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Analysis of Asymptotic Preserving DG-IMEX Schemes for Linear Kinetic Transport Equations

in a Diffusive Scaling
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Abstract

In this paper, some theoretical aspects will be addressed for the asymptotic preserving DG-IMEX schemes
recently proposed in [10] for kinetic transport equations under a diffusive scaling. We will focus on the methods
that are based on discontinuous Galerkin (DG) spatial discretizations with the P k polynomial space and a
first order IMEX temporal discretization, and apply them to two linear models: the telegraph equation and
the one-group transport equation in slab geometry. In particular, we will establish uniform numerical stability
with respect to Knudsen number ε using energy methods, as well as error estimates for any given ε. When
ε → 0, a rigorous asymptotic analysis of the schemes is also obtained. Though the methods and the analysis
are presented for one dimension in space, they can be generalized to higher dimensions directly.

Keywords: Kinetic transport equations; Asymptotic preserving; High order discontinuous Galerkin method;
IMEX; Stability analysis; Error estimate

1 Introduction

Kinetic theory is at the center of multi-scale modeling connecting the invisible microscopic models with the
macroscopic hydrodynamic models. In particular, when the mean free path of particles is sufficiently small,
the system is close to the equilibrium state and a macroscopic model is a good approximation to the kinetic
equation. Building a passage from kinetic to macroscopic models is a very interesting problem and there has
been a lot of mathematical progress over the decades [1, 26].

Designing accurate and efficient numerical schemes for kinetic equations with a broad range of Knudsen
number ε has been an active research area for more than two decades. Among many multi-scale approaches,
asymptotic preserving (AP) methods are known to be able to effectively deal with multi-scales and capture
hydrodynamic macro-scale limits. Specifically, the schemes are designed to mimic the asymptotic limit from the
kinetic to the hydrodynamic models on the PDE level. As a result, the scheme in the limit of ε→ 0 becomes a
consistent discretization of the limiting macro-scale equations.

AP schemes have been intensively studied in different settings and under different scalings, for example
for stationary problems [18, 17, 9] and for time dependent problems with hyperbolic and diffusive scalings
[11, 24]. Below, to our best knowledge, we briefly review some existing AP methods for kinetic equations in the
diffusive limit. It was firstly shown in [12, 23] that an improper treatment of spatial discretizations even with
a stable implicit time discretization may fail to capture the correct asymptotic limit with an under-resolved
computational mesh. In [13, 23, 14], some proper splitting between the convection and stiff source terms was
introduced for AP properties. Later, AP schemes were designed via different multi-scale approaches, e.g. by
a standard perturbation procedure [15], by moment closure approaches [5], by a micro-macro decomposition
of kinetic transport equations [19] and by projective integration [16]. AP schemes have also been designed
with different high order discretization strategies such as the discontinuous Galerkin framework [22], weighted
essentially non-oscillatory (WENO) methods as well as globally stiffly accurate implicit-explicit (IMEX) schemes
[3, 4]. Despite the fact that much computational effort was made in designing various AP schemes, rigorous
proofs for uniform stability, error estimates and AP properties for fully discrete schemes are relatively rare.
For AP schemes based on the micro-macro decomposition, there are some theoretical results. In [19], a von
Neumann analysis was conducted for numerical stability of a first order AP scheme applied to the two-velocity
telegraph equation. Stability and error estimate for more general problems were obtained in [20] based on energy
methods. In the setting of stationary problems, a rigorous asymptotic analysis was presented for an upwind
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discontinuous Galerkin discretization, together with the convergent property of the limiting schemes under mesh
refinement, when solving the radiative transport equation [9].

Recently, a family of high order schemes was proposed in [10] for several linear and nonlinear discrete-
velocity kinetic transport equations under a diffusive scaling. The schemes are defined for a reformulated set
of equations which is obtained from a micro-macro decomposition of the problem just as in [19], with the idea
originally proposed in [21]. Based on such reformulation, discontinuous Galerkin (DG) spatial discretizations of
arbitrary order of accuracy are applied with suitable numerical fluxes, and in time, we employ globally stiffly
accurate high order IMEX Runge-Kutta (RK) methods [3] equipped with a carefully chosen implicit-explicit
strategy. A formal asymptotic analysis shows that the proposed methods, as Knudsen number ε goes to 0,
become consistent high order discretizations for the limiting macro-scale equations. Numerical results presented
in [10] also demonstrate the stability and high order accuracy of the proposed schemes when ε is of order 1 and
in the limit of ε going to 0.

The current paper follows up the work in [10] and addresses some theoretical aspects of the proposed methods.
In particular, we will establish uniform stability, error estimates, and perform a rigorous asymptotic analysis
for the fully discrete scheme when DG spatial discretizations using the P k polynomial space are coupled with a
first order IMEX time discretization. Two families of linear kinetic transport equations are considered: the two-
velocity telegraph equation, and the one-group transport equation in slab geometry with a continuous velocity
field, for which the method in [10] can be directly formulated and applied. In this work, uniform time step
constraint with respect to ε is established for numerical stability by using energy methods. More specifically, for
the DG method with the P 0 polynomial space, optimal time step restriction is achieved as in [19, 20], namely
∆t = O(h2) in the diffusive regime with ε ≪ 1, and ∆t = O(εh) in the convective regime with ε = O(1); for
the method with the P k (k ≥ 1) polynomial space, the time step restriction is ∆t = O(h2), which is not the
most desired condition in the convective regime. It is expected that extending the stability analysis to high
order IMEX schemes can relieve the time step constraint for the method with the P k (k ≥ 1) space [29]. When
higher order temporal discretizations are used, most techniques to analyze the spatial discretizations can be
carried over, yet new difficulties will arise related to the high order time integrations [28, 29]. Such analysis is
a subject of our future investigation. Based on numerical stability and approximation properties of the discrete
spaces, error estimates are further established for the schemes with different choices of numerical fluxes. The
results confirm the high order accuracy in space and the first order accuracy in time of the methods. By using
the weakly sequential compactness of Hilbert space (which in the present work is either the finite-dimensional
discrete space or L2(Ωv) with Ωv given in Section 2), we also prove that the proposed schemes will converge to
some consistent discretizations of the limiting heat equation when ε→ 0. Though the methods and the analysis
are presented here and in [10] for one dimension in space, they can be generalized to higher dimensions directly.

The paper is organized as follows. In Section 2, we introduce the kinetic transport equation in a diffusive
scaling, provide its micro-macro decomposition and diffusive limit, and review a class of DG-IMEX schemes
introduced in [10]. In Section 3, stability analysis, error estimates, and a rigorous asymptotic analysis are carried
out for the schemes and discussed in various settings.

2 Formulation

We consider the following linear kinetic transport equation in a diffusive scaling

εft + v∂xf =
1

ε
(〈f〉 − f) (2.1)

with the initial data f0 and spatially periodic boundary conditions, where f = f(x, v, t) is the distribution
function of particles that depends on time t > 0, position x ∈ Ωx ⊂ R, and velocity v ∈ Ωv. The parameter
ε > 0 measures the distance of the system to the equilibrium state and it can be regarded as the mean free
path of the particles; when ε is small, the system is close to equilibrium; when ε is large, the system is far from
equilibrium. The operator 〈f〉−f is the normalized scattering operator. Here 〈f〉 =

∫
Ωv
fdµ, and µ is a measure

associated with the velocity space Ωv and it will be specified next for each model. In this paper, we discuss two
important families of the problem (2.1): the telegraph equation and the one-group transport equation in slab
geometry.

• Telegraph equation is a discrete-velocity kinetic model with Ωv = {−1, 1}, namely, v either takes value −1
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or 1, and µ is a discrete measure on {−1, 1} such that

〈f〉 =
∫

Ωv

fdµ :=
1

2
(f(x, v = −1, t) + f(x, v = 1, t)).

• The one-group transport equation in slab geometry is a kinetic equation (2.1) where the velocity space,

Ωv = [−1, 1], is continuous. In addition, dµ = 1
2dv, with dv being the standard Lebeque measure on Ωv, and

〈f〉 =
∫

Ωv

fdµ :=
1

2

∫ 1

−1

f(v)dv.

The scattering operator on the right side of (2.1) can be of more general form: (Lf)(v) =
∫ 1

−1 s(v, v
′)(f(v′) −

f(v))dv′ where the kernel s satisfies 0 < sm ≤ s(v, v′) ≤ sM for all v, v′ ∈ [−1, 1],
∫ 1

−1
s(v, v′)dv′ = 1, and

s(v, v′) = s(v′, v). For such kernel s, one can deduce that 〈Lφ〉 = 0 for all φ ∈ L2[−1, 1] and 〈φLφ〉 ≤ −2sm〈φ2〉
for φ ∈ N (L)⊥ [2]. Of course, the simplest case of such s is s(v, v′) = 1/2, which is the case of (2.1). We refer to
[6] for more detailed discussions on the linear transport equation and [20] for the one-group transport equation
in slab geometry.

It turns out that dealing with discrete velocity or continuous velocity does not affect much the formulation
of the numerical methods and the theoretical results. We will treat both cases in a uniform setting and point
out the differences when necessary. Let us consider the Hilbert space L2(Ωv; dµ) in v variable with the inner
product: 〈f, g〉 :=

∫
fgdµ = 〈fg〉, and let Π be the orthogonal projection operator onto Span(1), defined as

Π : f 7→ Πf = 〈f〉. Let ρ := Πf = 〈f〉 denote the macroscopic density for f and we write

f = 〈f〉+ εg = ρ+ εg (2.2)

where 〈g〉 = 0. We recall the micro-macro formulation for (2.1) in [10], motivated by [19, 21],

∂tρ+ ∂x〈vg〉 = 0,

∂tg +
1

ε
(I−Π)(v∂xg) +

1

ε2
v∂xρ = − 1

ε2
g.

(2.3)

The operator I used here is the identity operator. It is easy to verify that ∂tρ = ∂x
(
〈v2〉∂xρ

)
+O(ε) which leads

to the linear diffusion equation as ε → 0. We note that 〈v2〉 = 1 for the telegraph equation and 〈v2〉 = 1/3 for
the one-group transport equation in slab geometry.

Recently in [10], a family of asymptotic preserving methods were proposed for the telegraph equation based
on its micro-macro decomposition (2.3). The methods are of formal high order accuracy in both space and time.
They involve discontinuous Galerkin (DG) spatial discretizations and globally stiffly accurate implicit-explicit
(IMEX) Runge-Kutta methods in time. In the limit of ε → 0, a formal asymptotic analysis [10] shows that
the limiting schemes are consistent high order discretizations for the limiting linear heat equation. Though not
discussed in [10], both the methods and the formal analysis can be naturally extended to the one-group transport
equation in slab geometry where the velocity field is continuous. Next we will present the formulation of the
methods applied to (2.1), before establishing numerical stability, error estimates, and a rigorous asymptotic
analysis in the following section.

Let’s first introduce some notation. Start with {xi+ 1
2
}i=Ni=0 , a partition of Ωx = [xmin, xmax]. Here x 1

2
= xmin,

xN+ 1
2
= xmax, each element is denoted as Ii = [xi− 1

2
, xi+ 1

2
] with its length hi, and h = maxi hi. Given any

non-negative integer k, we define a finite dimensional discrete space

Ukh =
{
u ∈ L2(Ωx) : u|Ii ∈ P k(Ii), ∀i

}
, (2.4)

where the local space P k(I) consists of polynomials of degree at most k on I. Note functions in Ukh are piecewise-
defined, we further denote jump and average of u at xi+ 1

2
, ∀i, as [u]i+ 1

2
= u(x+

i+ 1
2

)− u(x−
i+ 1

2

) and {u}i+ 1
2
=

1
2 (u(x

+
i+ 1

2

) + u(x−
i+ 1

2

)), respectively. Here u(x±) = lim∆x→0± u(x + ∆x), and we also use ui+ 1
2
= u(xi+ 1

2
),

u±
i+ 1

2

= u(x±
i+ 1

2

), ∀i.

3



With the same DG spatial discretization proposed in [10], a family of semi-discrete methods are given below
for the micro-macro system (2.3). Look for ρh(·, t), gh(·, v, t) ∈ Ukh , such that ∀φ, ψ ∈ Ukh ,

(∂tρh, φ) + ah(gh, φ) = 0, (2.5a)

(∂tgh, ψ) +
1

ε
bh,v(gh, ψ)−

v

ε2
dh(ρh, ψ) = − 1

ε2
(gh, ψ), (2.5b)

where

ah(gh, φ) = −
∑

i

∫

Ii

〈vgh〉∂xφdx −
∑

i

〈̂vgh〉i− 1
2

[φ]i− 1
2
, (2.6a)

bh,v(gh, ψ) = ((I−Π)Dh(gh; v), ψ) = (Dh(gh; v)− 〈Dh(gh; v)〉, ψ), (2.6b)

dh(ρh, ψ) =
∑

i

∫

Ii

ρh∂xψdx+
∑

i

ρ̂h,i− 1
2
[ψ]i− 1

2
. (2.6c)

Here and below, the standard inner product (·, ·) for the L2(Ωx) space is used, see e.g. the first term in (2.5a)
and in (2.5b). The function Dh(gh; v) in (2.6b) belongs to Ukh , and it is defined based on an upwind discretization
of v∂xg within the DG framework,

(Dh(gh; v), ψ) := −
∑

i

(∫

Ii

vgh∂xψdx

)
−
∑

i

(̃vgh)i− 1
2

[ψ]i− 1
2
, ψ ∈ Ukh , (2.7)

with ṽg being an upwind numerical flux consistent to vg,

ṽg :=

{
vg−, if v > 0
vg+, if v < 0

= v{g} − |v|
2
[g]. (2.8)

Both 〈̂vg〉 and ρ̂ in (2.6a) and (2.6c) are also numerical fluxes, and they are consistent to the physical fluxes
〈vg〉 and ρ. In this paper, the following choices are considered:

alternating: 〈̂vg〉 = 〈vg〉−, ρ̂ = ρ+ (left-right); or 〈̂vg〉 = 〈vg〉+, ρ̂ = ρ− (right-left), (2.9a)

central: 〈̂vg〉 = {〈vg〉}, ρ̂ = {ρ} . (2.9b)

Remark 2.1. The spatial discretization given above as proposed in [10] differs from the methods proposed in
[19] in several aspects. First of all, the spatial discretization in [19] is first order and of finite difference type;
while the method considered here is of finite element type, which is known to be more compact to achieve high
order accuracy in a systematic manner. Moreover, our methods are based on one set of computational mesh
and that in [19] is on staggered meshes. In fact, DG spatial discretizations can also be formulated on staggered

meshes as in [19]. This, on one hand, saves one from using numerical fluxes 〈̂vg〉 and ρ̂ at grid points (see (2.6a),
(2.6c), (2.9)), and on the other hand, the resulting method only has suboptimal k-th order accuracy when the
P k polynomial space is used with odd k (this is not reported yet observed numerically, and it is similar to our

method with central fluxes for 〈̂vg〉 and ρ̂), while better spatial accuracy can be achieved both theoretically and

numerically by suitably designing 〈̂vg〉 and ρ̂ within the one-mesh framework.

The semi-discrete method in (2.5) will be further coupled with globally stiffly accurate IMEX Runge-Kutta
methods in time [3]. Such temporal discretizations are employed to deal with the stiffness of (2.3) when ε is
small, and to ensure the correct asymptotic property of the scheme as ε→ 0. Below we will give the fully discrete
scheme with a first order globally stiffly accurate IMEX Runge-Kutta method in time, termed as DG-IMEX1,
which will be analyzed in the present paper. Methods with higher order temporal accuracy are formulated for
the telegraph equation in [10], where the stability and accuracy are demonstrated numerically. Such high order
temporal discretizations can also be defined for the one-group transport equation. The analysis for the fully
discrete methods with higher than first order temporal accuracy is expected to be much more involved (see e.g.
for such analysis in [28, 29] when the temporal discretizations are explicit) and it will be investigated in the
next stage of our project.
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Given ρnh(·), gnh(·, v) ∈ Ukh that approximate the solution ρ and g at t = tn, we look for ρn+1
h (·), gn+1

h (·, v) ∈
Ukh , such that ∀ φ, ψ ∈ Ukh ,

(
ρn+1
h − ρnh

∆t
, φ

)
+ ah(g

n
h , φ) = 0, (2.10a)

(
gn+1
h − gnh

∆t
, ψ

)
+

1

ε
bh,v(g

n
h , ψ)−

v

ε2
dh(ρ

n+1
h , ψ) = − 1

ε2
(gn+1
h , ψ). (2.10b)

The most stiff terms, in both the convective and collisional terms, with a scale of 1
ε2 are treated implicitly here.

Remark 2.2. The implicit-explicit strategy used in our temporal discretization is different from that in [19].
We consider it more natural to treat implicitly the most stiff terms with the scale of 1

ε2 in the micro-macro
reformulation, and there is no essential change in the computational complexity. Specifically, one can solve
(2.10a) first for ρn+1

h , then (2.10b) for gn+1
h from a block-diagonal system, indicating our implicit-explicit

strategy results in comparable computational complexity as that in [19]. Moreover, this implicit-explicit strategy
is especially important when it is combined with high order globally stiffly accurate temporal discretizations in
[10]: it not only ensures the limiting schemes as ε→ 0 to be consistent high order discretizations for the limiting
equations, but also preserves the limiting equilibrium on the discrete level, in the sense that

vdh(ρ
∗
h, ψ) = (g∗h, ψ), ψ ∈ Ukh , (2.11)

is satisfied by (ρ∗h, g
∗
h), the approximating solution from any of the internal stages over one time step or at any

discrete time tn in the limit of ε→ 0 (see also Section 3.2 in [10]). The difference in the implicit-explicit strategy
calls for a non-conventional definition of the discrete energy in Theorem 3.3. In Remark 3.5 of Section 3, there
is also some discussion about how the theoretical results here and in [19, 20] are related.

3 Theoretical Results: Stability, Error Estimates, and Rigorous

Asymptotic Analysis

In this section, stability and error estimates will be established for DG-IMEX1 method in (2.10) for both
the telegraph equation and the one-group transport equation in slab geometry based on their micro-macro
formulation (2.3). One will see that uniform stability result is obtained with respect to ε. In terms of accuracy,
the method is first order in time for any given ε. The accuracy in space is higher when polynomials of higher
degree are used for spatial approximations. When the exact solutions are bounded uniformly with respect to
ε in certain norms, the error estimates are also uniform in ε. In addition, a rigorous asymptotic analysis is
presented for the proposed methods when ε→ 0.

Without loss of generality, the mesh is assumed to be uniform with h = hi, ∀i. Our results can be extended
to general meshes when maxi hi

mini hi
is uniformly bounded during the mesh refinement. Moreover, with very little

change, our analysis can be established for the one-group transport equation in slab geometry with the more
general scattering operator as in Section 2 (some constants in the results will also depend on the bounds sm
and sM of the kernal s(·, ·)). For simplicity, we will not present the analysis for the general case. The analysis
will be based on the following norms,

||φ|| = ||φ||L2(Ωx), |||φ||| = (〈||φ||2〉)1/2.

In the estimates, two standard inverse inequalities will be used [7]. There exist constants Cinv, Ĉinv, such that
for any w ∈ P k([a, b]),

|w(y)|2(b − a) ≤ Cinv

∫ b

a

w(x)2dx, with y = a, or b (3.12a)

(b − a)2
∫ b

a

|wx(x)|2dx ≤ Ĉinv

∫ b

a

w(x)2dx. (3.12b)

The constants Cinv, Ĉinv are independent of a and b, and they depend on k (see [27, 25] for the explicit expression

of k-dependence). Some other basic inequalities, such as Young’s inequality xy ≤ x2

2ζ + ζy2

2 (ζ > 0), are used
without being pointed out. We also denote

α1 = (||v||2∞ + 〈v2〉)Ĉinv , α2 = 2(||v||∞ + 〈|v|〉)Cinv , α3 = 2||v||∞Cinv , (3.13)
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for later use. Below are some orthogonal projections onto Ukh utilized in our analysis.

• L2 projection πh: πhw ∈ Ukh , such that

∫

Ii

(πhw − w)vdx = 0, ∀v ∈ P k(Ii), ∀i.

• Gauss-Radau projection π−
h : π

−
h w ∈ Ukh , such that

∫

Ii

(π−
h w − w)vdx = 0, ∀v ∈ P k−1(Ii), ∀i

and (π−
h w)

−
i+ 1

2

= w(x−
i+ 1

2

), ∀i.

• Gauss-Radau projection π+
h : π

+
h w ∈ Ukh , such that

∫

Ii

(π+
h w − w)vdx = 0, ∀v ∈ P k−1(Ii), ∀i

and (π+
h w)

+
i− 1

2

= w(x+
i− 1

2

), ∀i.

These projections are commonly used in theoretical analysis of DG methods, and they have the following
properties which can be easily established [7],

||w −Πhw||2 + h
∑

i

((w −Πhw)
±
i− 1

2

)2 ≤ Ch2k+2||w||2Hk+1(Ωx)
. (3.14)

Here Πh is any of πh, π
−
h , π

+
h , and the constant C depends only on k.

At t = 0, we initialize the methods through L2 projection in space, that is, we take ρ0h = πhρ|t=0 and
g0h = πhg|t=0. It can be seen easily that

〈g0h〉 = πh〈g〉|t=0 = 0. (3.15)

Other types of initialization, for example ρ0h = Πρρ|t=0 and g0h = Πgg|t=0 with Πρ and Πg specified in Section
3.2, can be considered without any essential change to the results presented in this section.

3.1 Stability analysis

To prove stability, we first present two lemmas. In particular, Lemma 3.1 is a discrete analogue of the property
〈g〉 = 0 for the exact solution. It plays an important role in both stability analysis and error estimates.

Lemma 3.1. The numerical solution gnh has the following property

〈gnh〉 = 0, ∀n. (3.16)

Proof. Take ∀ψ ∈ Ukh in (2.10b), integrate over v, with 〈v〉 = 0, one has

〈
(
gn+1
h − gnh

∆t
, ψ

)
〉 = − 1

ε2
〈(gn+1

h , ψ)〉.

This can be further organized into

(〈gn+1
h 〉, ψ) = ε2

ε2 +∆t
(〈gnh〉, ψ), ∀ψ ∈ Ukh . (3.17)

By taking ψ = 〈gn+1
h 〉 − ε2

ε2+∆t〈gnh 〉 ∈ Ukh , in addition to the fact 〈g0h〉 = 0 in (3.15), one can conclude 〈gn+1
h 〉 =

ε2

ε2+∆t〈gnh〉 hence (3.16).
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Lemma 3.2. Let n andm be any non-negative integer indices. For any φn(·), φn+1(·), ψm(·, v), ψm+1(·, v) ∈ Ukh
satisfying 〈ψm〉 = 〈ψm+1〉 = 0, denote

Ξε(φ
n+1, φn, ψm+1, ψm) : =

(
φn+1 − φn

∆t
, φn+1

)
+ ah(ψ

m+1, φn+1) (3.18)

+ 〈
(
ψm+1 − ψm

∆t
, ε2ψm+1

)
+

1

ε
bh,v(ψ

m, ε2ψm+1)− v

ε2
dh(φ

n, ε2ψm+1)〉,

the following estimates then hold with any of the numerical flux in (2.9),

Ξε(φ
n+1, φn, ψm+1, ψm) ≥ 1

2∆t

(
(||φn+1||2 + ε2|||ψm+1|||2)− (||φn||2 + ε2|||ψm|||2)

)
(3.19)

+

{
(ε− α2

∆t
h )〈 |v|2

∑
i[ψ

m+1]2
i− 1

2

〉 − α1
∆t
h2 |||ψm+1|||2, for k ≥ 1

(ε− α2

2
∆t
h )〈 |v|2

∑
i[ψ

m+1]2
i− 1

2

〉, for k = 0,

with αi, i = 1, 2, 3 defined in (3.13).

Proof. Note that

Ξε(φ
n+1, φn, ψm+1, ψm) (3.20)

=
1

2∆t

(
||φn+1||2 − ||φn||2 + ||φn+1 − φn||2

)
+

ε2

2∆t
(|||ψm+1|||2 − |||ψm|||2 + |||ψm+1 − ψm|||2)

+ ah(ψ
m+1, φn+1) + ε〈bh,v(ψm, ψm+1)〉 − 〈vdh(φn+1, ψm+1)〉+ 〈vdh(φn+1 − φn, ψm+1)〉.

Based on the definitions of the bilinear forms ah(·, ·) and dh(·, ·), one has

ah(ψ
m+1, φn+1)− 〈vdh(φn+1, ψm+1)〉

=−
∑

i

∫

Ii

∂x
(
〈vψm+1〉φn+1

)
dx−

∑

i

̂〈vψm+1〉i− 1
2

[φn+1]i− 1
2
−
∑

i

φ̂n+1
i− 1

2

[〈vψm+1〉]i− 1
2

=
∑

i

(
[〈vψm+1〉φn+1]− ̂〈vψm+1〉[φn+1]− φ̂n+1[〈vψm+1〉]

)
i− 1

2

= 0. (3.21)

The last equality can be verified directly with the definition of central and alternating fluxes. In addition, with
〈ψm+1〉 = 0 and equation (2.7) and the upwind flux (2.8),

〈bh,v(ψm, ψm+1)〉 = 〈(Dh(ψm; v)− 〈Dh(ψm; v)〉, ψm+1)〉
= 〈(Dh(ψm; v), ψm+1)〉 − (〈Dh(ψm; v)〉, 〈ψm+1〉) = 〈(Dh(ψm; v), ψm+1)〉
= 〈(Dh(ψm+1; v), ψm+1)〉+ 〈(Dh(ψm − ψm+1; v), ψm+1)〉

= −
∑

i

(
〈
∫

Ii

vψm+1∂xψ
m+1dx+ ˜(vψm+1)i− 1

2

[ψm+1]i− 1
2
〉
)
+ 〈(Dh(ψm − ψm+1; v), ψm+1)〉

= 〈 |v|
2

∑

i

[ψm+1]2i− 1
2

〉+ 〈(Dh(ψm − ψm+1; v), ψm+1)〉. (3.22)

Next we want to estimate 〈(Dh(ψm − ψm+1; v), ψm+1)〉 = Λ1 + Λ2 in (3.22), where

Λ1 = 〈
∑

i

∫

Ii

v(ψm+1 − ψm)∂xψ
m+1dx〉, Λ2 = 〈

∑

i

˜(v(ψm+1 − ψm))i− 1
2

[ψm+1]i− 1
2
〉.

These two terms can be bounded as follows.

|Λ1| ≤ θ1|||ψm+1 − ψm|||2 + 1

4θ1
〈
∫

Ωx

(v∂xψ
m+1)2dx〉, (3.23)
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|Λ2| =|〈
∑

i

v(ψm+1 − ψm)−
i− 1

2

[ψm+1]i− 1
2
〉+ + 〈

∑

i

v(ψm+1 − ψm)+
i− 1

2

[ψm+1]i− 1
2
〉−|

≤ η1
Cinv

〈
∑

i

h((ψm+1 − ψm)−
i− 1

2

)2〉+ +
Cinv

4η1
〈
∑

i

h−1(v[ψm+1]i− 1
2
)2〉+

+
η1
Cinv

〈
∑

i

h((ψm+1 − ψm)+
i− 1

2

)2〉− +
Cinv

4η1
〈
∑

i

h−1(v[ψm+1]i− 1
2
)2〉−

≤η1|||ψm+1 − ψm|||2 + Cinv

4η1

∑

i

h−1〈(v[ψm+1]i− 1
2
)2〉. (3.24)

Here the inverse inequality in (3.12a) is used, and 〈·〉+ and 〈·〉− are integrals with respect to the positive and
negative part of v, respectively. What we also need to estimate is 〈vdh(φn+1 − φn, ψm+1)〉.

|〈vdh(φn+1 − φn, ψm+1)〉|

≤ |
∑

i

∫

Ii

(φn+1 − φn)∂x〈vψm+1〉dx| + |
∑

i

(
̂(φn+1 − φn)〈v[ψm+1]〉

)
i− 1

2

|

≤ θ2||φn+1 − φn||2 + 1

4θ2

∫

Ωx

(∂x〈vψm+1〉)2dx +
η2
Cinv

∑

i

h( ̂φn+1 − φn)2i− 1
2

+
Cinv

4η2

∑

i

h−1〈v[ψm+1]i− 1
2
〉2

≤ θ2||φn+1 − φn||2 + 1

4θ2

∫

Ωx

(∂x〈vψm+1〉)2dx + η2||φn+1 − φn||2 + Cinv

4η2

∑

i

h−1〈v[ψm+1]i− 1
2
〉2

= (θ2 + η2)||φn+1 − φn||2 + 1

4θ2

∫

Ωx

(∂x〈vψm+1〉)2dx+
Cinv

4η2

∑

i

h−1〈v[ψm+1]i− 1
2
〉2. (3.25)

Up to now, θi, ηi with i = 1, 2 are arbitrary positive constants. By further applying inverse inequalities in
(3.12b) and the following simple estimates,

〈
∫

Ωx

(v∂xψ
m+1)2dx〉 ≤ ||v||2∞〈

∫

Ωx

(∂xψ
m+1)2dx〉 ≤ Ĉinv

h2
||v||2∞|||ψm+1|||2,

∫

Ωx

(∂x〈vψm+1〉)2dx =

∫

Ωx

〈v∂xψm+1〉2dx ≤
∫

Ωx

〈v2〉〈(∂xψm+1)2〉dx

= 〈v2〉〈
∫

Ωx

(∂xψ
m+1)2dx〉 ≤ Ĉinv

h2
〈v2〉|||ψm+1|||2,

∑

i

〈(v[ψm+1]i− 1
2
)2〉 ≤ 2||v||∞〈 |v|

2

∑

i

[ψm+1]2i− 1
2

〉,

∑

i

〈v[ψm+1]i− 1
2
〉2 ≤

∑

i

〈|v|〉〈|v|([ψm+1]i− 1
2
)2〉 = 2〈|v|〉〈 |v|

2

∑

i

[ψm+1]2i− 1
2

〉,

we have

|〈(Dh(ψm − ψm+1; v), ψm+1)〉| ≤(θ1 + η1)|||ψm+1 − ψm|||2 + Ĉinv||v||2∞
4θ1h2

|||ψm+1|||2

+
Cinv||v||∞

2η1h
〈 |v|
2

∑

i

[ψm+1]2i− 1
2

〉, (3.26)

|〈vdh(φn+1 − φn, ψm+1)〉| ≤(θ2 + η2)||φn+1 − φn||2 + Ĉinv〈v2〉
4θ2h2

|||ψm+1|||2

+
Cinv〈|v|〉
2η2h

〈 |v|
2

∑

i

[ψm+1]2i− 1
2

〉. (3.27)
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Estimates in (3.20)-(3.22) and (3.26)-(3.27) are now assembled together,

Ξε(φ
n+1, φn, ψm+1, ψm) ≥ 1

2∆t

(
(||φn+1||2 + ε2|||ψm+1|||2)− (||φn||2 + ε2|||ψm|||2)

)

+

(
1

2∆t
− (θ2 + η2)

)
||φn+1 − φn||2 +

(
ε2

2∆t
− ε(θ1 + η1)

)
|||ψm+1 − ψm|||2

+

(
ε− εCinv||v||∞

2η1h
− Cinv〈|v|〉

2η2h

)
〈 |v|
2

∑

i

[ψm+1]2i− 1
2

〉

−
(
εĈinv||v||2∞

4θ1h2
+
Ĉinv〈v2〉
4θ2h2

)
|||ψm+1|||2. (3.28)

One can conclude the lower bound of Ξε in (3.19) by taking θ1 = η1 = ε
4∆t , θ2 = η2 = 1

4∆t in (3.28). When
k = 0, ∂xψ

m+1 = 0 and all terms involving θ1 and θ2 are no longer needed in the analysis. The estimate in
(3.28) turns to

Ξε(φ
n+1, φn, ψm+1, ψm) ≥ 1

2∆t

(
(||φn+1||2 + ε2|||ψm+1|||2)− (||φn||2 + ε2|||ψm|||2)

)

+

(
1

2∆t
− η2

)
||φn+1 − φn||2 +

(
ε2

2∆t
− εη1

)
|||ψm+1 − ψm|||2

+

(
ε− εCinv||v||∞

2η1h
− Cinv〈|v|〉

2η2h

)
〈 |v|
2

∑

i

[ψm+1]2i− 1
2

〉. (3.29)

In particular, with η1 = ε
2∆t and η2 = 1

2∆t in (3.29), we conclude the estimate for k = 0.

Theorem 3.3 (Stability of DG-IMEX1). When the DG-IMEX1 method (2.10) is applied to the kinetic transport
equation (2.1) in its micro-macro decomposition formulation (2.3), the following stability result holds for the
numerical solution,

||ρn+1
h ||2 + ε2|||gnh |||2 ≤ ||ρnh||2 + ε2|||gn−1

h |||2, ∀n (3.30)

under the condition

∆t ≤ ∆tstab =





h
α1+α2α3

(h+min(ε, α2h
α1

)α3), for k ≥ 1,

2h
α2α3

(h+ α3ε), for k = 0.
(3.31)

Here αi, i = 1, 2, 3 are defined in (3.13).

Proof. Take φ = ρn+1
h in (2.10a). Additionally take ψ = ε2gn+1

h in (2.10b), integrate the equation over v, and
shift the index n to n− 1. This leads to

(
ρn+1
h − ρnh

∆t
, ρn+1
h

)
+ ah(g

n
h , ρ

n+1
h ) = 0, (3.32a)

〈
(
gnh − gn−1

h

∆t
, ε2gnh

)
+

1

ε
bh,v(g

n−1
h , ε2gnh)−

v

ε2
dh(ρ

n
h, ε

2gnh)〉 = −〈 1
ε2

(gnh , ε
2gnh)〉. (3.32b)

Now we sum up equations (3.32a)-(3.32b), denote the left side of the resulting equation as LHS, and get

LHS = −|||gnh |||2. (3.33)

Let’s first consider k ≥ 1. For any integer index n ≥ 1, by applying Lemma 3.2 with φ = ρh, ψ = gh, and
m = n− 1, one gets

LHS = Ξε(ρ
n+1
h , ρnh, g

n
h , g

n−1
h ) ≥ 1

2∆t

(
(||ρn+1

h ||2 + ε2|||gnh |||2)− (||ρnh||2 + ε2|||gn−1
h |||2)

)

+

(
ε− α2

∆t

h

)
〈 |v|
2

∑

i

[gnh ]
2
i− 1

2

〉 − α1
∆t

h2
|||gnh |||2. (3.34)

Note that

〈 |v|
2

∑

i

[gnh ]
2
i− 1

2

〉 ≤ ||v||∞〈
∑

i

(gn,+
h,i− 1

2

)2 + (gn,−
h,i− 1

2

)2〉 ≤ 2||v||∞Cinv

h
|||gnh |||2 =

α3

h
|||gnh |||2. (3.35)
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Combining this estimate with (3.33)-(3.34), one has

1

2∆t

(
(||ρn+1

h ||2 + ε2|||gnh |||2)− (||ρnh ||2 + ε2|||gn−1
h |||2)

)
≤ γ|||gnh |||2, (3.36)

where

γ =

(
−1 + α1

∆t

h2

)
+max

(
−ε+ α2

∆t

h
, 0

)
α3

h
. (3.37)

The stability result (3.30) can be obtained now as long as γ ≤ 0. Equivalently, this requires

− ε+ α2
∆t

h
≤ 0 and − 1 + α1

∆t

h2
≤ 0, (3.38)

or

− ε+ α2
∆t

h
> 0 and − 1 + α1

∆t

h2
+ (−ε+ α2

∆t

h
)
α3

h
≤ 0 . (3.39)

These conditions can be reformulated into

Case 1: when εh
α2

≤ h2

α1
, that is ε ≤ α2

α1
h, then ∆t ≤ h2+α3εh

α1+α2α3
.

Case 2: when ε > α2

α1
h, then ∆t ≤ h2

α1
.

Conditions in both cases can be compactly written into

∆t ≤ h

α1 + α2α3
(h+min(ε,

α2h

α1
)α3). (3.40)

Finally, we consider k = 0. By following similar analysis as above using the corresponding result in Lemma
3.2, one will have (3.36) where

γ = −1 + max

(
−ε+ α2

2

∆t

h
, 0

)
α3

h
. (3.41)

To conclude the stability result (3.30), it is required to have γ ≤ 0 which is equivalent to −1+
(
−ε+ α2

2
∆t
h

)
α3

h ≤
0. This condition can be further simplified into ∆t ≤ 2h

α2α3
(h+ α3ε). This completes the proof.

Note that the stability is measured in a non-conventional way in that the discrete energy in (3.30) at the
n-th step consists of the L2 norm of ρnh, and the L2 norm of gn−1

h . This is due to the implicit-explicit strategy
used in the numerical formulation. One can refer to [19] [20] for a different implicit-explicit strategy used in a
first order scheme, hence the stability analysis with different discrete energy. By working out the expression of
αi, i = 1, 2, 3 in (3.13) for the specific equations in Section 2, we further have the following remark.

Remark 3.4. The condition (3.31) is

∆t ≤ ∆tstab =

{
1

2Ĉinv+8C2
inv

(h+ 2Cinv min(ε, 2Cinv

Ĉinv

h))h, for k ≥ 1,
h

4C2
inv

(h+ 2Cinvε), for k = 0.
(3.42)

for the telegraph equation, and it is

∆t ≤ ∆tstab =

{
1

4
3
Ĉinv+6C2

inv

(h+ 2Cinvmin(ε, 94
Cinv

Ĉinv

h))h, for k ≥ 1,
h

3C2
inv

(h+ 2Cinvε), for k = 0.
(3.43)

for the one-group transport equation in slab geometry.

Remark 3.5. • The stability condition in (3.31) for the DG-IMEX1 is established uniformly with respect
to ε for any given integer k ≥ 0.

• When k = 0, one has Cinv = 1. (The actual values of Cinv and Ĉinv for k ≥ 1 can be found in [27, 25].)
The stability condition in (3.42) becomes ∆t ≤ 1

4h
2+ 1

2εh, and the one in (3.43) is ∆t ≤ 1
3h

2+ 2
3εh. These

results are the same as that of the first order finite difference method introduced in [19] on staggered grids
which employs a different implicit-explicit strategy in discretization (see [19] for the telegraph equation
and [20] for the one-group transport equation in slab geometry). Moreover, when ε is small with the
equation in the diffusive regime, ∆t = O(h2); when ε is large with the equation in the convective regime,
∆t = O(εh). The timestep restrictions in both regimes are standard for explicit schemes.
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• For k ≥ 1, the restriction on the time step is ∆t = O(h2), which is reasonable for ε ≪ 1, yet not the
most desired condition for ε = O(1) in the convective regime. Similar as in [29] for analyzing DG methods
with explicit Runge-Kutta time discretizations, we conjecture that higher order time discretizations will
improve or overcome the restrictive condition on the time step when ε = O(1). This will be left to our
future investigation.

• For the telegraph equation, with its special discrete velocity space v ∈ {−1, 1}, one can verify that
(I − Π)(v∂xg) = v〈∂xg〉 = v∂x〈g〉 holds. Since the exact solution satisfies 〈g〉 = 0, it seems one does not
need to include (I−Π)(v∂xg) in the micro-macro formulation (2.3). Numerically this means not to include
bh,v term in (2.5) and in (2.10). For the resulting scheme, we can follow the similar analysis as in this
subsection and obtain the stability result (3.30) under the condition

∆t ≤ ∆tstab =

{
1

Ĉinv+4C2
inv

h2, for k ≥ 1,
1

2C2
inv

h2 = 1
2h

2, for k = 0.
(3.44)

The time step constraint for stability is no longer reflecting the “multi-scale” aspect of the equation, and
it is independent of ε and always ∆t = O(h2), even in the convective regime with ε = O(1) and when
k = 0. This shows the importance of including the term (I−Π)(v∂xg) in the design of numerical methods.

3.2 Error estimates

In this subsection, error estimates are carried out for the proposed method (2.10) to solve the kinetic transport
equation (2.1) in its micro-macro formulation (2.3) with smooth exact solutions at any given time T : 0 < T <∞.
Let ρn and gn be the exact solution at time tn = n∆t, ∀n. Let Πρ and Πg denote two orthogonal projections onto
Ukh which will be specified later. Define the error function in ρ, enρ = ρn − ρnh = ξnρ − ηnρ where ξnρ = Πρρ

n − ρnh
and ηnρ = Πρρ

n − ρn. Similarly, eng = gn − gnh = ξng − ηng where ξng = Πgg
n − gnh and ηng = Πgg

n − gn. We also
denote En = ||ξnρ ||2 + ε2|||ξn−1

g |||2. Both ηnρ and ηng can be estimated in a standard way based on the definitions

of Πρ, Πg, and Ukh (see the beginning of Section 3 regarding the property of projections), therefore the error
estimates for the proposed methods boil down to the estimation of ξnρ and ξng , ∀n. Throughout this subsection,
we use C,C∗ > 0 to denote generic constants. Here C only depends on k; C∗ is independent of h, ∆t and n and
depends on k, T , ||v||∞ and some Sobolev norms of the exact solutions, more specifically, an upper bound of

||∂ttρ||, ||∂xtρ||, ||ρ||Hk+1(Ωx), ||∂tρ||Hk+1(Ωx), |||∂ttg|||, 〈||g||2Hk+1(Ωx)
〉, 〈||∂tg||2Hk+1(Ωx)

〉

over t ∈ [0, T ]. Different occurrences of C,C∗ could take different values. Standard notations for Sobolev spaces
Hk+1(Ωx) as well as their norms || · ||Hk+1(Ωx) are used in this paper [7].

Recall that at t = 0, the proposed methods are initialized through ρ0h = πhρ
0 and g0h = πhg

0. With this and
Lemma 3.1, we have 〈ξng 〉 = 〈Πggn〉 − 〈gnh〉 = Πg〈gn〉 = 0, hence

〈ξng 〉 = 0, ∀n. (3.45)

In next Theorem, we will state the main error estimate results, and their proofs will be given step by step in
Sections 3.2.1-3.2.5.

Theorem 3.6 (Error estimate). When the DG-IMEX1 method (2.10) is applied to the kinetic transport equation
(2.1) in its micro-macro decomposition formulation (2.3), the following error estimates hold:

(1) with any of the alternating flux in (2.9),

||ρn − ρnh||2 + ε2|||gn−1 − gn−1
h |||2

≤ C∗

(
(1 + ε2)h2k+2 +∆t2 +

1

1− σ
((1 + ε4)∆t2 + h2k+2 + εh2k+1)

)
; (3.46)

(2) with any of the central flux in (2.9),

||ρn − ρnh||2 + ε2|||gn−1 − gn−1
h |||2

≤ C∗

(
ε2h2k+2 + h2k +∆t2 +

1

1− σ
((1 + ε4)∆t2 + h2k + εh2k+1)

)
(3.47)
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Table 3.1: Spatial accuracy orders established by the error estimates.

alternating central
ε = O(h) k + 1 k
ε >> h k + 1

2 k

for n : n∆t ≤ T under the condition ∆t ≤ σ∆tstab and ∆t < 1
2 . Here σ is any constant in (0, 1).

The error estimates are obtained as long as the time step is no larger than that required for numerical
stability. We further summarize the established spatial accuracy orders in Table 3.1. Numerically, higher than
theoretical convergence rates can be observed in some cases (see [10]).

Remark 3.7. What established here are a priori error estimates, and the constant C∗ depends on exact solutions
hence possibly on ε. For any test case where supεC∗ < ∞, the error estimates in Theorem 3.6 hold uniformly
with respect to ε.

3.2.1 Local truncation errors and error equations

Using the consistency of the DG spatial discretization, local truncation errors from the n-th step temporal
discretization, denoted as τnρ (·) ∈ Ukh and τng (·, v) ∈ Ukh , are defined as follows. For any φ(·), ψ(·, v) ∈ Ukh ,

(
ρn+1 − ρn

∆t
, φ

)
+ ah(g

n, φ) = (τnρ , φ), (3.48a)

(
gn+1 − gn

∆t
, ψ

)
+

1

ε
bh,v(g

n, ψ)− v

ε2
dh(ρ

n+1, ψ) = − 1

ε2
(gn+1, ψ) + (τng , ψ). (3.48b)

Lemma 3.8. The following estimates hold for the local truncation errors,

||τnρ || ≤
∆t√
3

max
t∈[0,T ]

||∂ttρ(·, t)||, (3.49)

|||ε2τng ||| ≤ ε2
∆t√
3

max
t∈[0,T ]

|||∂ttg|||+∆t max
t∈[0,T ]

(|||∂tg|||+ 〈v2〉1/2||∂xtρ||). (3.50)

Proof. For any φ ∈ Ukh , using the definition of the local truncation errors and integration by parts on each mesh
element, we have

(τnρ , φ) =

(
ρn+1 − ρn

∆t
, φ

)
+ ah(g

n, φ) =

(
ρn+1 − ρn

∆t
− ∂tρ

n, φ

)
+ (∂tρ

n, φ) + ah(g
n, φ)

=

(
ρn+1 − ρn

∆t
− ∂tρ

n, φ

)
+ ((∂tρ+ ∂x〈vg〉|t=tn , φ) =

(
ρn+1 − ρn

∆t
− ∂tρ

n, φ

)
.

The third equality is due to the consistency of the numerical flux, therefore the consistency of the spatial
discretization. Now

||τnρ || = max
06=φ∈Uk

h

(τnρ , φ)

||φ|| ≤ ||ρ
n+1 − ρn

∆t
− ∂tρ

n|| = 1

∆t
||
∫ tn+1

tn
(tn+1 − t)∂ttρ(x, t)dt||

≤ 1

∆t

(∫ tn+1

tn
(tn+1 − t)2dt

∫

Ωx

∫ tn+1

tn
(∂ttρ(x, t))

2dtdx

)1/2

≤ ∆t√
3

max
t∈[0,T ]

||∂ttρ(·, t)||.
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Similarly, for the truncation error in equation for g, ∀ψ ∈ Ukh ,

(ε2τng , ψ) = ε2
(
gn+1 − gn

∆t
, ψ

)
+ εbh,v(g

n, ψ)− vdh(ρ
n+1, ψ) + (gn+1, ψ)

= ε2 (∂tg
n, ψ) + εbh,v(g

n, ψ)− vdh(ρ
n, ψ) + (gn, ψ)

+ ε2
(
gn+1 − gn

∆t
− ∂tg

n, ψ

)
− vdh(ρ

n+1 − ρn, ψ) + (gn+1 − gn, ψ)

= ε2
(
(∂tg +

1

ε2
v∂xρ+

1

ε
{I−Π}(v∂xg) +

1

ε2
g)|t=tn , ψ

)

+ ε2
(
gn+1 − gn

∆t
− ∂tg

n, ψ

)
+ (v∂x(ρ

n+1 − ρn), ψ) + (gn+1 − gn, ψ)

= ε2
(
gn+1 − gn

∆t
− ∂tg

n, ψ

)
+ (v∂x(ρ

n+1 − ρn), ψ) + (gn+1 − gn, ψ).

Note ||ε2τng || = max06=ψ∈Uk
h

(ε2τn
g ,ψ)

||ψ|| , then

|||ε2τng ||| ≤ |||ε2(g
n+1 − gn

∆t
− ∂tg

n) + v∂x(ρ
n+1 − ρn) + (gn+1 − gn)|||

≤ ε2|||g
n+1 − gn

∆t
− ∂tg

n|||+ |||v∂x(ρn+1 − ρn)|||+ |||(gn+1 − gn)|||

≤ ε2
∆t√
3

max
t∈[0,T ]

|||∂ttg|||+∆t max
t∈[0,T ]

(|||∂tg|||+ 〈v2〉1/2||∂xtρ||).

Subtracting the numerical scheme (2.10) from (3.48) and using the linearity, one gets the following error
equations,

(
ξn+1
ρ − ξnρ

∆t
, φ

)
+ ah(ξ

n
g , φ) =

(
ηn+1
ρ − ηnρ

∆t
, φ

)
+ ah(η

n
g , φ) + (τnρ , φ), (3.51a)

(
ξn+1
g − ξng

∆t
, ψ

)
+

1

ε
bh,v(ξ

n
g , ψ)−

v

ε2
dh(ξ

n+1
ρ , ψ) +

1

ε2
(ξn+1
g , ψ) (3.51b)

=

(
ηn+1
g − ηng

∆t
, ψ

)
+

1

ε
bh,v(η

n
g , ψ)−

v

ε2
dh(η

n+1
ρ , ψ) +

1

ε2
(ηn+1
g , ψ) + (τng , ψ)

for any test functions φ(·), ψ(·, v) ∈ Ukh . We now take φ = ξn+1
ρ in (3.51a). In addition, we take ψ = ε2ξn+1

g in
(3.51b), integrate in v, and shift the index n to n − 1. The resulting two equations are summed up and give
LHS = RHS, where

LHS =Ξε(ξ
n+1
ρ , ξnρ , ξ

n
g , ξ

n−1
g ) + |||ξng |||2, (3.52)

RHS =

(
ηn+1
ρ − ηnρ

∆t
, ξn+1
ρ

)
+ ah(η

n
g , ξ

n+1
ρ ) + (τnρ , ξ

n+1
ρ ) (3.53)

+ ε2〈
(
ηng − ηn−1

g

∆t
, ξng

)
〉+ ε〈bh,v(ηn−1

g , ξng )〉 − 〈vdh(ηnρ , ξng )〉+ 〈(ηng , ξng )〉+ ε2〈(τn−1
g , ξng )〉.

Now we apply Lemma 3.2 with φ = ξρ, ψ = ξg, and m = n− 1, and get

LHS ≥ 1

2∆t
(En+1 − En) (3.54)

+

{ (
ε− α2

∆t
h

)
〈 |v|2

∑
i[ξ

n
g ]

2
i− 1

2

〉+
(
1− α1

∆t
h2

)
|||ξng |||2, for k ≥ 1,

(
ε− α2

2
∆t
h

)
〈 |v|2

∑
i[ξ

n
g ]

2
i− 1

2

〉+ |||ξng |||2, for k = 0.

Next we want to estimate RHS. This will be proceeded for the proposed scheme with the alternating and the
central flux (2.9), respectively.
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3.2.2 To estimate RHS (3.53) with the alternating flux

Without loss of generality, we consider using the alternating flux 〈̂vg〉 = 〈vg〉−, ρ̂ = ρ+ in the proposed
scheme (2.10). For this case, we take Πρ = π+

h and Πg = π−
h in error estimates. With such choices and

∂xξ
n+1
ρ , ∂x〈vξng 〉(·, v) ∈ Uk−1

h , one has
∫
Ii
〈vηng 〉∂xξn+1

ρ dx =
∫
Ii
ηnρ ∂x〈vξng 〉dx = 0, and 〈vηng 〉−i− 1

2

= (ηnρ )
+
i− 1

2

=

0, ∀i, therefore
ah(η

n
g , ξ

n+1
ρ ) = 〈vdh(ηnρ , ξng )〉 = 0. (3.55)

We now turn to the term containing bh,v in (3.53). With 〈ξng 〉 = 0, ∀n in (3.45), and the choice of Πg, we have

〈bh,v(ηn−1
g , ξng )〉 = 〈(Dh,v(ηn−1

g ; v), ξng )〉

= −〈
∑

i

(∫

Ii

vηn−1
g ∂xξ

n
g dx

)
+
∑

i

˜(vηn−1
g )i− 1

2

[ξng ]i− 1
2
〉 = −〈

∑

i

˜(vηn−1
g )i− 1

2

[ξng ]i− 1
2
〉

= −〈
∑

i

(vηn−1
g )−

i− 1
2

[ξng ]i− 1
2
〉+ − 〈

∑

i

(vηn−1
g )+

i− 1
2

[ξng ]i− 1
2
〉− = −〈

∑

i

(vηn−1
g )+

i− 1
2

[ξng ]i− 1
2
〉−.

This can be further estimated as below, with any σ ∈ (0, 1)

|〈bh,v(ηn−1
g , ξng )〉| ≤ (1 − σ)〈 |v|

2

∑

i

[ξng ]
2
i− 1

2

〉− +
1

4(1− σ)
〈2|v|

∑

i

((ηn−1
g )+

i− 1
2

)2〉−

≤ (1 − σ)〈 |v|
2

∑

i

[ξng ]
2
i− 1

2

〉+ C∗

(1− σ)
h2k+1. (3.56)

The estimate in (3.14) is used to get the last inequality. We further note that

||η
n+1
ρ − ηnρ

∆t
||2 =

∫

Ωx

| 1
∆t

∫ tn+1

tn
(I −Πρ)∂tρ(x, s)ds|2dx

≤ 1

∆t

∫ tn+1

tn
||(I −Πρ)∂tρ(·, s)||2ds

≤C max
t∈[0,T ]

||∂tρ(·, t)||2Hk+1(Ωx)
h2k+2 = C∗h

2k+2, (3.57)

and similarly

|||
ηng − ηn−1

g

∆t
|||2 ≤ C max

t∈[0,T ]
〈||∂tg(·, t)||2Hk+1(Ωx)

〉 h2k+2 = C∗h
2k+2. (3.58)

With these and the estimates on the truncation errors, we have

|
(
ηn+1
ρ − ηnρ

∆t
, ξn+1
ρ

)
+ (τnρ , ξ

n+1
ρ )|

≤ ||ξn+1
ρ ||2 + 1

4
||η

n+1
ρ − ηnρ

∆t
+ τnρ ||2 ≤ ||ξn+1

ρ ||2 + C∗(h
2k+2 +∆t2), (3.59)

and

|ε2〈
(
ηng − ηn−1

g

∆t
, ξng

)
〉+ 〈(ηng , ξng )〉+ ε2〈(τn−1

g , ξng )〉|

≤ε2|||ξng |||2 +
1

4
ε2|||η

n
g − ηn−1

g

∆t
|||2 + (1 − σ)|||ξng |||2 +

1

4(1− σ)
(|||ε2τn−1

g |||2 + |||ηng |||2)

≤ε2|||ξng |||2 + (1− σ)|||ξng |||2 + ε2C∗h
2k+2 +

C∗

(1− σ)

(
(1 + ε4)∆t2 + h2k+2

)
. (3.60)

Now we combine the estimates in (3.55), (3.56), (3.59), (3.60), and get

|RHS| ≤ En+1 + (1− σ)|||ξng |||2 + (1 − σ)ε〈 |v|
2

∑

i

[ξng ]
2
i− 1

2

〉+ C∗τ, (3.61)

where

τ = (1 + ε2)h2k+2 +∆t2 +
1

1− σ
((1 + ε4)∆t2 + h2k+2 + εh2k+1). (3.62)
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3.2.3 To estimate RHS (3.53) with the central flux

Now we consider the proposed scheme (2.10) with the central flux 〈̂vg〉 = {〈vg〉}, ρ̂ = {ρ}. For this case, we
take Πρ = πh and Πg = πh. With such choices, there is

RHS =ah(η
n
g , ξ

n+1
ρ ) + (τnρ , ξ

n+1
ρ ) + ε〈bh,v(ηn−1

g , ξng )〉 − 〈vdh(ηnρ , ξng )〉+ ε2〈(τn−1
g , ξng )〉

=(τnρ , ξ
n+1
ρ ) + ε2〈(τn−1

g , ξng )〉 −
∑

i

(
{〈vηng 〉}[ξn+1

ρ ] + ε〈 ˜(vηn−1
g )[ξng ]〉+ 〈v{ηnρ }[ξng ]〉

)

i− 1
2

.

Moreover, one can use the estimates in (3.14), the estimates for the truncation errors, the inverse inequality
(3.12a), and have

|(τnρ , ξn+1
ρ ) + ε2〈(τn−1

g , ξng )〉| ≤
1

2
||ξn+1
ρ ||2 + 1− σ

2
|||ξng |||2 + C∗∆t

2 +
C∗

1− σ
(1 + ε4)∆t2,

|
∑

i

({〈vηng 〉}[ξn+1
ρ ])i− 1

2
| ≤ h

4Cinv

∑

i

[ξn+1
ρ ]2i− 1

2

+
Cinv

h

∑

i

{〈vηng 〉}2i− 1
2

≤ 1

2
||ξn+1
ρ ||2 + C∗h

2k,

|ε
∑

i

〈 ˜(vηn−1
g )[ξng ]〉i− 1

2
| ≤ (1− σ)ε〈 |v|

2

∑

i

[ξng ]
2
i− 1

2

〉+ C∗

1− σ
εh2k+1,

∑

i

〈v{ηnρ }[ξng ]〉i− 1
2
≤ 1− σ

2
|||ξng |||2 +

C∗

1− σ
h2k,

therefore RHS can be estimated as (3.61) where

τ = h2k +∆t2 +
1

1− σ
((1 + ε4)∆t2 + h2k + εh2k+1). (3.63)

3.2.4 To estimate E1
With the discrete energy defined in the analysis, we also need to estimate E1. To achieve this, we start with
(3.51a), n = 0, and have

||ξ1ρ|| = sup
06=φ∈Uk

h

(ξ1ρ, φ)

||φ|| = sup
06=φ∈Uk

h

(
η1ρ + e0ρ, φ

)
−∆tah(e

0
g, φ) + ∆t(τ0ρ , φ)

||φ||

≤ ||η1g ||+ ||e0ρ||+∆t

(
||τ0ρ ||+ sup

06=φ∈Uk
h

ah(e
0
g, φ)

||φ||

)
.

The first two terms can be estimated based on the property of the projections in (3.14), that is, ||η1ρ|| =

||ρ1 − Πρρ
1|| = C∗h

k+1 and ||e0ρ|| = ||ρ0 − πhρ
0|| = C∗h

k+1. From Lemma 3.8, the truncation error τ0ρ can be
controlled by ||τ0ρ || ≤ C∗∆t. To estimate the last term, we use e0g = g0 − πhg

0 and (3.14), and have

|ah(e0g, φ)| = |
∑

i

〈̂ve0g〉i− 1
2

[φ]i− 1
2
| ≤

(
h−1

∑

i

〈̂ve0g〉
2

i− 1
2

)1/2(
h
∑

i

[φ]2i− 1
2

)1/2

≤ C∗h
k||φ||,

for any φ ∈ Ukh . Note that ∆t ≤ σ∆tstab implies ∆t = C(h2 + εh), with this, we finally have

E1 = ||ξ1ρ||2 + ε2|||ξ0g |||2 = ||ξ1ρ||2 + ε2||Πgg0 − g0 + g0 − πhg
0||2

≤ C∗

(
∆t2h2k + (1 + ε2)h2k+2 +∆t4

)
≤ C∗

(
(1 + ε2)h2k+2 +∆t4

)
.

3.2.5 The final step for the error estimates

We now combine the bounds of LHS and RHS in (3.54), (3.61) with (3.62) for the alternating flux, or with
(3.63) for the central flux. Together with (3.35), we have

1

2∆t
(En+1 − En) ≤ En+1 + γ̂|||ξng |||2 + C∗τ (3.64)
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with

γ̂ =

{
max

(
−σε+ α2

∆t
h , 0

)
α3

h +
(
−σ + α1

∆t
h2

)
for k ≥ 1

max
(
−σε+ α2

2
∆t
h , 0

)
α3

h − σ for k = 0 .
(3.65)

As long as γ̂ ≤ 0, that is,
∆t ≤ σ∆tstab, (3.66)

where ∆tstab comes from the time step constraint in (3.31) for numerical stability, then

(1 − 2∆t)En+1 ≤ En + (2∆t)C∗τ. (3.67)

Assume ∆t < 1
2 . Define Θn = En(1 − 2∆t)n, then Θn+1 ≤ Θn + 2∆t(1 − 2∆t)nC∗τ. With mathematical

induction, and the estimate of E1 in Section 3.2.4, one gets

Θn ≤ 2∆tC∗τ((1 − 2∆t) + · · ·+ (1− 2∆t)n−1) + Θ1 ≤ (C∗τ + E1)(1 − 2∆t) ≤ C∗τ, (3.68)

that is En(1 − 2∆t)n ≤ C∗τ. Moreover, with n : ∆tn ≤ T , there is

En ≤ (1− 2∆t)−nC∗τ ≤ e2∆tnC∗τ ≤ C∗e
2T τ = C∗τ. (3.69)

On the other hand, the properties of the projection operators (3.14) ensure ||ηnρ || = C∗h
k+1 and |||ηn−1

g ||| =
C∗h

k+1, therefore

||enρ ||2 + ε2|||en−1
g |||2 ≤ 2(||ηnρ ||2 + ε2|||ηn−1

g |||2 + En) ≤ C∗(τ + (1 + ε2)h2k+2). (3.70)

We now can conclude the main error estimates in Theorem 3.6 by further utilizing the forms of τ in (3.62) and
(3.63).

3.3 Rigorous asymptotic analysis

In [10], a formal asymptotic analysis was performed for the proposed methods, showing that when ε → 0,
the limiting schemes are consistent discretizations for the limiting heat equation. In this section, we want to
establish this asymptotic preserving property rigorously for DG-IMEX1 using tools from functional analysis.

To explicitly indicate how the numerical solutions depend on the mesh parameter ∆t, h, and on ε, we use
ρnε,∆t,h and gnε,∆t,h to denote ρnh and gnh in this section, unless otherwise specified. For the initial condition
ρε(x, t = 0) and gε(x, v, t = 0), two assumptions are made which are mild and reasonable.

(A1) At t = 0,
ρε ⇀ ρ0, 〈vgε〉⇀ 〈vg0〉 in L2(Ωx), as ε→ 0. (3.71)

Here “⇀” stands for weak convergence.

(A2)
sup
ε
(||ρε||)|t=0 <∞, sup

ε
(|||gε|||)|t=0 <∞. (3.72)

In the following analysis, the index k for the discrete space Ukh , hence in the numerical method, is fixed. Let

{Ψj}Nk

j=1 denote an orthonormal basis of Ukh with respect to the standard L2 inner product. We define

ρ0∆t,h = πhρ0|t=0, q0∆t,h = πh〈vg0〉|t=0, (3.73)

and also denote qnε,∆t,h = 〈vgnε,∆t,h〉, ∀n. Below we will discuss some properties of the numerical solution at
t = tn with n = 0, 1, before turning to the main result in Theorem 3.10.

Lemma 3.9. Under the assumptions (A1) and (A2), we have

(i) limε→0 ρ
0
ε,∆t,h = ρ0∆t,h, and limε→0 q

0
ε,∆t,h = q0∆t,h. The convergence is in any norm.

(ii) supε ||ρ1ε,∆t,h|| <∞, and supε |||g0ε,∆t,h||| <∞.
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Proof. First note that Ukh is finite dimensional, then a sequence in Ukh , if converges, will converge in any norm.
To prove (i), based on assumption (A1), we have limε→∞(ρε, ψ) = (ρ0, ψ), ∀ψ ∈ L2(Ωx) at t = 0, therefore as
ε→ 0,

ρ0ε,∆t,h = πhρε|t=0 =

Nk∑

j=1

(ρε|t=0,Ψj)Ψj →
Nk∑

j=1

(ρ0|t=0,Ψj)Ψj = πhρ0|t=0 = ρ0∆t,h.

Similarly, the second half of (i) can be proved.
To prove (ii), recall that g0ε,∆t,h = πhgε|t=0, then

|||g0ε,∆t,h|||2 = 〈||g0ε,∆t,h||2〉 = 〈
Nk∑

j=1

(gε|t=0,Ψj)
2〉 ≤ (|||gε|||2)|t=0

Nk∑

j=1

||Ψj||2.

Now with assumption (A2), we have supε |||g0ε,∆t,h||| <∞. Similarly, one can show that

sup
ε

||ρ0ε,∆t,h|| ≤ (||ρε||)|t=0




Nk∑

j=1

||Ψj||2



1/2

<∞. (3.74)

What remains is to establish the boundedness of supε ||ρ1ε,∆t,h||.
From (2.10a) with n = 0,

||ρ1ε,∆t,h|| ≤ ||ρ0ε,∆t,h||+∆t sup
06=φ∈Uk

h

ah(g
0
ε,∆t,h, φ)

||φ|| . (3.75)

Without loss of generality, in ah(·, ·) defined in (2.6a), we consider 〈̂vg〉 = 〈vg〉−. First we have

||〈vg0ε,∆t,h〉||2 = ||
Nk∑

j=1

(〈vgε〉|t=0,Ψj)Ψj ||2 =

Nk∑

j=1

(〈vgε〉|t=0,Ψj)
2

≤ (||〈vgε〉||2)|t=0

Nk∑

j=1

||Ψj ||2 ≤ 〈v2〉(|||gε|||2)|t=0

Nk∑

j=1

||Ψj ||2, (3.76)

and

|〈vg0ε,∆t,h〉−i− 1
2

| = |
Nk∑

j=1

(〈vgε〉|t=0,Ψj)Ψj(x
−
i− 1

2

)|

≤ 〈v2〉1/2(|||gε|||)|t=0

Nk∑

j=1

||Ψj|||Ψ(x−
i− 1

2

)|. (3.77)

Based on the definition of ah(·, ·), and inverse inequalities in (3.12), we further get

ah(g
0
ε,∆t,h, φ) = −(〈vg0ε,∆t,h〉, ∂xφ) −

∑

i

̂〈vg0ε,∆t,h〉i− 1
2

[φ]i− 1
2

≤ ||〈vg0ε,∆t,h〉|| ||∂xφ||+
∑

i

| ̂〈vg0ε,∆t,h〉i− 1
2

| |[φ]i− 1
2
|

≤ C(k)

h
||φ||


||〈vg0ε,∆t,h〉||+

(
h
∑

i

(〈vg0ε,∆t,h〉−i− 1
2

)2

)1/2

 . (3.78)

Now we can combine (3.74)-(3.78) as well as the boundedness assumption (A2), and conclude

sup
ε

||ρ1ε,∆t,h|| ≤ C(k,∆t, h, 〈v2〉)
(
sup
ε

||ρε||+ sup
ε

|||gε|||
)
|t=0 <∞.
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Theorem 3.10. Let c0 be any fixed positive constant, c0 ∈ (0, 1). Under the assumptions (A1) and (A2) on
the initial data, and under the following condition on the time step ∆t,

∆t < ∆tstab,c0 =
h

α1 + α2α3
((1 − c0)h+min(ε,

(1− c0)α2h

α1
)α3), (3.79)

with αi, i = 1, 2, 3 defined in (3.13), we have

lim
ε→0

ρnε,∆t,h = ρn∆t,h, qnε,∆t,h ⇀ qn∆t,h in L2(Ωx) as ε→ 0, ∀n ≥ 1 (3.80)

for some ρn∆t,h, q
n
∆t,h ∈ Ukh , and the limits satisfy

(
ρn+1
∆t,h − ρn∆t,h

∆t
, φ

)
−
∑

i

∫

Ii

qn∆t,h∂xφdx−
∑

i

(̂qn∆t,h)i− 1
2

[φ]i− 1
2
= 0, ∀φ ∈ Ukh , (3.81a)

(qn+1
∆t,h, ψ) = 〈v2〉

(∑

i

∫

Ii

ρn+1
∆t,h∂xψdx+

∑

i

̂(ρn+1
∆t,h)i− 1

2

[ψ]i− 1
2

)
, ∀ψ ∈ Ukh , (3.81b)

for n ≥ 0, with the initial data given by (3.73).

The limiting scheme (3.81), though being implicitly defined, is intrinsically explicit if one first solves ρn+1
∆t,h

then gn+1
∆t,h in actual implementation. Note that this limiting scheme with any fixed k is a consistent scheme for

the limiting heat equation ∂tρ = ∂x(〈v2〉∂xρ) in its first order form

∂tρ+ ∂xq = 0, q = −〈v2〉∂xρ. (3.82)

In fact, the spatial discretization in the limiting scheme is exactly the local DG spatial discretization for the
heat equation studied in [8].

Proof. We start with revisiting γ in (3.36) and (3.37) from the stability analysis. By requiring γ ≤ −c0, we obtain
the condition (3.79) on the time step ∆t. It is easy to see ∆tstab,c0 < ∆tstab (In fact, limc0→0 ∆tstab,c0 = ∆tstab.)
The remaining of the proof consists of two steps.

Step 1: In this step, we want to show

sup
ε

||ρnε,∆t,h|| <∞, sup
ε

|||gnε,∆t,h||| <∞, ∀n ≥ 1, (3.83)

when ∆t and h satisfy (3.79). With such mesh parameters, equation (3.36) turns to

1

2∆t

(
(||ρn+1

ε,∆t,h||2 + ε2|||gnε,∆t,h|||2)− (||ρnε,∆t,h||2 + ε2|||gn−1
ε,∆t,h|||2)

)
≤ −c0|||gnε,∆t,h|||2, (3.84)

that is
||ρn+1

ε,∆t,h||2 + (2∆tc0 + ε2)|||gnε,∆t,h|||2 ≤ ||ρnε,∆t,h||2 + ε2|||gn−1
ε,∆t,h|||2. (3.85)

On the other hand, ∆tstab,c0 < ∆tstab, and this implies the stability estimate (3.30). Combining (3.85), (3.30),
the boundedness of supε ||ρ1ε,∆t,h||, supε |||g0ε,∆t,h||| in Lemma 3.9, we will obtain (3.83).

Step 2: Now we would like to establish the asymptotic behavior in (3.80), as well as the fact that the limits
ρn∆t,h and qn∆t,h satisfy (3.81) with the initial data (3.73).

First of all, it is easy to see that to obtain (3.80), it is equivalent to show

lim
m→∞

ρnεm,∆t,h = ρn∆t,h, qnεm,∆t,h ⇀ qn∆t,h in L2(Ωx) as m→ ∞, ∀n ≥ 1 (3.86)

where {εm}∞m=1 is any sequence such that limm→∞ εm = 0. Given that Ukh is finite dimensional, the boundedness
of supm ||ρnεm,∆t,h|| from (3.83) implies that there is a subsequence {ρnεmr ,∆t,h

}∞r=1 converging in Ukh under any

norm as r → ∞. Let’s denote the limit as ρn∆t,h ∈ Ukh .
Now we turn to {qnεm,∆t,h}∞m=1. For the simplicity of notations, this sequence will be denoted as {qnεm}∞m=1 =

{〈vgnεm〉}∞m=1 in the present paragraph. For each function gεm , it can be written as gnεm(x, v) =
∑Nk

j=1 α
(j)
εm(v)Ψj(x).
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In addition, we have |||gnεm ||| =
(∑Nk

j=1 ||α
(j)
εm ||2L2(Ωv)

)1/2
. This, in addition to the boundedness of supm |||gnεm |||

in (3.83), indicates that supm ||α(j)
εm ||2L2(Ωv)

, therefore supr ||α(j)
εmr

||2L2(Ωv)
is bounded for any j = 1, · · · , Nk. As

a Hilbert space, L2(Ωv) is weakly sequentially compact, that is, {α(j)
εmr

}∞r=1 has a subsequence which is weakly

convergent in L2(Ωv). Without loss of generality, this subsequence is still denoted as {α(j)
εmr

}∞r=1, and the weak

limit when r → ∞ is denoted as α
(j)
0 ∈ L2(Ωv), ∀j. We now define gn∆t,h(x, v) =

∑Nk

j=1 α
(j)
0 (v)Ψj(x), and

qn∆t,h = 〈vgn∆t,h〉 =
∑Nk

j=1〈vα
(j)
0 〉Ψj(x). For any ψ ∈ Ukh ,

lim
r→∞

(qnεmr ,∆t,h
, ψ) =

Nk∑

j=1

(
lim
r→∞

〈vα(j)
εmr

〉
)
(Ψj(x), ψ) =

Nk∑

j=1

(
〈vα(j)

0 〉
)
(Ψj(x), ψ) = (qn∆t,h, ψ).

Up to now, we have shown that (3.80) holds for a subsequence of {ρnεmr ,∆t,h
}∞r=1 and {qnεmr ,∆t,h

}∞r=1 as

r → ∞. Moreover, it is straightforward to see that the limits ρn∆t,h and gn∆t,h, n = 1, 2, · · · , satisfy (3.81) with

the initial data (3.73). On the other hand, given the initial data (3.73), the solution to (3.73) at tn+1, n ≥ 0, is
uniquely determined by first solving (3.81a) for ρn+1

∆t,h and then solving (3.81b) for qn+1
∆t,h. Finally, we can follow

a standard contradiction argument and the uniqueness of the solution to (3.81) to conclude that (3.80) holds
for the entire sequence.

Remark 3.11. The rigorous asymptotic analysis is established for the methods with the first order accuracy
in time (2.10). When higher order temporal discretizations are used as in [10], one can follow the steps in this
subsection to obtain a rigorous asymptotic analysis, as long as a stability estimate similar to (3.36) is available.
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