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Abstract
This paper introduces the synchrosqueezed curvelet transform as an optimal tool

for 2D mode decomposition of wavefronts or banded wave-like components. The syn-
chrosqueezed curvelet transform consists of a generalized curvelet transform with appli-
cation dependent geometric scaling parameters, and a synchrosqueezing technique for
a sharpened phase space representation. In the case of a superposition of banded wave-
like components with well-separated wave-vectors, it is proved that the synchrosqueezed
curvelet transform is capable of recognizing each component and precisely estimating
local wave-vectors. A discrete analogue of the continuous transform and several clus-
tering models for decomposition are proposed in detail. Some numerical examples with
synthetic and real data are provided to demonstrate the above properties of the pro-
posed transform.

Keywords. Curvelet transform, synchrosqueezing, banded wave-like components, local
wave-vector, phase space representation.
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1 Introduction

In various applications (e.g., medicine [29, 28] and engineering [31, 22]), one is faced
with a signal which is a superposition of several components (perhaps nonlinear and non-
stationary). The frequency or wave-vector of each component is localized in the time-
frequency or phase space representation. A natural question would be whether it is possible
to set them apart according to their localized representation and estimate their local fre-
quencies or wave-vectors. Classical time-frequency or phase space analysis provides several
powerful tools for representing and analyzing complex signals. All of these tools essentially
fall into two categories: linear or quadratic. As discussed in [10], linear methods have
simple and efficient algorithms for forward and inverse transforms, but the resolution is
unavoidably limited by the Heisenberg uncertainty principle. Although quadratic methods
provide high resolution, the corresponding reconstruction methods are less straightforward
and significantly more costly. Furthermore, non-physical interference between components
is more pronounced.

By introducing the synchrosqueezing technique, Daubechies et al proposed the syn-
chrosqueezed wavelet transform in [11] and demonstrated that, an important class of sig-
nals under the assumption of well-separated frequencies, could be precisely decomposed.
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Synchrosqueezing, the key idea, is a reallocation method [1, 7, 8, 11] aiming at a sharpened
time-frequency representation by reassigning values of the original representation. Though
it has been shown to provide good results for 1D signals, even with a substantial amount of
noise, in higher dimensional space the application of the synchrosqueezed wavelet transform
is limited. It cannot distinguish two components sharing the same wave-number but having
different wave-vectors, because of the isotropic character of the high dimensional wavelet
transform. In fact, this is a common phenomenon in many applications of high frequency
wave propagation. To specify this problem, let us consider a simple superposition of two
plane waves e2πip·x and e2πiq·x with the same wave-number (|p| = |q|) but different wave-
vectors (p 6= q). In the Fourier domain, the gray region in Figure 1 (left) shows the support
of one continuous wavelet. The wavelet cannot distinguish these two plane waves in the
sense that the gray region has to cover two dots p and q simultaneously, or has to exclude
them simultaneously.

To overcome this inherent limitation of the synchrosqueezed wavelet transform in high
dimensional space, the synchrosqueezed wave packet transform (SSWPT) was developed
in [34], inspired by the localized support of wave packets in the Fourier domain. The finer
supports result in better resolution for wave-number separation and, more importantly,
the anisotropic supports contribute to the angular separation of wave-vectors. As shown
in Figure 1 (middle), in the Fourier domain, the supports of e2πip·x and e2πiq·x are in the
supports of two different wave packets, as long as p and q are well-separated. [34] proved
that SSWPT could identify different nonlinear and non-stationary high frequency wave-like
components with different wave-vectors in high dimensional space in a general case, even
with severe noise. It has also been shown that SSWPT can capture the edges of incomplete
components, so that it could identify the discontinuity of wave propagation and extract
connected continuous components.
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Figure 1: Comparison of localized supports of continuous wavelets (left), wave packets
(middle) and curvelets (right) in the Fourier domain. Two dots in each plot show the
support of the Fourier transforms of the superposition of two plane waves e2πip·x and e2πiq·x

with the same wave-number (|p| = |q|) but different wave-vectors (p 6= q).

When one separates overlapping wavefronts or banded wave-like components, the bound-
ary of these components gives rise to many nonzero coefficients of wave packet transform,
which results in unexpected interferential synchrosqueezed energy distribution (see Figure
2 middle). This would dramatically reduce the accuracy of local wave-vector estimation,
because the locations of nonzero energy provide estimation of local wave-vectors. As shown
in Figure 2 (right), there exists misleading local wave-vector estimates at the location where
the signal is negligible. Even if at the location where the signal is relevant, the relative
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error is still unacceptable. To solve this problem, an empirical idea is that, good basis ele-
ments in the synchrosqueezed transform should look like the components, i.e., they should
appear in a needle-like shape. An optimal solution is curvelets. The curvelet transform is
anisotropic (as shown in Figure 1 right), and is designed for optimally representing curved
edges [30, 5] and banded wavefronts [4]. This motivates the design of the synchrosqueezed
curvelet transform (SSCT) as an optimal tool to estimate local wave-vectors of wavefronts
or banded wave-like components in this paper. The estimate of local wave-vectors provided
by SSCT is much better than that by SSWPT as shown in Figure 2.
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Figure 2: Top-left: A banded deformed plane wave, f(x) = e−
(φ(x)−0.7)2

σ2 e2πiNφ(x), where
σ = 4

135 , N = 135 and φ(x) = x1 + (1 − x2) + 0.1 sin(2πx1) + 0.1 sin(2π(1 − x2)). Top-
right: Number of nonzero discrete synchrosqueezed energy of SSWPT at each grid point
of space domain. Bottom-left: Relative error between the mean local wave-vector estimate
(defined in [34]) and the exact local wave-vector using SSWPT. Bottom-right: Relative
error between the mean local wave-vector estimate and the exact local wave-vector using
SSCT.
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1.1 Synchrosqueezed curvelet transform (SSCT)

Following is a brief introduction to the general curvelet transform with a radial scaling
parameter t < 1 and an angular scaling parameter s ∈ (1

2 , t). Similar to the discussion
in [34], it is crucial to assume 1

2 < s < t < 1, so as to obtain accurate estimates of local
wave-vectors for reasonable large wavenumbers. It is proved in the next section, s < t
guarantees precise estimates in the case of banded wave-like components. Here are some
notations for the general curvelet transform.

1. The scaling matrix

Aa =

(
at 0
0 as

)
,

where a is the distance from the center of one curvelet to the origin of Fourier domain.

2. The rotation angle θ and rotation matrix

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

3. The unit vector eθ = (cos θ, sin θ)T of rotation angle θ.

4. θα represents the argument of given vector α.

5. w(x) of x ∈ R2 denotes the mother curvelet, which is in the Schwartz class and has a
non-negative, radial, real-valued, smooth Fourier transform ŵ(ξ) with support equal
to the unit ball B1(0) in the Fourier domain. The mother curvelet is required to obey
the admissibility condition: ∃0 < c1 < c2 <∞ such that

c1 ≤
∫ 2π

0

∫ ∞
1

a−(t+s)|ŵ(A−1
a R−1

θ (ξ − a · eθ))|2adadθ ≤ c2

for any |ξ| ≥ 1.

With the notations above, it is ready to define a family of curvelets through scaling, mod-
ulation, and translation as follows, controlled by the geometric parameter s and t.

Definition 1.1. For 1
2 < s < t < 1, define ŵaθb(ξ) = ŵ(A−1

a R−1
θ (ξ − a · eθ))e−2πib·ξa−

t+s
2

as a general curvelet in the Fourier domain. Equivalently, in the space domain, the corre-
sponding general curvelet is

waθb(x) =

∫
R2

ŵ(A−1
a R−1

θ (ξ − a · eθ))e−2πib·ξe2πiξ·xa−
t+s
2 dξ

= a
t+s
2

∫
R2

ŵ(y)e−2πib·(RθAay+a·eθ)e2πix·(RθAay+a·eθ)dy

= a
t+s
2 e2πia(x−b)·eθw(AaR

−1
θ (x− b)).

In such a way, a family of curvelets {waθb(x), a ∈ [1,∞), θ ∈ [0, 2π), b ∈ R2} is constructed.

By definition, the Fourier transform ŵaθb(ξ) is supported in an ellipse {x : |AaR−1
θ (x−

b)| ≤ 1} centered at a · eθ with a major radius at and a minor radius as. It is natural
to require a ≥ 1 in order to keep the consideration regarding the shape of curvelets valid.
Meanwhile, waθb(x) is centered in space at b with an essential support of length O(a−s) and
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width O(a−t). By this appropriate construction, each curvelet is scaled to have the same
L2 norm with the mother curvelet w(x). Notice that if s = 1

2 and t = 1, these functions
would be qualitatively similar to standard 2D curvelets. When s = t, these functions would
become general wave packets in [34]. As s = t approaching 1 or 1

2 , they are getting close
to wavelets or wave atoms [12], respectively.

Similar to the classical curvelet transform, the general curvelet transform is defined to
be the inner product of a given signal and each curvelet as follows.

Definition 1.2. The general curvelet transform of a function f(x) is a function

Wf (a, θ, b) = 〈waθb, f〉 =

∫
R2

waθb(x)f(x)dx

= 〈ŵaθb, f̂〉 =

∫
R2

ŵaθb(ξ)f̂(ξ)dξ

for a ∈ [1,∞), θ ∈ [0, 2π), b ∈ R2.

If the Fourier transform f̂(ξ) vanishes for |ξ| < 1, one can check the following L2 norms
equivalence up to a uniform constant factor following the proof of Theorem 1 in [6], i.e.,

c1

∫
|f(x)|2dx ≤

∫
|Wf (a, θ, b)|2adadθdb ≤ c2

∫
|f(x)|2dx.

Below is a simple example to show how the synchrosqueezing technique estimates local
wave-vectors. Let us consider a plane wave function

f(x) = αe2πiNβ·x,

where α and β are nonzero constants of order O(1) and N is a sufficiently large constant.
The general curvelet transform of f(x) is

Wf (a, θ, b) =

∫
R2

αe2πiNβ·xa
s+t
2 w(AaR

−1
θ (x− b))e−2πia(x−b)·eθdx

= a−
s+t
2 α

∫
R2

e2πiNβ·(b+RθA−1
a y)w(y)e−2πia1−ty1dy

= a−
s+t
2 αe2πiNβ·bŵ(A−1

a R−1
θ (a · eθ −Nβ))).

Notice that ŵ(ξ) is compactly supported in the unit ball, Wf (a, θ, b) is able to provide a
preliminary estimate of the local wave-vector Nβ, since the nonzero Wf (a, θ, b) is located
in the regime

|A−1
a R−1

θ (a · eθ −Nβ)| ≤ 1.

This implies that, for each b, Wf (a, θ, b) has a support of length O(|Nβ|t) and width
O(|Nβ|s) around the wave-vector Nβ in the variable a and θ. Nevertheless, the resolution
of this estimate is too low. Further observation tells us that the oscillation of Wf (a, θ, b) in
the b variable in fact uncovers Nβ by

∇bWf (a, θ, b) = 2πiNβa−
s+t
2 αe2πiNβ·bŵ(A−1

a R−1
θ (a · eθ −Nβ))

=
(
2πiWf (a, θ, b)

)
Nβ.

This motivates the definition of the local wave-vector estimation for a general function f(x)
as follows.
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Definition 1.3. The local wave-vector estimation of a function f(x) at (a, θ, b) is

vf (a, θ, b) =
∇bWf (a, θ, b)

2πiWf (a, θ, b)
(1)

for a ∈ [1,∞), θ ∈ [0, 2π), b ∈ R2 such that Wf (a, θ, b) 6= 0.

It is remarkable that vf (a, θ, b) estimates the local wave-vectors independently of the
amplitude α or the position b. Hence, if the coefficients with the same vf are reallocated
together, then there would be a sharpened phase space representation of f(x), a clear picture
of nonzero energy concentrating around local wave-vectors. Mathematically speaking, the
synchrosqueezed energy distribution is defined as follows.

Definition 1.4. Given f(x), Wf (a, θ, b), and vf (a, θ, b), the synchrosqueezed energy distri-
bution Tf (v, b) is

Tf (v, b) =

∫
|Wf (a, θ, b)|2δ(<vf (a, θ, b)− v)adadθ (2)

for v ∈ R2, b ∈ R2.

For f(x) with Fourier transform vanishing for |ξ| < 1, the following norm equivalence
holds ∫

Tf (v, b)dvdb =

∫
|Wf (a, θ, b)|2adadθdb h ‖f‖22

as a consequence of the L2 norm equivalence between Wf (a, θ, b) and f(x).
Equipped with the definitions above, let us consider now a general function of the form

f(x) = e−(φ(x)−c)2/σ2
α(x)e2πiNφ(x)

with a smooth amplitude α(x), a smooth phase φ(x), a banded parameter σ = Θ(N−η)
(η < t) and a sufficiently large N . It will be shown that the general curvelet transform
Wf (a, θ, b) for each b is essentially supported in the following set

{(a, θ) : |A−1
a R−1

θ (a · eθ −N∇φ(b))| ≤ 1}. (3)

In the meantime, vf (a, θ, b) is an accurate estimation of the local wave-vector N∇φ inde-
pendent of a and θ, which implies that the essential support of the synchrosqueezed energy
distribution Tf (v, b) in v is concentrating around N∇φ at each location.

1.2 Mode decomposition

In the previous subsection, the property of the synchrosqueezed curvelet transform that
it concentrates the energy of a banded wave-like component around its wave-vectors has
been informally discussed. In what follows, the procedure of the mode decomposition after
synchrosqueezing will be presented. For simplicity, let

f(x) = e−(φ1(x)−c1)2/σ2
1α1(x)e2πiNφ1(x) + e−(φ2(x)−c2)2/σ2

2α2(x)e2πiNφ2(x),

with smooth amplitudes α1(x) and α2(x), banded parameters σ1 and σ2 of order Θ(N−η)
(η < t), smooth phases Nφ1(x) and Nφ2(x) for a sufficiently large N . Let us assume that
at each position the local wave-vectors N∇φ1(x) and N∇φ2(x) are sufficiently large and
well-separated from each other.

The decomposition relies on four steps summarized below.
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1. By (3), the essential supports of Wf1(a, θ, b) and Wf2(a, θ, b) are contained in the
following sets

P1 = {(a, θ, b) : |A−1
a R−1

θ (a · eθ −N∇φ1(b))| ≤ 1},
P2 = {(a, θ, b) : |A−1

a R−1
θ (a · eθ −N∇φ2(b))| ≤ 1}.

Because both |N∇φ1(b)| and |N∇φ2(b)| are large, and N∇φ1(x) and N∇φ2(b) are
sufficiently well-separated, these two sets are essentially disjoint. Hence, the essential
support of Wf (a, θ, b) is separated into two essentially disjoint sets, each of which
corresponds to one component in f(x).

2. The separation in Step 1 implies that for each b

vf (a, θ, b) = vf1(a, θ, b) ≈ N∇φ1 in P1,

and
vf (a, θ, b) = vf2(a, θ, b) ≈ N∇φ2 in P2.

Though vf (a, θ, b) is defined whereverWf (a, θ, b) 6= 0, it is only relevant when |Wf (a, θ, b)|
is above a significant level, as it will be shown in Theorem 2.3 (4). Hence, it is suffi-
cient to compute vf (a, θ, b) in these disjoint essential supports P1 and P2 to estimate
local wave-vectors of each component.

3. The separation in Step 2 shows that Tf (v, b) is essentially concentrating around two
well-separated 2D surfaces

S1 = {(N |∇φ1(b)|, θ∇φ1(b), b) : b ∈ R2}

and
S2 = {(N |∇φ2(b)|, θ∇φ2(b), b) : b ∈ R2}.

Hence, the essential support of Tf (v, b) separates into two well disjoint sets U1 and
U2.

4. Notice that Tf (v, b) = Tf1(v, b) in U1 and, respectively, Tf (v, b) = Tf2(v, b) in U2.
Once U1 and U2 are identified by some clustering technique, each component of f(x)
can be recovered by

f1(x) =

∫
<vf (a,θ,b)∈U1

w̃aθb(x)Wf (a, θ, b)dadθdb,

f2(x) =

∫
<vf (a,θ,b)∈U2

w̃aθb(x)Wf (a, θ, b)dadθdb,

where the set of functions {w̃aθb(x), a ∈ [1,∞), θ ∈ [0, 2π), b ∈ R2} is the dual frame
of {waθb(x), a ∈ [1,∞), θ ∈ [0, 2π), b ∈ R2}.

The synchrosqueezing step 2 and 3 are indispensable, because they improve the resolution
of original results significantly so that clustering is possible for decomposition. In step 4,
the reconstruction is based on the Calderon-type reconstruction formula for the reason that
curvelet transforms, unlike wavelet transforms in [10], do not have a reconstruction formula
that integrates their coefficients over the scale parameter with a proper weight. In effect,
numerical examples in [10] are based on the Calderon-type reconstruction formula, since it
works more robustly in noisy cases.
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1.3 Related work

There is another interesting line of work for mode decomposition, which is the empirical
mode decomposition (EMD) initiated and refined by Huang et al in [20, 21]. Starting
from the most oscillatory mode, the EMD method decomposes a signal into a collection
of intrinsic mode functions (IMFs) and estimates instantaneous frequencies via the Hilbert
transform. However, the dependence on local extrema limits its applications in noisy cases.
To address the robustness problem, some variants were proposed in [18, 32]. Following the
idea of EMD, there are two existing methods for high dimensional mode decomposition.
The first one is based on high dimensional interpolation [26, 27, 23, 24] and the second
one applies a 1D decomposition to each dimension and then combines the results with
a proper combination strategy [19, 25, 33]. In spite of their considerable success, these
existing methods in this research line are not suitable to separate two modes with similar
wave-numbers but different wave-vectors due to the lack of anisotropic angular separation
as discussed in [34].

Following the same methodology of extracting modes one by one from the most oscilla-
tory one, Hou et al proposed an optimization scheme for mode decomposition in [16, 17].
Inspired by recent developments of compressive sensing, the first paper [16] is based on
total variations, while the second one [17] is based on the sparse representation in a data-
driven time-frequency dictionary. The convergence of the data-driven time-frequency anal-
ysis method under a certain sparsity assumption is proved recently in [15]. However, the
analysis of high dimensional case is still under active research.

There is another research line of adaptive time-frequency representations, the empirical
transforms proposed in [13] and generalized to 2D in [14]. The 2D methods in [14] fall into
two kinds. The first one is based on the Fourier spectra of 1D data slices and, hence, lacks
the anisotropic angular separation for the same reason of the 2D EMD methods. The second
one is based on 2D Pseudo-Polar FFT [2, 3] and suffers the problem of inconsistency, i.e.,
the results of Fourier boundaries detections in different directions in the 2D Fourier domain
are discontinuous. To avoid this problem, the authors compute an average spectrum where
the averaging is taken with respect to the angle. The resulting methods are short of the
angular separation for the same reason of the synchrosqueezed wavelet transform in [9] as
discussed in [34].

The rest of the paper is organized as follows. The main theoretical results of SSCT
is presented in Section 2. We prove that SSCT is able to estimate the local wave-vectors
under some well-separation condition of the local wave-vectors of multiple highly oscillatory
components. In Section 3, a discrete analogue of SSCT and some clustering methods in
the phase space are introduced. Section 4 compares several numerical examples on local
wave-vector estimation using SSWPT and SSCT, and provides decomposition examples
with synthetic and real data to demonstrate the proposed properties of SSCT. Finally, this
article will end up with some discussions in Section 5.

2 Analysis of the transform

In this section, we define a class of superpositions of multiple banded components with
well-separated local wave-vectors and prove that the synchrosqueezed curvelet transform is
able to estimate these local wave-vectors accurately. Throughout the analysis, the scaling
parameters s and t are fixed such that 1

2 < s < t < 1 and η < t.
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Definition 2.1. For any c ∈ R, N > 0 and M > 0, a function f(x) = e−(φ(x)−c)2/σ2
α(x)e2πiNφ(x)

is a banded intrinsic mode function of type (M,N), if σ = Θ(N−η), α(x) and φ(x) satisfy

α(x) ∈ C∞, |∇α| ≤M, 1/M ≤ α ≤M,

φ(x) ∈ C∞, 1/M ≤ |∇φ| ≤M, |∇2φ| ≤M.

If η tends to −∞, the banded intrinsic mode function will become the one discussed in
[34]. So, the model in this article is more general.

Definition 2.2. A function f(x) is a well-separated superposition of type (M,N,K) if

f(x) =
K∑
k=1

fk(x),

where each fk(x) = e−(φk(x)−ck)2/σ2
kαk(x)e2πiNφk(x) is a banded intrinsic mode function of

type (M,N) and they satisfy the separation condition: ∀a ∈ [1,∞) and ∀θ ∈ [0, 2π), there
is at most one banded intrinsic mode function fk satisfying that

|A−1
a R−1

θ (a · eθ −N∇φk(b))| ≤ 1.

We denote by F (M,N,K) the set of all such functions.

Recall thatWf (a, θ, b) is the general curvelet transform of a function f(x) with geometric
scaling parameter 1

2 < s < t < 1, and vf (a, θ, b) is the local wave-vector estimation. The
following theorem is the main theoretical result for the synchrosqueezed curvelet transform.

Theorem 2.3. For a function f(x), which is a well-separated superposition of some type
(M,N,K), and any ε > 0, define

Rf,ε =
{

(a, θ, b) : |Wf (a, θ, b)| ≥ a−
s+t
2
√
ε
}

(4)

and
Zf,k =

{
(a, θ, b) : |A−1

a R−1
θ (a · eθ −N∇φk(b))| ≤ 1

}
for 1 ≤ k ≤ K. For fixed M , K, and any ε, there exists N0(M,K, ε) > 0 such that for any
N > N0(M,K, ε) and f(x) ∈ F (M,N,K) the following statements hold.

(i) {Zf,k : 1 ≤ k ≤ K} are disjoint and Rf,ε ⊂
⋃

1≤k≤K Zf,k;

(ii) For any (a, θ, b) ∈ Rf,ε ∩ Zf,k,

|vf (a, θ, b)−N∇φk(b)|
|N∇φk(b)|

.
√
ε.

For simplicity, the notations O(·), . and & are used when the implicit constants may
only depend on M and K. The proof of the theorem relies on several lemmas. The following
one estimates Wf (a, θ, b).

Lemma 2.4. Suppose

Ω =

{
(a, θ) : a ∈

(
N

2M
, 2MN

)
,∃k s.t.

∣∣θ∇φk(b) − θ
∣∣ < θ0

}
,

where θ0 = arcsin((MN )t−s). Under the assumption of the theorem, the following estimation
of Wf (a, θ, b) holds for any ε, when N is sufficiently large.
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(1) If (a, θ) ∈ Ω,

Wf (a, θ, b) = a−
s+t
2

 ∑
k: |θ∇φk(b)−θ|<θ0

fk(b)ŵ
(
A−1
a R−1

θ (a · eθ −N∇φk(b))
)

+O(ε)

 ;

(2) Otherwise,

Wf (a, θ, b) = a−
s+t
2 O(ε).

Proof. We only need to discuss the case when K = 1. The result for general K is an easy
extension by the linearity of general curvelet transform. Suppose f(x) contains a single
banded intrinsic mode function of type (M,N)

f(x) = e−(φ(x)−c)2/σ2
α(x)e2πiNφ(x).

We claim that when N is large enough, the approximation of Wf (a, θ, b) holds. By the
definition of general curvelet transform, it holds that

Wf (a, θ, b) =

∫
R2

f(x)a
s+t
2 w(AaR

−1
θ (x− b))e−2πia(x−b)·eθdx

= a−
s+t
2

∫
R2

f(b+RθA
−1
a y)w(y)e−2πia1−ty1dy.

Step 1: We start with the proof of (2) first.

Let h(y) = w(y)e−(φ(b+RθA
−1
a y)−c)2/σ2

α(b+RθA
−1
a y) and g(y) = 2π(Nφ(b+RθA

−1
a y)−

a1−ty1), then we have

Wf (a, θ, b) = a−
s+t
2

∫
R2

h(y)eig(y)dy,

with real smooth functions h(y) and g(y). Consider the differential operator

L =
1

i

〈∇g,∇〉
|∇g|2

.

If |∇g| does not vanish, we have

Leig =
〈∇g, i∇geig〉

i|∇g|2
= eig.

By the definition of w(y), we know h(y) is decaying rapidly at infinity. Then we can apply
integration by parts to get∫

R2

heigdy =

∫
R2

h(Leig)dy = −
∫
R2

∇ ·
( h∇g
i|∇g|2

)
eigdy.

Hence, we need to estimate
∣∣∣∇ · ( h∇g

i|∇g|2
)∣∣∣. Because

∇ ·
( h∇g
i|∇g|2

)
=

1

i

(
∇h · ∇g
|∇g|2

+ h∇ ·
( ∇g
|∇g|2

))
and |h(y)| . 1, we only need to estimate

∣∣∣∇h·∇g|∇g|2

∣∣∣ and
∣∣∣ ∂2g
∂yi∂yj

1
|∇g|2

∣∣∣ for i, j = 1, 2.
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Let z = (z1, z2)T = R−1
θ ∇φ(b + RθA

−1
a y), v1 = NA−1

a R−1
θ ∇φ(b + RθA

−1
a y) and v2 =

(a1−t, 0)T , then ∇g(y) = 2π(v1 − v2) = 2π((Nz1 − a)a−t, Na−sz2).
Case 1: a /∈ ( N

2M , 2MN).
When a ≥ 2MN , then

|∇g(y)| ≥ a1−t −MNa−t =
a1−t

2
+ (

a

2
−MN)a−t ≥ a1−t

2
& N1−t.

When a ≤ N
2M , then

|∇g(y)| & Na−t

M
− a1−t ≥ Na−t

2M
& N1−t.

So
|∇g(y)| & N1−t (5)

for a /∈ ( N
2M , 2MN).

If a ≥ 2MN , then
∣∣∣ ∂2g
∂yi∂yj

∣∣∣ . Na−2s . N1−2s, implying that∣∣∣∣ ∂2g

∂yi∂yj

1

|∇g|2

∣∣∣∣ . N1−2s/N2−2t =
1

N1−2(t−s) .

Since |z| ≥ 1
M , then either |z1| ≥ 1√

2M
or |z2| ≥ 1√

2M
holds. If a ≤ N

2M , then∣∣∣∣ ∂2g

∂yi∂yj

1

|∇g|2

∣∣∣∣ .
Na−2s

(Nz1 − a)2a−2t +N2a−2sz2
2

=
1

(z1 − a
N )2Na−2(t−s) +Nz2

2

. max{ 1

N1−2(t−s) ,
1

N
}.

=
1

N1−2(t−s) .

In sum, ∣∣∣∣ ∂2g

∂yi∂yj

1

|∇g|2

∣∣∣∣ . 1

N1−2(t−s) (6)

for a /∈ ( N
2M , 2MN).

Notice that the dominant term of ∇h is

w(y)α(b+RθA
−1
a y)e−(φ(b+RθA

−1
a y)−c)2/σ2 · −2(φ(b+RθA

−1
a y)− c)

σ2
A−1
a z

and the other terms are of order 1. Because e−
x2

σ2 · |x|
σ2 ≤ e−

1
2 · 1

σ
√

2
, then∣∣∣∣∇h · ∇g|∇g|2

∣∣∣∣ . 1

σ

∣∣∣∣(A−1
a z) · ∇g
|∇g|2

∣∣∣∣+

∣∣∣∣ 1

|∇g|

∣∣∣∣ . Nη

∣∣∣∣(A−1
a z) · ∇g
|∇g|2

∣∣∣∣+
1

N1−t .

Recall that ∇g = 2π(NA−1
a z − (a1−t, 0)T ), then

(A−1
a z) · ∇g
|∇g|2

≈ (Nz1 − a)a−2tz1 +Na−2sz2
2

(Nz1 − a)2a−2t +N2a−2sz2
2

.
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If z1z2 6= 0, then
∣∣∣ Na−2sz22
N2a−2sz22

∣∣∣ = 1
N and

∣∣∣ (Nz1−a)a−2tz1
(Nz1−a)2a−2t

∣∣∣ ≈ 1
|Nz1−a| ≈

1
N , which implies that∣∣∣ (A−1

a z)·∇g
|∇g|2

∣∣∣ . 1
N . If z1z2 = 0, then it is easy to check that

∣∣∣ (A−1
a z)·∇g
|∇g|2

∣∣∣ ≈ 1
N . Hence,∣∣∣∣∇h · ∇g|∇g|2

∣∣∣∣ . Nη

∣∣∣∣(A−1
a z) · ∇g
|∇g|2

∣∣∣∣+
1

N1−t .
1

N1−η +
1

N1−t .
1

N1−t (7)

for a /∈ ( N
2M , 2MN).

By (6) and (7), we have∣∣∣∣∫
R2

heigdy

∣∣∣∣ =

∣∣∣∣∫
R2

∇ ·
( h∇g
i|∇g|2

)
eigdy

∣∣∣∣ . ∣∣∣∣∇ · ( h∇gi|∇g|2
)∣∣∣∣ (||w||L1 + ||∇w||L1) .

1

N1−t

for a /∈ ( N
2M , 2MN). So,

Wf (a, θ, b) = a−
s+t
2 O(ε),

when N & ε
−1
1−t and a /∈ ( N

2M , 2MN).
Case 2: a ∈ ( N

2M , 2MN) and |θ∇φ(b) − θ| ≥ θ0.

Observing that ∇g(y) = 2πA−1
a R−1

θ (N∇φ(b + RθA
−1
a y) − a · eθ), we can expect |∇g|

is large when θ∇φ(b) is far away from θ. Notice that w(y) is in the Schwartz class, then

∃Cm > 0 such that |w(y)| ≤ Cm
ym for |y| ≥ 1 and any m large enough. So

Wf (a, θ, b) = a−
s+t
2

(∫
|y|.ε−1/m

f(b+RθA
−1
a y)w(y)e−2πia1−ty1dy +O(ε)

)
.

Define D = {y : |y| . ε−1/m} and D+ = {y : |y| . ε−1/m + 1}. Suppose XD(y) is a
positive and smooth function compactly supported in D+ such that XD(y) = 1 if y ∈ D,
||XD||L∞ ≤ 1, then

Wf (a, θ, b) = a−
s+t
2

(
O(ε) +

∫
D+

XD(y)h(y)eig(y)dy

)
.

If |∇g(y)| is not vanishing in D+, then apply the integral by parts to get∫
D+

XDhe
igdy =

∫
D+

XDh(Leig)dy = −
∫
D+

∇ ·
(XDh∇g
i|∇g|2

)
eigdy.

We are going to estimate |∇g(y)| when a ∈ ( N
2M , 2MN) and |θ∇φ(b) − θ| ≥ θ0. By Taylor

expansion,
∇φ(b+RθA

−1
a y) = ∇φ(b) +∇2φ(b∗)RθA

−1
a y,

where b∗ is between b and b+RθA
−1
a y. Notice that

|∇2φ(b∗)RθA
−1
a y| ≤ a−s|∇2φ(b∗)||y| .Ma−s(ε−1/m + 1) ≤ sin(θ0)

2M
,

when |y| . ε−1/m + 1 and ( 2M2

sin(θ0))1/s(ε−1/m + 1)1/s ≤ a. The latter one holds when

N & (ε−1/m + 1)1/(2s−t) for a ∈ ( N
2M , 2MN). So, when these conditions are satisfied, we

have
∇φ(b+RθA

−1
a y) = ∇φ(b) + v,

12



with |v| ≤ sin(θ0)
2M . Recall the fact |θ∇φ(b) − θ| ≥ θ0, then it holds that

|A−1
a R−1

θ (N∇φ(b+RθA
−1
a y)− a · eθ)|

≥ |NA−1
a R−1

θ ∇φ(b)− (a1−t, 0)T | −N |A−1
a R−1

θ v|

≥
√

(r cosα− a)2a−2t + r2a−2s sin2 α− N

2M
sin θ0a

−s

≥ ra−s sin θ0 −
N

2M
sin θ0a

−s

≥ N

2M
sin θ0a

−s

& N1−t,

where α = θ∇φ(b) − θ and r = |N∇φ(b)| ≥ N
M . Hence, we have

|∇g(y)| & N1−t (8)

when a ∈ ( N
2M , 2MN), |θ∇φ(b) − θ| ≥ θ0, N & (ε−1/m + 1)1/(2s−t) and y ∈ D+.

Next, we move on to estimate
∣∣∣∇(XDh)·∇g

|∇g|2

∣∣∣ and
∣∣∣ ∂2g
∂yi∂yj

1
|∇g|2

∣∣∣ for i, j = 1, 2, under the

conditions that a ∈ ( N
2M , 2MN), |θ∇φ(b) − θ| ≥ θ0, N & (ε−1/m + 1)1/(2s−t) and y ∈ D+.

First, ∣∣∣∣ ∂2g

∂yi∂yj

1

|∇g|2

∣∣∣∣ ≤ Na−2s

|∇g|2
≤ N1−2s

N2−2t
=

1

N1−2(t−s) . (9)

Second, as for
∣∣∣∇(XDh)·∇g

|∇g|2

∣∣∣, we only need to estimate
∣∣∣ (A−1

a z)·∇g
|∇g|2

∣∣∣ for the similar reason in

the last case. As we have shown,

(A−1
a z) · ∇g
|∇g|2

≈ (Nz1 − a)a−2tz1 +Na−2sz2
2

(Nz1 − a)2a−2t +N2a−2sz2
2

.

If z1 = 0, then
∣∣∣ (A−1

a z)·∇g
|∇g|2

∣∣∣ ≈ 1
N . If z1 6= 0 and

∣∣∣ z2z1 ∣∣∣ & as

at , then |z2| & as

Mat , since |z| ≥ 1
M .

Hence, ∣∣∣∣(A−1
a z) · ∇g
|∇g|2

∣∣∣∣ .
|(Nz1 − a)a−2tz1|+ |Na−2sz2

2 |
N2a−2sz2

2

.
|Nz1 − a| · |z1|
N2a2(t−s)z2

2

+
1

N

.
1

Nat−s|z2|
+

1

N

.
1

N
.

If z1 6= 0 and
∣∣∣ z2z1 ∣∣∣ . as

at , then∣∣∣∣(A−1
a z) · ∇g
|∇g|2

∣∣∣∣ ≤ |(Nz1 − a)a−2tz1|+ |Na−2sz2
2 |

|∇g|2

.
(|Nz1|+ a)a−2t|z1|+Na−2tz2

1

N2−2t

.
1

N
.
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In sum, ∣∣∣∣(A−1
a z) · ∇g
|∇g|2

∣∣∣∣ . 1

N
,

which implies that ∣∣∣∣∇(XDh) · ∇g
|∇g|2

∣∣∣∣ . 1

N1−t . (10)

By (9) and (10), we have∣∣∣∣∫
D+

∇ ·
(XDh∇g
i|∇g|2

)
eigdy

∣∣∣∣ . ∣∣∣∣∇ · (XDh∇g
i|∇g|2

)∣∣∣∣ (||XDw||L1 + ||∇(XDw)||L1) .
1

N1−t

for a ∈ ( N
2M , 2MN), |θ∇φ(b) − θ| ≥ θ0 and N & (ε−1/m + 1)1/(2s−t). So,

Wf (a, θ, b) = a−
s+t
2 O(ε),

when a ∈ ( N
2M , 2MN), |θ∇φ(b) − θ| ≥ θ0 and

N & max{(ε
−1
m + 1)

1
2s−t , ε

−1
1−t }.

.
From the discussion in the two cases above, we see that

Wf (a, θ, b) = a−
s+t
2 O(ε),

if a /∈ ( N
2M , 2MN) or |θ∇φ(b)− θ| ≥ θ0, when N is sufficiently large. Hence, the proof of (2)

when K = 1 is done.
Step2: Henceforth, we move on to prove (1), i.e., to discuss the approximation of

Wf (a, θ, b), when a ∈ ( N
2M , 2MN) and |θ∇φ(b) − θ| < θ0. Recall that

Wf (a, θ, b) = a−
s+t
2

(∫
y∈D

f(b+RθA
−1
a y)w(y)e−2πia1−ty1dy +O(ε)

)
.

Our goal is to get the following estimate

Wf (a, θ, b) = a−
s+t
2

(∫
y∈D

f(b)w(y)e2πi(N∇φ(b)·(RθA−1
a y)−a1−ty1)dy +O(ε)

)
, (11)

for N large enough.
First, we are going to show

Wf (a, θ, b) = a−
s+t
2

(∫
y∈D

e−
(φ(b)−c)2

σ2 α(b+RθA
−1
a y)w(y)e2πi(Nφ(b+RθA

−1
a y)−a1−ty1)dy+O(ε)

)
(12)

for sufficiently large N . Taylor expansion is applied again to obtain the following three
expansions.

φ(b+RθA
−1
a y) = φ(b) +∇φ(b) · (RθA−1

a y) +
1

2
(RθA

−1
a y)T∇2φ(b∗)(RθA

−1
a y),

where b∗ is between b and b+RθA
−1
a y.

e−(φ(b+RθA
−1
a y)−c)2/σ2

= e−(φ(b)+∇φ(b)·(RθA−1
a y)+ 1

2
(RθA

−1
a y)T∇2φ(b∗)(RθA

−1
a y)−c)2/σ2

= e−
(φ(b)−c)2

σ2 + e−
(λ−c)2

σ2 · −2(λ− c)
σ2

(
∇φ(b) · (RθA−1

a y) +
1

2
(RθA

−1
a y)T∇2φ(b∗)(RθA

−1
a y)

)
,
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where λ ∈ [φ(b), φ(b) +∇φ(b) · (RθA−1
a y) + 1

2(RθA
−1
a y)T∇2φ(b∗)(RθA

−1
a y)].

α(b+RθA
−1
a y) = α(b) +∇α(b∗∗) · (RθA−1

a y),

where b∗∗ is between b and b+RθA
−1
a y.

The above Taylor expansions help us to estimate the effect of phase function φ(x) in
the Gaussian term. We claim two estimates as follows.

I1 =

∫
y∈D

∣∣∣∣e− (λ−c)2

σ2 · −2(λ− c)
σ2

∇φ(b) · (RθA−1
a y)α(b+RθA

−1
a y)w(y)

∣∣∣∣ dy ≤ O(ε)

and

I2 =

∫
y∈D

∣∣∣∣e− (λ−c)2

σ2 · −2(λ− c)
σ2

1

2
(RθA

−1
a y)T∇2φ(b∗)(RθA

−1
a y)α(b+RθA

−1
a y)w(y)

∣∣∣∣ dy ≤ O(ε).

Because e−
x2

σ2 · |x|
σ2 ≤ e−

1
2 · 1

σ
√

2
, we know

I2 .
1

σ

∫
y∈D
|y|2a−2sdy .

1

σ
a−2sε−

4
m < ε,

if a & σ−
1
2s ε−

1+ 4
m

2s , which is true when

N & ε
− 1+ 4

m
2s−η . (13)

As for I1, notice that |θ∇φ(b) − θ| < θ0, then |θR−1
θ ∇φ(b)| < θ0. Let θ̃ = θR−1

θ ∇φ(b) and

y = (y1, y2)T , then for a ∈ ( N
2M , 2MN)

I1 .
1

σ

∫
y∈D

∣∣∇φ(b) · (RθA−1
a y)

∣∣ dy
.

M

σ

∫
y∈D

∣∣∣y1

at
cos θ̃ +

y2

as
sin θ̃

∣∣∣ dy
.

Md

σ

∫
y∈D

max
γ∈[0,2π)

∣∣∣∣∣cos γ cos θ̃

at
+

sin γ sin θ̃

as

∣∣∣∣∣ dy
.

Md3L

σ
,

where d ≈ ε−
1
m is the radius of D and

L =

√
cos2 θ̃

a2t
+

sin2 θ̃

a2s
≤
√

1

a2t
+

sin2 θ0

a2s
. max{ 1

at
,
| sin θ0|
as

} . N−t.

So

I1 .
Md3L

σ
.
Md3N−t

σ
. O(ε),

if

N & ε
− 1+ 3

m
t−η . (14)
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A direct result of the estimate of I1 and I2 is (12) for

N & max{ε−
1+ 3

m
t−η , ε

− 1+ 4
m

2s−η }. (15)

Second, we need to show

Wf (a, θ, b) = a−
s+t
2

(∫
y∈D

e−
(φ(b)−c)2

σ2 α(b)w(y)e2πi(Nφ(b+RθA
−1
a y)−a1−ty1)dy +O(ε)

)
, (16)

which relies on the analysis of the effect of φ(x) on α(x) as follows. Since a ∈ ( N
2M , 2MN),

then

I3 =

∫
y∈D

e−
(φ(b)−c)2

σ2
∣∣∇α · (RθA−1

a y)w(y)
∣∣ dy

.
∫
y∈D

∣∣RθA−1
a y
∣∣ dy

. a−sε−
3
m

. O(ε)

holds when

N & ε−
1+ 3

m
s .

Then we derive (16) by the estimate of I3 and (12) for N & ε−
1+ 3

m
s .

Finally, we should estimate the non-linear effect of φ(x) on the oscillatory pattern and
show (11) for sufficiently large N . If

N & ε−
(1+ 4

m )

2s−1 ,

then

I4 =

∫
y∈D

∣∣∣e2πi(Nφ(b)+N∇φ(b)·(RθA−1
a y)−a1−ty1)

∣∣∣ · ∣∣∣e2πiN
2

(RθA
−1
a y)T∇2φ(RθA

−1
a y) − 1

∣∣∣ dy
.

∫
y∈D

∣∣N(RθA
−1
a y)T∇2φ(RθA

−1
a y)

∣∣ dy
.

∫
y∈D

Na−2s|y|2dy

. Na−2sε−
4
m

. O(ε)

holds by the fact that |eix − 1| ≤ |x| and a ∈ ( N
2M , 2MN). Then by (16) and I4, we have

Wf (a, θ, b) = a−
s+t
2

(
f(b)

∫
y∈D

w(y)e2πi(N∇φ(b)·(RθA−1
a y)−a1−ty1)dy +O(ε)

)
= a−

s+t
2

(
f(b)

∫
R2

w(y)e2πi(NA−1
a R−1

θ ∇φ(b)−(a1−t,0)T )·ydy +O(ε)

)
= a−

s+t
2

(
f(b)ŵ

(
A−1
a R−1

θ (a · eθ −N∇φ(b))
)

+O(ε)

)
,
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for a ∈ ( N
2M , 2MN) and |θ∇φ(b)− θ| < θ0, if N is sufficiently large. This complete the proof

of (1) when K = 1.
In sum, we have proved this lemma when K = 1. The conclusion is also true for general

K by the linearity of general curvelet transform.

To prove Theorem 2.3, we need one more lemma which estimates ∇bWf (a, θ, b).

Lemma 2.5. Under the assumption of the theorem, we have

∇bWf (a, θ, b) = a−
s+t
2

2πiN
∑

k: |θ∇φk(b)−θ|<θ0

∇φk(b)fk(b)ŵ
(
A−1
a R−1

θ (a · eθ −N∇φ(b))
)

+O(ε)

 ,

when

(a, θ) ∈ Ω =

{
(a, θ) : a ∈

(
N

2M
, 2MN

)
,∃k s.t.

∣∣θ∇φk(b) − θ
∣∣ < θ0

}
.

Proof. The proof is similar to the one of Lemma 2.4. We only need to discuss the case
K = 1 and the case K > 1 holds by the linearity of general curvelet transform. Suppose

f(x) = e−
(φ(x)−c)2

σ2 α(x)e2πiNφ(x),

we have

∇bWf (a, θ, b)

=

∫
R2

f(x)a
s+t
2

(
(−RθAa)∇w(AaR

−1
θ (x− b)) + 2πiaeθw(AaR

−1
θ (x− b))

)
e−2πia(x−b)·eθdx

=

∫
R2

f(b+RθA
−1
a y)a−

s+t
2

(
(−RθAa)∇w(y) + 2πiaeθw(y)

)
e−2πia1−ty1dy

= a−
s+t
2

(
f(b)

∫
R2

(
(−RθAa)∇w(y) + 2πiaeθw(y)

)
e−2πi((a1−t,0)T−NA−1

a R−1
θ ∇φ(b))·ydy +O(ε)

)
= a−

s+t
2

(
2πiN∇φ(b)f(b)ŵ

(
A−1
a R−1

θ (a · eθ −N∇φ(b))
)

+O(ε)

)
for a ∈ ( N

2M , 2MN) and |θ∇φ(b) − θ| < θ0, if N satisfies the condition in Lemma 2.4.
Therefore, if f has K components, we know

∇bWf (a, θ, b) = a−
s+t
2

( ∑
k: |θ∇φk(b)−θ|<θ0

2πiN∇φk(b)fk(b)ŵ
(
A−1
a R−1

θ (a · eθ −N∇φk(b))
)
+O(ε)

)
,

for (a, θ) ∈ Ω and N large enough.

With the above two lemmas proved, it is enough to prove Theorem 2.3.

Proof. We shall start from (i). {Zf,k : 1 ≤ k ≤ K} are disjoint as soon as f(x) is a
superposition of well-separated components. Let (a, θ, b) ∈ Rf,ε. By Lemma 2.4, (a, θ) ∈ Ω.
So, we have

Wf (a, θ, b) = a−
s+t
2

 ∑
k: |θ∇φk(b)−θ|<θ0

fk(b)ŵ
(
A−1
a R−1

θ (a · eθ −N∇φk(b))
)

+O(ε)

 .
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Therefore, ∃k such that ŵ
(
A−1
a R−1

θ (a · eθ −N∇φk(b))
)
6= 0. By the definition of Zf,k, we

see that (a, θ, b) ∈ Zf,k. Hence, Rf,ε ⊂ ∪Kk=1Zf,k.
To show (ii), notice that (a, θ, b) ∈ Rf,ε ∪ Zf,k, then

Wf (a, θ, b) = a−
s+t
2

(
fk(b)ŵ

(
A−1
a R−1

θ (a · eθ −N∇φk(b))
)

+O(ε)

)
,

and

∇bWf (a, θ, b) = a−
s+t
2

(
2πiN∇φk(b)fk(b)ŵ

(
A−1
a R−1

θ (a · eθ −N∇φ(b))
)

+O(ε)

)
.

Let g = fk(b)ŵ
(
A−1
a R−1

θ (a · eθ −N∇φ(b))
)
, then

vf (a, θ, b) =
N∇φk(b)g +O(ε)

g +O(ε)
.

Since |Wf (a, θ, b)| &
√
ε for (a, θ, b) ∈ Rf,ε, then |g| &

√
ε. So

|vf (a, θ, b)−N∇φk(b)|
|N∇φk(b)|

.

∣∣∣∣ O(ε)

g +O(ε)

∣∣∣∣ . √ε.

The assumption 1
2 < s < t < 1 and η < t are essential to the proof. However, we have

not arrived to a clear opinion on the optimal values of these parameters. The difference
t−s allows us to construct directional needle-like curvelets in order to approximate banded
wave-like components or wavefronts and capture the oscillatory behavior better. When
t and η approach to 1, and s gets close to 1

2 , we can expect that the synchrosqueezed
curvelet transform can separate banded components of width approximately O(N−1), if m
is large enough. On the other hand, the lower bound s > 1/2 ensures that the support
of each curvelet is sufficiently small in space so that the second order properties of the
phase function (such as the curvature of wavefronts) do not affect the estimate of local
wave-vectors. The upper bound t < 1 guarantees sufficient resolution to detect different
components with large wavenumbers.

In Theorem 2.3, although the lower bound of N could be optimized, N is required to be
sufficiently large so that the local wave-vector can be precisely captured by synchrosqueez-
ing. On the other hand, the local wave-vector is not well defined for low frequency com-
ponent. In fact, in the presence of such component, each high oscillatory component is
still squeezed into a well-separated sharpened representation in the high frequency part of
Fourier domain. Therefore, the low frequency component would be identified precisely by
subtracting high frequency components.

3 Implementation of the transform

In this section, we describe the discrete synchrosqueezed curvelet transform and the mode
decomposition in detail. Subsection 1.2 has discussed the key ideas of mode decomposition
by SSCT. Let us describe the whole framework now. Suppose f(x) is a superposition
of several well-separated components, the mode decomposition by SSCT consists of the
following steps:
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(i) Apply the general curvelet transform to obtainWf (a, θ, b) and the gradient∇bWf (a, θ, b);

(ii) Compute the local wave-vector estimate vf (a, θ, b) and concentrate the energy around
it to get Tf (v, b);

(iii) Separate the essential supports of the concentrated phase space energy distribution
Tf (v, b) into several components by clustering techniques;

(iv) Restrict Wf (a, θ, b) to each resulting component and reconstruct corresponding in-
trinsic mode functions using the dual frame.

We first introduce a discrete implementation of the general curvelet transform in Section
3.1 for Step (i) and Step (iv). Clustering methods will be discussed later in Section 3.2.
The full discrete algorithm will then be summarized in Section 3.3.

3.1 Discrete general curvelet transforms

For simplicity, we consider functions that are periodic over the unit square [0, 1)2 in 2D.
If it is not the case, the functions will be periodized by multiplying a smooth decaying
function near the boundary of [0, 1)2. Let

X = {(n1/L, n2/L) : 0 ≤ n1, n2, < L, n1, n2 ∈ Z}

be the L× L spatial grid at which these functions are sampled. The corresponding L× L
Fourier grid is

Ξ = {(ξ1, ξ2) : −L/2 ≤ ξ1, ξ2 < L/2, ξ1, ξ2 ∈ Z}.

For a function f(x) ∈ `2(X), the discrete forward Fourier transform is defined by

f̂(ξ) =
1

L

∑
x∈X

e−2πix·ξf(x).

For a function g(ξ) ∈ `2(Ξ), the discrete inverse Fourier transform is

ǧ(x) =
1

L

∑
ξ∈Ξ

e2πix·ξg(ξ).

In both transforms, the factor 1/L ensures that these discrete transforms are isometric
between `2(X) and `2(Ξ).

In order to design a discrete curvelet transform, we need to specify how to decimate the
Fourier domain (a, θ) and the position space b. Let us first consider the Fourier domain
(a, θ). In the continuous setting, the Fourier transform ŵaθb(ξ) for a fixed (a, θ) value have
the profile

a−
s+t
2 ŵ(A−1

a R−1
θ (ξ − a · eθ)), (17)

modulo complex modulation. In the discrete setting, we sample the Fourier domain [−L/2, L/2)2

with a set of points P (Figure 3 left) and associate with each (a, θ) ∈ P a window function
ga,θ(ξ) (Figure 3 right) that behaves qualitatively as ŵ(A−1

a R−1
θ (ξ−a ·eθ)). More precisely,

ga,θ(ξ) is required to satisfy the following conditions:

• ga,θ(ξ) is non-negative and centered at a · eθ with a compact fan-shaped support of
length O(at) and width O(as), which is approximately a directional elliptical support
{ξ : |A−1

a R−1
θ (ξ − a · eθ)| ≤ 1}.
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Figure 3: Left: Sampled point set P in Fourier domain for an image of size 512×512. Each
point represents the center of the support of a window function. The window function
centered at the origin is supported on a disk and is not indicated in this picture. The size
of finest scale is set to be small (e.g. 16) in order to save memory. Right: An example of
fan-shaped window function ga,θ(ξ).

• ga,θ(RθAaτ + a · eθ) is a sufficiently smooth function of τ , thus making the discrete
curvelets to decay rapidly in the spatial domain;

• C1 ≤
∫
|ga,θ(RθAaτ + a · eθ)|2dτ ≤ C2 for positive constants C1 and C2, independent

of (a, θ);

• In addition, for any ξ ∈ [−L/2, L/2)2,
∑

(a,θ)∈P |ga,θ(ξ)|2 = 1.

We follow the discretization and construction of frames in [5] to specify the set P and
window functions, and refer to [4] for detail implementation. The difference here is that,
we do not restrict angular scaling parameter to s = 1

2 and radial scaling parameter to
t = 1. This allows us to adaptively adjust the size of tiles according to data structure. In
the construction of the tiling in this article, the scaling parameters s and t remain constant
as the scale changes.

The decimation of the position space b is much easier; we simply discretize it with an
LB × LB uniform grid as follows:

B = {(n1/LB, n2/LB) : 0 ≤ n1, n2 < LB, n1, n2 ∈ Z}.

The only requirement is that LB is large enough so that a sampling grid of size LB × LB
can cover the supports of all window functions.

For each fixed (a, θ) ∈ P and b ∈ B, the discrete curvelet, still denoted by waθb(x)
without causing much confusion, is defined through its Fourier transform as

ŵaθb(ξ) =
1

La
e−2πib·ξga,θ(ξ)

for ξ ∈ Ξ with La = a
s+t
2 . Applying the discrete inverse Fourier transform provides its

spatial description

waθb(x) =
1

L · La

∑
ξ∈Ξ

e2πi(x−b)·ξga,θ(ξ).
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For a function f(x) defined on x ∈ X, the discrete curvelet transform is a map from `2(X)
to `2(P ×B), defined by

Wf (a, θ, b) = 〈waθb, f〉 = 〈ŵaθb, f̂〉 =
1

La

∑
ξ∈Ξ

e2πib·ξga,θ(ξ)f̂(ξ). (18)

We can introduce an inner product on the space `2(P ×B) as follows: for any two functions
g(a, θ, b) and h(a, θ, b),

〈g, h〉 =
∑

(a,θ)∈P,b∈B

g(a, θ, b)h(a, θ, b).

The following result shows that {waθb : (a, θ, b) ∈ P×B} forms a tight frame when equipped
with this inner product.

Proposition 3.1. For any function f(x) for x ∈ X, we have∑
(a,θ)∈P,b∈B

|Wf (a, θ, b)|2 (La/LB)2 = ‖f‖22.

Proof. From the definition of the curvelet transform, we have

∑
(a,θ)∈P,b∈B

|Wf (a, θ, b)|2 (La/LB)2 =
∑

(a,θ)∈P,b∈B

∣∣∣∣∣∣
∑
ξ∈Ξ

1

La
e2πib·ξga,θ(ξ)f̂(ξ)

∣∣∣∣∣∣
2

(La/LB)2

=
∑

(a,θ)∈P

∑
ξ∈Ξ

∣∣∣ga,θ(ξ)f̂(ξ)
∣∣∣2

=
∑
ξ∈Ξ

|f̂(ξ)|2.

For a function h(a, θ, b) in `2(P × B), the transpose of the curvelet transform is given
by

W t
h(x) :=

∑
(a,θ)∈P,b∈B

h(a, θ, b)waθb(x) (La/LB)2 . (19)

The next result shows that this transpose operator allows us to reconstruct f(x), x ∈ X
from its curvelet transform Wf (a, θ, b), (a, θ, b) ∈ P ×B.

Proposition 3.2. For any function f(x) with x ∈ X,

f(x) =
∑

(a,θ)∈P,b∈B

Wf (a, θ, b)waθb(x) (La/LB)2 .

Proof. Let us consider the Fourier transform of the right hand side. It is equal to

∑
(a,θ)∈P,b∈B

∑
η∈Ξ

1

La
e2πib·ηga,θ(η)f̂(η)

 · 1

La
e−2πib·ξga,θ(ξ) (La/LB)2

=
∑

(a,θ)∈P

∑
η∈Ξ

1

L2
B

(∑
b∈B

e2πib·(η−ξ)ga,θ(η)f̂(η)

) ga,θ(ξ)

=
∑

(a,θ)∈P

(ga,θ(ξ))
2f̂(ξ) = f̂(ξ),
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where the second step uses the fact that in the η sum only the term with η = ξ yields a
nonzero contribution.

Let us now turn to the discrete approximation of ∇bWf (a, θ, b). From the continuous
definition 1.2, we have

∇bWf (a, θ, b) = ∇b〈ŵaθb, f̂〉 = 〈−2πiξŵaθb(ξ), f̂(ξ)〉.

Therefore, we define the discrete gradient ∇bWf (a, θ, b) in a similar way

∇bWf (a, θ, b) =
∑
ξ∈Ξ

1

La
2πiξe2πib·ξga,θ(ξ)f̂(ξ). (20)

The above definitions give rise to fast algorithms for computing the forward general
curvelet transform, its transpose, and the discrete gradient operator. All three algorithms
heavily rely on the fast Fourier transform (FFT). The detailed implementation of these fast
algorithms has been discussed in [34]. The computational cost of all three algorithms is
O(L2 logL + L2−s−tL2

B logLB) with LB large enough so that a grid of size LB × LB can
cover the supports of all window functions. If we choose LB to be of the same order as Lt,
the complexity of these algorithms is O(L2+t−s logL).

3.2 Clustering in the phase space

In the proof of Theorem 2.3, the radial separation and angular separation conditions play an
important role in describing the well-separated condition. Therefore, the polar coordinate
is used to quantify distance in the Fourier domain, which motivates the following clustering
method used in the numerical examples of this article. Before introducing the algorithm,
some notations are defined below.

1. We associate any point p in the 4D phase space with (xp, ap, θp), where xp is the
projection of p in the 2D spatial domain and (ap cos θp, ap sin θp) is the projection of
p in the 2D Fourier domain.

2. We say that (p, q) is a pair of adjacent points with parameter (d0, θ0, R0), if

• |xp − xq| ≤ d0.

• |ap − aq| ≤ R0.

• min{|θp − θq|, 2π − |θp − θq|} ≤ θ0.

3. We say that a point set S is a cluster with parameter (d0, θ0, R0), if ∀p1, p2 ∈ S,
∃qi ∈ S i = 1, . . . , n such that (p1, q1), (qn, p2) and (qi, qi+1) are pairs of adjacent
points with parameter (d0, θ0, R0) for i = 1, . . . , n− 1.

4. Two point sets S1 and S2 are defined to be separated with parameter (d0, θ0, R0), if
∀p ∈ S1 and ∀q ∈ S2, (p, q) is not a pair of adjacent points with parameter (d0, θ0, R0).

With the notations above, we are ready to state the polar clustering algorithm.

Algorithm 3.3. Polar clustering algorithm

1: Input: S is the set of points to be separated. Set up a threshold distance d0 for 2D spatial
domain, a threshold angle θ0 and a threshold radius R0 in the 2D Fourier domain.

2: Output: Clustered point sets S1, . . . , Sn.
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3: function PolarCluster(S, d0, θ0, R0)
4: Separate S into n clusters S1, . . . , Sn s.t.
5: each Si is a cluster with (d0, θ0, R0),
6: and Si and Sj are separated with (d0, θ0, R0) for i 6= j.
7: return {S1, . . . , Sn}
8: end function

The cost of computation and memory of Algorithm 3.3 is extremely high. Suppose the
size of given data f(x) is L × L and there is K components with wavenumbers of O(L).
By Theorem 2.3, each synchrosqueezed energy distribution Tfk(v, b) is surrounding its 2D
wave-vector surface within a distance of O(L

√
ε). Hence, the total number of nonzero grid

points in the 4D phase space s.t. Tf (v, b) ≥ δ is of order KL4ε, which is an impractical
number for clustering. To reduce the cost, we should apply similar clustering methods first
in the 2D Fourier domain at each location, which results in O(K) clusters at each location.
Afterward, a clustering method is applied to the point set of reduced size of O(KL2) in 4D
phase space.

3.3 Description of the full algorithm

With the fast discrete synchrosqueezed transforms and clustering algorithms available, we
now go through the steps of the synchrosqueezed curvelet transform.

For a given function f(x) defined on x ∈ X, we apply fast algorithms to compute
Wf (a, θ, b) and ∇bWf (a, θ, b). Then the local wave-vector estimate vf (a, θ, b) is computed
by

vf (a, θ, b) =
∇bWf (a, θ, b)

2πiWf (a, θ, b)

for (a, θ) ∈ P, b ∈ B with Wf (a, θ, b) 6= 0 (indeed, |Wf (a, θ, b)| ≥
√
ε in the numerical

implementation).
The energy resulting in <vf (a, θ, b) should be stacked up to obtain Tf (<vf (a, θ, b), b).

To realize this step, a two dimensional Cartesian grid of step size ∆ is generated to discretize
the Fourier domain of Tf (v, b) in variable v as follows:

V = {(n1∆, n2∆) : n1, n2 ∈ Z}.

At each v = (n1∆, n2∆) ∈ V , we associate a cell Dv centered at v

Dv =

[
(n1 −

1

2
)∆, (n1 +

1

2
)∆

)
×
[
(n2 −

1

2
)∆, (n2 +

1

2
)∆

)
.

Then Tf (v, b) is estimated by

Tf (v, b) =
∑

(a,θ,b):<vf (a,θ,b)∈Dv

|Wf (a, θ, b)|2 (La/LB)2 .

Suppose that f(x) is a superposition of K well-separated banded intrinsic mode func-
tions:

f(x) =
K∑
k=1

fk(x) =
K∑
k=1

e−(φk(x)−ck)2/σ2
kαk(x)e2πiNφk(x).

In the discrete implementation, we choose a threshold parameter δ > 0 and define the set
S to be

{(v, b) : v ∈ V, b ∈ B, Tf (v, b) ≥ δ}.
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After synchrosqueezing, Tf (v, b) is essentially supported in the phase space near K “dis-
crete” surfaces {(Nφk(b), b), b ∈ B}. Hence, under the separation condition given by The-
orem 2.3, S will have K well-separated clusters U1, . . . , UK , and they would be identified
by clustering methods in the last subsection.

Once we discover U1, . . . , UK , we can define Wfk(a, θ, b) by restricting Wf (a, θ, b) to
the set {(a, θ, b) : <vf (a, θ, b) ∈ Uk}. Then, we can recover each intrinsic mode function
efficiently using the fast algorithm discussed to compute

fk(x) =
∑

(a,θ)∈P,b∈B

Wfk(a, θ, b)waθb(x) (La/LB)2 .

4 Numerical Results

In this section, we start with error analysis of local wave-vector estimation using syn-
chrosqueezed curvelet transform, and compare it with synchrosqueezed wave packet trans-
form. Afterward, some mode decomposition examples of synthetic and real data will be
presented to illustrate the efficiency of proposed synchrosqueezed curvelet transform. For
all the synthetic examples in this section, the size L of the Cartesian grid X of the discrete
algorithm is 512, the threshold value ε = 10−4 for Wf (a, θ, b). The scaling parameters of
synchrosqueezed curvelet transform are t = 1− 1

8 and s = 1
2 + 1

8 , as an appropriate balance
as discussed previously. In the meantime, we chose t = s = 1

2 + 1
8 to construct discrete syn-

chrosqueezed wave packet transform for a reasonable comparison. In all the decomposition
problems, Algorithm 3.3 with application dependent parameters is applied and it provides
desired solutions. We will only present relevant recovered components to save space.

4.1 Instantaneous wave-vector estimation

In Theorem 2.3, we have seen that the estimate vf (a, θ, b) approximates the local wave-

vector at b, if |Wf (a, θ, b)| ≥ a−
s+t
2
√
ε. Since a ≥ 1 as we discussed after the Definition

1.1, it is useful to consider a simple and universal threshold criteria |Wf (a, θ, b)| ≥
√
ε,

which amounts to a smaller region of the essential support of Wf (a, θ, b). In such region,
though vf (a, θ, b) provides an accurate estimate of the local wave-vector at each b, it is
more rational to average them up to obtain a unique local wave-vector estimate for each
fixed b. By the definition of synchrosqueezed energy distribution, Tf (<vf (a, θ, b), b) truly
reflects a natural weight of vf (a, θ, b) in variables a and θ. Hence, we define the mean local
wave-vector estimate at b to be

vmf (b) =

∑
(a,θ) |Tf (<vf (a, θ, b), b)|vf (a, θ, b)∑

(a,θ) |Tf (<vf (a, θ, b), b)|
.

In the presence of noise, a threshold δ proportional to noise level is set up for Tf (<vf (a, θ, b), b)
to uncover the dominant estimate. Correspondingly, we define the thresholded mean local
waveform estimate as

vm,δf (b) =

∑
(a,θ)∈Ωδ(b)

|Tf (<vf (a, θ, b), b)|vf (a, θ, b)∑
(a,θ)∈Ωδ(b)

|Tf (<vf (a, θ, b), b)|
,

where Ωδ(b) = {(a, θ) : |Tf (<vf (a, θ, b), b)| ≥ δ}. In a noiseless case, vmf (b) = vm,0f (b). Using

this estimate, we can define the relative error Rδ(b) between vm,δf (b) and the exact local
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wave-vector N∇φ(b) as

Rδ(b) =
|vm,δf (b)−N∇φ(b)|

|N∇φ(b)|
.

Example 1. We test the accuracy for a noise free deformed plane wave f(x) = α(x)e2πiNφ(x)

with α(x) = 1, φ(x) = φ(x1, x2) = x1 + (1− x2) + 0.1 sin(2πx1) + 0.1 sin(2π(1− x2)), and
N = 135 (see Figure 4 left). It is a special case in Definition 2.1 with banded parameter
σ = ∞. The relative error R0(b) of SSCT shown in Figure 4 (middle) is of order 10−2,
which agrees with Theorem 2.3 on that the relative approximation error is of order O(

√
ε).

The synchrosqueezed wave packet transform and the synchrosqueezed curvelet transform
share the same accuracy in this case shown by Figure 4 middle and right.
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Figure 4: Left: A deformed plane wave propagating in the full space with zoomed-in data
indicated by a rectangle. Middle: Relative error R0(b) of local wave-vector estimation using
SSCT. Right: Relative error R0(b) of local wave-vector estimation given by SSWPT.

We compare the efficiency of SSCT and SSWPT in a noiseless case of a banded deformed
plane wave f(x) = e−(φ(x)−c)2/σ2

α(x)e2πiNφ(x) with the same parameters in last example
and two more parameters c = 0.7 and σ = 4

135 . As we discussed at the beginning of this
subsection, vf (a, θ, b) is only computed in the relevant region |Wf (a, θ, b)| ≥

√
ε. So, the

relative error will be set to be zero elsewhere. The numerical result matches well with
our theoretical prediction, showing that SSCT estimates local wave-vectors of this banded
wave-like component within a relative error of order O(

√
ε). However, SSWPT fails the

truth as we discussed in the section of introduction.
To quantitatively demonstrate the robustness against noise, we provide a series of tests

of the above banded deformed plane wave with increasing noise levels. As usual, the noise
level is described by the Signal-to-Noise Ratio (SNR) defined by

SNR[dB] = 10 log10

(
Varf

σ2

)
.

Suppose n(x) is an isotropic complex Gaussian random noise with zero mean. We consider
the noisy data

f(x) = e−(φ(x)−c)2/σ2
α(x)e2πiNφ(x) + n(x), (21)

with the same parameters in previous noiseless banded example. Table 1 summarizes the
results. The first row shows different noise levels and the second row records the threshold
δ for Tf (a, θ, b). We observe that the threshold δ successfully reduces the influence of noise
and keeps the local wave-vector estimate accurate and stable.
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Figure 5: Left: A banded deformed plane wave. The zoomed-in data comes from the small
rectangle. Middle: Relative error R0(b) of local wave-vector estimation using SSCT. Right:
Relative error R0(b) of local wave-vector estimation given by SSWPT.

SNR ∞ 3 0 -3 -6

δ 0 3.5 4 4.5 5

|Rδ(b)|`∞ 0.03 0.03 0.03 0.045 0.06

Table 1: Maximum relative error of Rδ(b) with different SNR.

4.2 Intrinsic mode decomposition for synthetic data

Example 2. In many applications, it is desired to extract each component from a super-
position. To show that our algorithm may provide a solution, we present some numerical
examples of mode decomposition for highly oscillatory synthetic seismic data in noiseless
and noisy cases (see Figure 6 top). Figure 6 shows the results of the application of our al-
gorithm described in Section 3.3. On the left is a noiseless example and the example on the
right has some noise (SNR is −3.07 dB). Each mode of given data is accurately recovered
in the noiseless case. In the noisy case, different modes with different propagation char-
acters are completely separated. Each recovered mode practically reflects the curvature of
corresponding mode in the original data, though there is some energy loss due to threshold
δ to remove noise.

Example 3. In some other applications, one component might be disrupted (e.g. ran-
domly shifted in this example), and it is required to remove such component and recover
others. Here we randomly shift the first mode in Example 2 in the vertical direction and ap-
ply our algorithm to recover the second mode. The numerical results summarized in Figure
7 show the capability of our algorithm to solve such a problem with or without noise. In this
problem, the disrupted component can be considered as noise with high energy, i.e., this
is a problem with very small SNR. It is even more problematic that random shifting may
create some texture similar to the mode to be recovered in some region. Fortunately, the
synchrosqueezed representation is so concentrated that the resolution is still good enough
to separate the mode from such similar texture by appropriately thresholding Tf (a, θ, b).

The left example in Figure 7 shows the result of noiseless data. The recovered mode
looks almost the same as the one recovered in noiseless Example 2 (Figure 6 bottom left),
except some energy loss due to thresholding. It is of interest to add some background noise
to see how well our algorithm is performing. Figure 7 right shows the result of noisy case.
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Figure 6: Example 2. Left: Mode decomposition without noise. Right: Mode decompo-
sition with noise (SNR = −3.07). Top: A superposition of two components. Second row:
The first recovered relevant mode. Third row: The second recovered relevant mode.

SNR is −0.90, if we consider the energy of disrupted component as part of data energy. The
result (see Figure 7 bottom right) is almost identical with the recovered mode in Figure 6
bottom left.
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Figure 7: Example 3. Left: Mode identification without noise. Right: Mode identification
with noise (SNR = −0.90). Top: A superposition of two components, one of which is
disrupted by random shifting and need to be removed. Second row: The recovered relevant
mode.

4.3 Intrinsic mode decomposition for real data

So far, the experiments shown are idealized, e.g., the boundary of each component is clear
and smooth, and the amplitudes of each component are of the same level. In this subsection,
we apply the synchrosqueezed curvelet transform to real seismic data and illustrate its good
performance in complicated circumstance.

Example 4. This is real seismic data with four main components and a band of energy
loss near the bottom. The centered component is overlapping with others. Components in
the bottom left and bottom right corners have irregular boundaries and not well aligned
textures. The component on top has obviously weaker energy than others. These char-
acters cause large difficulty in identifying all these components accurately. As shown in
Figure 8, the main textures and oscillatory patterns are recognized and recovered by our
algorithm, though there is some loss of energy on the boundary of each component caused
by thresholding.
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5 Discussion

This paper has proposed the synchrosqueezed curvelet transform as an optimal tool to
analyze a superposition of high dimensional banded wave-like components. It serves as an
example of applying a properly designed synchrosqueezing method to a superposition of
components with specific structures for mode decompositions.

An appealing research direction is to study other type of data structures and other type
of superpositions. In [34] and this article, the data is assumed to be a superposition of
wave-like components. In more general circumstances, the oscillatory pattern should not
be restricted to wave functions.

Another promising direction would be the optimization scheme for 2D mode decompo-
sition. Hard thresholding can cause some energy loss while reducing the noise. In other
cases, some part of the data is missing or has extremely weak energy. One would desire a
fast optimization scheme to estimate a clear structure of each component, even if there is
missing data or severe noise.

Like the synchrosqueezed wave packet transform, the current approach can be easily
extended to 3D or higher dimensions. This direction should be relevant for applications.
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Figure 8: Example 4. Top: Real seismic data. Middle and bottom: Relevant recovered
modes .
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