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Abstract. A method is presented to compute minimizers (instantons) of action functionals using
arclength parametrization of Hamilton’s equations. This method can be interpreted as a local variant
of the geometric minimum action method (gMAM) introduced to compute minimizers of the Freidlin-
Wentzell action functional that arises in the context of large deviation theory for stochastic differential
equations. The method is particularly well-suited to calculate expectations dominated by noise-
induced excursions from deterministically stable fixpoints. Its simplicity and computational efficiency
are illustrated here using several examples: a finite-dimensional stochastic dynamical system (an
Ornstein-Uhlenbeck model) and two models based on stochastic partial differential equations: the
φ4-model and the stochastically driven Burgers equation.

1. Introduction. Finding the minimizer of action functionals is a fundamental
problem that appears in a variety of areas in mathematics and science. For example,
it arises in the context of large deviation theory (LDT), where probabilities and expec-
tations over the solutions of stochastic differential equations (SDEs) can be estimated
in the small noise limit via minimization of the Freidlin-Wentzell action [10]. This
has led to the development of numerical tools specifically designed to tackle this task:
the string method (for gradient fields) [5, 7], the minimum action method [6, 9], the
adaptive minimum action method (aMAM) [21] and the geometric minimum action
method (gMAM) [13, 14, 19] are a few examples of techniques to calculate the mini-
mizer of the Freidlin-Wentzell action, also called instanton. One difficulty one is faced
in these calculations is that the speed of the instanton can be very inhomogeneous: for
example it can vanish at critical locations making its total duration infinite. In these
situations, it is computationally advantageous to replace the time-parametrization
of the instanton by some other, geometrically motivated parametrizations, such as
e.g. arclength parametrization. This strategy is a the core of the string method as
well as aMAM and gMAM. The aim of the present paper is to revisit these methods
and propose alternative ways to calculate instantons by focusing on the Hamiltonian
counterpart of the Euler-Lagrange equation of gMAM.

To be specific, we will consider a system of SDEs in Rn with a drift vector b(x)
and a diffusion matrix a = σσT weighted by a small parameter ε characterizing the
strength of the noise:

dXε(t) = b(Xε(t))dt+
√
εσdW (t). (1.1)

For simplicity, we will assume that the diffusion matrix a is constant (but not neces-
sarily diagonal) – the generalization of the ideas below to non-constant a is straight-
forward. From the theory of large deviations [20, 10] it is known that in the limit
as ε → 0, the solutions to (1.1) that contribute most to the probability of an event
or the value of an expectation are likely to be close to the minimizer of the Freidlin-
Wentzell action functional ST subject to appropriate boundary conditions. This action
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functional is given by

ST (x) =

∫ T

0

L(x, ẋ) dt (1.2)

with the Lagrangian

L(x, ẋ) =
1

2
〈ẋ− b(x), a−1(ẋ− b(x))〉 ≡ 1

2
|ẋ− b(x)|2a. (1.3)

Here 〈x, y〉 denotes the Euclidean scalar product between the vectors x and y and we
introduced the norm induced by a, |x|a =

√
〈x, a−1x〉 – if a is the identity, this is

simply the Euclidean length.
The instanton, i.e. the path that minimizes the action (1.2), can be found by

solving the corresponding Euler-Lagrange equations

d

dt

∂L

∂ẋ
=
∂L

∂x
(1.4)

with the appropriate boundary conditions. Thus, in the context of large deviation
theory the estimation of probabilities or expectations can be reduced to the solution
of the deterministic system (1.4). The question then becomes how to do this effi-
ciently, for example in situations where one is searching for solutions to (1.4) with
one end-point fixed at a stable critical point of ẋ = b(x) – this case is relevant e.g.
for the estimation of expectations with respect to the stationary distribution of (1.1).
This is the main topic of this paper, which is organized as follows. In section 2 we
derive the arclength parametrized Hamilton’s equations that are equivalent to (1.4).
We also show how these equations can be used to estimate the stationary proba-
bility distribution of the SDE (1.1) via calculation of the quasipotential from LDT
(section 2.1), as well as expectations with respect to this distribution (section 2.2).
Finally we give a few special solutions of these equations (section 2.3). In section 3 we
propose a simple and efficient algorithm for the numerical integration of the arclength
parametrized Hamilton’s equations. This algorithm is then tested on several illustra-
tive examples: a finite dimensional Ornstein-Uhlenbeck process that is amenable to
analytical solution (section 4.1), the φ4-model (section 4.2) and the randomly forced
Burgers equation (section 4.3). Some concluding remarks are given in section 5.

2. Hamilton’s equations with arclength parametrization. Instead of solv-
ing (1.4), we can also compute the instanton in the corresponding Hamiltonian frame-
work. The Hamiltonian H is the Legendre transform of the Lagrangian L,

H = 〈ẋ, p〉 − L, p =
∂L

∂ẋ
. (2.1)

and the Hamilton’s equations for the instanton are

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
. (2.2)

As mentioned before, the main idea of gMAM is that, in a wide range of situations,
the instanton can be computed much more efficiently by using a parametrization that
is different than the time t. Let us consider a reparametrization of the form

t = t(s), x̄(s) = x(t(s)), p̄(s) = p(t(s)) (2.3)
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and assume that t′(s) > 0. By chain rule, we have then

x̄′ = t′
∂H

∂p̄
, p̄′ = −t′ ∂H

∂x̄
, t′ = t′(s)

and we can write

λx̄′ =
∂H

∂p̄
, λp̄′ = −∂H

∂x̄
, λ =

1

t′(s)
. (2.4)

One possibility to choose the parametrization is to require that ‖x̄′‖ = C, where ‖ · ‖
is a suitable norm and C is a constant giving the length of x in this norm. This fixes
the value of the function λ in (2.4), which can be thought of as a Lagrange multiplier
introduced to enforce the constraint ‖x̄′‖ = C. Once λ is known, t(s) and its inverse
s(t) can then be obtained from the last equation in (2.4). It is often natural to use the
norm induced by the correlation matrix a, hence to define ‖x′‖ ≡ |x′|a. For simplicity,
we call this arclength parametrization even if a is not the identity. Note that, in prin-
ciple, norm (and parametrization) can be chosen freely and, indeed, other choices are
possible. In the present work, however, we concentrate on arclength parametrization
in contrast to the original time parametrization. Details of the implication of other
parametrizations (and norms) will be studied elsewhere.

For diffusion-driven systems, the Hamiltonian is given by

H =
1

2
〈p, ap〉+ 〈b, p〉, (2.5)

and (2.2) read explicitly

ẋ = ap+ b, ṗ = −(∇b)T p (2.6)

where ∇b is the tensor with entries (∇b)i,j = ∂bi/∂xj . Correspondingly the first two
equations in (2.4) become

λx̄′ = ap̄+ b, λp̄′ = −(∇b)T p̄, (2.7)

In this case, the parametrization by arclength |x̄′|a = C directly leads to λ = |ap̄ +
b|a/C and we can write (2.7) as

x̄′ =
C

|ap̄+ b|a
(ap̄+ b), p̄′ = − C

|ap̄+ b|a
(∇b)T p̄. (2.8)

The norm appearing in the denominator can be expressed as

|ap̄+ b|2a = 〈ap̄+ b, a−1(ap̄+ b)〉 = 〈ap̄+ b, p̄+ a−1b〉
= 〈ap̄, p̄〉+ 2〈p̄, b〉+ |b|2a = 2H + |b|2a = 2E + |b|2a,

(2.9)

where we used the property that since the Hamiltonian H does not depend explicitly
on time, energy is conserved and the points on the graph (x̄, p̄) need to satisfy the
constraint H = E everywhere. This leads to yet another equivalent form of (2.8):

x̄′ =
C√

2E + |b|2a
(ap̄+ b), p̄′ = − C√

2E + |b|2a
(∇b)T p̄. (2.10)

These equations are valid in particular in the case when H = E = 0, which, as
we will see in sections 2.1 and 2.2 is the relevant one to compute probabilities and
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expectations with respect to the stationary distribution of (1.1). In the sequel, we
will focus on this case, that is, we will study

x′ =
C

|b|a
(ap+ b), p′ = − C

|b|a
(∇b)T p. (2.11)

where we dropped the bar to simplify notations - we will stick to this convention
in the sequel. Note that these equations seem singular at the critical points where
b(x) = 0. This is not the case, however, as p = 0 at these points, too. But it
will complicate the numerical integration of (2.11) since, typically, minimizing paths
start from and may go through critical points - this issue will be dealt with in sec-
tion 3. Also note that the constant C = |x′|a giving the length of the path is, usually,
not known a priori. Finally, note that if a were not constant, an additional term
− 1

2 (C/|b|a)
∑
i,j ∂ai,j/∂xkpipj should be added to the equation for k-component of p.

2.1. Derivation of (2.11) from the geometric action and link with the
quasipotential. A key quantity in Freidlin-Wentzell theory is the quasipotential,
defined as

V (x1, x2) = inf
T>0

inf
x
ST (x) (2.12)

where x1 and x2 are two arbitrary points in Rn and the infimum over x is taken
over all the paths that satisfy x(0) = x1, x(T ) = x2. The quasipotential permits to
estimate various long-time properties of (1.1) in the limit as ε → 0. For example, if
x0 is the unique stable fixpoint of ẋ = b(x), and under suitable conditions such that
the solutions to (1.1) are ergodic with respect to the stationary probability density
function ρε(x), then

ρε(x) � e−ε
−1V (x0,x) (2.13)

where � indicates that the ratio of the logarithms of both sides tends to 1 as ε→ 0.
In [13], it was shown that the quasipotential (2.12) can be represented equivalently as

V (x1, x2) = inf
x
Ŝ(x) (2.14)

where the infimum is taken over the paths that satisfy x(0) = x1, x(1) = x2 and we
introduced the geometric action

Ŝ(x) =

∫ 1

0

L̂(x, x′)ds, L̂(x, x′) = |x′|a|b(x)|a − 〈x′, b(x)〉a. (2.15)

This quantity bears his name from the property that it is left invariant by any
reparametrization of the path.

We show now by explicit calculation that arclength parametrized Hamilton’s equa-
tions (2.11) are equivalent to the Euler-Lagrange equations associated with (2.15).
These Euler-Lagrange equations are given by(

∂L̂

∂x′

)′
=
∂L̂

∂x
, (2.16)

which we can write in a more explicit form as(
a−1x′

|x′|a
|b(x)|a − a−1b(x)

)′
=
|x′|a
|b(x)|a

(∇b(x))Ta−1b(x)− (∇b(x))Ta−1x′. (2.17)
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Let

ap =
x′

|x′|a
|b(x)|a − b(x). (2.18)

Then (2.16) can be written as

p′ =
|x′|a
|b(x)|a

(∇b(x))Ta−1b(x)− (∇b(x))Ta−1x′. (2.19)

If we solve (2.18) in x′, and use this expression in (2.19), the resulting system of
equations is exactly (2.11).

2.2. Use of (2.11) in the computation of expectations. Assume again that
ẋ = b(x) has a single stable fixpoint at x = x0 and suppose that we want to estimate
the following expectation with respect to the stationary density of the process.

I =

∫
Rn

exp
(
−ε−1f(x)

)
ρε(x)dx (2.20)

where f(x) is some function. Then as ε→ 0

I � exp
(
−ε−1 inf[S(x) + f(x(1))]

)
, (2.21)

where the infimum is taken over all paths such that x(0) = x0. It is easy to see that
the minimizer of this variational problem solves (2.11) with the boundary conditions

x(0) = x0, p(1) = −∇f(x(1)). (2.22)

Note that these boundary conditions differ from the boundary conditions that are
commonly used in applications of the original gMAM. In those applications, two
points, e.g. two stable fixpoints x0 and x1 are prescribed. In contrast, when computing
expectations as shown above, one of these boundary conditions is replaced by p(1) =
−∇f(x(1)). It is possible to adapt gMAM to handle such boundary conditions, for
example by making the end point x(1) variable. However, as shown in section 3,
working with (2.11) offers a much simpler way to handle boundary conditions of the
type (2.22).

2.3. Special solutions of (2.11). If p = 0, then (2.11) reduces to

x′ =
C

|b(x)|a
b(x), (2.23)

meaning that x′ ‖ b(x) and point in the same direction. This solution corresponds to a
reparametrized version of a deterministic trajectory, which is the solution of ẋ = b(x).
Another p that solves H = 0 with H given by (2.5) is p = −2a−1b(x), for which the
equation for x (2.11) reduces to

x′ = − C

|b(x)|a
b(x), (2.24)

meaning that x′ ‖ b(x) and points in the opposite direction. This special solution,
however, is not always consistent with the second equation in (2.11). Indeed, differ-
entiating p = −2a−1b(x) gives

p′ = −2a−1∇b(x)x′ = 2
C

|b(x)|
a−1∇b(x)b(x), (2.25)
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where we used (2.24) to get the second equality. This equation is consistent with the
second equation in (2.11) iff ∇b = (∇b)T , i.e. iff the drift term is gradient, b(x) =
−∇U(x) for some potential U(x). Thus, solutions of (2.11) that follow deterministic
paths in reverse can only be observed in gradient systems.

Another class of systems for which we can find special solutions of (2.11) that are
not (2.23) are those for which [10]

b(x) = −a∇U(x) + d(x) (2.26)

where d(x) is such that ∇ · d = 0 and d · ∇U = 0. It can easily be checked that in
this case the solutions to (1.1) are ergodic with respect to the following stationary
probability density

ρε(x) = C−1ε e−2U(x)/ε (2.27)

where Cε =
∫
Rn e

−2U(x)/εdx is a normalization factor. In that case a special class of
solutions to (2.11) are those such that p = −2∇U and x satisfies

x′ =
C

|b(x)|a
(a∇U + d), (2.28)

as can be checked by direct substitution.

3. Algorithmic aspects. Using the arclength parametrized Hamilton’s equa-
tions (2.11) gives us a direct and numerically efficient iterative method to find the
instanton that fits the boundary conditions (2.22): Assume that we are given the
k-th iteration (x(k), p(k)) together with an approximation C(k) of the path length
as approximation to the solution of (2.11) with the boundary conditions (2.22). To
compute the next iteration (x(k+1), p(k+1)) and C(k+1) we proceed in the following
way:

1. Use the known approximate solution x(k) = x(k)(s) and C(k), together with
the known final condition p(1) = −∇f(x(k)(1)), to solve the equation for p
backwards in the arclength-parameter s to obtain the next iteration p(k+1).

2. Use this computed approximate solution p(k+1) = p(k+1)(s) and C(k), to-
gether with the initial condition x(0) = x0, in the equation for x to obtain
the next iteration x(k+1).

3. Compute the length of x(k+1) to obtain the next iteration of C(k+1).
If this iteration scheme converges to a fixpoint for x and p, then the constraint |x′|a =
C will be automatically satisfied by this fixpoint. It may not be satisfied during the
iterations, however, in which case in step 3 it may be useful to also reparametrize
(x(k+1), p(k+1)) to enforce the constraint |x′|a = const. At convergence, the solution
will also satisfy H = 0, since the first equation in (2.11) implies that |b|2a = |ap +
b|2a and hence 0 = |p|2a + 2〈b, p〉 ≡ 2H. A similar method (with a parametrization
using an exponentially scaled time) was suggested by Chernykh and Stepanov [3] for
the computation of instantons in stochastic Burgers equation. We will discuss this
example in more detail in section 4.

It is worth stressing that the implementation of the method is extremely simple:
The solution of (2.11) requires only forward (or backward) propagation of the initial
(or final) value, hence existing codes can be easily adapted to be used in this new
method. In contrast, gMAM usually requires the design of entirely new code. The
locality in memory of the method presented here is particularly well-suited for par-
allelization: For large-scale problems, it was successfully implemented in a massively
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parallel setup, using graphics processing units (GPUs) to speed up the computation
(this will be presented elsewhere). In contrast, global minimization techniques such as
Newton or Quasi-Newton methods are more difficult to implement in such a setting.
These aspects additionally simplify the scaling to a large number of degrees of free-
dom. The largest computations for stochastic partial differential equations presented
here, with 2048 grid-points in space and 16384 in time take less than 10 minutes
in Matlab (on an Intel Xeon E5-1620 with 3.60GHz) to successfully converge to the
minimizer.

4. Applications and Examples. Let us now present several examples and
applications of the new method. In these examples, we focus on the exit from a stable
fixed point and apply the iterative method described section 3 in two ways: First,
using Hamilton’s equations in the original time-parametrization given by (2.6):

ẋ = ap+ b, ṗ = −(∇b)T p

and second using the arclength parametrized Hamilton’s equations (2.11):

x′ =
C

|b|a
(ap+ b), p′ = − C

|b|a
(∇b)T p.

In all cases, we consider the escape from a stable fixpoint x0 that can be used as initial
condition for x in the above equations and we designate a final condition for p either
by fixing it or through the second boundary condition in (2.22) for some specific f .
Note that, in the time-parametrized case, since x0 is a stable fixpoint, it takes infinite
time to escape it. This makes the iteration numerically difficult as, in practice, one
needs to choose a tmin and then decrease it towards −∞ until convergence of the
computed minimum of the action. This problem does not occur when one works
with arclength-parametrization, which is an immediate numerical advantage of this
method.

4.1. Application to a linear Ornstein-Uhlenbeck model. As a first exam-
ple, consider a linear Ornstein-Uhlenbeck model for which the drift b is of the form

b(x) = −Bx, (4.1)

with x ∈ R2 and the matrix B not necessarily normal. In this case, a lot of analytical
information about the minimizer can be obtained in the following way [10, 11]: Let
C be the solution of

BC + CBT = a (4.2)

with a being the diffusion tensor from above. Then εC is the covariance of the
equilibrium distribution for the SDE, which is zero-mean Gaussian and exists as long
as x = 0 is a stable fixpoint of ẋ = −Bx. The path of maximum likelihood of escape
from 0 is the time-reversed of the solution to

ẋ = −CBTC−1x. (4.3)

This result is consistent with the fact that the time-reversed form of the SDE (1.1)
with b(x) = −Bx is

dXε(t) = −CBTC−1Xε(t)dt+
√
εσdW.
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and it corresponds to picking

ap = Bx+ CBTC−1x (4.4)

as solution to H = 0. It can be checked that, if we insert (4.4) in the first equation
in (2.6), this equation reduces to (4.3), and that the second equation in (2.6) is also
satisfied. Since we can compute the minimizer analytically, this model is a good
start to compare the two methods (Hamilton’s equations with time-parametrization
vs Hamilton’s equations with arclength-parametrization) and to study convergence.
As a concrete example, we chose

B =

(
−1 4
−4 −1

)
and x(t = −∞) = 0, p(t = 0) = (4, 1) as a test case. Note that, in this case, B is
normal and, therefore, the analytical solution is even simpler: The minimizing path
is the time-reversed of the trajectory that spirals into the fixpoint at the origin and
is given by

p(t) = exp
(
−BT t

)
p0

x(t) = −
(
B +BT

)−1
p(t) .

For this system we implemented the algorithm described in section 3 to solve
both the equations of motion of the original Hamiltonian (2.6) and of the geometric
parametrization (2.11). Propagation of the initial conditions is realized with a simple
first order explicit Euler scheme.

As shown in figure 4.1, with identical resolution the proposed method is closer to
the analytical solution by a factor > 10 (for a given accuracy, the proposed method
needs roughly a factor 10 grid-points less). Due to the choice of the integration
scheme, both methods converge with first order. The difference to the analytical
solution is measured by comparing the endpoints of the paths, x(t = 0) (due to
different parametrizations, differences between other points than the endpoint are
harder to define and calculate).

The action density over the curve parameter is concentrated on times close to
t = 0 for the time parametrization, while it gets stretched out to cover a significant
part of the temporal domain in the geometric case (see figure 4.2). This behavior is
desired, because it offers more grid points in the regions with critical dynamics.

4.2. Application to the φ4 model. Consider the following SPDE

φt = φxx − φ3 +
√

2ε η(x, t), x ∈ (−L,L) (4.5)

with Dirichlet boundary conditions φ(−L) = φ(L) = 0, and where η(x, t) is a spatio-
temporal white-noise. It can be shown [8] that this equation is well-posed, and that
its equilibrium distribution is formally given by

µ(φ) ∝ exp

(
−ε−1

∫ L

−L
( 1
2 |φx|

2 + 1
4 |φ|

4)dx

)
. (4.6)

The right way to interpret this measure is via its Radon-Nikodym derivative with
respect to the measure of the Brownian bridge (i.e. by using the measure of the
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Brownian bridge as reference and writing the density of the equilibrium distribution
of (4.5) with respect to this measure – see e.g. [18]):

dµ

dν
= exp

(
− 1

4ε
−1
∫ L

−L
|B|4)dx

)
, (4.7)

where ν denotes the measure of the Brownian bridge B(x) on [−L,L], i.e. of the
Gaussian process with mean zero and covariance

EB(x)B(y) = min(x+ L, y + L)− (x+ L)(y + L)

2L
. (4.8)
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In the large deviation regime (i.e. in the limit when ε → 0), we can ask what is the
most likely configuration on the invariant measure such that φ(0) = φ0. This is the
solution of

d2φ

dx2
= φ3, φ(0) = φ0, φ(±L) = 0 (4.9)

In the limit as L→∞, this solution is simply

φ(x) =
φ0

1 + φ0|x|/
√

2
. (4.10)

We can also compute

E exp
(
ε−1λφ(0)

)
, (4.11)

where λ > 0 is a parameter and the expectation is taken on the invariant measure. The
configuration on the invariant measure that contributes the most to this expectation
is the solution to (4.9) with the boundary condition φx(0+) = −φx(0−) = −λ and
φ(±L) = 0:

φ(x) =

√
λ

1 +
√
λ|x|/

√
2
. (4.12)

The path of maximum likelihood to get dynamically to (4.10) or (4.12) is then the
time reversed of the solution to (4.5) with ε = 0 (deterministic flow), and (4.10)
or (4.12) as initial condition.

A similar story holds if we consider (4.5) with periodic boundary conditions,
which are easier to implement numerically. In this case the solution to (4.9) with the
boundary condition φx(0+) = −φx(0−) = −λ and φ(L) = φ(−L) gives the relevant
configuration for the periodic case.

In this example, we implemented the iterative scheme, both for the equations of
motion in the time-parametrized and the geometric variant by using a second order
Heun integration in the curve parameter. The x-dimension is resolved with Nx = 512
grid-points, using Fourier transforms to calculate the spatial derivatives.

Figure 4.3 compares, for different resolutions, the numerical solutions of the final
configuration of the minimizer to the model (4.5) to the analytic solution for the
periodic case. At a resolution of Nt = 512, the geometric method already outperforms
the time-parametrized variant with a considerably higher resolution of Nt = 16384 in
terms of accuracy.

4.3. Application to the stochastically driven Burgers equation. Consider
the stochastically driven Burger’s equation with periodic boundary conditions:

ut = B(u) + ξ(x, t), B(u) = −uux + νuxx. (4.13)

In this example, we consider a noise term ξ that has a finite correlation length in
space, but is still δ-correlated in time. Hence we can write

〈ξ(x, t)ξ(x′, t′)〉 = χ(x− x′)δ(t− t′) (4.14)

and for the correlation function in space, we assume the following form in Fourier
space

χ̂(ω) = ω2 e−ω
2/2H(ωc − |ω|), (4.15)

10



−20 −15 −10 −5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

φ
(t
=
0
)

 

 

t−param (N
t
=2048)

t−param (N
t
=16384)

geometric (N
t
=512)

geometric (N
t
=16384)

analytic solution

Fig. 4.3. Zoom to the origin for the final configuration in the proposed method and the time-
parametrized method, in comparison to the analytical solution for the model system (4.5). The
geometric solution at a moderate resolution of Nt = 512 approximates the analytical solution better
than the time-parametrized solution at a higher resolution of Nt = 16384.

where H denotes the Heaviside-function. This form implies that the stochastic driving
occurs only at frequencies up to a cut-off frequency ωc. In this way, (4.13) is a simple
model for turbulence [2]: The system is stochastically driven at larger scales by the
noise term ξ. This energy is transported via the non-linearity uux from large scales
to small scales where energy is dissipated due to the presence of the diffusive term
νuxx.

We consider the velocity field starting at rest for t → −∞ and we are interested
in noise realizations that lead to strong negative gradients at t = 0. This setup is
similar to the analytic treatment in [1]. We choose as our observable

O(u) =

∫
w(x)ux(x) dx, w(x) =

1√
2πσ2

e−x
2/(2σ2). (4.16)

For this case, our Hamiltonian equations for the reparametrized fields u(x, s), p(x, s)
can be written as

us =
‖us‖χ
‖B(u)‖χ

(∫
χ(x− x′)p(x′)dx′ +B(u)

)
ps = − ‖us‖χ

‖B(u)‖χ
(upx + νpxx) .

(4.17)

The initial condition for the velocity field u is u(s = 0) = 0 for the final condition for
the auxiliary field p is p(s = 1) = −wx as can be seen from (4.16) using integration by
parts. The norm ‖ · ‖χ is given by the inverse of χ on its support (which is compact
in Fourier domain), hence

‖f‖χ =
(〈
f,F−1

(
χ̂−1f̂

)〉)1/2
, (4.18)

where, F−1 denotes the inverse Fourier transform operator and f̂ = Ff is the Fourier
transform of f .
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Fig. 4.4. Convergence of the maximum of the Hamiltonian along the minimizer. Both methods
converge second order. For the smallest tested resolution of Nt = 64 the error of the geometric
integration still is smaller than the error of the time-parametrized integration at the highest tested
resolution of Nt = 8192 (overall ≈ 104 times more accurate).

For comparison with previous work [3, 12], it is useful to contrast (4.17) with the
corresponding instanton equations in the original parametrization (using the time t
as parameter) ut + uux − νuxx =

∫
χ(x− x′)p(x′)dx′

pt + upx + νpxx = 0.
(4.19)

Note that the same equations can also be obtained using the Martin-Siggia-Rose/Jan-
ssen/de Dominicis formalism [16, 15, 4, 17]. A main problem in solving (4.19) with
the boundary conditions u = 0 at t → −∞ and p(0−, x) = −wx consists in the fact
that the fixpoint of the system is only reached in the limit t→ −∞ and not in finite
time. When Chernykh and Stepanov computed a numerical solution to the system
above, they used a combination of two clever tricks to mitigate this difficulty: First,
they used self-similar properties of the heat-kernel to design a coordinate transform
that leads to an exponential rescaling in time, second they used the linearization of
the system around zero in order to replace the boundary condition u = 0 by u = χ0p
(where the constant χ0 can be computed from the correlation function χ). In the
following we show that the geometric reformulation of the instanton equations leads
to a natural rescaling of time that allows for direct efficient numerical solution, which
is furthermore transferable to similar situations without any modification.

We implemented the iterative algorithm outlined in section 3, employing a second
order Heun integration of the geometric equations of motion (4.17) and compare
the results to a similar iterative algorithm, but integrating the time-parametrized
equations of motion (4.19), instead. The space variable is resolved with Nx = 512
grid-points, and all derivatives in space are calculated via Fourier transforms. For the
calculations presented here we took σ = 0.1 and ν = 1/2 in (4.16)

Figure 4.4 shows the convergence of the maximum of the Hamiltonian for the
proposed scheme in comparison to the time-parametrized variant. For both methods
the Hamiltonian converges to 0 in second order. The reparametrized variant is a
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Fig. 4.6. Comparison of the minimizing field configuration for the time-parametrized equations
of motion with tmin = −100 (left) and the geometric equations of motion (right) in space and time.
Most of the dynamics happen in a small interval near t = 0, which is well resolved in the geometric
case.

factor > 104 more accurate: For the smallest tested resolution of Nt = 64 the error
of the geometric integration is still smaller than the error of the time-parametrized
integration at the highest tested resolution of Nt = 8192. The reason is simple:

When using physical time as discretization, it is necessary to prescribe a finite
starting-time tmin which is restricted in its magnitude to ensure stability and accuracy
of the integration scheme for a given time resolution. Yet, when choosing tmin too
close to 0, the resulting finite-time minimizer does not necessarily approximate the
global minimizer. For the geometric equations of motion this issue is absent, and the
arbitrary choice of tmin is avoided in a natural way. Figure 4.5 depicts the final con-
figurations of the minimizer for different choices of tmin, demonstrating the necessity
to choose a sufficiently small starting time: A choice of tmin = −10 and, to a much
lesser extend, tmin = −100 produce secondary extrema, which are absent for both
tmin = −1000 and the geometric version.

13



A plot of the complete minimizer in space-time, as shown in figure 4.6, reveals the
superior parametrization of the geometric scheme. Even for a somewhat optimistic
choice of tmin = −100, most of the dynamics are squeezed into very few grid-points
for the time-parametrization (left), while being far better resolved in the geometric
case (right), which nevertheless covers a more than 10 times larger interval of physical
time in total.

5. Conclusion. We presented a new method to compute minimizers of action
functionals using a geometric reparametrization of Hamilton’s equations. The new
method is particularly well-suited to compute expectations related to stochastically
driven exits from attracting domains, though it may be useful in other contexts as
well. The new method was illustrated using a simple Ornstein-Uhlenbeck system
and then numerically implemented and tested in the context of stochastic partial dif-
ferential equations with additive noise for the φ4-model and the stochastic Burgers
equation. In all cases, it was shown that the new parametrization has computational
advantages over the parametrization using the original physical time. Applications
to more complicated systems, in particular higher-dimensional stochastic partial dif-
ferential equations (e.g. stochastically driven Navier-Stokes or MHD equations) are
therefore within reach and will be the topic of future research.
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