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ADAPTIVE CONSTRUCTION OF SURROGATES FOR THE BAYESIAN

SOLUTION OF INVERSE PROBLEMS∗

JINGLAI LI† AND YOUSSEF M. MARZOUK‡

Abstract. The Bayesian approach to inverse problems typically relies on posterior sampling approaches, such
as Markov chain Monte Carlo, for which the generation of each sample requires one or more evaluations of the
parameter-to-observable map or forward model. When these evaluations are computationally intensive, approxima-
tions of the forward model are essential to accelerating sample-based inference. Yet the construction of globally
accurate approximations for nonlinear forward models can be computationally prohibitive and in fact unnecessary,
as the posterior distribution typically concentrates on a small fraction of the support of the prior distribution. We
present a new approach that uses stochastic optimization to construct polynomial approximations over a sequence of
measures adaptively determined from the data, eventually concentrating on the posterior distribution. The approach
yields substantial gains in efficiency and accuracy over prior-based surrogates, as demonstrated via application to
inverse problems in partial differential equations.

Key words. Bayesian inference, cross-entropy method, importance sampling, inverse problem, Kullback-Leibler
divergence, Markov chain Monte Carlo, polynomial chaos

1. Introduction. In many science and engineering problems, parameters of interest cannot be
observed directly; instead, they must be estimated from indirect observations. In these situations,
one can usually appeal to a forward model mapping the parameters of interest to some quantities
that can be measured. The corresponding inverse problem then involves inferring the unknown
parameters from a set of observations [15].

Inverse problems arise in a host of applications, ranging from the geosciences [43, 33, 28, 13] to
chemical kinetics [34] and far beyond. In these applications, data are inevitably noisy and often lim-
ited in number. The Bayesian approach to inverse problems [22, 42, 43, 47] provides a foundation for
inference from noisy and incomplete data, a natural mechanism for incorporating physical constraints
and heterogeneous sources of information, and a quantitative assessment of uncertainty in the in-
verse solution. Indeed, the Bayesian approach casts the inverse solution as a posterior probability
distribution over the model parameters or inputs. Though conceptually straightforward, this setting
presents challenges in practice. The posterior distributions are typically not of analytical form or
from a standard parametric family; characterizing them exactly requires sampling approaches such
as Markov chain Monte Carlo [7, 10, 44, 8]. These methods entail repeated solutions of the forward
model. When the forward model is computationally intensive, e.g., specified by partial differential
equations (PDEs), a direct approach to Bayesian inference becomes computationally prohibitive.

One way to accelerate inference is to construct computationally inexpensive approximations of
the forward model and to use these approximations as surrogates in the sampling procedure. Many
approximation methods have been successfully employed in this context, ranging from projection-
based model reduction [48, 35, 17] to Gaussian process regression [49, 24] to parametric regression [4].
Our previous work [29, 30, 31] has developed surrogate models by using stochastic spectral methods
[18, 50] to propagate prior uncertainty from the inversion parameters to the forward model outputs.
The result is a forward model approximation that converges in the prior-weighted L2 sense. The-
oretical analysis shows that if the forward model approximation converges at certain rate in this
prior-weighted norm, then (under certain assumptions) the posterior distribution generated by the
approximation converges to the true posterior at the same rate [42, 31, 1]. Constructing a sufficiently
accurate surrogate model over the support of the prior distribution, however, may not be possible in
many practical problems. When the dimension of the parameters is large and the forward model is
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highly nonlinear, constructing such a “globally accurate” surrogate can in fact be a formidable task.
The inverse problem fortunately has more structure than the prior-based uncertainty propaga-

tion problem. Since the posterior distribution reflects some information gain relative to the prior
distribution, it often concentrates on a much smaller portion of the parameter space. In this paper,
we will propose that: (i) it can therefore be more efficient to construct a surrogate that only maintains
high accuracy in the regions of appreciable posterior measure; and (ii) this “localized” surrogate can
enable accurate posterior sampling and accurate computation of posterior expectations.

A natural question to ask, then, is how to build a surrogate in the important region of the
posterior distribution before actually characterizing the posterior? Inspired by the cross-entropy
(CE) method [14, 40] for rare event simulation, we propose an adaptive algorithm to find a distribu-
tion that is “close” to the posterior in the sense of Kullback-Leibler divergence and to build a local
surrogate with respect to this approximating distribution. Candidate distributions are chosen from
a simple parameterized family, and the algorithm minimizes the Kullback-Leibler divergence of the
candidate distribution from the posterior using a sequence of intermediate steps, where the optimiza-
tion in each step is accelerated through the use of locally-constructed surrogates. We demonstrate
with numerical examples that the total computational cost of our method is much lower than the
cost of building a globally accurate surrogate of comparable or even lesser accuracy. Moreover, we
show that the final approximating distribution can provide an excellent proposal for Markov chain
Monte Carlo sampling, in some cases exceeding the performance of adaptive random-walk samplers.
This aspect of our methodology has links to previous work in adaptive independence samplers [23].

The remainder of this article is organized as follows. In Section 2 we briefly review the Bayesian
formulation of inverse problems and previous work using polynomial chaos surrogates to accelerate
inference. In Section 3, we present our new adaptive method for the construction of local surrogates,
with a detailed discussion of the algorithm and an analysis of its convergence properties. Section 4
provides several numerical demonstrations, and Section 5 concludes with further discussion and
suggestions for future work.

2. Bayesian inference and polynomial chaos surrogates. Let y ∈ R
ny be the vector of

parameters of interest and d ∈ R
nd be a vector of observed data. In the Bayesian formulation, prior

information about y is encoded in the prior probability density π(y) and related to the posterior
probability density π(y|d) through Bayes’ rule:

π(y|d) =
π(d|y)π(y)∫
π(d|y)π(y)dy

, (2.1)

where π(d|y) is the likelihood function. (In what follows, we will restrict our attention to finite-
dimensional parameters y and assume that all random variables have densities with respect to
Lebesgue measure.) The likelihood function incorporates both the data and the forward model.
In the context of an inverse problem, the likelihood usually results from some combination of a
deterministic forward model G : Rny → R

nd and a statistical model for the measurement noise and
model error. For example, assuming additive measurement noise ǫ, we have

d = G(y) + ǫ . (2.2)

If the probability density of ǫ is given by πǫ(ǫ), then the likelihood function becomes

π(d|y) = πǫ(d−G(y)) . (2.3)

For conciseness, we define π∗(y) := π(y|d) and L(G) := πǫ(d−G) and rewrite Bayes’ rule (2.1) as

π∗(y) =
L(G(y))π(y)

I
, (2.4)

where

I :=

∫
L(G(y))π(y)dy (2.5)
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is the posterior normalizing constant or evidence. In practice, no closed form analytical expression
for π∗(y) exists, and any posterior moments or expectations must be estimated via sampling methods
such as Markov chain Monte Carlo (MCMC), which require many evaluations of the forward model.

If the forward model has a smooth dependence on its input parameters y, then using stochastic
spectral methods to accelerate this computation is relatively straightforward. As described in [29,
30, 31, 16], the essential idea behind existing methods is to construct a stochastic forward problem
whose solution approximates the deterministic forward model G(y) over the support of the prior

π(y). More precisely, we seek a polynomial approximation G̃N (y) that converges to G(y) in the
prior-weighted L2 norm. Informally, this procedure “propagates” prior uncertainty through the
forward model and yields a computationally inexpensive surrogate that can replace G(y) in, e.g.,
MCMC simulations.

For simplicity, we assume prior independence of the input parameters, namely,

π(y) =

ny∏

j=1

πj(yj) .

(This assumption can be loosened when necessary; see, for example, discussions in [3, 41].) Since
G(y) is multi-dimensional, we construct a polynomial chaos (PC) expansion for each component of
the model output. Suppose that g(y) is a component of G(y); then its N -th order PC expansion is

gN(y) =
∑

|i|≤N

aiΨi(y), (2.6)

where i :=
(
i1, i2, . . . , iny

)
is a multi-index with |i| := i1 + i2 + . . . + iny

, ai are the expansion
coefficients, and Ψi are orthogonal polynomial basis functions, defined as

Ψi(y) =

ny∏

j=1

ψij
(yj) . (2.7)

Here ψij
(yj) is the univariate polynomial of degree ij , from a system satisfying orthogonality with

respect to πj :

Ej [ψiψi′ ] =

∫
ψi (yj)ψi′ (yj)πj (yj) dyj = δi,i′ , (2.8)

where we assume that the polynomials have been properly normalized. It follows that Ψi(y) are
ny-variate orthonormal polynomials satisfying

E [Ψi(y)Ψi′(y)] =

∫
Ψi (y) Ψi′ (y) π(y) dy = δi,i′ , (2.9)

where δi,i′ =
∏ny

j=1 δij ,i′

j
.

Because of the orthogonality condition (2.8), the distribution over which we are constructing the
polynomial approximation—namely each prior distribution πj(yj)—determines the polynomial type.
For example, Hermite polynomials are associated with the Gaussian distribution, Jacobi polynomials
with the beta distribution, and Laguerre polynomials with the gamma distribution. For a detailed
discussion of these correspondences and their resulting computational efficiencies, see [51]. For PC
expansions corresponding to non-standard distributions, see [46, 2]. Note also that in the equations
above, we have restricted our attention to total-order polynomial expansions, i.e., |i| ≤ N . This
choice is merely for simplicity of exposition; in practice, one may choose any admissible multi-index
set J ∋ i to define the polynomial chaos expansion in (2.6).
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The key computational task in constructing these polynomial approximations is the evaluation
of the expansion coefficients ai. Broadly speaking, there are two classes of methods for doing
this: intrusive (e.g., stochastic Galerkin) and non-intrusive (e.g., interpolation or pseudospectral
approximation). In this paper, we will follow [31] and use a non-intrusive method to compute the
coefficients. The main advantage of a non-intrusive approach is that it only requires a finite number
of deterministic simulations of the forward model, rather than a reformulation of the underlying
equations. Using the orthogonality relation (2.9), the expansion coefficients are given by

ai = E[g(y)Ψi(y) ], (2.10)

and thus ai can be estimated by numerical quadrature

ãi =
M∑

m=1

g(y(m)) Ψi(y
(m))w(m), (2.11)

where y(m) are a set of quadrature nodes and w(m) are the associated weights for m = 1, . . . ,M .
Tensor product quadrature rules are a natural choice, but for ny ≥ 2, using sparse quadrature rules
to select the model evaluation points can be vastly more efficient. Care must be taken to avoid
significant aliasing errors when using sparse quadrature directly in (2.11), however. Indeed, it is
advantageous to recast the approximation as a Smolyak sum of constituent full-tensor polynomial
approximations, each associated with a tensor-product quadrature rule that is appropriate to its
polynomials [12]. This type of approximation may be constructed adaptively, thus taking advantage
of weak coupling and anisotropy in the dependence of G on y. More details can be found in [11].

3. Adaptive surrogate construction. The polynomial chaos surrogates described in the
previous section are constructed to ensure accuracy with respect to the prior; that is, they converge
to the true forward model G(y) in the L2

π sense, where π is the prior density on y. In many inference
problems, however, the posterior is concentrated in a very small portion of the entire prior support.
In this situation, it can be much more efficient to build surrogates only over the important region of
the posterior. (Consider, for example, a forward model output that varies nonlinearly with y over
the support of the prior. Focusing onto a much smaller range of y reduces the degree of nonlinearity;
in the extreme case, if the posterior is sufficiently concentrated and the model output is continuous,
then even a linear surrogate could be sufficient.) In this section we present a general method for
constructing posterior-focused surrogates.

3.1. Minimizing cross entropy. The main idea of our method is to build a polynomial chaos
surrogate over a probability distribution that is “close” to the posterior in the sense of Kullback-
Leibler (K-L) divergence. Specifically, we seek a distribution with density p(y) that minimizes the
K-L divergence from π∗(y) to p:1

DKL(π∗‖ p) =

∫
π∗(y) ln

π∗(y)

p(y)
dy =

∫
π∗(y) ln π∗(y) dy−

∫
π∗(y) ln p(y) dy . (3.1)

Interestingly, one can minimize (3.1) without exact knowledge of the posterior distribution π∗(y).
Since the first integral on the right-hand side of (3.1) is independent of p, minimizing DKL(π∗‖ p) is
equivalent to maximizing

∫
π∗(y) ln p(y) dy =

∫
L(G(y))π(y)

I
ln p(y) dy .

1Note that the K-L divergence is not symmetric; DKL(π∗‖ p) 6= DKL(p‖ π∗). Minimizing the K-L divergence from
π∗ to p as in (3.1) tends to yield a p that is broader than π∗, while minimizing K-L divergence in the opposite direction
can lead to a more compact approximating distribution, for instance, one that concentrates on a single mode of π∗

[27, 45]. The former behavior is far more desirable in the present context, as we seek a surrogate that encompasses
the entire posterior.
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Moreover, since I is a constant (for fixed data), one simply needs to maximize
∫
L(G(y)) ln p(y)π(y) dy.

In practice, one selects the candidate distributions p from a parameterized family PV = {p(y; v)}v∈V ,
where v is a vector of parameters (called “reference parameters” in the cross-entropy method for
rare event simulation) and V is the corresponding parameter space. Thus the desired distribution
can be found by solving the optimization problem

max
v∈V

D(v) = max
v∈V

∫
L(G(y)) ln p(y; v)π(y) dy . (3.2)

3.2. Adaptive algorithm. In this section, we propose an adaptive algorithm to solve the
optimization problem above. The algorithm has three main ingredients: sequential importance
sampling, a tempering procedure, and localized surrogate models. In particular, we construct a
sequence of intermediate optimization problems that converge to the original one in (3.2), guided by
a tempering parameter. In each intermediate problem, we evaluate the objective using importance
sampling and we build a local surrogate to replace expensive evaluations of the likelihood function.

We begin by recalling the essentials of importance sampling [39]. Importance sampling (IS)
simulates from a biasing distribution that may be different than the original distribution or the true
distribution of interest, but corrects for this mismatch by weighing the samples with an appropriate
ratio of densities. By focusing samples on regions where an integrand is large, for example, IS
can reduce the variance of a Monte Carlo estimator of an integral [25]. In the context of (3.2), a
naïve Monte Carlo estimator might sample from the prior π, but this estimator will typically have
extremely high variance: when the likelihood function is large only on a small fraction of the prior
samples, most of the terms in the resulting Monte Carlo sum will be near zero. Instead, we sample
from a biasing distribution q(y) and thus rewrite D as:

D(v) =

∫
L(G(y)) ln p(y; v)

π(y)

q(y)
q(y) dy , (3.3a)

and obtain an unbiased IS estimator of D:

D̂(v) :=
1

M

M∑

m=1

L
(

G(y(m))
)
l(y(m)) ln p(y(m); v), (3.3b)

where l(y) := π(y)/q(y) is the density ratio or weight function and the samples {y(m)} in (3.3b) are
drawn independently from q(y).

Next we introduce a tempering parameter λ, putting

L(y;λ) := [L(y)]
1

λ ,

and defining π∗(y;λ) as the posterior density associated with the tempered likelihood L(y;λ). Here
L(y;λ) and π∗(y;λ) revert to the original likelihood function and posterior density, respectively, for
λ = 1. The algorithm detailed below will ensure that λ = 1 is reached within a finite number of
steps.

The essential idea of the algorithm is to construct a sequence of biasing distributions (p(y; vk)),
where each p is drawn from the parameterized family P . Each biasing distribution has two roles:
first, to promote variance reduction via importance sampling; and second, to serve as the input
distribution for constructing a local surrogate model G̃k(y). The final biasing distribution, found
by solving the optimization problem when λ = 1, is the sought-after “best approximation” to the
posterior described above.

Steps of the algorithm are detailed in Algorithm 1. The basic idea behind the iterations is the
following: since p(y; vk), the biasing distribution obtained at step k, is close to π∗(y;λk), then in the
next step, if one can choose λk+1 such that π∗(y; vk) and π∗(y; vk+1) are close, the forward model
surrogate and the IS estimator based on p(y; vk) should be effective for the optimization problem
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Algorithm 1 Adaptive algorithm

1: Input: probability fraction ρ ∈ (0, 1), likelihood function level γ > 0, minimum step size δ > 0;
initial biasing distribution parameters v0, IS sample size M

2: Initialize: k = 0, λ0 =∞
3: while λk > 1 do

4: Construct G̃k(y), the polynomial chaos approximation of Gk(y) with respect to p(y; vk)

5: Draw M samples {y(1), . . . , y(M)} according to p(y; vk).

6: Compute λk+1 such that the largest 100ρ% percent of the resulting likelihood function values

{L(G̃k(y(m);λk+1))}M
m=1 are larger than γ.

7: if λk+1 > λk − δ then

8: λk+1 ← λk − δ
9: end if

10: if λk+1 < 1 then

11: λk+1 ← 1
12: end if

13: Solve the optimization problem:

vk+1 = arg max
v∈V

D̂k+1(v) = arg max
v∈V

1

M

M∑

n=1

L(G̃k(y(m));λk+1) ln p(y(m); v) lk(y(m))

where lk(y) := π(y)/p(y; vk).

14: k ← k + 1
15: end while

at step k + 1. A more formal discussion of the convergence properties of the algorithm is given in
Section 3.3. Note that for reasons of computational efficiency, we want the distributions over which
we construct the surrogates to remain relatively localized. Thus a good choice for v0 would keep
the variance of p(y; v0) relatively small and perhaps center it at the prior mean. The value of λ will
automatically adjust to the choice of initial biasing distribution.

An important part of the algorithm is the choice of a parameterized family of distributions
PV . The distributions should be flexible yet easy to sample, and straightforward to use as an
input distribution for the construction of polynomial surrogates. To this end, multivariate normal
distributions are a convenient choice. Not only do they suggest the use of the well-studied Gauss-
Hermite polynomial chaos expansion for the forward model, but they also make it possible to solve
the optimization problem in step 13 of Algorithm 1 analytically. For example, let p(y; v) be an
uncorrelated multivariate Gaussian:

p(y; v) =

ny∏

j=1

pj(yj) , pj(yj) =
1√

2πσj

exp

(
− (yj − µj)2

2σ2
j

)
, (3.4)

where the reference parameters are now v = (µ1, . . . , µny
, σ1, . . . , σny

). Assuming that D̂ in step 13

of Algorithm 1 is convex and differentiable with respect to v, we obtain the solution to maxv D̂ by
solving

∇vD̂ = 0 . (3.5)
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Substituting (3.4) into (3.5) yields:

∂D̂

∂µj

=
1

M

M∑

m=1

L(G̃k(y(m))) lk(y(m)) (2y
(m)
j − 2µj) = 0 , (3.6a)

∂D̂

∂σj

=
1

M

M∑

m=1

L(G̃k(y(m))) lk(y(m))

(
(y

(m)
j − µj)2

σ3
j

− 1

σj

)
= 0 , (3.6b)

for j = 1 . . . ny, the solution of which can readily be found as:

µj =

∑M

m=1 L(G̃k(y(m)))lk(y(m))y
(m)
j∑M

m=1 L(G̃k(y(m)))lk(y(m))
, (3.7a)

σj =

√√√√
∑M

m=1L(G̃k(y(m)))lk(y(m))(y
(m)
j − µj)2

∑M

m=1 L(G̃k(y(m)))lk(y(m))
. (3.7b)

This is just an example, of course. We emphasize that our method does not require any specific type
of biasing distribution, and that one can freely choose the family PV that is believed to contain the
best approximations of the posterior distribution.

3.3. Convergence analysis. By design, the tempering parameter λ in Algorithm 1 reaches
1 in a finite number of steps, and as a result the algorithm converges to the original optimization
problem. Thus we only need to analyze the convergence of each step. Without causing any ambiguity,
we will drop the step index k throughout this subsection.

First, we set up some notation. Let G̃N (y) be the N -th order polynomial chaos approximation
of G(y), based on a biasing distribution q(y). Also, let

DN (v) :=

∫
L(G̃N(y)) ln p(y; v) l(y) q(y) dy , (3.8)

and

D̂N (v) :=
1

M

M∑

m=1

L
(

G̃N (y(m))
)

ln p(y(m); v) l(y(m)) , (3.9)

where l(y) := π(y)/q(y), and y(m) are sampled independently from q(y). Note that, for any v, D̂N

is a random variable but DN is a deterministic quantity. We make the following assumptions:
Assumption 3.1.
(a) The biasing distribution q(y) satisfies

‖ ln(p(y; v))l(y)‖L2
q
<∞, (3.10)

where ‖ · ‖L2
q

is the L2-norm with weight q(y);

(b) The likelihood function L(g) is bounded and uniformly continuous (with respect to g) on

{g = G(y) : q(y) > 0} ∪ {g = G̃N (y) : q(y) > 0, N ≥ 1}.
Now we give a lemma that will be used to prove our convergence results:
Lemma 3.2. Suppose that Assumption 3.1(a) holds. If

lim
N→∞

‖G̃N(y) −G(y)‖L2
q

= 0,

then

lim
N→∞

‖L(G̃N(y)) − L(G(y))‖L2
q

= 0.
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Proof. See Appendix.

Our main convergence result is formalized in the proposition below.
Proposition 3.3. Suppose that Assumption 3.1 holds. Then we have

lim
M, N→∞

‖D̂N (v)−D(v)‖L2
q

= 0. (3.11)

Proof. The variance of estimator (3.9) is

‖D̂N(v) −DN (v)‖2
L2

q
=

1

M

(
‖L(G̃N (y)) ln p(y; v) l(y)‖2

L2
q
−D2

N

)

≤ 1

M

(
C‖ ln p(y; v) l(y)‖2

L2
q
−D2

N

)
, (3.12)

where C > 0 is some constant, and it follows immediately that

lim
M→∞

‖D̂N(v) −DN(v)‖L2
q

= 0. (3.13)

We then look at the truncation error between DN(v) and D(v):

|DN (v)−D(v)| =
∣∣∣∣
∫

(L(G̃N (y)) − L(G(y))) ln p(y; v) l(y)q(y) dy

∣∣∣∣

≤
∥∥∥(L(G̃N (y)) − L(G(y))) ln p(y; v) l(y)q(y)

∥∥∥
L1

q

≤ ‖L(G̃N(y)) − L(G(y))‖L2
q
‖ln p(y; v) l(y)‖L2

q
, (3.14)

by Hölder’s inequality. Using Lemma 3.2 and (3.10), one obtains

lim
N→∞

|DN(v) −D(v)| = 0, (3.15)

which together with (3.13) implies that D̂N (v)→ D(v) in L2
q, as M, N →∞.

We note that the analysis above is not limited to total-order polynomial chaos expansions; it is
applicable to other polynomial chaos truncations and indeed to other approximation schemes. What
is required are the conditions of Lemma 3.2, where N is any parameter that indexes the accuracy
of the forward model approximation, such that limN→∞ ‖G̃N (y)−G(y)‖L2

q
= 0.

3.4. Independence sampler MCMC. In addition to providing a surrogate model focused
on the posterior distribution, the adaptive algorithm also makes it possible to employ a Metropolis-
Hastings independence sampler, i.e., an MCMC scheme where the proposal distribution is inde-
pendent of the present state [44] of the Markov chain. When the proposal distribution is close to
the posterior, the independence sampler can be much more efficient than a standard random walk
Metropolis-Hastings scheme [19, 32, 37], in that it enables larger “jumps” across the parameter
space. This suggests that the final biasing distribution p(y; v) found by our method can be a good
proposal distribution for use in MCMC simulation.

Let the final biasing distribution obtained by Algorithm 1 be denoted by p(y; v∞), and let the

corresponding surrogate model be G̃∞(y). In each MCMC iteration, the independence sampler
updates the current state yt of the Markov chain via the following steps:

1. Propose a candidate state y′ by drawing a sample from p(y; v∞).
2. Compute the Metropolis acceptance ratio:

α =
L(G̃∞(y′))π(y′)

L(G̃∞(yt))π(yt)

p(yt; v∞)

p(y′; v∞)
. (3.16)
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3. Put r = max(α, 1). Draw a number r′ ∼ U(0, 1) and set the next state of the chain to:

yt+1 =

{
y′, r′ ≤ r;
yt, r′ > r.

Given the final surrogate G̃∞(y), one could also use a standard random-walk MCMC sampler,
or any other valid MCMC algorithm, to explore the posterior induced by this forward model ap-
proximation. A comparison of the Metropolis independence sampler with an adaptive random-walk
MCMC approach will be provided in Section 4.2.

4. Numerical examples. In this section we present two numerical examples to explore the
efficiency and accuracy of the adaptive surrogate construction method. The first example is deliber-
ately chosen to be low-dimensional for illustration purposes. The second is a classic time-dependent
inverse heat conduction problem.

4.1. Source inversion. First we will apply our method to the contaminant source inversion
problem studied in [30], which uses a limited and noisy set of observations to infer the location
of a contaminant source. Specifically, we consider a dimensionless diffusion equation on a two-
dimensional spatial domain:

∂u

∂t
= ∇2u+ s(x, t), x ∈ D := [0, 1]2, (4.1)

with source term s(x, t). The field u(x, t) represents the concentration of a contaminant. The source
term describes the release of the contaminant at spatial location xsrc := (x1, x2) over the time
interval [0, τ ]:

s(x, t) =

{
s

2πh2 exp
(
−|xsrc − x|2/2h2

)
, 0 ≤ t ≤ τ

0, t > τ
(4.2)

Here we suppose that the source strength s is known and equal to 2.0, the source width h is known
and equal to 0.05, and the source location xsrc is the parameter of interest. The contaminant
is transported by diffusion but cannot leave the domain; we thus impose homogeneous Neumann
boundary conditions:

∇u · n = 0 on ∂D.

At the initial time, the contaminant concentration is zero everywhere:

u (x, 0) = 0.

The diffusivity is spatially uniform; with a suitable scaling of space/time, we can always take its
value to be unity.

Sensors that measure local concentration values are placed on a uniform 3× 3 grid covering D,
and sensor readings are provided at two successive times, t = 0.1 and t = 0.2, resulting in a total of
18 measurements. The forward model thus maps the source position to the values of the field u(x, t)
at the prescribed measurement locations and times, while the inverse problem consists of inferring
the source position from noisy measurements. We write the forward model as d = G(xsrc)+ǫ, where
d is the vector collecting all the measurements and ǫ is the measurement error. Each component of
ǫ is assumed to be an independent zero-mean Gaussian random variable: ǫi ∼ N(0, σ2) with σ = 0.1
for i = 1 . . . 18. In this example we generate simulated data d by solving the forward model with
xsrc = (0.25, 0.25) and adding noise. To complete the Bayesian setup, we take the prior to be a
uniform distribution over D; that is, xj ∼ U(0, 1) for j = 1, 2.
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(a) Prior-based surrogate.
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(b) Adaptive surrogate.

Fig. 4.1. Source inversion problem: model evaluation points used to construct the prior-based and adaptive
surrogates. In the bottom figure (adaptive method), the circles, squares, and diamonds are the points evaluated in
the first, second, and third iterations, respectively. Contours of the posterior probability density are superimposed on
each figure.

First we characterize the posterior distribution using the proposed adaptive method. We fix the
polynomial order of the surrogates G̃k(x1, x2) to N = 4 and take the biasing distribution to be an
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(a) “True” posterior density (solid line), compared with the posterior density obtained
via the prior-based surrogate (dotted line).
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(b) “True” posterior density (solid line), compared with the posterior density obtained
via the adaptively-constructed surrogate (dashed line).

Fig. 4.2. Source inversion problem: posterior density of xsrc obtained with the three different approaches. In
the bottom figure, the two sets of contours are virtually indistinguishable.

uncorrelated Gaussian:

p(x1, x2; v) =
1

2πσ1σ2
exp

(
− (x1 − µ1)2

2σ2
1

− (x2 − µ2)2

2σ2
2

)
, (4.3)
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where the means µ1, µ2 and standard deviations σ1, σ2 comprise the reference parameters v. The
initial biasing distribution is centered at the prior mean and has small variance; that is, we choose
µ1 = µ2 = 0.5 and σ1 = σ2 = 0.05. We set ρ = 0.05, γ = 10−3, and put δ = (λ0− 1)/10 (namely, we
require λ to reach 1 in at most 10 iterations). In each iteration, a 3 × 3 tensor product Gaussian-
Hermite quadrature rule is used to construct a Hermite polynomial chaos surrogate, resulting in nine
true model evaluations; M = 5× 104 surrogate samples are then employed to estimate the reference
parameters. It takes four iterations for the algorithm to converge, and its main computational cost
thus consists of evaluating the true model 36 times.

As a comparison, we also construct a polynomial surrogate with respect to the uniform prior
distribution. Here we use a surrogate composed of total order N = 9 Legendre polynomials, and
compute the polynomial coefficients with a level-6 sparse grid based on Clenshaw-Curtis quadrature,
resulting in 417 true model evaluations—about 12 times as many as the adaptive method. These
values were chosen so that the prior-based and adaptive polynomial surrogates have comparable
(though not exactly equal) accuracy.

In Figure 4.1, we show the points in parameter space at which the true model was evaluated in
order to construct the two types of surrogates. Contours of the posterior density are superimposed
on the points. It is apparent that in the prior-based method, although 417 model evaluation points
are used, only five of them actually fall in the region of significant posterior probability. With the
adaptive method, on the other hand, 8 of the 36 model evaluations occur in the important region of
the posterior distribution. Figure 4.2 shows the posterior probability densities resulting from both
types of surrogates. Since the problem is two-dimensional, these contours were obtained simply by
evaluating the posterior density on a fine grid, thus removing any potential MCMC sampling error
from the problem. Also shown in the figure is the posterior density obtained with direct evaluations
of the true forward model, i.e., the “true” posterior. While both surrogates provide reasonably
accurate posterior approximations, the adaptive method is clearly better; its posterior is essentially
identical to the true posterior. Moreover, the adaptive method requires an order of magnitude fewer
model evaluations than the prior-based surrogate.

4.2. Inverse heat conduction. Estimating temperature or heat flux on an inaccessible bound-
ary from the temperature history measured inside a solid gives rise to an inverse heat conduc-
tion (IHC) problem. These problems have been studied for several decades due to their significance
in a variety of scientific and engineering applications [6, 36, 48, 26]. An IHC problem becomes
nonlinear if the thermal properties are temperature-dependent [5, 9]; this feature renders inversion
significantly more difficult than in the linear case. In this example we consider a one-dimensional
heat conduction equation:

∂u

∂t
=

∂

∂x

[
c(u)

∂u

∂x

]
, (4.4)

where x and t are the spatial and temporal variables, u(x, t) is the temperature, and

c(u) :=
1

1 + u2

is the temperature-dependent thermal conductivity, all in dimensionless form. The equation is
subject to initial condition u(x, 0) = u0(x) and Neumann boundary conditions:

∂

∂x
u(0, t) = q(t), (4.5a)

∂

∂x
u(L, t) = 0, (4.5b)

where L is the length of the medium. In other words, one end (x = L) of the domain is insulated and
the other (x = 0) is subject to heat flux q(t). Now suppose that we place a temperature sensor at
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x = xs. The goal of the IHC problem is to infer the heat flux q(t) for t ∈ [0, T ] from the temperature
history measured at the sensor over the same time interval. A schematic of this problem is shown
in Figure 4.3.

L

q(t)
sensor

0

Fig. 4.3. Schematic of the one-dimensional heat conduction problem.

For the present simulations, we put L = 1 and T = 1 and let the initial condition be u0(x) = 0.
We parameterize the flux signal with a Fourier series:

q(t) = a0 +

Nf∑

j=1

(aj cos(2jπt/T ) + bj sin(2jπt/T )) , 0 ≤ t ≤ T, (4.6)

where aj and bj are the coefficients of the cosine and sine components, respectively, and Nf is the
total number of Fourier modes. In the following tests, we will fix Nf = 4; the inverse problem is
thus 9-dimensional. The sensor is placed at xs = 0.4, the temperature is measured at 50 regularly
spaced times over the time interval [0, T ], and the error in each measurement is assumed to be an
independent zero-mean Gaussian random variable with variance σ2 = 10−2.

To generate data for inversion, the “true” flux is chosen to be

qtrue(t) =

4∑

j=1

(1.5 cos(2jπt) + 1.5 sin(2jπt)) , (4.7)

i.e., a0 = 0, aj = 1.5, and bj = 1.5 for j = 1 . . . 4. Figure 4.4(a) shows the entire solution of (4.4)
with the prescribed “true” flux, with the sensor location indicated by the dashed line. The inverse
problem becomes more ill-posed as the sensor moves to the right, away from the boundary where q is
imposed; information about the time-varying input flux is progressively destroyed by the nonlinear
diffusion. Figure 4.4(b) makes this fact more explicit, by showing the temperature history at x = 0
(i.e., the boundary subject to the heat flux) and at x = 0.4 (where the sensor is placed). The data
for inversion are generated by perturbing the latter profile with the i.i.d. observational noise. A finer
numerical discretization of (4.4) is used to generate these data than is used in the inference process.
To complete the Bayesian setup, we endow the Fourier coefficients with independent Gaussian priors
that have mean zero and variance 2.

We now use the adaptive algorithm to construct a localized polynomial chaos surrogate, and
compare its computational cost and performance to that of a prior-based surrogate. In both cases,
we use Hermite polynomial chaos to approximate the forward model, and sparse grids based on ten-
sorization of univariate delayed Kronrod-Patterson rules [38] to compute the polynomial coefficients
(non-intrusively). To test the prior-based method, we use two different total-order truncations of
the PC expansion, one at N = 3 (with sparse grid level S = 6) and the other at N = 5 (with sparse
grid level S = 7). Sparse grid levels were chosen to ensure relatively small aliasing error in both
cases.

To run the adaptive algorithm, we set ρ = 0.05, γ = 10−3, and δ = (λ0−1)/20 (see Algorithm 1)
and we use M = 105 samples for importance sampling at each step. The initial biasing distribution is
centered at the prior mean, with the variance of each component set to 0.5. As described in (3.4), the
biasing distributions are chosen simply to be uncorrelated Gaussians. The optimization procedure
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(a) Solution of the nonlinear diffusion equation (4.4) as a function of space and time. The
dashed line indicates the location of the sensor.
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(b) Temperature history at x = 0 (the boundary where the time-dependent heat
flux q(t) is imposed, solid line); and at x = 0.4 (location of the sensor, dashed line).

Fig. 4.4. Forward solution of the transient heat conduction problem.

takes 14 iterations to converge, and at each iteration, a new surrogate with N = 2 and S = 3 is
constructed with respect to the current biasing distribution. Once the final biasing distribution is
obtained, we construct a corresponding final surrogate of the same polynomial order, N = 2. Here
we typically employ the same sparse grid level as in the adaptive iterations, but we also report results
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number of DKL(π∗‖ πPC) DKL(π∗‖ πPC)
surrogate model evaluations π(a1, b1) π(a4, b4)

prior-based
N = 3, S = 6 11833 124 1.89
prior-based

N = 5, S = 7 35929 8.37 0.383
adaptive

N = 2, S = 3 2445 0.0044 0.0129
adaptive

N = 2, S = 5 4459 0.0032 0.0127

Table 4.1
Cost and performance comparison of prior-based and adaptively-constructed surrogates.

for a higher sparse grid level (S = 5) just to ensure that aliasing errors are small. The total number
of full model evaluations associated with the adaptive procedure, contrasted with the number used
to construct the prior-based surrogates, is shown in the second column of Table 4.1.

With various final surrogates G̃ in hand (both prior-based and adaptively constructed), we

now replace the exact likelihood function L(G) with L(G̃) to generate a corresponding collection
of posterior distributions for comparison. We use a delayed-rejection adaptive Metropolis (DRAM)
MCMC algorithm [20] to draw 5 × 105 samples from each distribution, and discard the first 104

samples as burn-in. To examine the results, we cannot visualize the 9-dimensional posteriors directly;
instead we consider several ways of extracting posterior information from the samples.

First, we focus on the Fourier coefficients directly. Figure 4.5 shows kernel density estimates [21]
of the marginal posterior densities of Fourier coefficients of the heat flux q(t). Figure 4.2 shows
coefficients of the lowest frequency modes, while Figure 4.2 shows coefficients of the highest-frequency
modes. In each figure, we show the posterior densities obtained by evaluation of the exact forward
forward model, evaluation of the adaptive surrogate, and evaluation of the prior-based surrogate. The
latter two surrogates correspond to the second and fourth rows of Table 4.1 (marked in bold type).
Even though construction of the prior-based surrogate employs more than 6 times as many model
evaluations as the adaptive algorithm, the adaptive surrogate is far more accurate. This assessment
is made quantitative by evaluating the K-L divergence from the exact posterior distribution to each
surrogate-induced posterior distribution (focusing only on the two-dimensional marginals). Results
are shown in the last two columns of Table 4.1. By this measure, the adaptive surrogate is three
orders of magnitude more accurate in the low-frequency modes and at least an order of magnitude
more accurate in the high-frequency modes. (Here the K-L divergences have also been computed
from the kernel density estimates of the pairwise posterior marginals. Sampling error in the K-L
divergence estimates is limited to the last reported digit.) The difference in accuracy gains between
the low- and high-frequency modes may be due to the fact that the posterior concentrates more
strongly for the low-frequency coefficients, as these are the modes for which the data/likelihood
are most informative. Thus, while the adaptive surrogate here provides higher accuracy in all the
Fourier modes, improvement over the prior surrogate is expected to be most pronounced in the
directions where posterior concentration is greatest.

To further assess the performance of the adaptive method, we use posterior samples of the
Fourier coefficients to reconstruct posterior moments of the heat flux itself, again using the exact
forward model, the adaptively-constructed surrogate, and the prior surrogate. Figure 4.6 shows
the posterior mean, Figure 4.6 shows the posterior variance, and Figure 4.8 shows the posterior
skewness; these are moments of the marginal posterior distributions of heat flux q(t) at any given
time t. Again, we show results only for the surrogates identified in the second and fourth lines of
Table 4.1. The adaptively-constructed (and posterior-focused) surrogate clearly outperforms the
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prior-based surrogate. Note that the nonzero skewness is a clear indicator of the non-Gaussian
character of the posterior.

Moving from moments of the marginal distributions to correlations between heat flux values at
different times, Figure 4.9 shows the posterior autocovariance of the heat flux computed with the
adaptive surrogate, which also agrees well with the values computed from the true model.

Finally, we evaluate the MCMC independence sampler proposed in Section 3.4, comparing its
performance with that of the adaptive random-walk sampler (DRAM). For the present inverse heat
conduction problem, the mixing of each sampler is essentially independent of the particular poste-
rior (exact or surrogate-based) to which it is applied; we therefore report results for the adaptive
surrogate only. Figure 4.10 plots the empirical autocorrelation of the MCMC chain as a function of
lag, computed from 5× 105 iterations of each sampler. We focus on the MCMC chain of a1, but the
relative autocorrelations of other Fourier coefficients are similar. Rapid decay of the autocorrelation
is indicative of good mixing; MCMC iterates are less correlated, and the variance of any MCMC
estimate at a given number of iterations is reduced. Figure 4.10 shows that autocorrelation decays
considerably faster with the independence sampler than with the random-walk sampler, which sug-
gests that the final biasing distribution computed with the adaptive algorithm can indeed be a good
proposal distribution for MCMC.

5. Conclusions. This paper has developed an efficient adaptive approach for approximating
computationally intensive forward models for use in Bayesian inference. These approximations
are used as surrogates for the exact forward model or parameter-to-observable map, thus making
sampling-based Bayesian solutions to the inverse problem more computationally tractable.

The present approach is adaptive in the sense that it uses the data and likelihood function to
focus the accuracy of the forward model approximation on regions of high posterior probability. This
focusing is performed via an iterative procedure that relies on stochastic optimization. In typical
inference problems, where the posterior concentrates on a small fraction of the support of the prior
distribution, the adaptive approach can lead to significant gains in efficiency and accuracy over
previous methods. Numerical demonstrations on inference problems involving partial differential
equations show order-of-magnitude increases in computational efficiency (as measured by the number
of forward solves) and accuracy (as measured by posterior moments and information divergence from
the exact posterior) over prior-based surrogates employing comparable approximation schemes.

The adaptive algorithm generates a finite sequence of biasing distributions from a chosen para-
metric family, and accelerates the identification of these biasing distributions by constructing approx-
imations of the forward model at each step. The final biasing distribution in this sequence minimizes
Kullback-Leibler divergence from the true posterior; convergence to this minimizer is assured as the
number of samples (in an internal importance sampling estimator) goes to infinity and the accuracy
of the local surrogate is increased. As a byproduct of the algorithm, the final biasing distribution
can also serve as a useful proposal distribution for Markov chain Monte Carlo exploration of the
posterior distribution.

Since the adaptive approach relies on concentration of the posterior relative to the prior, it is
best suited for inference problems where the data are informative in the same relative sense. Yet
most “useful” inference problems will fall into this category. The more difficult it is to construct a
globally accurate surrogate (for instance, as the forward model becomes more nonlinear) and the
more tightly the posterior concentrates, the more beneficial the adaptive approach may be. Now in
an ill-posed inverse problem, the posterior may concentrate in some directions but not in others; for
instance, data in the inverse heat conduction problem are less informative about higher frequency
variations in the inversion parameters. Yet significant concentration does occur overall, and it is
largest in the directions where the likelihood function varies most and is thus most difficult to
approximate. This correspondence is precisely to the advantage of the adaptive method.

We note that the current algorithm does not require access to derivatives of the forward model.
If derivatives were available and the posterior mode could be found efficiently, then it would be
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natural to use a Laplace approximation at the mode to initialize the adaptive procedure. Also,
an expectation-maximization (EM) algorithm could be an interesting alternative to the adaptive
importance sampling approach used to solve the optimization problem in (3.2). Localized surrogate
models could be employed to accelerate computations within an EM approach, just as they are used
in the present importance sampling algorithm.

Finally, we emphasize that while the current numerical demonstrations used polynomial chaos
approximations and Gaussian biasing distributions, the algorithm presented here is quite general.
Future work could explore other families of biasing distributions and other types of forward model
approximations—even projection-based model reduction schemes. Simple parametric biasing distri-
butions could also be replaced with finite mixtures (e.g., Gaussian mixtures), with a forward model
approximation scheme tied to the components of the mixture. Another useful extension of the adap-
tive algorithm could involve using full model evaluations from previous iterations to reduce the cost
of constructing the local surrogate at the current step.

Appendix A. Proof of Lemma 3.2. We start with L(G) being uniformly continuous, which
means that for any ǫ > 0, there exists a δ > 0 such that, for any |GN −G| < δ, one has |L(GN)−
L(G)| <

√
ǫ/2. On the other hand, GN (y)→ G(y) in L2

q as N →∞, implying that GN (y)→ G(y)
in probability as N → ∞; therefore, for the given ǫ and δ, there exists a positive integer No such
that, for all N > No, P[|GN (y)−G(y)| > δ] < ǫ/4. Let Ω := {z : |GN (y) −G(y)| < δ} and let Ω∗

be the complement of Ω in the support of q. Then we can write

‖L(GN(y)) − L(G(y))‖2
L2

q

=

∫

Ω

(L(GN (y)) − L(G(y)))2q(y)dy +

∫

Ω∗

(L(GN (y)) − L(G(y)))2q(y)dy (A.1)

The first integral on the right hand side of (A.1) is smaller than ǫ/2 by design. Now recall that the
likelihood function L(·) is bounded, and without loss of generality we assume 0 < L(·) < 1. It then
follows that the second integral on the right-hand side of (A.1) is smaller than ǫ/2 too. Thus we
complete the proof. �
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Fig. 4.5. Inverse heat conduction problem: marginal posterior densities of pairs of Fourier coefficients. Solid
lines (thicker) are results of the exact forward model; solid lines (thinner) are from the adaptive surrogate; dotted
lines are from the prior-based surrogate.
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Fig. 4.6. Inverse heat conduction problem: posterior mean of the flux q(t) computed with the true model, the
prior-based surrogate, and the adaptively-constructed surrogate.
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Fig. 4.7. Inverse heat conduction problem: posterior variance of the flux q(t) computed with the true model, the
prior-based surrogate, and the adaptively-constructed surrogate.
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Fig. 4.8. Inverse heat conduction problem: posterior skewness of the flux q(t) computed with the true model,
the prior-based surrogate, and the adaptively-constructed surrogate.
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Fig. 4.9. Inverse heat conduction problem: posterior covariance of the flux q(t). Solid lines are computed from
the exact-model posterior, while dashed lines are computed with the adaptive surrogate.



ADAPTIVE CONSTRUCTION OF SURROGATES FOR INVERSE PROBLEMS 23

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

lag

au
to

co
rr

el
at

io
n

 

 

Independence sampler
DRAM

Fig. 4.10. Chain autocorrelation of an MCMC independence sampler derived from the adaptive algorithm, versus
an adaptive random-walk MCMC sampler.


