼= F7 by (1), so we may assume that r(M) > 3. It
follows from Lemma 2.2 that we can repeatedly contract elements of M and
simplify to get a 3-connected rank-4 minor N ′ and an element e ∈ E(N ′) such
that N ′/e has an F7-restriction. However, by (1) any simple rank-3 extension
of F7 has a U2,5-minor; thus si(N ′/e) ∼= F7. We choose N to be a restriction
of N ′ containing e and exactly one element from each parallel class of N ′/e.
We claim that we can choose N so that e is neither a coloop nor in a series
pair of N .

Suppose that e is a coloop of N ; then since N ′ is 3-connected, there is
an element f ∈ E(N ′) \ E(N). By our choice of N , f is in a triangle with
e and some element g ∈ E(N). The set E(N) \ {e, g} contains a basis of
N/e ∼= F7 so it has rank three in N ′. Since {e, f, g} is a triangle and e is a
coloop of N , f 6∈ clN ′(E(N) \ {e}). Thus we could have chosen the restriction
N ′|((E(N) \ {g}) ∪ {f}) in place of N , as e is not a coloop in it. It does,
however, have {e, f} as a series pair. So we can choose N so that e is not a
coloop.

Similarly, suppose that for some h ∈ E(N), {e, h} is a series pair of N .
Since N/e is cosimple, this is the unique series pair. Since N ′ is 3-connected
there are elements g ∈ E(N) \ {h} and f ∈ E(N ′) \E(N) such that {e, f, g}
is a triangle of N ′. Since E(N) \ {e, h, g} contains a basis of N/e, it has
rank three in N ′. So its closure contains g, but not f . Then we can choose
N ′|((E(N) \ {g})∪ {f}) in place of N ; {e, h, f} is a triad in it so e is neither
a coloop nor in a series pair. This proves (2).

We let N be the minor of M as in (2).
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(3) There is a 4-element circuit C of N/e that is also a circuit in N .

Suppose not; then for every 4-element circuit C of N/e ∼= F7, rN(C) = 4.
Let L1 and L2 be two distinct lines of N/e. If rN(L1) = rN(L2) = 2, then
(L1 ∪ L2) \ (L1 ∩ L2) is a 4-element circuit of N , a contradiction. Hence
there is at most one line L of N/e that is also a circuit of N . Therefore,
for some f ∈ E(N), N\f has no triangles. If X is a 4-element circuit of
N and e 6∈ X, then by assumption X is not a circuit of N/e; but then
e ∈ clN(X) and rN/e(X) = 2, a contradiction because lines of F7 have
only three elements. Hence every 4-element circuit of N contains e. Thus
N\e, f has no circuits of size less than five, so N\e, f ∼= U4,6. Then M has a
U3,5-minor, a contradiction. This proves (3).

We let C be the circuit as in (3). We note that E(N) \ C is a triangle of
N/e; we denote its elements by {f, g, h}. Suppose that f ∈ clN(C). Since e
is not a coloop or in a series pair, {e, g, h} is a triad of N . If f ∈ clN ({g, h}),
then N\f ∼= F ∗7 , and we are done. On the other hand, if f 6∈ clN ({g, h}), then
{e, f, h} is the unique triangle of N/g containing h; hence N/g, h\e ∼= U2,5, a
contradiction. Therefore, we may assume that f 6∈ clN (C), and by symmetry
also that g, h 6∈ clN(C), so {e, f, g, h} is a cocircuit of N .

Each element x ∈ {f, g, h} is in exactly two lines of (N/e)|(C ∪ {x});
we denote them by L1(x) and L2(x). If {g, h} ∪ (L1(f) \ {f}) and {g, h} ∪
(L2(f) \ {f}) are both circuits of N , then N |(C ∪ {e, g, h}) ∼= F ∗7 . So we may
assume that {g, h} ∪ (Li(f) \ {f}) is independent in N for some i ∈ {1, 2}.
Similarly, {f, g} ∪ (Lj(h) \ {h}) is independent in N for some j ∈ {1, 2}.
There is a unique element z ∈ Li(f) ∩ Lj(h). It is not in clN({e, f, g, h}) so
{f, h} is independent in N/g, z. The matroid N/g, z\e is isomorphic to U2,5,
contradicting the fact that M has no U2,5-minor.

3 Contracting a minor onto a modular line

In this section, we look at 3-connected matroids that have both a modular
line and an N -minor, for any given 3-connected matroid N . We show that
there are finitely many minor-minimal such matroids. In fact, we show that
each of them has rank at most r(N) + 2.

Let W be a modular set in a matroid M . The following two properties are
straightforward and we will use them freely throughout the rest of the paper.
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• For any e ∈ E(M) \W , W is modular in M\e, and if e 6∈ clM (W ) then
W is modular in M/e. Equivalently, W is modular in any minor of M
that has M |W as a restriction.

• If e ∈ clM (W ) \W , then either e is a loop or e is parallel to an element
of W .

In a simple matroid M , every modular set is a flat (if X is a modular
set that is not closed, then X along with any point in clM(X) \X violates
the definition of modularity). Modularity is often defined only for flats. The
reason that we have defined it for arbitrary sets is so that the first property
above holds — a modular flat W in a matroid M remains a modular set in
any minor with M |W as a restriction, even though W may not be a flat of
such a minor.

We define the connectivity function, λM , on subsets of the ground set
of a matroid M by

λM(X) = rM(X) + rM(E(M) \X)− r(M).

The local connectivity of two sets S, T ⊆ E(M) is defined to be

uM(S, T ) = rM(S) + rM(T )− rM(S ∪ T ).

Finally, when S and T are disjoint subsets of E(M), we define

κM(S, T ) = min{λM(A) : S ⊆ A ⊆ E(M) \ T}.

We make use of the following useful theorem of Tutte [13], which can be
thought of as a matroid generalization of Menger’s Theorem.

Tutte’s Linking Theorem. Let M be a matroid. If S, T ⊆ E(M) are
disjoint, then for each e ∈ E(M) \ (S ∪ T ), either

• κM\e(S, T ) = κM(S, T ), or

• κM/e(S, T ) = κM(S, T ).

The next technical lemma will be used extensively in later sections. When
a 3-connected matroid M has a modular line L and a minor N , our objective
is to find a smallest possible minor of M that contains the line L, has an
N -minor, and is 3-connected.
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Lemma 3.1. Let M be a simple, 3-connected matroid with a modular line L
such that |L| ≥ 4. If N0 is a simple, 3-connected minor of M , then there is a
minor N ′ of M such that

(i) N ′ has an N0-minor, N ,

(ii) E(N ′) = L ∪ E(N),

(iii) M |L is a restriction of N ′, and

(iv) N ′ is 3-connected.

Proof. If |E(N0)| ≤ 2 then N ′ = M |L works, so we may assume that
|E(N0)| > 2. For each N0-minor, N , of M , there is a set C ⊂ E(M)
such that M/C has N as a restriction. We choose an N0-minor N of M and
corresponding set C such that |C| is minimum, and subject to this, such
that |(E(N) ∪ C) ∩ L| is maximum. Note that C is independent, and setting
D = E(M) \ (E(N) ∪ C), we have N = M/C\D.

If |E(N) ∩ L| ≥ 2, then since N is simple, C ∩ L = ∅ and furthermore
M |L is a restriction of M/C. We set N ′ = M/C\(D \ L). We note that any
parallel pair in N ′ contains one element each of E(N) and L, so our maximum
choice of |E(N) ∩ L| implies that N ′ is simple. Moreover, N ′ is 3-connected
because it has N as a spanning restriction. Hence N ′ is our desired minor.

Thus we may assume that |E(N) ∩ L| ≤ 1. Since C is independent,
|C ∩ L| ≤ 2. Moreover, if |C ∩ L| = 2 then the elements of L \ C are
loops of M/C and are thus contained in D because N is simple. Therefore,
|(E(N) ∪ C) ∩ L| ≤ 2, and we may choose a set T ⊆ L \ (E(N) ∪ C) of size
two.

We let S = E(N) ∪ C. The sets S, T ⊂ E(M) are disjoint and each
has size at least two. Thus as M is 3-connected, κM(S, T ) = λM(T ) = 2.
Suppose that e is an element of E(M)\(clM (S)∪clM (T )). By Tutte’s Linking
Theorem, at least one of κM\e(S, T ) and κM/e(S, T ) is equal to two. Moreover,
both M\e and M/e have M |S and M |L as restrictions. Therefore, we can
repeatedly remove elements that are not in the closure of S or T by either
deletion or contraction until we are left with a minor M ′ of M such that

• E(M ′) = clM ′(S) ∪ clM ′(T ),

• M |S is a restriction of M ′ hence N is a minor of M ′/C,

• M |L is a restriction of M ′, and
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• κM ′(S, T ) = 2.

Suppose that uM ′(S, T ) ≤ 1. Then uM ′(clM ′(S), clM ′(T )) ≤ 1 and so

(clM ′(S) \ T, clM ′(T ) \ (clM ′(S) \ T ))

is a 2-separation of M ′, contradicting the fact that κM ′(S, T ) = 2. Therefore,
uM ′(S, T ) = 2 and we have T ⊆ clM ′(S). Hence L ⊆ clM ′(S).

We let C ′ be a maximal subset of C such that rM ′/C′(L) = 2, and let
C ′′ = C \ C ′. We set N ′ = (M ′/C ′)|(L ∪ E(N)). Then E(N ′) = L ∪ E(N).
Since M |L is a restriction of M ′ and rM ′/C′(L) = 2, M |L is a restriction of
N ′. Since N is a minor of M ′/C, it is a minor of N ′. Hence (i)-(iii) hold for
N ′. To show that N ′ is 3-connected and (iv) holds, we need the following
claim.

(1) L ⊆ clN ′(E(N)), or equivalently, uN ′(E(N), L) = 2.

Our choice of C ′ implies that C ′′ ⊆ clM ′/C′(L). By the modularity of L,
each element of C ′′ is parallel to an element of L in M ′/C ′. Moreover, as we
chose C with |(E(N) ∪ C) ∩ L| maximum, we have C ′′ ⊂ L.

Since L ⊆ clM ′(S) and C ′ ⊆ S, we have L ⊆ clN ′(E(N) ∪ C ′′). If
uN ′(E(N), L) = 0, then this implies that |C ′′ ∩ L| = 2 and that N =
(M ′/C ′′)|E(N) = M ′|E(N), contradicting the minimality of |C|.

We may thus assume that uN ′(E(N), L) = 1. By the modularity of
L, there is an element e ∈ L ∩ clN ′(E(N)). Since L ⊆ clN ′(E(N) ∪ C ′′),
there is an element f of C ′′ that is contained in L \ {e}. If C ′′ = {f},
then as N is simple, N = (N ′/f)|E(N) = N ′|E(N), contradicting the
minimality of |C|. Otherwise, |C ′′| ≥ 2; but then again as N is simple we
have (N ′/C ′′)|E(N) = (N ′/e)|E(N), contradicting the minimality of |C|.
This proves (1).

Since N and M |L are both connected and E(N ′) = E(N) ∪ L, the only
possible 1-separation of N ′ (up to ordering) is (E(N), L); but this cannot be
a 1-separation by (1). So N ′ is connected. Any parallel pair of N ′ contains
one element each of E(N) and L, so N ′ is simple by our maximal choice of
|(E(N) ∪ C) ∩ L|.

Suppose that N ′ has a 2-separation, (A,B). The fact that N ′ is simple
means that A 6⊆ clN ′(B) and B 6⊆ clN ′(A). If E(N) ⊆ clN ′(A) then B \
clN ′(A) ⊆ L, contradicting (1). So E(N) is not contained in clN ′(A), and by

9



symmetry is not contained in clN ′(B) either. As N is 3-connected, one of
A and B contains only one element of E(N); we may assume by symmetry
that B does, and we call this element e. Note that e 6∈ clN ′(A). Since B is
not contained in clN ′(A) and N ′ is connected, |B \ clN ′(A)| ≥ 2. Thus there
is an element of L in B \ clN ′(A). Since |L| ≥ 3 and L is a line of N ′, we
have L ⊆ clN ′(B). Since L ⊆ clN ′(E(N)), we have r(N ′) = rN ′(E(N ′)) =
rN ′(A) + 1. So uN ′(A,L) = 1 and by the modularity of L, there is an element
f ∈ L ∩ clN ′(A). Now we conclude that C ′′ consists of a single element
g ∈ L \ {e, f} so that N = N ′/g\(L \ {e, g}). But this is isomorphic to
N ′|(A ∪ {f}) (under the bijection between A ∪ {e} and A ∪ {f} that fixes
the elements of A and sends e to f). Therefore, N ′ has an N -restriction,
contradicting the minimality of |C|. This proves that N ′ is 3-connected.

4 Finding an F7-minor

In this section we apply Lemma 3.1 to matroids with modular lines and
U2,5-minors. This result will be used several times in the next section, where
we analyze matroids that have U2,6-, U4,6-, and P6-minors. We say that a
minor N of a matroid M uses an element e ∈ E(M) if e ∈ E(N).

Lemma 4.1. If M is a 3-connected matroid with a U2,5-minor and a modular
4-point line, L, then M has an F7-minor that uses three elements of L.

Proof. We let M be a 3-connected matroid with a modular 4-point line,
L = {u, v, w, x}, and a U2,5-minor. By Lemma 3.1, we may assume that
E(M) = L ∪ E(N), where N is a U2,5-minor of M . We note that r(M) ≤
r(N) + rM(L) = 4.

Let E(N) = {a, b, c, d, e}. If r(M) = 2 then both M |L and N are
restrictions of M . Then E(N) ⊆ clM (L) and the modularity of L implies that
each element of E(N) is parallel to a distinct element of L, a contradiction
because |E(N)| > |L|.

(1) If r(M) = 3 then M has an F7-minor that uses three elements of L.

Assume that r(M) = 3. Then there is an element y ∈ L such that M/y
has N as a restriction; we may assume that y = x. Then no triangle of M
contains x and two elements of E(N). Also, at most one element of E(N) is
contained in L. We may assume that a, b, c, d 6∈ L.
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We note that every element of E(N) \ L is contained in clM({a, z}) for
some z ∈ L. Suppose that clM ({a, u}) \ {a, u} contains at least two elements
of E(N); we may assume they are b and c. Since (L \ {u}, clM ({a, u})) is not
a 2-separation of M , there is an element of E(N) that is neither in L nor in
clM({a, u}). So we may assume that d ∈ clM({a, v}). The modularity of L
implies that each of a, b, and c is parallel to a distinct element of L \ {u} in
M/d. So one of a, b or c is parallel to x in M/d, contradicting the fact that
no triangle contains x and two elements of E(N). Hence clM ({a, u}) \ {a, u}
contains at most one element of E(N). By symmetry the same is true for
clM({a, v}) \ {a, v} and clM({a, w}) \ {a, w}. Thus we may assume that
b ∈ clM({a, u}), c ∈ clM({a, v}), and d ∈ clM({a, w}).

The modularity of L implies that {b, c} is in a triangle with some element z
of L. Since c 6∈ clM ({a, u}), z 6= u, and similarly, z 6= v. Also, z 6= x as {b, c}
is not a parallel pair of M/x. So {w, b, c} is a triangle. By a similar argument,
{u, c, d} and {v, b, d} are triangles. Hence M |{a, b, c, d, u, v, w} ∼= F7, which
proves (1).

We may assume that r(M) = 4. This means M/L = N .

(2) M has no triangles not contained in L.

No triangle of M contains exactly one element of L since M/L = N is
simple. Hence if there is a triangle ofM not contained in L, it is disjoint from L.
We may assume that {a, b, c} is a triangle. No element of L is in clM ({a, b, c}),
so the modularity of L implies that uM({a, b, c}, L) = 0. We have d, e 6∈
clM({a, b, c}) for otherwise (E(N), L) would be a 2-separation. Thus each
of clM({a, b, c, d}) and clM({a, b, c, e}) is a rank-3 flat so the modularity of
L implies that each contains an element of L. Since (E(N), L) is not a
2-separation, they each contain a distinct element of L. Hence we may assume
that u ∈ clM({a, b, c, d}) and v ∈ clM({a, b, c, e}).

This means that rM(E(N)) = r(M) = 4 and so uM({a, b, c}, {d, e}) = 0.
Therefore, {a, b, c} contains no parallel pairs of M/d, e, so each element
of {a, b, c} is parallel to a distinct element of L in M/d, e. So there is a
parallel pair of M/d, e containing one of u or v and one of a, b, or c. We
may assume by symmetry that it is {u, a}; hence {u, a, d, e} is a circuit of
M . But {u, d, a, b} is also a circuit, which implies that rM ({u, a, b, d, e}) = 3.
This is a contradiction since rM ({a, b, d, e}) = rM (E(N)) = 4. This proves (2).
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It follows from (2) that every 3-element subset X of E(N) is independent
in M , so it satisfies uM(X,L) = 1 and there is a 4-element circuit consisting
of X and one element of L. We denote this element of L by φ(X).

There are ten 3-element subsets of E(N), so we may assume that u is equal
to φ(X) for at least three such sets X. Then there are two 3-element subsets
X1, X2 of E(N) such that φ(X1) = φ(X2) = u and such that |X1 ∩X2| = 2.
Hence |X1∪X2| = 4. The sets X1∪{u} and X2∪{u} are circuits, so X1∪X2

has rank three and it is also a circuit.
Suppose that for some z ∈ L \ {u}, there are at least three 3-element

subsets X of E(N) such that φ(X) = z. Then by the same argument that we
applied to u, there is a 4-element circuit Y ⊂ E(N) such that rM (Y ∪{z}) = 3.
But |Y ∩ (X1 ∪ X2)| = 3 and both Y and X1 ∪ X2 are circuits, implying
that rM(E(N)) = 3. But that means that (E(N), L) is a 2-separation, a
contradiction. Therefore, u is the unique element of L that is equal to φ(X)
for at least three 3-element subsets X ⊂ E(N).

We may assume that e is the unique element of E(N) \ (X1 ∪X2). We
note that e 6∈ clM (X1 ∪X2) for then (E(N), L) would be a 2-separation of M .
This implies that u 6= φ(X) for any 3-element set X ⊂ E(N) containing e.
Hence u = φ(X) for precisely four 3-element subsets of E(N). In particular,
these are the four 3-element subsets of X1 ∪X2. Therefore, each of v, w, and
x is equal to φ(X) for precisely two 3-element subsets X ⊂ E(N), and these
subsets all contain e.

Hence in the matroid M/e\u, {v, w, x} is a triangle, and each element z
of {v, w, x} is in precisely two triangles T1 and T2 whose other elements are
contained in X1 ∪ X2 = {a, b, c, d}. In each case, T1 ∩ T2 = {z} otherwise
z would be in a four-point line and hence contained in more than two such
triangles. So each element of {a, b, c, d} is also in three triangles of M/e\u, one
containing each of u, v, and w. So M/e\x is a 7-element, rank-3 matroid in
which every element is in precisely three triangles. Therefore, it is isomorphic
to F7.

Lemmas 4.1, 2.1, and 2.3 together imply that any 3-connected matroid
with a modular 4-point line that has an F ∗7 -minor also has an F7-minor. This
is the reason that outcome (iii) of Theorem 1.2 can guarantee the existence
of an F7-minor rather than only an F7- or an F ∗7 -minor. These lemmas do
not hold with F−7 in place of F7, causing the lack of symmetry between these
two matroids in Theorem 1.2.
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5 Excluded minors

In this section, we mention two excluded-minor characterizations of repre-
sentability over GF(3) and GF(4), and we prove that a 3-connected matroid
with a modular four-point line and no F−7 - or (F−7 )∗-minor is ternary or
quaternary. This allows us to easily finish the proof of our main theorem.

Theorem 5.1 (Bixby and Reid, [1]; Seymour, [10]). The excluded minors
for the class of ternary matroids are U2,5, U3,5, F7, and F ∗7 .

The next theorem involves the matroids P6, P
′′
8 and S(5, 6, 12). The

matroid P6 is the six-element simple, rank-3 matroid with exactly one triangle,
whose complement is a triad.

The only properties of S(5, 6, 12) and P ′′8 that we need are that S(5, 6, 12)
is ternary and P ′′8 has no four-point line; the precise definitions of these two
matroids are as follows. The matroid S(5, 6, 12) is represented over GF(3) by
the matrix  I6

0 1 1 1 1 1
1 0 1 −1 −1 1
1 1 0 1 −1 −1
1 −1 1 0 1 −1
1 −1 −1 1 0 1
1 1 −1 −1 1 0

 .

The properties of this matroid are discussed in [8]; in particular, it has a
5-transitive automorphism group. The matroid P8 is obtained from S(5, 6, 12)
by deleting two elements and contracting two elements, and the matroid P ′′8
is obtained from P8 by relaxing its unique pair of disjoint circuit-hyperplanes.

Theorem 5.2 (Geelen, Oxley, Vertigan, Whittle, [6]). If M is a 3-connected
non-GF(4)-representable matroid, then either

(i) M has a U2,6-, U4,6-, P6-, F
−
7 -, or (F−7 )∗-minor,

(ii) M is isomorphic to P ′′8 , or

(iii) M is isomorphic to a minor of S(5, 6, 12) with rank and corank at least
4.
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As an application of Theorem 5.2, we prove that any 3-connected matroid
M with a modular 4-point line and no F−7 or (F−7 )∗-minor is ternary or
quaternary. To prove this using Theorem 5.2, we need to show that M has
no U2,6-, U4,6-, or P6-minor. We do that in a sequence of four lemmas, after
first proving the following small result.

Lemma 5.3. Let M be a simple rank-3 matroid with a modular 4-point line
L and x ∈ L. If M\x has an F7-restriction P that uses three elements of L,
then M\x = P .

Proof. Suppose that M\x has an F7-restriction P that uses three elements of
L and that M\x 6= P . Then there is an element f ∈ E(M\x)\E(P ). Since L
is modular and M is simple, f 6∈ clM (L). We note that P is a projective plane
so any two lines of P have a non-empty intersection. Hence there is at most
one line F of P with the property that f ∈ clM (F ), for otherwise f would be
parallel to an element of P . Thus there are two elements a, b ∈ E(P ) \L such
that neither a nor b is parallel to any element of E(P ) in M/f . Then the
modularity of L implies that {x, f, a} and {x, f, b} are triangles. But then
{f, a, b} is also a triangle so a and b are parallel in M/f , a contradiction.

We recall the circuit elimination axiom, which we will use several times
in the rest of this section: if C1 and C2 are circuits of a matroid M and
e ∈ C1 ∩ C2, then there is a circuit of M contained in (C1 ∪ C2) \ {e}.

Lemma 5.4. If M is a 3-connected matroid with a modular 4-point line then
M has no U2,6-minor.

Proof. Let M be a minor-minimal 3-connected matroid with a modular 4-
point line, L = {u, v, w, x}, and a U2,6-minor, N . Lemma 3.1 implies that
E(M) = L ∪ E(N).

Note that since M is 3-connected, rM(E(N)) = r(M). Applying
Lemma 4.1, we conclude that M has an F7-minor P that uses three ele-
ments of L. Thus 3 ≤ r(M) ≤ r(N) + rM(L) ≤ 4.

(1) r(M) = 4

If not, then r(M) = 3. In this case, the F7-minor P is a restriction of M .
Also, for some z ∈ L, M/z has N as a restriction. Hence L contains at most
one element of E(N) so at least five elements of E(N) are disjoint from L.
But this contradicts Lemma 5.3 which says that M has exactly four elements
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disjoint from L. This proves (1).

Since, r(M) = 4, N = M/L. Also, there is an element e ∈ E(N) such
that M/e has the F7-minor P as a restriction. We may assume that x is the
unique element of L \ E(P ). Since |E(P ) \ L| = 4, there is an element of
E(N) that is not in E(P ) ∪ {e}. We denote it by f .

(2) {e, f} is not contained in a triangle of M .

For every 3-element subset X ⊂ (E(P ) \ L) ∪ {e}, the set X \ {e} is
independent in P and so X is independent in M . Thus uM(X,L) ≥ 1; but
X has rank two in M/L = N so uM(X,L) = 1. Therefore there is a unique
element φ(X) of L such that φ(X) ∈ clM(X). As M/L = N is simple,
X ∪ φ(X) is a circuit.

Let {a, b, c} be a 3-element subset of E(P ) \ L. Since M/e\f, x is a copy
of F7 using {u, v, w} = L\{x}, each of the three 2-element subsets of {a, b, c}
is contained in a triangle of M/e along with a distinct element of {u, v, w}.
Hence

{φ({a, b, e}), φ({b, c, e}), φ({c, a, e})} = {u, v, w}.

So if φ({a, b, c}) ∈ {u, v, w} then {a, b, c, e} is a circuit, which is a contradic-
tion since {a, b, c} is independent in M/e. Therefore, φ({a, b, c}) = x and
so {a, b, c, x} is a circuit of M . Since {a, b, c} was an arbitrary 3-element
subset of E(P ) \ L, the same is true for all such subsets, which implies that
rM({x} ∪ (E(P ) \ L)) = 3.

Now suppose that {e, f} is contained in a triangle of M . Since M/L
is simple, the third element of the triangle is in E(N) \ L; call it a. Then
M/e\a, x is isomorphic to M/e\f, x under the map that swaps a with f and
fixes all other elements. So by the argument of the last paragraph with f in
place of a, we conclude that rM ({x, f}∪E(P ) \ (L∪{a})) = 3. The fact that
both {x} ∪ (E(P ) \ L) and {x, f} ∪E(P ) \ (L ∪ {a}) have rank three means
that {f} ∪ (E(P ) \ L) does too. Note that {f} ∪ (E(P ) \ L) = E(N) \ {e}.
But e ∈ clM({a, f}) so we conclude that rM(E(N)) = 3, a contradiction
because rM(E(N)) = r(M). This proves (2).

Note that M/e\f has ground set E(P ) ∪ L so it is simple. Since {e, f} is
not in a triangle of M , M/e is also simple. But this contradicts Lemma 5.3
which asserts that E(M/e) = E(P ) ∪ L.
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Lemma 5.5. If M is a 3-connected matroid with a modular 4-point line then
M has no U4,6-minor.

Proof. Let M be a minor-minimal 3-connected matroid with a modular 4-
point line, L = {u, v, w, x}, and a U4,6-minor, N . Lemma 3.1 implies that
E(M) = L ∪ E(N).

Note that since M is 3-connected, L is coindependent and rM(E(N)) =
r(M). Also, M has corank at least four. Then since U4,6 has a U3,5-minor
Lemma 2.1 implies that M has a U2,5-minor. Thus Lemma 4.1 implies that M
has an F7-minor P that uses three elements of L. As r(M) ≤ r(N) + rM(L),
we have 4 ≤ r(M) ≤ 6.

(1) r(M) < 6.

Suppose that r(M) = 6. Then N = M/L and rM(E(N)) = 6. Every
4-element subset Y of E(N) is independent in N and hence uM(Y, L) = 0.
But uM(E(N), L) = 2, so for every 5-element subset X of E(N) we have
uM(X,L) = 1, and so there is a unique element of L contained in clM(X).
Since there are six 5-element subsets of E(N), there is an element z ∈ L and
two distinct 5-element subsets X1, X2 ⊂ E(N) such that z ∈ clM(X1) and
z ∈ clM(X2). Since z is not in the closure of any proper subset of X1 or X2,
the two sets X1 ∪ {z} and X2 ∪ {z} are circuits. Hence X1 ∪ X2 = E(N)
contains a circuit, a contradiction. This proves (1).

(2) r(M) = 4.

If not, then r(M) = 5. Hence there are two elements a, b ∈ E(N) such
that M/a, b has P as a restriction. Since |E(P ) \ L| = 4, this means that
E(N) is disjoint from L. We also know that there is an element z ∈ L such
that M/z has N as a restriction; we may assume that M/x has N as a
restriction.

Every 4-element subset X of E(N) is independent in M/x so x 6∈ clM (X).
So the modularity of L implies that for each such set X, clM(X) contains
exactly one of u, v, or w. Hence no triangle of M/a, b contains x and so
u, v, w ∈ E(P ). We denote by {c, d, e, f} the set E(N) \ {a, b}. We note that
this set is a circuit of P . By symmetry, we may assume that the triangles of
P are

{c, d, u}, {c, e, v}, {c, f, w}, {d, e, w}, {d, f, v}, {f, e, u}, {u, v, w}.
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By symmetry we may assume that u is the element of L contained in
clM({b, c, d, e}). Hence there is a circuit C1 with u ∈ C1 ⊆ {b, c, d, e, u}.
Also, as {c, d, u} is a circuit of M/a, b, there is a circuit C2 of M with
u ∈ C2 ⊆ {a, b, c, d, u}. This implies that {a, b, c, d, e} contains a circuit,
contradicting the fact that {c, d, e} is independent in M/a, b. This proves (2).

Since r(M) = 4, there is an element a ∈ E(N) such that M/a has P
as a restriction. Since N/a ∼= U3,5, N/a has no triangles. So E(P ) ∩ L is
disjoint from E(N). But Lemma 5.3 implies that |E(M/a) \ L| = 4 so L
contains exactly one element of E(N), and this element is not in E(P ). We
may assume that x ∈ E(N) ∩ L and x 6∈ E(P ).

We denote the set E(N) \ {a, x} by {b, c, d, e}. By symmetry, we may
assume that the triangles of P are

{b, c, u}, {b, d, v}, {b, e, w}, {c, d, w}, {d, e, u}, {e, c, v}.

Since {b, c, u} is a circuit of M/a, there is a circuit C1 of M with u ∈
C1 ⊆ {a, b, c, u}. Note that uM({b, c, d}, L) ≥ 1, so some element of L is in
clM({b, c, d}). It is not x, as x ∈ E(N) and {b, c, d, x} is independent. So we
may assume by symmetry that u ∈ clM({b, c, d}). Then there is a circuit C2

of M with u ∈ C2 ⊆ {b, c, d, u}. Hence (C1 ∪ C2) \ {u} = {a, b, c, d} contains
a circuit of M , a contradiction.

Finally, we consider P6-minors. We actually prove that a 3-connected
matroid with a modular 4-point line and a P6-minor has an F−7 -minor. As
the proof is much longer than those for U2,6 and U4,6, it is divided into two
lemmas. First, we prove that a minor-minimal 3-connected matroid with a
modular 4-point line and a P6-minor has rank four. Then we show that it
has an F−7 -minor.

Lemma 5.6. If M is a minor-minimal 3-connected matroid with a modular
4-point line and a P6-minor, then r(M) = 4.

Proof. Let M be a minor-minimal 3-connected matroid with a modular 4-
point line, L = {u, v, w, x}, and a P6-minor, N . Lemma 3.1 implies that
E(M) = L ∪ E(N). Thus 3 ≤ r(M) ≤ r(N) + rM(L) = 5.

Note that since M is 3-connected, rM(E(N)) = r(M). Since P6 has a
U2,5-minor, we can apply Lemma 4.1 and conclude that M has an F7-minor
P that uses three elements of L.
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(1) r(M) > 3.

Suppose that r(M) = 3. Then M has both N and P as restrictions. We
may assume that x is the element of L \ E(P ). Lemma 5.3 implies that
E(M) = E(P ) ∪ {x}. Thus some matroid obtained from N ∼= P6 by deleting
at one most element is a restriction of M\x = P . Up to isomorphism,
there are two matroids obtainable by deleting an element from P6: U3,5 and
the 2-sum U2,4 ⊕2 U2,3. Both are non-binary so cannot be isomorphic to
restrictions of F7. This proves (1).

We may assume that r(M) = 5, so we have N = M/L ∼= P6. Note that
E(N) is disjoint from L. We recall that M has an F7-minor P using three
elements of L; hence P is a restriction of M/Z for some 2-element subset
Z ⊂ E(N) \ L.

We denote by T ∗ = {a, b, c} the triad of N and by T = {d, e, f} the
triangle of N . We note that T ∗ is also a triad of M . As P is cosimple and
has no triads, M/Z has no triads either. This means that T ∗ ∩ Z 6= ∅, so we
may assume that a ∈ Z. We write a′ for the element of Z \ {a}.

(2) T ∗ is a flat of M .

Since T ∗ is independent in M/L, clM (T ∗) contains no element of L; so if T ∗

is not a flat then we may assume that d ∈ clM(T ∗). Then rM/a({b, c, d}) = 2.
Note that M/a, a′ is simple, because L is a line of M/a, a′ and one element of L
is deleted from M/a, a′ to get P . This implies that a′ 6∈ {b, c, d}. So {b, c, d} is
a triangle of M/a, a′ and hence of P . This is a contradiction because P has no
triangle disjoint from L, as F7 has no pair of disjoint triangles. This proves (2).

It follows from (2) that for each g ∈ T , rM(T ∗ ∪ {g}) = 4. Hence
uM(T ∗ ∪ {g}, L) ≥ 1; but T ∗ is independent in M/L = N so we have
uM(T ∗ ∪ {g}, L) = 1. This means (by the modularity of L) that for each
g ∈ T , there is a unique element φ(g) of L such that φ(g) ∈ clM(T ∗ ∪ {g}).

(3) φ(d), φ(e), and φ(f) are all distinct.

We cannot have φ(d) = φ(e) = φ(f), otherwise (E(N), L) would be a
2-separation of M . So we may assume that φ(d) = φ(e) = x and φ(f) = w.
So d, e ∈ clM/x(T ∗) and rM(T ∗ ∪ {d, e, x}) = 4. Since M is 3-connected, at
least three elements of {f, u, v, w} are disjoint from the hyperplane H =
clM (T ∗ ∪ {d, e, x}). So H does not contain any element of L other than x. It
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also does not contain f because w ∈ clM(T ∗ ∪ {f}). Thus T ∗ ∪ {d, e, x} is a
flat of M .

We note that {d, e, x} is independent in M since {d, e} is independent in
M/L. If for every 2-element subset Y1 ⊂ T ∗ and every 2-element subset Y2 ⊂
{d, e, x}, Y1∪Y2 is independent, then M |(T ∗∪{d, e, x}) ∼= U4,6, contradicting
Lemma 5.5. Hence we may assume that there are 2-element sets Y1 ⊂ T ∗ and
Y2 ⊂ {d, e, x} such that Y1 ∪ Y2 is a circuit.

Note that no element of T ∗ is in a triangle of M/L = N so x 6∈ Y2, hence
Y2 = {d, e}. Also, as M/a, a′ has no 2- or 3-element circuits disjoint from L,
neither a nor a′ is contained in Y1 ∪ Y2. So Y1 = {b, c} and a′ = f .

Since w ∈ clM(T ∗ ∪ {f}), w ∈ clM/a,f ({b, c}) and {b, c, w} is a triangle of
P . No two triangles of P are disjoint, so the triangle of P containing {d, e}
contains an element of {b, c, w} and of L, which means that {d, e, w} is a trian-
gle of P . So there is a circuit C of M such that {d, e, w} ⊆ C ⊆ {d, e, a, f, w}.
As the intersection of a circuit and a cocircuit in a matroid is never equal to
one, |C ∩ T ∗| 6= 1 so a 6∈ C. Hence one of {d, e, w} or {d, e, w, f} is a circuit
of M , so rM/f({d, e, w}) ≤ 2; as M/f, a is simple, this means {d, e, w} is a
triangle in M/f . Recall that {b, c, d, e} is a circuit of M ; as f is not contained
in the flat T ∗ ∪ {d, e, x} of M , {b, c, d, e} is also a circuit of M/f . Then
since {d, e, w} is a triangle of M/f , one of {b, c, w} or {b, c, e, w} is a circuit
of M/f . But if {b, c, w} is a circuit of M/f , then rM/w({b, c, f}) = 2, a
contradiction because no element of T ∗ is contained in a triangle of the simple
matroid M/L = N ∼= P6. So {b, c, e, w} is a circuit of M/f . Since {b, c, e, w}
has rank three in P it has rank three in M/a, f , so a 6∈ clM/f({b, c, e, w}).
But then the fact that {b, c, e, w} is a circuit of M/f implies that it is a
circuit of M/a, f . This is a contradiction because {b, c, w} is a triangle of P
and hence of M/a, f . This proves (3).

We may therefore assume that φ(d) = u, φ(e) = v and φ(f) = w.

(4) a′ ∈ T .

If not, then a′ ∈ T ∗ and we may assume that a′ = b so M/a, b has P as a
restriction. Moreover, {c, d, u}, {c, e, v} and {c, f, w} are triangles of M/a, b
so P = M/a, b\x. This means that the remaining triangles of P are {d, e, w},
{e, f, u}, {f, d, v}, and {u, v, w}.

Since T = {d, e, f} is not a triangle of P , it is also independent in M .
The hyperplane L ∪ T has rank four, so uM(T, L) = 1. So there is a unique
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element z ∈ L such that z ∈ clM(T ). Since T contains no parallel pairs in
M/L, the set {d, e, f, z} contains no triangles of M and is thus a circuit.

As T = {d, e, f} is independent in P , we have uM({d, e, f}, {a, b}) = 0,
which means that {d, e, f, z} is also a circuit of M/a, b. This implies that
z 6∈ {u, v, w}, as {d, e, w}, {e, f, u}, and {f, d, v} are triangles of M/a, b. So
z = x, meaning that {d, e, f, x} is a circuit of M .

The argument of the following paragraph holds also with a replaced by b.
The set {a, c, d, e} has rank four in M because {c, d, e} has rank three in P and
M/a. Hence uM ({a, c, d, e}, L) ≥ 1. The flat clM ({a, c, d, e}) is a hyperplane
of M , which is 3-connected, so at least three elements of M are disjoint from
it; hence it contains at most one element of L. So uM({a, c, d, e}) = 1 and
there is a unique element y of L in clM({a, c, d, e}). Now there is a circuit
C of M with y ∈ C ⊆ {y, a, c, d, e}. Since M/L is simple, C 6= {y, d, e}, so
C contains an element of {a, c}. But T ∗ is a cocircuit and cannot intersect
any circuit in exactly one element; hence a, c ∈ C. As {a, c} is neither a
parallel pair nor contained in a triangle of M/L = N , we conclude that
C = {y, a, c, d, e}. So {y, c, d, e} is a circuit of M/a. As {c, d, e} has rank
three in P (and in M/a, b), b 6∈ clM/a({y, c, d, e}) and {y, c, d, e} is a circuit
of M/a, b. This means that y 6∈ {u, v, w}, because {c, d, u}, {c, e, v} and
{d, e, w} are triangles of M/a, b. Therefore, y = x and C = {x, a, c, d, e} is a
circuit of M . We note that by symmetry between a and b, this also proves
that {x, b, c, d, e} is a circuit of M .

The fact that {d, e, f, x} and {x, a, c, d, e} are circuits means that there is
a circuit Y of M such that Y ⊆ {a, c, d, e, f}. Moreover, Y contains f and at
least one of a or c; but {a, b, c} is a cocircuit of M so a, c ∈ Y . As M/a is
simple, Y 6= {a, c, f}, and as neither {c, f, d} nor {c, f, e} is a triangle of P or
of M/a, Y is not equal to {a, c, f, d} or {a, c, f, e}. So Y = {a, c, d, e, f} is a
circuit. By the same argument with a replaced by b, the fact that {x, b, c, d, e}
is a circuit means {b, c, d, e, f} is also a circuit.

Therefore, rM({a, b, c, d, e, f}) = 4, contradicting the fact that
rM(E(N)) = r(M) = 5. This proves (4).

We may assume that a′ = f , so M/a, f has P as a restriction. Then
{b, c, w} is a triangle of M/a, f and of P . The triangle of P containing {d, e}
meets both {b, c, w} and L, so it is {d, e, w}.

The argument of this paragraph holds also with c replaced by b. We note
that rM ({a, c, d, e}) = 4 because {c, d, e} is independent in P and thus in M/a.
So uM({a, c, d, e}, L) ≥ 1. But {a, c, d, e} has rank three in N = M/L so we
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have uM({a, c, d, e}) = 1. Hence there is a unique element z of L such that
z ∈ clM({a, c, d, e}), and there is a circuit C such that z ∈ C ⊆ {z, a, c, d, e}.
Since {a, c, d, e} is a circuit of N = M/L, this circuit C of M must equal
{z, a, c, d, e}. By symmetry between c and b, we also conclude that for some
z′ ∈ L, {z′, a, b, d, e} is a circuit.

Since {z, c, d, e} is a circuit of M/a and {c, d, e} is independent in M/a, f ,
the set {z, c, d, e} is also a circuit ofM/a, f . If z ∈ E(P ) then E(P )\{z, c, d, e}
consists of b and two elements of L, a contradiction because each 4-element
circuit of F7 is the complement of a triangle. So z 6∈ E(P ). The same
argument applies to the circuit {z′, b, d, e} of M/a and we conclude that
z′ 6∈ E(P ). Therefore, as L \ E(P ) has only one element, z = z′ and both
{z, a, c, d, e} and {z, a, b, d, e} are circuits of M .

Therefore, {a, b, c, d, e} = T ∗ ∪ {d, e} contains a circuit of M . So rM (T ∗ ∪
{d, e}) ≤ 4. But clM(T ∗ ∪ {d, e}) contains {u, v} and thus all of L. Since f
is not a coloop, it follows that clM(T ∗ ∪ {d, e}) = E(M), contradicting the
fact that r(M) = 5.

Recall that two sets A and B in a matroid M are called skew if
uM(A,B) = 0.

Lemma 5.7. If M is a 3-connected matroid with a modular 4-point line and
a P6-minor, then M has an F−7 -minor.

Proof. We let M be a minor-minimal 3-connected matroid with a modular
4-point line, L = {u, v, w, x}, and a P6-minor, N . Lemma 5.6 asserts that
r(M) = 4. By Lemma 3.1, we may assume that E(M) = L ∪ E(N). Also,
Lemma 4.1 implies that M has an F7-minor, P , using three elements of L.

We may assume that M/x has N as a restriction. Also, there is an element
e ∈ E(N) such that M/e has P as a restriction.

If x ∈ E(P ), then there are two triangles T1 and T2 of P that contain x
and no other element of L. Then T1 ∪ {e} and T2 ∪ {e} both have rank three
in M , so (T1 ∪ {e}) \ {x} and (T2 ∪ {e}) \ {x} both have rank two in M/x
and hence in N , a contradiction because N ∼= P6 is simple and has only one
triangle. Therefore, x 6∈ E(P ), and E(P ) ∩ L = {u, v, w}.

We let Y = E(P ) \ L and denote its elements by {a, b, c, d}. We let f
denote the element of E(N) \ {a, b, c, d, e}. We let Z be the set of 2-element
subsets of Y . For each Z ∈ Z, either Z and L are skew in M or uM (Z,L) = 1.

(1) There are distinct sets Z,Z ′ ∈ Z such that uM(Z,L) = uM(Z ′, L) = 1.
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We suppose that there is at most one Z ∈ Z such that uM(Z,L) = 1. If
such a Z exists, we may assume that it equals {a, b}. We set X1 = {a, c, d}
and X2 = {b, c, d}. Then every 2-element subset of X1 or of X2 is skew to
L. But X1 and X2 both have rank three, so uM(X1, L) = uM(X2, L) = 1.
Then there are elements y1, y2 ∈ L such that X1 ∪ {y1} and X2 ∪ {y2} are
circuits of M . Since X1 and X2 also have rank three in M/e, e 6∈ clM(X1)
and e 6∈ clM(X2). Hence X1 ∪ {y1} and X2 ∪ {y2} are circuits of M/e. As
the only circuit of P containing X1 or X2 is Y , y1 and y2 are not in P so
y1 = y2 = x. Therefore, X1 ∪ {x} and X2 ∪ {x} are circuits of M . Then X1

and X2 are triangles of M/x and hence of N , contradicting the fact that P6

has only one triangle. This proves (1).

(2) There is a unique pair of sets Z,Z ′ ∈ Z such that uM (Z,L) = uM (Z ′, L) =
1. Moreover, Z and Z ′ are disjoint.

By (1) there are distinct sets Z,Z ′ ∈ Z such that uM (Z,L) = uM (Z ′, L) =
1. Since |Y | = 4, if (2) does not hold then we can choose Z and Z ′ so that
Z ∩ Z ′ 6= ∅. We may assume that Z = {a, b} and Z ′ = {a, c}. Now the set
L ∪ {a, b, c} has rank three in M , so its closure is a hyperplane. As M is
3-connected, every cocircuit has size at least three. Since |L ∪ {a, b, c}| = 7
and |E(M)| ≤ |L|+ |E(N)| = 10, L ∪ {a, b, c} is in fact a hyperplane and its
complement, {d, e, f} is a triad. Note that M/e\f has P as a restriction, so
Lemma 5.3 implies that f is in a parallel pair of M/e. As {d, e} is a series pair
of M\f , M/d\f is isomorphic to M/e\f , and it also has an F7-restriction.
So Lemma 5.3 implies that f is in a parallel pair of M/d. Hence {e, f} and
{d, f} are both contained in triangles of M ; call them Te and Td. Since
rM (L ∪ {a, b, c}) = 3, {a, b, c} is a triangle of M/x and hence of N . Since P6

has only one triangle, this is the unique triangle of N , so neither Te nor Td
is contained in E(N). This means that uM({e, f}, L) = uM({d, f}, L) = 1.
But then rM(L ∪ {d, e, f}) = 3 so rM/x({d, e, f}) = 2, contradicting the fact
that {a, b, c} is the unique triangle of N . This proves (2).

We let Z,Z ′ ∈ Z be as in (2); we may assume that Z = {a, b} and
Z ′ = {c, d}. We may assume that w ∈ clM({a, b}). Since no two triangles
of P are disjoint, we also have w ∈ clM({c, d}), and {a, b, w} and {c, d, w}
are triangles of M . By symmetry between u and v, we may assume that the
other triangles of P are {a, c, u}, {a, d, v}, {b, c, v}, {b, d, u}, and {u, v, w}.

We note that rM(Z ∪ Z ′ ∪ L) = 4, otherwise clM(Z ∪ Z ′ ∪ L) would be a
hyperplane of M containing all but at most two elements, contradicting the
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fact that M is 3-connected. Also, e is not contained in clM (Z∪L), clM (Z ′∪L),
or clM(Z ∪ Z ′), since each of these sets has rank three in M/e.

If f ∈ L, then {a, b, f} and {c, d, f} would both be triangles of M/x, but
N has only one triangle; so f 6∈ L. Since M/e\f has P as a restriction, it
follows from Lemma 5.3 that f is contained in a parallel pair of M/e, so
{e, f} is contained in a triangle of M .

(3) Any triangle of M containing {e, f} is disjoint from Y = E(N) \ {e, f}.

If not, then by symmetry we may assume that {e, f, a} is a triangle in M .
Since P6 has only one triangle, {e, f, a} is the unique triangle of M contained
in E(N), so {f, b, c} is independent in M . Therefore, the modularity of L
means that for some z ∈ L, z ∈ clM({f, b, c}). We observe that z 6= x, for
otherwise {f, b, c} would be a triangle of N , whose unique triangle is {e, f, a}.
If {f, c, z} were a triangle, then in M/x, {f, c, w} would be a triangle, so we
would have rM/x({f, c, d, w}) = 2, a contradiction because N = M/x\L has
only one triangle, {e, f, a}. Therefore, {f, c, z} is independent in M , and for
the same reason, so is {f, b, z}. Moreover, no element of L is in clM({b, c})
by (2). So {f, b, c, z} is a circuit. Also, z 6= w, otherwise we would have
f ∈ clM({a, b, c, d}), which would imply e ∈ clM({a, b, c, d}), a contradiction.

Next, we suppose that z = v, so {f, b, c, v} is a circuit of M . But since
{b, c, v} is a triangle of M/e, {b, c, v, e} is also a circuit of M . This implies
that {e, f, b, c} contains a circuit; but rM({e, f, b, c}) = 4. So z 6= v and we
have z = u and {f, b, c, u} is a circuit.

Since {a, c, u} is a triangle of M/e, the set {e, a, c, u} is also a circuit of M .
Hence {f, a, c, u} is a dependent set. We consider all its 3-element subsets.
The sets {a, c, u} and {f, c, u} are independent because they are proper
subsets of the circuits {e, a, c, u} and {f, b, c, u}, respectively. Furthermore,
{f, a, c} and {f, a, u} are independent because e does not lie in clM({a, c})
or in clM({a} ∪ L). Therefore, {f, a, c, u} is a circuit.

Since {f, b, c, u} and {f, a, c, u} are both circuits, rM({f, a, b, c, u}) = 3.
But clM({f, a, b, c, u}) = E(M) and M has rank four. This proves (3).

(4) f 6∈ clM({a, b, c, d}), f 6∈ clM(L ∪ {a, b}), and f 6∈ clM(L ∪ {c, d}).

We know that {e, f} is contained in a triangle of M so (3) implies that
{e, f, z} is a triangle for some z ∈ L. Therefore, f does not lie in clM (L∪{a, b})
or clM(L ∪ {c, d}) because e does not.

We may assume that f ∈ clM({a, b, c, d}). Clearly z 6= x since M/x has
the simple matroid N as a restriction. If z = w, then e ∈ clM({f, w}) ⊂
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clM({a, b, c, d}), a contradiction. So we may assume that z ∈ {u, v}, and
by symmetry between u and v we may assume that z = u so {e, f, u} is a
triangle.

We recall that rM/e({a, c, u}) = 2, so rM({a, c, e, f, u}) = 3. Also, we
have rM({a, b, c, d, f}) = 3. The intersection of two distinct planes in a
matroid has rank at most two; so we have rM({a, c, f}) = 2. Similarly,
we have rM({b, d, f}) = 2 because {b, d, f} is contained in the intersection
of the distinct planes clM({b, d, e, f, u}) and clM({a, b, c, d, f}). But then
both {a, c, f} and {b, d, f} are triangles of N , a contradiction. This proves (4).

The last claim implies that {a, b, c, d} is a 4-element circuit of M/f and
that none of a, b, c, or d are in clM/f(L). Therefore, the modularity of L
implies that for each 2-element subset X of {a, b, c, d}, there is an element of
L in clM/f (X).

For such a set X, x is contained in clM/f(X) only if rM/x(X ∪ {f}) = 2.
Since there is a unique triangle in N , there is exactly one 2-element subset
X ⊂ {a, b, c, d} with x ∈ clM/f(X). Hence there are exactly five 2-element
subsets X ⊂ {a, b, c, d} such that clM/f(X) contains one of u, v, or w. This
implies that M/f\e, x ∼= F−7 .

The following proposition is a corollary of Theorem 5.2 along with Lem-
mas 5.4, 5.5, and 5.7 and the fact that P ′′8 has no four-point line.

Proposition 5.8. If M is a 3-connected matroid with a modular 4-point line
and no F−7 - or (F−7 )∗-minor, then either M is quaternary or M is isomorphic
to a minor of S(5, 6, 12).

We now finish the proof of our main theorem, Theorem 1.2.

Theorem 1.2. If M is a 3-connected matroid with a modular 4-point line
then either

(i) M is ternary,

(ii) M is quaternary, or

(iii) M has an F7-minor and either an F−7 - or (F−7 )∗-minor.

Proof. We let M be a 3-connected matroid with a modular 4-point line. If M
has no F−7 - or (F−7 )∗-minor, then by Proposition 5.8 it is representable over
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GF(3) or GF(4) (since S(5, 6, 12) is a ternary matroid). Otherwise, we may
assume that M has no F7-minor. Then Lemma 4.1 implies that M has no
U2,5-minor. If r(M) = 2 then M is ternary; otherwise M has rank and corank
at least three so Lemma 2.1 implies that M has no U3,5-minor. Also, M has
no F ∗7 -minor by the dual of Lemma 2.3. It now follows from Theorem 5.1
that M is ternary.

An unresolved question is whether we can guarantee the existence of an
F−7 -minor in outcome (iii) of the theorem rather than just an F−7 - or an
(F−7 )∗-minor. This would make it symmetric with respect to F7 and F−7 . It
would be the case if we could prove that every 3-connected matroid M with a
modular 4-point line and an (F−7 )∗-minor has an F−7 -minor. The techniques
used to prove Lemma 5.7 might settle this question; however, it is a more
difficult problem, particularly because (F−7 )∗ is larger than P6 and because
(F−7 )∗ has no U2,5–minor so we can not make use of Lemma 4.1.
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