
FAST UPDATING ALGORITHMS FOR LATENT SEMANTIC
INDEXING∗

EUGENE VECHARYNSKI† AND YOUSEF SAAD‡

Abstract. This paper discusses a few algorithms for updating the approximate Singular Value
Decomposition (SVD) in the context of information retrieval by Latent Semantic Indexing (LSI)
methods. A unifying framework is considered which is based on Rayleigh-Ritz projection methods.
First, a Rayleigh-Ritz approach for the SVD is discussed and it is then used to interpret the Zha–
Simon algorithms [SIAM J. Scient. Comput. vol. 21 (1999), pp. 782-791]. This viewpoint leads to
a few alternatives whose goal is to reduce computational cost and storage requirement by projection
techniques that utilize subspaces of much smaller dimension. Numerical experiments show that the
proposed algorithms yield accuracies comparable to those obtained from standard ones at a much
lower computational cost.
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1. Introduction. Latent Semantic Indexing (LSI), introduced in [9], is a well-
established text mining technique that aims at finding documents in a given collection
that are relevant to a user’s query. The method is a variation of the Principal Com-
ponent Analysis (PCA) [5], where the multidimensional text dataset is projected to a
low-dimensional subspace. When properly defined, this subspace captures the essence
of the original data. In the projected space, semantically similar documents tend to
be close to each other in a certain measure, which allows to compare them according
to their latent semantics rather than a straightforward word matching.

LSI can be viewed as an extension of the vector space model for Information
Retrieval (IR) [23]. As such, it begins with a preprocessing phase (see, e.g, [1, 28]) to
summarize the whole text collection in the m-by-n term-document matrix A, where
m and n are the total numbers of terms and documents in the collection, respectively.
Thus, each column of A represents a separate document, where nonzero entries are
the weights, or essentially the frequencies, of the terms occurring in this document.
For the discussion of the available term weighting schemes we refer the reader to [17].

We consider a widely used and standard implementation of LSI that is based on
the partial Singular Value Decomposition (SVD) [12] of the term-document matrix.
In this case, LSI resorts to calculating the singular triplets (σj , uj , vj) associated
with the k largest singular values σ1 ≥ σ2 ≥ . . . ≥ σk ≥ 0 of A. Throughout,
we call these k triplets the dominant singular triplets. The left singular vectors uj
are then used to construct the low-dimensional subspace for data projection and,
along with σj and the right singular vectors vj , to evaluate the relevance scores.
We note that a number of “SVD avoiding” LSI algorithms have been proposed in
recent years, e.g., [6, 8, 10, 16, 17], for example, by replacing the SVD by the Lanczos
decomposition. We will briefly discuss one such alternative based on using Lanczos
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vectors.
Given a user’s query q, formalized by a vector of size m, i.e., regarded as a

document, the associated vector r of n relevance scores is evaluated by

r = diag (γ1, . . . , γn)
(
VkΣ1−α

k

)
ΣαkU

T
k q. (1.1)

Here, Σk = diag {σ1, σ2, . . . , σk} ∈ Rk×k; Uk = [u1, . . . , uk] ∈ Rm×k and Vk =
[v1, . . . , vk] ∈ Rn×k are the matrices of the orthonormal left and right singular vectors,
respectively. The diagonal elements γj are chosen to normalize the rows of VkΣ1−α

k

so that each row has a unit norm. The scalar α is a splitting parameter and has no
affect on ranking if the normalization is disabled (γj = 1); see, e.g., [17] for a detailed
discussion.

The j-th entry of r, denoted by r(j), quantifies the relevance between the j-
th document and the query. The documents with the highest relevance scores are
returned to the user in response to the query q. Note that, for example, in the case
where α = 0, r(j) is the (scaled) cosine of the angle between the j-th projected
document UTk aj and the projected query UTk q.

In practical applications, where the amount of data tends to be extremely large,
the implementation of LSI faces two major difficulties. The first difficulty is the
requirement to compute the dominant singular triplets of a very large matrix, a prob-
lem that has been relatively well investigated. Possible solutions include invoking
iterative singular value solvers, e.g., [4, 14], that take advantage of sparsity and fast
matrix-vector products. Other solutions leverage specific spectral properties of the
term-document matrices, and rely on incremental or divide-and-conquer techniques;
e.g., [29, 7].

The second computational difficulty of LSI is related to the fact that document
collections are dynamic, i.e., the term-document matrices are subject to repeated
updates. Such updates result from adding, e.g., new documents or terms to the
collection. In the language of the vector space model, this translates into adding new
columns or rows to A. Another type of update is when the term weights are corrected,
which corresponds to modifying entries of the term-document matrix. Thus, in order
to maintain the quality of the subsequent query processing, the available singular
triplets should be accordingly modified after each update. A straightforward solution
to this problem is to recompute the partial SVD of the updated term-document matrix
from scratch. However, even with the most sophisticated singular value solvers, this
naive approach is not practical as it is exceedingly costly for realistic large-scale text
collections. Therefore, a critical question is how to update the available Σk, Uk, and
Vk without fully recomputing the high-cost partial SVD of the modified matrix, so
that the retrieval quality is not affected.

This paper addresses this specific question. It starts by revisiting the well-known
updating algorithms of Zha and Simon [29], currently the state-of-the-art approach
for the LSI updating problem. Specifically, the paper interprets these schemes as
Rayleigh-Ritz projection procedures. A by-product of this viewpoint is a min-max
type characterization of the Ritz singular values obtained in the process. On the
practical side, this projection viewpoint unravels a certain redundancy in the compu-
tations, showing that it is possible to further improve the efficiency of the techniques
without sacrificing retrieval quality. Based on these findings, we propose a family of
new updating algorithms which can be substantially faster and less storage-demanding
than the methods in [29].

The motivation for the present work comes from the observation that the methods
in [29] (reviewed in more detail in Section 3) rely on the SVD of a (k + p)-by-(k +
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p) dense matrix and orthogonalization of p (m- or n-dimensional) vectors, where p
denotes the size of the update, i.e., the number of added columns, rows, or corrected
terms. In particular, this suggests that the computational complexity of the overall
updating procedure scales cubically with respect to p.

While the effect of the cubic scaling is marginal for smaller document collections,
where the update sizes are typically given by only a few terms or documents, the
situation becomes different for large-scale datasets. In this case, even if p is a tiny
fraction of terms or documents, its (cubed) value may be large enough to noticeably
affect the efficiency of the updating methods. In other words, for p sufficiently large,
the computational costs associated with the SVD of a (k + p)-by-(k + p) matrix and
orthogonalization (QR decomposition) of p vectors become non-negligible and may
dominate the overall updating procedure.

Another context in which larger updates are to be processed can be found in the
recent works [25, 18], where the authors suggest to postpone invoking the updating
schemes from [29] until the update size becomes sufficiently large. In between the
updates, a fast folding-in procedure [3, 2] is performed, which can be viewed as a
form of PCA out-of-sample embedding [26] applied in the context of LSI. Such a
combination of folding-in and updates, called folding-up, has been shown to yield a
substantial reduction in the time spent for updating without a significant loss in the
retrieval accuracy.

To adapt their algorithms to the cases of large p, the authors of [29] suggest
splitting the current update into a series of smaller sequential updates, and performing
the whole updating procedure in an incremental fashion. While this approach indeed
leads to memory savings, it requires more time to complete the overall updating task
than to perform the whole update at once. This can be seen, e.g., from Table 4.2
in the original paper [29], after multiplying the reported average CPU times per
update by the number of updates. A similar observation has been made in [25, Table
1]. Additionally, as has also been observed in [25], breaking a given update into
a sequence of smaller updates can potentially lead to a faster deterioration of the
retrieval accuracy.

The updating algorithms proposed in this paper require orthonormalizing sets of
significantly fewer vectors than those in [29] and rely on the SVD of much smaller
matrices. As a result, the new schemes are less sensitive to the increase in the update
sizes. As shown in our experiments, the presented algorithms significantly reduce the
runtime, whereas the retrieval accuracy is not affected.

Finally, let us recall that the methods in [29] were introduced as a solution to the
problem of the deteriorating retrieval accuracy exhibited by existing methods [3, 19] in
the mid-1990s. This solution essentially traded the SVD of a k-by-k matrix in [3, 19]
for the above mentioned orthonormalization of a set of p extra vectors plus a (k+ p)-
by-(k + p) SVD. The updating schemes introduced in this work can be viewed as a
compromise between [3, 19] and [29], where the runtime resembles that of the former
while the retrieval accuracy is comparable to the latter.

The rest of the paper is organized as follows. Projection methods for the SVD
are reviewed in Section 2 followed by a discussion of their applications to LSI in
Section 3. In Section 4 a number of alternative algorithms are presented with a goal
of reducing cost. Section 5 presents numerical experiments to test the various methods
introduced, and Section 6 concludes the paper with a few remarks.

2. Projection methods for singular value problems. It will be useful to
explore projection methods for the singular value problem in order to understand
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the mechanisms at play when updating the SVD. We begin with a little background
on standard projection methods. Recall that given a Hermitian n × n matrix M , a
Rayleigh-Ritz (RR) projection method extracts approximate eigenpairs for A from a
search subspace span{Z}, where Z ∈ Rn×s. It does so by imposing two conditions.
First, any approximate eigenvector must belong to span{Z}, i.e., it can be written
as z = Zc (where c ∈ Rs). Second, the approximate eigenpair (θ, z) must satisfy
the Galerkin condition that the residual is orthogonal to span{Z}, i.e., we must have
(M−θI)z ⊥ span{Z}. This yields the projected s×s eigenvalue problem (ZTMZ)c =
θc from which we obtain the Ritz values θi, the corresponding eigenvectors ci, and
the Ritz vectors zi = Zci, i = 1, . . . , s. Details can be found in, e.g., [20, 21].

2.1. Application to the SVD. Consider now the singular value problem for a
matrix A ∈ Rm×n. The above projection procedure can be adapted to the singular
value problem in a number of ways. For example, we can apply the RR idea to one
of the two standard eigenvalue problems with either ATA or AAT . This, however, is
not appealing due to its “non-symmetric” nature: it puts an emphasis on one set of
singular vectors (left or right) and will encounter difficulties with the smallest singular
values due to their squaring. An alternative approach is to apply the Rayleigh-Ritz
procedure to the augmented matrix

B =

(
0 A
AT 0

)
. (2.1)

We will consider this second approach as it leads more naturally to a separation of the
right and left singular vectors. A straightforward application of the RR procedure
would now use a subspace span{Z} where Z ∈ R(m+n)×s and would write a test
eigenvector in the form z = Zc where c ∈ Rs. It then imposes the Galerkin condition
ZT (B − θI)Zc = 0 from which Ritz values and vectors are obtained. Observe that z
can be written as z =

(
u
v

)
, where u ∈ Rm approximates a left singular vector of A

and v ∈ Rn approximates a right singular vector of A.
One weakness of this viewpoint is that there is no reason why the left approximate

singular vector (vector u, i.e, top part of z = Zc) and the right approximate singular
vector (vector v or bottom part of z = Zc) should be expressed in the basis Z with
the same basis coefficients c. In practice, we have two bases available, one for the left
singular vectors and one for the right singular vectors. Therefore, let U ∈ Rm×s1 be a
basis for the left search subspace and V ∈ Rn×s2 a basis for the right search subspace,
with s1 + s2 = s. Both U and V are assumed to be orthonormal bases and note that
s1 and s2 need not be the same. Then, the approximate right singular vector can
be expressed as u = Uf (with f ∈ Rs1) and the approximate left singular vector as
v = V g (with g ∈ Rs2). This gives us s1 + s2 = s degrees of freedom. To extract
f and g we would need s constraints which are to be imposed on the residual vector
(B − θI)z where z =

(
u
v

)
. This residual is

r =

(
Av − θu
ATu− θv

)
. (2.2)

It is natural to impose the condition that the first part, which is in Rm, be orthogonal
to span{U} and the second part, which is in Rn, be orthogonal to span{V } :{

UT (AV g − θUf) = 0
V T (ATUf − θV g) = 0

. (2.3)
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System (2.3) leads to the projected singular value problem Hg = θf and HT f = θg,
where H = UTAV . Let (θi, fi, gi) be the singular triplets of the projected matrix H,
i.e., Hgi = θifi and HT fi = θigi; i = 1, . . . ,min{s1, s2}. Then the scalars θi are the
Ritz singular values, the vectors Ufi are the left Ritz singular vectors of A, and the
vectors V gi are the right Ritz singular vectors of A. It is important to note that when
θi > 0 then the above conditions imply that ‖fi‖ = ‖gi‖. This can be easily seen by
multiplying (from left) both sides of the equality Hgi = θifi by fTi and of the equality
HT fi = θigi by gTi .

The “doubled” form of the Galerkin condition (2.3) has been considered in [15] in
the context of the correction equation for a Jacobi-Davidson approach. These are not
quite standard Galerkin conditions since they amount to two separate orthogonality
constraints. However, it is also possible to interpret this approach as a standard
Galerkin/RR procedure, which is the viewpoint we develop next.

Consider the following new basis for a subspace of Rm+n given by

Z =

[
U 0
0 V

]
. (2.4)

Then a test vector z in span{Z} can be written as

z =

[
U 0
0 V

](
f
g

)
=

(
u
v

)
. (2.5)

Clearly, the residual vector (B−θI)z of this test vector for the approximate eigenvalue
θ and the matrix B is again given by (2.2) and the standard Galerkin condition
ZT r = 0 yields exactly the doubled form (2.3) of the Galerkin condition.

Proposition 2.1. The RR procedure defined by the doubled form of the Galerkin
condition (2.3) is mathematically equivalent to the standard RR procedure applied to
the symmetric matrix B using the basis given by (2.4).

In essence the procedure defined in this way puts an emphasis on not mixing the
U -space and the V -space as indicated by zeros in the appropriate locations in (2.4)
and this is achieved by a restricting the choice of basis for the search space. This is
in contrast to the general procedure described at the very beginning of this section,
where Z makes no distinction between the U - and V - spaces.

2.2. Application to LSI. Let A be a certain term-document matrix considered
at some stage in the updating and querying process and let U ∈ Rm×s1 and V ∈ Rn×s2
be the orthonormal bases of the left and right search subspaces, respectively. Suppose
that our goal is to construct approximations (σ̃i, ũi, ṽi) to the k dominant singular
triplets (σi, ui, vi), such that σ̃i = θi ≥ 0, ũi = Ufi, and ṽi = V gi; i = 1, . . . k. The
matrices of the singular values and vectors of A are then approximated by

Σ̃k = Θk, Ũk = UFk, Ṽk = V Gk ; (2.6)

where Θk = diag {θ1, . . . , θk}, and Fk = [f1, . . . , fk] ∈ Rs1×k and Gk = [g1, . . . , gk] ∈
Rs2×k are the “coefficient matrices” with orthonormal columns. The resulting Σ̃k,
Ũk = [ũ1, . . . , ũk], and Ṽk = [ṽ1, . . . , ṽk] can be used to evaluate the relevance scores
in (1.1) instead of the exact Σk, Uk, and Vk.

A solution to this problem can be obtained by simultaneously imposing the
Galerkin conditions seen in Section 2.1 to the k residuals, which along with the as-
sumption on (σ̃i, ũi, ṽi) lead to the equations{

(UTAV )gi = θifi
(UTAV )T fi = θigi

, i = 1, . . . , k . (2.7)
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The unknown triplets (θi, fi, gi) are determined by the SVD of the projected matrix
H = UTAV ∈ Rs1×s2 . The approximations to the k dominant singular triplets of A
are then defined by (2.6) where Θk, Fk, and Gk correspond to the k dominant singular
triplets of H. The diagonal entries of Θk are the Ritz singular values and the columns
of Ũk and Ṽk in (2.6) are the left and right Ritz singular vectors, respectively.

We will refer to the above approximation scheme as the singular value Rayleigh-
Ritz procedure for the matrix A with respect to U and V or, shortly, SV-RR(A, U ,
V ). The overall scheme is summarized in Algorithm 2.1.

Algorithm 2.1 (SV-RR (A, U , V )). Input: A, U , V . Output: Σ̃k, Ũk, Ṽk.
1. Construct H = UTAV .
2. Compute the SVD of H. Form matrices Θk, Fk, and Gk that correspond to

the k dominant singular triplets of H.
3. Return Σ̃k, Ũk, and Ṽk, given by (2.6).

2.3. Optimality. Since the process just described is a standard RR procedure
applied to the matrix (2.1), well-established optimality results for the RR procedure
apply. Here, we show a few consequences of this viewpoint, some of which coincide
with results that can be found elsewhere, see, e.g., [15], using a different approach.
The presented Min-Max results, however, are new to the best of our knowledge.

Let us first examine the Rayleigh Quotient (RQ) associated with the augmented
matrix B for a vector z =

(
u
v

)
. We find that

ρ(z) ≡ (Bz, z)

(z, z)
=

2uTAv

‖u‖2 + ‖v‖22
. (2.8)

As a next step we study properties of this function at points that yield its maximum
values in subspaces of span(Z), where Z is defined in (2.4). The results will be used
shortly to establish an optimality result for the SV-RR procedure.

We start with by observing that any subspace S of span(Z) has a special structure:

S =
{(u

v

)
∈ Rm+n : u ∈ Su and v ∈ Sv

}
, dim(S) = dim(Su) + dim(Sv), (2.9)

where Su and Sv are some subspaces of U = span(U) and V = span(V ), respectively.
In particular, representation (2.9) suggests that if z =

(
u
v

)
is in S then, for any

scalars α and β, the vector z̄ =
(
αu
βv

)
is also in S. The following lemma is a simple

consequence of this property.
Lemma 2.2. The maximum of the RQ in (2.8) over a subspace S ⊆ span(Z) is

nonnegative.
Proof. Let z∗ = (uT∗ v

T
∗ )T be a maximizer of (2.8) in span(Z), and assume that

the maximum is negative, i.e., ρ(z∗) < 0. The vector z̄ =
(
−uT∗ vT∗

)T
is also in S,

and we have ρ(z̄) = −ρ(z∗) > 0 > ρ(z∗), contradicting our assumption that ρ(z∗) is
the maximum. Therefore, ρ(z∗) ≥ 0.

As seen earlier, if θi > 0 then the conditions Hg = θf and HT f = θg, arising
in the projection procedure, imply that ‖g‖ = ‖f‖, so that the approximate singular
vectors satisfy ‖u‖ = ‖v‖. Viewed from a different angle, we can now ask the question:
Does the maximizer of the RQ (2.8) over z ∈ span{Z}, satisfy the property that
‖u‖ = ‖v‖? The answer to the question is yes as the following lemma shows.

Lemma 2.3. Let the maximum of the RQ (2.8) over a subspace S ⊆ span(Z) be

achieved at a vector z∗ =

(
u∗
v∗

)
. If the maximum is positive then ‖u∗‖ = ‖v∗‖.
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Proof. Let us assume that the contrary is true, i.e., that ‖u∗‖ 6= ‖v∗‖. Since
ρ(z∗) > 0, both u∗ and v∗ are nonzero. Thus, we can define α =

√
‖v∗‖/‖u∗‖ and

introduce the vector z̄ =
(
αuT∗ (1/α)vT∗

)T
, which is also in S. But then ρ(z̄) =

(2uT∗Av∗)/(2‖u∗‖‖v∗‖) which is larger than ρ(z∗) under the assumption that ‖u∗‖ 6=
‖v∗‖. Hence we have increased the value of ρ(z∗) contradicting the fact that it is the
maximum. Therefore we must have ‖u∗‖ = ‖v∗‖.

While the above result concerns the case where the maximum of the RQ is positive,
the next lemma shows that if a subspace S is sufficiently large then one can also find
vectors z ∈ S with ‖u‖ = ‖v‖ that correspond to a zero maximum.

Lemma 2.4. Let the maximum of the RQ (2.8) over S ⊆ span(Z) be zero and
assume that dim(S) > max(s1, s2), where s1 = dim(U) and s2 = dim(V). Then there
exists a maximizer z∗ ∈ S, such that ‖u∗‖ = ‖v∗‖.

Proof. First we show the existence of a maximizer z0 of (2.8) with nonzero
components u0 and v0. The condition dim(S) ≡ dim(Su) + dim(Sv) > max(s1, s2),
with dim(Su) ≤ s1 and dim(Sv) ≤ s2, implies that neither of the subspaces Su,Sv has
zero dimension, so S contains a vector z0 = (uT0 , v

T
0 )T such that u0, v0 6= 0. Without

loss of generality, we assume that ρ(z0) ≥ 0 (otherwise, choose z0 = (−uT0 , vT0 )T which
is also in S). But we cannot have ρ(z0) > 0 since the maximum of ρ is zero. Therefore
ρ(z0) = 0 and z0 is the desired vector. To complete the proof, define z∗ ≡ (uT∗ , v

T
∗ )T

with u∗ = u0/‖u0‖, v∗ = v0/‖v0‖. We clearly still have ρ(z∗) = 0 and the vector z∗,
which belongs to S, has the desired property.

The lemmas show that under the specified conditions, the vectors u and v of the
RQ maximizers are (or can be chosen to be) of the same norm which can be set to
one without loss of generality. In particular, since θ1 is the maximum of the RQ over
the space of all nonzero vectors z of the form (2.5), we readily obtain the following
characterization of the largest Ritz singular value, which can also be found in [15]:

θ1 = max
u∈U;v∈V;
‖u‖=‖v‖=1

uTAv ≥ 0. (2.10)

We now wish to generalize this result by establishing a min-max type character-
ization for all Ritz singular values. For an n × n Hermitian matrix M and a search
subspace Z of dimension s the decreasingly labeled Ritz values θi are given by

θi = min
S⊆Z

dim(S)=s−i+1

max
x ∈ S,x 6=0

(Mx, x)

(x, x)
, i = 1, . . . , s; (2.11)

see, e.g., [20, 21]. This expression, combined with the results of the current section,
applied to our situation, where M = B is the augmented matrix in (2.1) and Z =
span{Z} where Z is defined in (2.4), results in the following Min-Max characterization
of the Ritz singular values.

Theorem 2.5. The Ritz singular values of a matrix A ∈ Rm×n with respect to
the left and right search subspaces U = span{U} ⊆ Rm and V = span{V } ⊆ Rn, with
dim(U) = s1, dim(V) = s2, and s1 + s2 = s, admit the following characterization:

θi = min
Su⊆U,Sv⊆V,

dim(Su)+dim(Sv)=s−i+1

max
u∈Su; v∈Sv ;
‖u‖=‖v‖=1

uTAv, i = 1, . . . ,min(s1, s2). (2.12)

Proof. We start from (2.11). Let Z be spanned by a basis of the form (2.4). A
candidate subspace S of Z of this type is of the form (2.9). The dimension of this
subspace S must be s − i + 1, which translates to the requirement that dim (Su) +
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dim (Sv) = s− i+ 1. Next, we replace M by B in (2.11). Then (Mx, x)/(x, x) yields
the expression in (2.8). Lemma 2.3 shows that a positive maximum of this RQ in
(2.11) is reached at vectors with ‖u‖ = ‖v‖, so we can scale both u and v to have unit
norm. Note that the assumption i ≤ min(s1, s2) implies that dim(S) is larger than
max(s1, s2). Therefore, if the maximum is zero then, by Lemma 2.4, there exists a
maximizer with ‖u‖ = ‖v‖ which can also be scaled so that both u and v have unit
norm. This yields (2.12).

Note that the same ideas applied to the augmented matrix (2.1) with the search
subspace span(Z) = Rm+n, where U and V in (2.4) are orthonormal bases of Rm and
Rn, respectively, lead to the Min-Max characterization of the singular values of A:

σi = min
Su⊆Rm,Sv⊆Rn,

dim(Su)+dim(Sv)=m+n−i+1

max
u∈Su; v∈Sv ;
‖u‖=‖v‖=1

uTAv, i = 1, . . . ,min(m,n). (2.13)

One can see that (2.12) is identical to (2.13) with Rm replaced by U and Rn by V.
This observation provides an interpretation of the optimality of the SV-RR procedure:
it constructs a solution that admits the same characterization of the singular values
in the given subspaces.

The following statement is a direct consequence of Theorem 2.5.
Corollary 2.6. Let σi and θi be labeled in a decreasing order. Then the Ritz

values approximate the singular values from below, i.e., θi ≤ σi; i = 1, . . . ,min(s1, s2).
Additionally, if we have a sequence of expanding subspaces {Zj}, such that Zj ⊆ Zj+1,

then θ
(j)
i ≤ θ

(j+1)
i ≤ σi, where θ

(j)
i is the i-th Ritz singular value with respect to the

subspace Zj.
The results of this section suggest that the proximity of Σ̃k, Ũk, and Ṽk, produced

by Algorithm 2.1, to the singular triplets of A is governed by the choice of U and V .
If both are properly chosen, then SV-RR(A, U , V ) can give an appealing approach for
the updating problem. In particular, as can be seen from Theorem 2.5, if span(U) and
span(V ) contain the left and right dominant singular subspaces of A, span(Uk) and
span(Vk), then Algorithm 2.1 readily delivers the k exact singular triplets of interest.
If, additionally, the number of columns in U or V is sufficiently small (not much larger
than k) then the computational costs related to the procedure can be negligibly low.

In practice, however, the construction of search subspaces that include the tar-
geted singular subspaces and, at the same time, have small dimensions can be prob-
lematic. It is likely that in order to obtain the inclusion of the singular subspaces,
both s1 and s2 have to be large (see Corollary 2.6), and this can make Algorithm 2.1
too costly to be used as a fast updating scheme. In what follows, we adapt this
viewpoint to address possible difficulties with existing methods.

3. LSI updating methods viewed as projection procedures. We now con-
sider a common situation in IR which arises when a certain term-document matrix A
is updated. In the case when a few documents are added, the updated term-document
matrix can be written as

ÃD = [A, D], (3.1)

where D ∈ Rm×p, represents the matrix of added documents. Similarly, if terms are
added, then the update matrix takes the form

ÃT =

[
A
T

]
, (3.2)
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where T ∈ Rp×n corresponds to the added terms.
It is often the case that the arrival of new documents triggers the addition of new

terms. In this situation the overall update can be decomposed into the sequence of the
two basic ones: (3.2) followed by (3.1). Once the incorporation of the new terms and
documents is completed, the weights of several affected terms should be accordingly
adjusted. This motivates yet another type of update.

In particular, it is frequently required to correct the weights of the selected p terms
throughout the whole document collection, in which case the updated A is given by

ÃCW = A+ CW, (3.3)

where C ∈ Rm×p is a “selection matrix” and W ∈ Rp×n contains weight corrections.
The rows of C that correspond to the terms whose weights are corrected represent
the rows of the p-by-p identity matrix, whereas the remaining rows of C are zero.
Each row of the matrix W contains the differences between the old and new weights
for the corresponding term, with different entries specifying corrections to different
documents.

The goal of the updating algorithms is to compute approximations Σ̃k, Ũk, and Ṽk
to the dominant singular triplets of the updated matrices in (3.1)–(3.3) by exploiting
the knowledge of the singular triplets Σk, Uk, and Vk of A. A common approach is
based on the idea of replacing A by its best rank-k approximation Ak = UkΣkV

T
k ,

and considering

AD = [Ak D], AT =

[
Ak
T

]
, and ACW = Ak + CW (3.4)

as substitutes for the updated matrices in (3.1)–(3.3). The k dominant singular triplets
of (3.4) are then regarded as approximations of the “true” updated singular triplets
of (3.1)–(3.3), and are used to evaluate the relevance scores in (1.1).

The result of Zha and Simon [29] shows that it is possible to compute the exact k
dominant singular triplets of the matrices in (3.4) without invoking standard singular
value solvers from scratch. The closeness of the computed triplets to those of ÃD,
ÃT , and ÃCW in (3.1)–(3.3) is justified by exploiting the so-called approximate “low-
rank-plus-shift” structure of A; see also [30] for a more rigorous analysis. Below, we
briefly review the updating schemes presented in [29].

3.1. Updating algorithms of Zha and Simon [29]. Consider first the case
of adding new documents D. Let

(I − UkUTk )D = ÛpR (3.5)

be the truncated QR decomposition of (I − UkU
T
k )D, where Ûp ∈ Rm×p has or-

thonormal columns and R ∈ Rp×p is upper triangular. Given (3.5), one can observe
that

AD = [Uk, Ûp]HD

[
Vk 0
0 Ip

]T
, HD =

[
Σk UTk D
0 R

]
, (3.6)

where Ip denotes the p-by-p identity matrix. Thus, if Θk, Fk, and Gk are the matrices
corresponding to the k dominant singular values of HD ∈ R(k+p)×(k+p) and their left
and right singular vectors, respectively, then the desired updates Σ̃k, Ũk, and Ṽk are
given by

Σ̃k = Θk, Ũk = [Uk, Ûp]Fk, and Ṽk =

[
Vk 0
0 Ip

]
Gk . (3.7)
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This updating procedure is summarized in the following algorithm.
Algorithm 3.1 (Adding documents (Zha–Simon [29])). Input: Σk, Uk, Vk, D.

Output: Σ̃k, Ũk, Ṽk.
1. Construct (I − UkUTk )D. Compute the QR decomposition (3.5).
2. Construct HD in (3.6). Compute the matrices Θk, Fk, and Gk that corre-

spond to the k dominant singular triplets of HD.
3. Return Σ̃k, Ũk, and Ṽk defined by (3.7).

Similarly, if new terms are added, then the following equality holds:

AT =

[
UTk 0
0 Ip

]
HT [Vk, V̂p] , HT =

[
Σk 0
TVk L

]
. (3.8)

Here, V̂p and LT are the factors in the truncated QR decomposition of (I−VkV Tk )TT ,

(I − VkV Tk )TT = V̂pL
T . (3.9)

The updated singular triplets are then defined as

Σ̃k = Θk, Ũk =

[
Uk 0
0 Ip

]
Fk, and Ṽk = [Vk, V̂p]Gk, (3.10)

where Θk, Fk, and Gk now denote the matrices of the k dominant singular triplets of
HT ∈ R(k+p)×(k+p).

Algorithm 3.2 (Adding terms (Zha–Simon [29])). Input: Σk, Uk, Vk, T . Out-
put: Σ̃k, Ũk, Ṽk.

1. Construct (I − VkV Tk )TT . Compute the QR decomposition (3.9).
2. Construct HT in (3.8). Compute the matrices Θk, Fk, and Gk that corre-

spond to the k dominant singular triplets of HT .
3. Return Σ̃k, Ũk, and Ṽk defined by (3.10).

Finally, in the case of correcting the term weights,

ACW = [Uk, Ûp]HCW [Vk, V̂p]
T , HCW =

[
Σk 0
0 0

]
+

[
UTk C
R

]
[WVk, L] , (3.11)

where Ûp, R, V̂p, and L are given by the truncated QR decompositions

(I − UkUTk )C = ÛpR, (I − VkV Tk )WT = V̂pL
T . (3.12)

Thus, assuming that Θk, Fk, and Gk are the matrices of the k dominant singular
triplets of HCW ∈ R(k+p)×(k+p),

Σ̃k = Θk, Ũk = [Uk, Ûp]Fk, and Ṽk = [Vk, V̂p]Gk. (3.13)

Algorithm 3.3 (Correcting weights (Zha–Simon [29])). Input: Σk, Uk, Vk, C,
W . Output: Σ̃k, Ũk, Ṽk.

1. Construct (I − UkUTk )C and (I − VkV Tk )WT . Compute the QR decomposi-
tions (3.12).

2. Construct HCW in (3.11). Compute the matrices Θk, Fk, and Gk that cor-
respond to the k dominant singular triplets of HCW .

3. Return Σ̃k, Ũk, and Ṽk defined by (3.13).
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3.2. The Rayleigh-Ritz viewpoint. It is easy to see that Algorithm 3.1 is
equivalent to SV-RR(AD, U , V ) with

U =
[
Uk, Ûp

]
, V =

[
Vk 0
0 Ip

]
. (3.14)

Note that, in this case, the matrix HD in (3.6) is precisely the projected matrix H in
step 1 of Algorithm 2.1.

The fact that Algorithm 2.1 yields the exact dominant singular triplets of AD
comes from the observation that

range(AD) = span(Uk)⊕ range((I − UkUTk )D) ,

and that the columns of Ûp in (3.5) form an orthonormal basis of range((I−UkUTk )D).
Hence, span(U) = range(AD), i.e., the search subspace span(U) with U defined
in (3.14) must contain the left dominant singular subspace of AD. The corresponding
right singular subspace is then contained in range(ATDU). But

ATDU =

[
ATk Uk ATk Ûp
DTUk DT Ûp

]
=

[
VkΣk 0

DTUk DT Ûp

]
=

[
Vk 0
0 Ip

] [
Σk 0

DTUk DT Ûp

]
,

implying that span(V ) = range(ATDU). Thus, the search subspace span(V ) defined
in (3.14) must contain the right singular subspace of AD. As a result, since both
span(U) and span(V ) contain the dominant singular subspaces, a run of SV-RR(AD,
U , V ) in Algorithm 3.1 is indeed guaranteed to deliver the k exact dominant singular
triplets of AD.

Similarly, for the case of added new terms, Algorithm 3.2 , can be interpreted as
SV-RR(AT , U , V ) with

U =

[
Uk 0
0 Ip

]
, V =

[
Vk, V̂p

]
, (3.15)

where V̂p is defined by the QR decomposition (3.9). Algorithm 3.3 is equivalent to
SV-RR(ACW , U , V ) with

U =
[
Uk, Ûp

]
, V =

[
Vk, V̂p

]
, (3.16)

where Ûp and V̂p are given by (3.12). The matrices HT and HCW in (3.8) and (3.11)
are the projected matrices that arise at step 1 of Algorithm 2.1 with the appropriate
input. The fact that the dominant singular triplets of AT and ACW are computed
exactly can be deduced by following the arguments similar to those used above to
justify the exactness of Algorithm 3.1.

Finally, note that the updating methods from [3, 19], which preceded the schemes
of Zha and Simon [29], can also be easily interpreted in the framework of the projection
procedure in Algorithm 2.1. For example, the case of adding new documents in [3, 19]
is realized by SV-RR(AD, Uk, V ) with V in (3.14). The updating strategies for the
remaining two types of update correspond to SV-RR(AT , U , Vk) with U in (3.15) and
SV-RR(ACW , Uk, Vk).
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4. Updating by the SV-RR with smaller subspaces. Consider the compu-
tational complexity of Algorithm 3.1. In its first step, the algorithm performs O(mkp)
operations to form the matrix (I − UkUTk )D and O(mp2) operations to complete the
QR decomposition (3.5). Assuming that UTk D has been precomputed at step 1, the
cost of the second step is O((k + p)3), which corresponds to the cost of the SVD of
the (k + p)-by-(k + p) matrix HD. Finally, in the third step, the algorithm requires
O(k2(m+n)+mkp) operations to evaluate (3.7). The complexities of all the updating
algorithms considered in this paper are summarized in Tables 4.1-4.3 of subsection 4.3.

The above analysis makes it clear that the complexity of Algorithm 3.1 scales
cubically with respect to the update size p. When p is small this cubic scaling behavior
will have an un-noticeable effect. However, it can lead to a substantial slow down for
moderate to large p. In other words, for sufficiently large updates, the performance
of Algorithm 3.1 can be dominated by the SVD of the projected matrix in step 2 and,
to a lesser extent, by the QR decomposition of (I − UkUTk )D in step 1.

In subsection 3.2, we have established the relation between the existing updating
methods [29] and a projection scheme for the singular value problem, which allows
us to interpret Algorithm 3.1 as SV-RR(AD, U , V ) with U and V specified in (3.14).
In particular, this finding suggests that the size of the potentially critical SVD in
step 2 of Algorithm 3.1 is determined by the dimensions of the left and right search
subspaces.

In this paper, we propose to reduce the dimension of at least one of the two
search subspaces and perform the projection procedure with respect to the resulting
smaller subspace(s). For example, in the case of adding new documents, we suggest to
reduce the dimension of the left search subspace span(U). Based on different options
for the dimension reduction, we devise new updating schemes that correspond to
Algorithm 2.1 with the “reduced” left search subspaces, A ≡ AD, and V in (3.14).

More precisely, the idea is to replace U ∈ Rm×(k+p) in (3.14) by a matrix

Ū = [Uk, Zl] ∈ Rm×(k+l), Zl ∈ Rm×l, l� p, (4.1)

with a significantly smaller number of columns. The matrix Zl ∈ Rm×l, to be deter-
mined later, is assumed to have orthonormal columns and is such that

span(Zl) ⊂ range
(
(I − UkUTk )D

)
. (4.2)

This implies that ZTl Uk = 0 and, hence, all the columns of Ū in (4.1) are orthonormal.
Thus, given (4.1) and (4.2), one can obtain an updating scheme by applying SV-
RR(AD, Ū , V ) with V defined in (3.14). Different choices of Zl will lead to different
updating schemes.

The following proposition states the general form of the projected matrix pro-
duced by SV-RR(AD, Ū , V ).

Proposition 4.1. The application SV-RR(AD, Ū , V ) of Algorithm 2.1 with Ū
defined in (4.1)–(4.2) and V in (3.14) produces the (k+ l)× (k+ p) projected matrix

H =

[
Σk UTk D
0 ZTl (I − UkUTk )D

]
. (4.3)

Proof. The statement is verified directly by constructing H = ŪTADV . Since
Ak = UkΣkV

T
k ,

ADV = [Ak, D]

[
Vk 0
0 Ip

]
= [UkΣk, D] .
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Thus, using (4.1),

H = ŪT (ADV ) = [Uk, Zl]
T

[UkΣk, D] =

[
Σk UTk D

ZTl UkΣk ZTl D

]
.

Since, by (4.2), ZTl Uk = 0, the (2, 1)-block of H is zero. From (4.2), we also note that
Zl = (I −UkUTk )Zl. Hence, the (2, 2)-block equals ZTl (I −UkUTk )D, which completes
the proof.

A similar idea can be applied for the case of adding new terms. In particular, we
replace V ∈ Rn×(k+p) in (3.15) by an n-by-(k + l) matrix

V̄ = [Vk, Zl] ∈ Rn×(k+l), Zl ∈ Rn×l, l� p, (4.4)

where Zl has orthonormal columns and

span(Zl) ⊂ range
(
(I − VkV Tk )TT

)
. (4.5)

Then, by (4.5), ZTl Vk = 0 and, therefore, all the columns of V̄ in (4.4) are orthonor-
mal. Thus, an updating scheme can be obtained by applying SV-RR(AT , U , V̄ ). The
corresponding projected matrix is given by the following proposition.

Proposition 4.2. The application of SV-RR(AT , U , V̄ ) of Algorithm 2.1 with
U defined in (3.15) and V̄ in (4.4)–(4.5) produces the (k+p)×(k+ l) projected matrix

H =

[
Σk 0
TVk T (I − VkV Tk )Zl

]
. (4.6)

Finally, if the term weights are corrected, in (3.16), we substitute U by

Ū = [Uk, Z
(1)
l1

], Z
(1)
l1
∈ Rm×l1 , l1 � p, (4.7)

and V by

V̄ = [Vk, Z
(2)
l2

], Z
(2)
l2
∈ Rn×l2 , l2 � p . (4.8)

Similarly, Z
(1)
l1
∈ Rm×l1 and Z

(2)
l2
∈ Rn×l2 are assumed to have orthonormal columns,

and are such that

span(Z
(1)
l1

) ⊂ range
(
(I − UkUTk )C

)
, span(Z

(2)
l2

) ⊂ range
(
(I − VkV Tk )WT

)
.

(4.9)

The latter implies that Z
(1)T
l1

Uk = 0 and Z
(2)T
l2

Vk = 0, i.e., both Ū and V̄ in (4.7)–
(4.8) have orthonormal columns. As a result, an updating scheme can be given by
SV-RR(ACW , Ū , V̄ ), with Ū and V̄ defined in (4.7)–(4.9).

Proposition 4.3. The SV-RR(ACW , Ū , V̄ ) run of Algorithm 2.1 with Ū and
V̄ defined in (4.7)–(4.9) produces the (k + l1)× (k + l2) projected matrix

H =

[
Σk 0
0 0

]
+

[
UTk C

Z
(1)T
l1

(I − UkUTk )C

] [
WVk, W (I − VkV Tk )Z

(2)
l2

]
. (4.10)

It is important to emphasize that, in contrast to Algorithms 3.1–3.3, the updat-
ing framework introduced above, which uses smaller search subspaces, is no longer
expected to deliver the exact singular triplets of AD, AT , or ACW . However, as the
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numerical experiments in section 5 will demonstrate, satisfactory retrieval accuracies
can be achieved without computing these triplets exactly, and only approximations
suffice in practice. This observation can be related to the fact that the matrices AD,
AT , and ACW are themselves approximations of the “true” updated matrices ÃD, ÃT ,
and ÃCW in (3.1)–(3.3), and so there is no need to compute their singular triplets
with high accuracy.

The rest of this section studies several choices of Zl in (4.1)–(4.2) and (4.4)–(4.5),

as well as of Z
(1)
l1

and Z
(2)
l2

in (4.7)–(4.9).

4.1. Optimal rank-l approximations.. We start with the approach based
on SV-RR(AD, Ū , V ), where Ū is assumed to satisfy (4.1)–(4.2) and V is defined
in (3.14). Our goal is to specify a suitable choice of Zl and turn the general projection
procedure into a practical updating algorithm that handles the case of adding new
documents.

As has been pointed out in subsection 3.2, a run of SV-RR(AD, U , V ) with U
and V from (3.14) is equivalent to Algorithm 3.1, which is known to compute the
exact dominant singular triplets of AD. This property of the algorithm, paired with
the analysis in [30], explains the generally satisfactory retrieval quality maintained by
the updating scheme. From these considerations, it is desirable that the new search
subspace span(Ū) utilized by SV-RR(AD, Ū , V ) approximates span(U). In this case,
our expectation is that SV-RR(AD, Ū , V ) will exhibit a retrieval accuracy comparable
to that of SV-RR(AD, U , V ) implemented by Algorithm 3.1.

By definition, span(Ū) = span(Uk) ⊕ span(Zl) and span(U) = span(Uk) ⊕
range

(
(I − UkUTk )D

)
. Therefore, we seek to construct Zl such that span(Zl) ap-

proximates range((I − UkU
T
k )D). In other words, we would like to compress the

information contained in the subspace range
(
(I − UkUTk )D

)
into the span of a set

of l orthonormal vectors. Formally, this requirement translates into the problem of
constructing Zl, such that

span(Zl) = range(M), (4.11)

where M ≈
(
I − UkUTk

)
D ∈ Rm×p is some matrix with rank(M) = l.

This is related to the standard task of constructing a low-rank approximation M
of (I −UkUTk )D. It is well known, e.g., [12], that an optimal rank-l approximation of
(I − UkUTk )D is given by M = XlSlY

T
l , where Sl is a diagonal matrix of l dominant

singular values of (I − UkUTk )D, and Xl ∈ Rm×l and Yl ∈ Rp×l are the matrices of
the corresponding left and right singular vectors, i.e.,

(I − UkUTk )DYl = XlSl, DT (I − UkUTk )TXl = YlSl . (4.12)

Thus, it is natural to choose Zl = Xl, i.e., augment Ū in (4.1) with a few left dominant
singular vectors of (I−UkUTk )D. It is clear that this choice of Zl indeed satisfies (4.2).
Then, by Proposition 4.1 and (4.12), a run of SV-RR(AD, Ū , V ) with Ū = [Uk, Xl]
and V in (3.14) produces the projected matrix

H =

[
Σk UTk D
0 SlY

T
l

]
∈ R(k+l)×(k+p) . (4.13)

This leads to the following updating scheme based on the singular vectors (SV) of
(I − UkUTk )D.

Algorithm 4.1 (Adding documents (SV)). Input: Σk, Uk, Vk, D. Output: Σ̃k,
Ũk, Ṽk.
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1. Compute l largest singular triplets of (I − UkUTk )D in (4.12).
2. Construct H in (4.13). Compute the matrices Θk, Fk, and Gk that corre-

spond to the k dominant singular triplets of H.

3. Set Σ̃k = Θk, Ũk = [Uk, Xl]Fk, and Ṽk =

[
Vk 0
0 Ip

]
Gk.

Observe that the projected matrix produced by Algorithm 4.1 has significantly
fewer rows than the one in Algorithm 3.1, bringing the O((k + p)3) complexity of
step 2 to O((k + p)(k + l)2), which is linear in p. From a practical point of view,
note also that, in contrast to Algorithm 3.1, (I − UkUTk )D in step 1 should not be
explicitly constructed, because the factorization (4.12) can be obtained by an iterative
procedure, e.g., [4, 14], that accesses (I−UkUTk )D (and its transpose) through matrix-
vector multiplications with D (and DT ) and orthogonalizations against the columns
of Uk. The triplets Sl, Xl, and Yl need to be approximated only with modest accuracy.

Similar considerations can be exploited for the case of adding new terms with the
aim of constructing Zl in (4.4)–(4.5) satisfying (4.11) with M ≈

(
I − VkV Tk

)
TT ∈

Rn×p and rank(M) = l. Let Sl, Xl ∈ Rn×l, and Yl ∈ Rp×l now be the factors of the
rank-l SVD approximation of the matrix (I − VkV Tk )TT , i.e.,

(I − VkV Tk )TTYl = XlSl, T (I − VkV Tk )Xl = YlSl . (4.14)

An optimal rank-l approximation of (I − VkV Tk )TT is then given by M = XlSlY
T
l ,

and analogy with the previous case suggests that we choose Zl = Xl. Thus, by
Proposition 4.2 and (4.14), a run of SV-RR(AT , U , V̄ ) with U defined in (3.15) and
V̄ = [Vk, Xl] gives the projected matrix

H =

[
Σk 0
TVk YlSl

]
∈ R(k+p)×(k+l) . (4.15)

As a result, we obtain the following updating scheme.

Algorithm 4.2 (Adding terms (SV)). Input: Σk, Uk, Vk, T . Output: Σ̃k, Ũk,
Ṽk.

1. Compute l largest singular triplets of (I − VkV Tk )TT in (4.14).
2. Construct H in (4.15). Compute the matrices Θk, Fk, and Gk that corre-

spond to the k dominant singular triplets of H.

3. Set Σ̃k = Θk, Ũk =

[
Uk 0
0 Ip

]
Fk, and Ṽk = [Vk, Xl]Gk .

Finally, in the case of correcting the term weights, we would like to specify Z
(1)
l1

and Z
(2)
l2

in (4.7)–(4.9), such that

span(Z
(1)
l1

) = range(M1), span(Z
(2)
l2

) = range(M2) , (4.16)

where M1 ≈
(
I − UkUTk

)
C ∈ Rm×p, M2 ≈

(
I − VkV Tk

)
WT ∈ Rn×p; rank(M1) = l1

and rank(M2) = l2. By analogy with the previous cases, we let S
(1)
l1

, X
(1)
l1
∈ Rm×l1 ,

Y
(1)
l1
∈ Rp×l1 be the matrices of the l1 largest singular values and associated left and

right singular vectors of (I − UkUTk )C,

(I − UkUTk )CY
(1)
l1

= X
(1)
l1
S
(1)
l1
, CT (I − UkUTk )X

(1)
l1

= Y
(1)
l1
S
(1)
l1

, (4.17)
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and S
(2)
l2

, X
(2)
l2
∈ Rn×l2 , Y

(2)
l2
∈ Rp×l2 correspond to the l2 dominant triplets of

(I − VkV Tk )WT ,

(I − VkV Tk )WTY
(2)
l2

= X
(2)
l2
S
(2)
l2
, W (I − VkV Tk )X

(2)
l2

= Y
(2)
l2
S
(2)
l2

. (4.18)

Optimal low-rank approximations of (I−UkUTk )C and (I−VkV Tk )WT are then given

by M1 = X
(1)
l1
S
(1)
l1
Y

(1)T
l1

and M2 = X
(2)
l2
S
(2)
l2
Y

(2)T
l2

, respectively. Hence, we choose

Z
(1)
l1

= X
(1)
l1

and Z
(2)
l2

= X
(2)
l2

. In this case, by Proposition 4.3 and (4.17)–(4.18),

a run of SV-RR(ACW , Ū , V̄ ) with Ū = [Uk, X
(1)
l1

] and V̄ = [Vk, X
(2)
l2

] yields the
projected matrix

H =

[
Σk 0
0 0

]
+

[
UTk C

S
(1)
l1
Y

(1)T
l1

] [
WVk, Y

(2)
l2
S
(2)
l2

]
∈ R(k+l1)×(k+l2) , (4.19)

and can be summarized as the following updating algorithm.
Algorithm 4.3 (Correcting weights (SV)). Input: Σk, Uk, Vk, C, W . Output:

Σ̃k, Ũk, Ṽk.
1. Compute l1 largest singular triplets of (I −UkUTk )C in (4.17) and l2 largest

singular triplets of (I − VkV Tk )WT in (4.18) .
2. Construct H in (4.19). Compute the matrices Θk, Fk, and Gk that corre-

spond to the k dominant singular triplets of H.

3. Set Σ̃k = Θk, Ũk = [Uk, X
(1)
l1

]Fk, and Ṽk = [Vk, X
(2)
l2

]Gk .

4.2. The Golub–Kahan–Lanczos vectors. In this subsection, we consider an

alternative option for choosing the orthonormal vectors Zl, Z
(1)
l1

, and Z
(2)
l2

. Instead

of using the dominant singular triplets of the four respective matrices (I − UkUTk )D,
(I−VkV Tk )TT , (I−UkUTk )C, and (I−VkV Tk )WT , under consideration, we propose to
exploit for the same purpose a few basis vectors computed from the Golub–Kahan–
Lanczos (GKL) bidiagonalization procedure [11, 12].

Given an arbitrary m-by-n matrix A, the GKL procedure constructs the or-
thonormal bases Pl = [p1, . . . , pl] and Ql+1 = [q1, . . . , ql+1] of the Krylov subspaces
Kl(AAT , Aq1) = span

{
Aq1, (AA

T )Aq1, . . . (AA
T )l−1Aq1

}
and Kl+1(ATA, q1) =

span
{
q1, (A

TA)q1, . . . (A
TA)lq1

}
, respectively; and an (upper) bidiagonal matrix

Bl ∈ Rl×(l+1). The matrices Pl, Ql+1, and Bl are related by the fundamental identity{
AQl = PlBl ,

ATPl = Ql+1BTl ;
(4.20)

where Bl ∈ Rl×l is obtained from Bl by removing the last column. The vectors pi
and qi that comprise the matrices Pl and Ql are called the left and right GKL vectors,
respectively. An implementation of the procedure is given by the algorithm below,
which we further refer to as GKL(A, l).

Algorithm 4.4 (GKL(A, l)). Input: A ∈ Rm×n, l. Output: Bl, Pl, Ql+1.
1. Choose q1, ‖q1‖ = 1. Set β0 = 0 .
2. For i = 1, . . . , l do
3. pi = Aqi − βi−1pi−1
4. If (m < n) Orthogonalize pi against [p1, . . . , pi−1].
5. αi = ‖pi‖.
6. pi = pi/αi.
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7. qi+1 = AT pi − αiqi.
8. If (m ≥ n) Orthogonalize qi+1 against [q1, . . . , qi].
9. βi = ‖qi+1‖.

10. qi+1 = qi+1/βi.
11. EndFor
12. Return Bl = diag {α1, . . . , αl}+ superdiag {β1, . . . , βl}, Pl = [p1, . . . , pl], and

Ql+1 = [q1, . . . , ql+1].

Note that, in exact arithmetic, steps 4 and 8 of the algorithm are unnecessary,
i.e., orthogonality of vectors pi and qi is ensured solely by the short-term recurrences
in steps 3 and 6. In the presence of the round-off, it is generally required to re-
orthogonalize both pi and qi against all previously constructed vectors. However, in
Algorithm 4.4 we follow the observation in [24] suggesting that it is possible to re-
orthogonalize only one of the vector sets without significant loss of orthogonality for
the other.

Let us first address the case of adding new documents, and assume that Pl ∈
Rm×l, Ql+1 ∈ Rp×(l+1), and Bl are produced by a run of GKL((I − UkU

T
k )D, l).

Then as a rank-l approximation of (I − UkUTk )D we choose M = PlBlQ
T
l+1 and set

Zl = Pl, i.e., we define Ū in (4.1) by augmenting Uk with several left GKL vectors of
(I − UkUTk )D.

In contrast to the case of the singular vectors, this choice does not provide an
optimal rank-l approximation. The optimality, however, is traded for a simpler and
faster procedure to construct Zl. Evaluation of the performance of the GKL vectors
as opposed to the singular vectors in the context of the dimension reduction can be
found in [8].

By (4.20), we have {
(I − UkUTk )DQl = PlBl
DT (I − UkUTk )Pl = Ql+1BTl .

(4.21)

It can be seen from the above relation that Zl = Pl satisfies (4.2). Thus, by Propo-
sition 4.1, the projected matrix produced by an application of SVD-RR(AD, Ū , V ),
where Ū = [Uk, Pl] and V is defined in (3.14), takes the form

H =

[
Σk UTk D
0 BlQ

T
l+1

]
∈ R(k+l)×(k+p) . (4.22)

As a result, we obtain the following updating algorithm.
Algorithm 4.5 (Adding documents (GKL)). Input: Σk, Uk, Vk, D. Output:

Σ̃k, Ũk, Ṽk.
1. Apply GKL((I − UkUTk )D, l), given by Algorithm 4.4, to produce Pl, Ql+1,

and Bl satisfying (4.21).
2. Construct H in (4.22). Compute the matrices Θk, Fk, and Gk that corre-

spond to the k dominant singular triplets of H.

3. Set Σ̃k = Θk, Ũk = [Uk, Pl]Fk, and Ṽk =

[
Vk 0
0 Ip

]
Gk.

Note that applying the GKL procedure in step 1 of Algorithm 4.5 can be carried
out without explicitly constructing the matrix (I − UkUTk )D and its transpose. In-
stead, the matrices can be accessed through matrix-vector multiplications with D or
DT , and orthogonalizations against the columns of Uk.
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If new terms T are added to the document collection, then l steps of the GKL
procedure should be applied to the matrix (I − VkV Tk )TT . This leads to the identity{

(I − VkV Tk )TTQl = PlBl
T (I − VkV Tk )Pl = Ql+1BTl ,

(4.23)

where Pl ∈ Rn×l and Ql+1 ∈ Rp×(l+1) are the matrices of the left and right GKL
vectors of (I−VkV Tk )TT . Similar to the previous case, we approximate (I−VkV Tk )TT

by M = PlBlQ
T
l+1, and set Zl = Pl. Then, combining Proposition 4.2 and (4.23), we

obtain the projected matrix

H =

[
Σk 0

TVk Ql+1BTl

]
∈ R(k+p)×(k+l) , (4.24)

which is produced by SVD-RR(AT , U , V̄ ) with U in (3.15) and V̄ = [Vk, Pl]. The
resulting updating scheme is summarized in the algorithm below.

Algorithm 4.6 (Adding terms (GKL)). Input: Σk, Uk, Vk, D. Output: Σ̃k,
Ũk, Ṽk.

1. Apply GKL((I −VkV Tk )TT , l), given by Algorithm 4.4, to produce Pl, Ql+1,
and Bl satisfying (4.23).

2. Construct H in (4.24). Compute the matrices Θk, Fk, and Gk that corre-
spond to the k dominant singular triplets of H.

3. Set Σ̃k = Θk, Ũk =

[
Uk 0
0 Ip

]
Fk, and Ṽk = [Vk, Pl]Gk .

Finally, if the term weights are corrected, the GKL procedure is applied to both
(I −UkUTk )C and (I − VkV Tk )W . A run of GKL((I −UkUTk )C, l1) gives the equality{

(I − UkUTk )CQ
(1)
l1

= P
(1)
l1
B

(1)
l1

CT (I − UkUTk )P
(1)
l1

= Q
(1)
l1+1B

(1)T
l1

,
(4.25)

and GKL((I − VkV Tk )W , l2) results in{
(I − VkV Tk )WTQ

(2)
l2

= P
(2)
l2
B

(2)
l2

W (I − VkV Tk )P
(2)
l2

= Q
(2)
l2+1B

(2)T
l2

.
(4.26)

In (4.25)–(4.26), the columns of the matrix pairs P
(1)
l1
∈ Rm×l1 , Q

(1)
l1+1 ∈ Rp×(l1+1)

and P
(2)
l2
∈ Rn×l2 , Q

(2)
l2+1 ∈ Rp×(l2+1) correspond to the left and right GKL vectors of

(I−UkUTk )C and (I−VkV Tk )W , respectively. We then can approximate (I−UkUTk )C

by M1 = P
(1)
l1

B
(1)
l1
Q

(1)T
l1+1 and (I − VkV Tk )W by M2 = P

(2)
l2

B
(2)
l2
Q

(2)T
l2+1, choosing Z

(1)
l1

=

P
(1)
l1

and Z
(2
l2

= P
(2)
l2

. Hence, by Proposition 4.3 and (4.25)–(4.26), a run of SVD-

RR(ACW , Ū , V̄ ) with Ū = [Uk, P
(1)
l1

] and V̄ = [Vk, P
(2)
l2

] yields the projected matrix

H =

[
Σk 0
0 0

]
+

[
UTk C

B
(1)
l1
Q

(1)T
l1+1

] [
WVk, Q

(2)
l2+1B

(2)T
l2

]
∈ R(k+l1)×(k+l2) . (4.27)

This suggests the following updating scheme.
Algorithm 4.7 (Correcting weights (GKL)). Input: Σk, Uk, Vk, D. Output:

Σ̃k, Ũk, Ṽk.
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Algorithm Complexity

Alg. 3.1 (ZS) (k + p)3 +mp2 +mpk + k2(m+ n)
Alg. 4.1 (SV) (k + p)(k + l)2 +ml2 +mlk + k2(m+ n) + nnz(D)(l + k)
Alg. 4.5 (GKL) (k + p)(k + l)2 +mlk + k2(m+ n) + nnz(D)(l + k)

Table 4.1
Asymptotic complexity of different LSI updating schemes for adding new documents.

1. Apply GKL((I −UkUTk )C, l1) and GKL((I − VkV Tk )WT , l2), given by Algo-
rithm 4.4, to produce the GKL vectors satisfying (4.25) and (4.26).

2. Construct H in (4.27). Compute the matrices Θk, Fk, and Gk that corre-
spond to the k dominant singular triplets of H.

3. Set Σ̃k = Θk, Ũk = [Uk, P
(1)
l1

]Fk, and Vk = [Vk, P
(2)
l2

]Gk.

4.3. Complexity analysis. We start by addressing the cost of Algorithm 4.1
that performs the updating after adding new documents. To be specific, we assume
that a multiple of l iterations of a GKL-based singular value solver, e.g., [14], are used
to determine the l dominant singular triplets of (I − UkUTk )D. In this case, the cost
of step 1 of the algorithm can be estimated as O(lnnz(D) + lmk + l2(m+ p)), where
nnz(D) is the number of non-zero elements in D. Here the first two terms come
from the matrix-vector multiplications with (I − UkU

T
k )D. In particular, the first

term is given by the Sparse Matrix-Vector multiplications (SpMVs) with D and DT ,
and the second term is contributed by orthogonalizations against the columns of Uk.
The last term accounts for reorthogonalizations of the GKL vectors and the final SV-
RR procedure to extract the singular triplet approximations from the corresponding
Krylov subspaces.

The complexity of step 2 of Algorithm 4.1 is O((k + p)(k + l)2 + nnz(D)k +
lp). The first term represents the cost of the SVD of the matrix H in (4.13). The
remaining terms are given by the construction of UTk D (utilizing SpMVs with D) and
the multiplication of Y Tl by the diagonal matrix Sl to form the (1, 2) and (2, 2) blocks
of H, respectively. The cost of step 3 is O(k2(m+ n) + lmk).

The complexity of Algorithm 4.5 that also addresses the case of adding new
documents and extends Algorithm 4.1 by replacing the singular vectors of (I−UkUTk )D
with the GKL vectors is similarly estimated. The difference in cost of the two schemes
essentially comes from their initial step. In particular, the complexity of step 1 of
Algorithm 4.5 is O(lnnz(D) + lmk+ l2p), i.e., it requires O(l2m) less operations than
the corresponding step of Algorithm 4.1. This cost reduction is due to avoiding the
SV-RR procedure that is invoked by a GKL-based singular value solver in step 1 of
Algorithm 4.1.

The overall complexities of Algorithms 4.1 and 4.5, as well as of Algorithm 3.1
addressed at the beginning of Section 4, are summarized in Table 4.1.

The main observation drawn from Tables 4.1–4.3 is that, unlike the Zha–Simon
approaches, the new updating schemes no longer exhibit the cubic scaling in p. It
can be seen that the proposed algorithms scale linearly in the update size, leading to
significant computational savings, especially in the context of large text collections,
as demonstrated in our TREC8 example in Section 5.

We also note that the new schemes allow one to take advantage of the sparsity
of the update, and require less storage due to working with sparse or thinner dense
matrices. For example, in the case of appending new documents, in addition to Σk, Uk,
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Algorithm Complexity

Alg. 3.2 (ZS) (k + p)3 + np2 + npk + k2(m+ n)
Alg. 4.2 (SV) (k + p)(k + l)2 + nl2 + nlk + k2(m+ n) + nnz(D)(l + k)
Alg. 4.6 (GKL) (k + p)(k + l)2 + nlk + k2(m+ n) + nnz(D)(l + k)

Table 4.2
Asymptotic complexity of different LSI updating schemes for adding new terms.

Algorithm Complexity

Alg. 3.3 (ZS) (k + p)3 + (m+ n)(p2 + pk + k2)
Alg. 4.3 (SV) (k + l)3 + (m+ n)(l2 + lk + k2) + (nnz(C) + nnz(W ))(l + k)
Alg. 4.7 (GKL) (k + l)3 + (m+ n)(lk + k2) + (nnz(C) + nnz(W ))(l + k)

Table 4.3
Asymptotic complexity of different updating schemes for correcting the term weights.

Vk, and D, the Zha–Simon algorithm requires storing mp elements of the orthogonal
basis from the QR decomposition (3.5) and (k+p)2 entries of the projected matrix HD.
In contrast, the proposed schemes only store ml + pl elements of the l singular (or
GKL) vectors of (I − UkUTk )D and (k + l)(k + p) entries of the reduced matrix H.
Clearly, if l << p then the reduction in storage is significant.

If l = 0 then the introduced algorithms turn into the early methods in [3, 19].
As seen from Tables 4.1–4.3 after setting l = 0, these methods can be extremely fast,
but generally yield modest retrieval accuracy. This is not surprising. In the language
of the present paper, the schemes [3, 19] represent the SV-RR procedures where the
left, right or both search subspaces stay unmodified during the matrix updates, e.g.,
always Ū = Uk or V̄ = Vk, and are “too small” to provide satisfactory retrieval
quality.

If l = p then the costs of the proposed schemes resemble those of the Zha–Simon
methods [29]. In this case, the search subspaces become sufficiently large to ensure
the inclusion of the dominant singular subspaces and, similar to the algorithms in [29],
produce the exact triplets of AD, AT , or ACW . As has been discussed, this fixes the
problem of the deteriorating retrieval accuracy, however, it may result in loss of the
efficiency if p is large.

The updating methods of this paper can balance computational expenses by ap-
propriate choices of l and can be placed in between the two extremes that correspond
to [3, 19] and [29]. In the next section, we demonstrate that l can be chosen small
without sacrificing retrieval accuracy.

5. Numerical experiments. The goal of this section is to demonstrate the
differences in cost and accuracy of the discussed updating schemes, and to verify the
results of the complexity analysis in subsection 4.3.

In our experiments we apply the updating algorithms to several standard doc-
ument collections, such as MEDLINE, CRANFIELD, NPL, and TREC8. These
datasets have sizes that range from a few thousands of terms and documents to hun-
dreds of thousands, and are commonly used to benchmark the performance of text
mining techniques. Each collection is supplied with a set of nq “canonical” queries
and expert-generated lists of relevant documents corresponding to these queries. The
listed relevant documents are the ones that should be ideally returned in response to
the query, and therefore provide information necessary to evaluate the accuracy of
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automatic retrieval.

The MEDLINE , CRANFIELD, and NPL term-document matrices are available
from ftp.cs.cornell.edu/pub/smart/. The TMG software [28] has been used to
parse the TREC8 dataset and generate the term-document matrix. The standard
pre-processing has included stemming and deleting common words according to the
TMG-provided stop-list. Terms with no more than 5 occurrences or with appearances
in more than 100, 000 documents have been removed and 125 empty documents have
been ignored. In all tests the weighting schemes for documents and queries have been
set to lxn.bpx [17, 22].

Due to space limitations we present results only for the case of adding new doc-
uments. Our experience with the other update types has led to similar observations
and conclusions.

The tests are organized as follows. Given a term-document matrix A, we fix
its first t columns, and compute the k dominant singular triplets Σk, Uk, and Vk of
the corresponding submatrix of A. This submatrix, denoted using the matlab array-
slicing notation by A(:, 1 : t), represents the initial state of the document collection. To
simulate the arrival of new documents, the remaining n− t columns are consecutively
added in groups of p columns. Thus, for the first update, we append the submatrix
A(:, t + 1 : t + p), for the next one A(:, t + p + 1 : t + 2p), etc. As a result, in our
experiments, we nearly double (and sometimes triple) the initial size t of the collection.
To track the effects of the update size on the efficiency of the updating schemes, for
each dataset we consider several different values of p.

After adding each column group, we update the k singular triplets using the
proposed Algorithm 4.1 (“SV”) and Algorithm 4.5 (“GKL”), as well as the exist-
ing scheme of Zha and Simon in Algorithm 3.1 (“ZS”). Thereafter, the similarity
scores (1.1) with α = 0 are evaluated for each “canonical” query, and the average
precisions are calculated using the standard N -point formula, e.g., [13, 17]. Since a
total of nq “canonical” queries are provided for each dataset, we calculate the mean
of the corresponding nq average precisions and plot the resulting quantity against the
current number of documents in the collection. We also measure time spent for each
update.

All experiments have been performed in matlab. Note that, with this testing
environment, little or nothing can be deduced about the methods’ capabilities in terms
of the absolute execution times. However, the timing results can provide illustrations
for the complexity findings in Tables 4.1–4.3 and give a comparison of the cost of
the schemes relative to each other. These comparisons are meaningful when the same
conditions are used in each case, e.g., the same matlab function is used for computing
the partial SVD and the same optimization techniques, if any, are applied.

Due to the established unifying framework of the SV-RR procedure, our codes are
organized to follow the same execution path and differ only in “localized” subtasks,
such as, e.g., computing a few dominant singular triplets in step 1 of Algorithm 4.1
or the GKL vectors in step 1 of Algorithm 4.5 instead of the QR decomposition of
(I−UkUTk )D in the original Algorithm 3.1. All the linear algebra operations, such as
dense matrix-matrix multiplications, the SVD and QR decompositions, SpMVs, etc.,
are accomplished by the same matlab routines in all of the updating schemes.

In step 1 of Algorithm 4.5, we use our own straightforward matlab implemen-
tation of the GKL procedure, which is based on Algorithm 4.4. Our singular value
solver in step 1 of Algorithm 4.1 is built on top of this GKL procedure by additionally
performing the SV-RR computation with respect to the left and right GKL vectors.

ftp.cs.cornell.edu/pub/smart/
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The latter amounts to the SVD of a bidiagonal matrix followed by the construction
of the Ritz singular vectors. The convergence of the singular triplets is achieved, and
the solver is stopped, after the difference between the sums of the k dominant singular
value approximations on two consecutive iterations becomes smaller than 10−1. The
maximum number of iterations is set to p.

The starting vector in the GKL algorithm is always set to the vector of all ones
and then normalized to have unit length. We have observed that this choice often
leads to a higher retrieval accuracy compared to a random vector. The reduced di-
mensions k are set to (nearly) optimal, in the retrieval accuracy, values as observed
in [8, Figures 5-6]. The parameter l that determines the number of singular triplets in
step 1 of Algorithm 4.1 or the number of the GKL vectors in step 1 of Algorithm 4.5
is experimentally chosen to provide balance between the computational cost and re-
trieval accuracy. In particular, for all examples except for TREC8, l is chosen to
be the smallest value that leads to the retrieval accuracy comparable to that of the
standard algorithm.
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Fig. 5.1. MEDLINE collection: m = 7, 014, n = 1, 033, k = 75, t = 533, nq = 30. The average
precision and time for adding groups of p = 25 (top) and p = 50 (bottom) documents. The number
of singular triplets of (I − UkU

T
k )D computed by Algorithm 4.1 (“SV”) is 2 (top) and 4 (bottom).

The number of GKL steps in Algorithm 4.5 (“GKL”) is 3 (top) and 5 (bottom). The methods are
compared to Algorithm 3.1 (“ZS”).

Figure 5.1 compares different updating schemes for the MEDLINE collection.
This collection is known to be small, with the term-document matrix having m =
7, 014 rows and n = 1, 033 columns. We fix the initial t = 533 columns and add
the rest in groups of p = 25 (top) and p = 50 (bottom). The size k of the reduced
subspace is set to 75.

The left-hand side plots demonstrate the differences in the retrieval accuracy.
The plots to the right compare the timing results. The horizontal axes represent the
number of documents in the collection after consecutive updates. The vertical axes
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# top ranked doc. 10 30 40 70 500 1,000
# rel. doc. (ZS) 7 16 17 20 23 23
# rel. doc. (SV) 10 29 35 38 39 39
pval 0.06 1.1× 10−4 2.5× 10−5 0.002 0.036 0.039

Table 5.1
MEDLINE collection: the two sample proportion tests for the relevant document counts obtained

using Algorithm 3.1 (“ZS”) and Algorithm 4.1 (“SV”).

correspond to the mean of the average precisions (left) and the cumulative time (right),
i.e., the total time spent by the algorithms to perform the current and preceding
updates.

The example demonstrates that the number l of the singular and GKL vectors
generated by Algorithms 4.1 and 4.5 can be very small. In particular, we construct as
few as 2-3 singular triplets and 3-4 GKL vectors. As anticipated from the discussion
in subsection 4.3, this fact gives rise to updating schemes that are significantly faster
than the Zha–Simon approach in Algorithm 3.1. Figure 5.1 (right) confirms that
the new strategies in Algorithms 4.1 and 4.5 are indeed considerably faster than the
existing scheme. Remarkably, the gain in the efficiency comes without any loss of the
retrieval accuracy; see Figure 5.1 (left).

It can be observed from the figure that Algorithm 4.1 gives the most accurate
results though it requires slightly more compute time than Algorithm 4.5. This time
difference is caused by the overhead accumulated by the singular value solver to ensure
the convergence and perform the extraction of the approximate singular triplets in
step 1 of Algorithm 4.1.

Note that the number of GKL vectors in Algorithm 4.5 is slightly larger than
that of the singular triplets in Algorithm 4.1. This represents a “compensation” for
the non-optimal choice of the low-rank approximation of (I − UkUTk )D adopted by
Algorithm 4.5. Further increase in the number of the GKL vectors may lead to higher
retrieval accuracies, but the timing is accordingly affected. The latter observation is
true for all of our experiments and is consistent with the relevant results in [8].

In order to yet more carefully compare the retrieval accuracy results, in Table 5.1
we report numbers of relevant documents (“# rel. doc.”) among the j top ranked (“#
top ranked doc.”) for the Zha–Simon (“ZS”) and the new (“SV”) approaches. Here
the retrieval is performed from the entire collection (n = 1, 033), after all columns of
A have been appended, using the approximate SVD’s generated by the two different
updating modes.

The results in Table 5.1 demonstrate that the new approach gives noticeably larger
numbers of relevant document, i.e., a higher precision is obtained at any level j. One
might debate, however, whether the difference in precision is statistically significant
or if it is due to chance alone.

To address this issue we perform a two sample proportion test whose goal is to
determine whether or not the difference between two proportions is significant, see,
e.g., [27, Chap. 10]. Given the two proportions of relevant documents out of j top
ranked, the test has as its null hypothesis that the proportions are drawn from the
same binomial distribution. The “pval” values, giving the probability under the null
hypothesis, are reported in Table 5.1. One can observe that these values appear to
be very small, not exceeding 0.06 (for j = 10) and getting as low as 2.5 × 10−5 (for
j = 40). Thus, the null hypothesis can be rejected with at least 94% confidence for
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any level j, i.e., the difference in precisions can be seen as statistically significant.
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Fig. 5.2. CRANFIELD collection: m = 3, 763, n = 1, 398, k = 150, t = 698, nq = 225. The
average precision and time for adding groups of p = 100 (top) and p = 150 (bottom) documents.
The number of singular triplets of (I − UkU

T
k )D computed by Algorithm 4.1 (“SV”) is 25 (top and

bottom). The number of GKL steps in Algorithm 4.5 (“GKL”) is 51 (top) and 45 (bottom). The
methods are compared to Algorithm 3.1 (“ZS”).

Figure 5.2 displays the results for the CRANFIELD collection. Similar to MED-
LINE, CRANFIELD represents another example of a small text collection, with the
term-document matrix having m = 3, 763 rows and n = 1, 398 columns. Following
our test framework, we fix the initial t = 698 columns and add the rest in groups of
p = 100 (top) and p = 150 (bottom). The dimension k of the reduced subspace is set
to 150.

The number l of singular triplets in Algorithm 4.1 is chosen to be 25 for both values
of p. The number of GKL steps is set to 51 (p = 100) and 45 (p = 150). In contrast to
the previous example, smaller values of l fail to deliver acceptable retrieval accuracies.
Nevertheless, as can be seen in Figure 5.2 (right), the new updating schemes are still
noticeably faster than Algorithm 3.1. The retrieval accuracy is comparable for all
three approaches, and is slightly higher for the new schemes at the later updates.

In Figure 5.3 we report results for the NPL collection. NPL is a larger text
collection with the associated term-document matrix having m = 7, 491 rows and
n = 11, 429 columns. Note that, in contrast to the previous case, here the number
of rows is smaller than the number of columns. In this sense, NPL provides a more
representative example of the real-world large-scale text collections, where the number
of terms in the vocabulary is limited while the number of documents, in principle, can
become arbitrarily large. For the test purposes we fix t = 4, 000 initial columns and
add the rest in groups of p = 300 and p = 500; k = 550.

Figure 5.3 shows that for the NPL dataset the new updating schemes are also
faster and deliver a comparable retrieval accuracy. Note that the number l of the



FAST UPDATING ALGORITHMS FOR LSI 25

4000 5000 6000 7000 8000 9000 10000 11000 12000
0.21

0.215

0.22

0.225

0.23

0.235

0.24

0.245
A

v
e

ra
g

e
 p

re
c
is

io
n

Number of documents

Retrieval accuracy, p = 300

 

 

ZS

SV

GKL

4000 5000 6000 7000 8000 9000 10000 11000 12000
0

2

4

6

8

10

12

14

16

18

20

T
im

e
 (

s
e

c
.)

Updating time, p = 300

Number of documents

 

 

ZS

SV

GKL

4000 5000 6000 7000 8000 9000 10000 11000 12000
0.21

0.215

0.22

0.225

0.23

0.235

0.24

0.245

A
v
e

ra
g

e
 p

re
c
is

io
n

Number of documents

Retrieval accuracy, p = 500

 

 

ZS

SV

GKL

4000 5000 6000 7000 8000 9000 10000 11000 12000
0

2

4

6

8

10

12

14

16

18

20

T
im

e
 (

s
e

c
.)

Updating time, p = 500

Number of documents

 

 

ZS

SV

GKL

Fig. 5.3. NPL collection: m = 7, 491, n = 11, 429, k = 550, t = 4, 000, nq = 93. The average
precision and time for adding groups of p = 300 (top) and p = 500 (bottom) documents. The number
of singular triplets of (I−UkU

T
k )D computed by Algorithm 4.1 (“SV”) is 10 (top and bottom). The

number of GKL steps in Algorithm 4.5 (“GKL”) is 20 (top and bottom). The methods are compared
to Algorithm 3.1 (“ZS”).

# top ranked doc. 100 500 1,000 11,000
# rel. doc. (ZS) 11 18 21 22
# rel. doc. (SV) 58 72 73 82
pval 2.7× 10−12 2.4× 10−9 3.9× 10−8 3.7× 10−9

Table 5.2
NPL collection: the two sample proportion tests for the relevant document counts obtained

using Algorithm 3.1 (“ZS”) and Algorithm 4.1 (“SV”).

singular and GKL vectors is kept reasonably low. In particular, we request 10 singular
triplets in step 1 of Algorithm 4.1 and 20 GKL vectors in step 1 of Algorithm 4.5.

In Table 5.2, we further assess the retrieval accuracy. Similar to Table 5.1 for the
MEDLINE collection, after completing the whole cycle of updates, we present numbers
of relevant documents among the j top ranked for the Zha–Simon (“ZS”) and the new
(“SV”) approaches. In the same manner, we run the two sample proportion test for
each number j of the top ranked documents and report the “pval” values. As in the
previous example in Table 5.1, these values turn out to be very small, suggesting
statistical significance of the difference in the precision results.

Figure 5.4 concerns a larger example given by the TREC8 dataset. This dataset is
known to be extensively used for testing new text mining algorithms. It is comprised
of four document collections (Financial Times, Federal Register, Foreign Broadcast
Information Service, and Los Angeles Times) from the TREC CDs 4 & 5 (copy-
righted). The queries are from the TREC-8 ad hoc task; see http://trec.nist.

gov/data/topics_eng/. The relevance files are available at http://trec.nist.gov/

http://trec.nist.gov/data/topics_eng/
http://trec.nist.gov/data/topics_eng/
http://trec.nist.gov/data/qrels_eng/
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Fig. 5.4. TREC8 collection: m = 138, 232, n = 528, 028, k = 400, t = 90, 000, nq = 50. The
average precision and time for adding groups of p = 500 (top) and p = 1000 (bottom) documents.
The number of singular triplets of (I − UkU

T
k )D computed by Algorithm 4.1 (“SV”) is 10. The

number of GKL steps in Algorithm 4.5 (“GKL”) is 20. The methods are compared to Algorithm 3.1
(“ZS”) and the updating scheme [3, 19] (“OB”).

data/qrels_eng/.
After the pre-processing step discussed at the beginning of this section, TREC8

delivers a term-document matrix with total of m = 138, 232 terms and n = 528, 028
documents. In our experiment, we fix the initial t = 90, 000 columns and then incre-
mentally add the new columns in groups of p = 500 (top) and p = 1, 000 (bottom)
until their total number reaches 300, 000. In both cases, the value of l is relatively
small: we use only 10 singular triplets and 20 GKL vectors.

As can be seen in Figure 5.4, the gain in the efficiency presented by the new
schemes becomes even more pronounced when the methods are applied to a larger
dataset. In particular, our tests show a three-fold speed-up of the overall updating
process (420 sequential updates) for p = 500 and a five-fold speed-up (210 sequen-
tial updates) for p = 1, 000. Yet, in both cases, the proposed algorithms deliver a
comparable retrieval accuracy.

In Figure 5.4 we also report the results for schemes [3, 19] (“OB”). 1 As has been
previously discussed, these schemes are known to be fast but generally lack accuracy.
This is confirmed by our experiment. Remarkably, the methods proposed in this
paper are essentially as fast as those in [3, 19], but the accuracy is higher than that
of Zha–Simon schemes [29]. Note that in contrast to [3, 19], which can be obtained

1The abbreviation is after the name of the author of [19].

http://trec.nist.gov/data/qrels_eng/
http://trec.nist.gov/data/qrels_eng/
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by setting l = 0 in our algorithms, the presence of a nonzero number l of singular or
GKL vectors is indeed critical for maintaining the accuracy.

6. Conclusion. This paper introduces several new algorithms for the SVD up-
dating problem in LSI. The proposed schemes are based on classical projection meth-
ods applied to the singular value computations. A key ingredient of the new algo-
rithms is the construction of low-dimensional search subspaces. A proper choice of
such subspaces leads to fast updating schemes with a modest storage requirement.

In particular, we consider two options for reducing the dimensionality of search
subspaces. The first one is based on the use of (approximate) singular vectors. The
second options utilizes the GKL vectors. Our tests show that generally a larger
number of GKL vectors is needed to obtain comparable retrieval accuracy. However,
the case of singular vectors has a slightly higher computational cost.

Note that construction of search subspaces is not restricted only to the two tech-
niques considered in the present work. Due to the established link to a Rayleigh-
Ritz procedure, other approaches for generating search subspaces can be investigated
within this framework in future research.

Our experiments demonstrate a substantial efficiency improvement over the state-
of-the-art updating algorithms [29]. While in our tests we have also consistently
observed a slight increase in the retrieval accuracy, it is not clear how and if the
observed gains are related to the proposed algorithmic developments. This issue
should be addressed in future research.

Since the new approach scales linearly in p (in contrast to the cubic scaling ex-
hibited by the existing methods [29]), the efficiency gap becomes especially evident
as p increases. Because significantly large values of p are likely to be encountered
in the context of large-scale datasets, this means that in the future, algorithms such
as the ones proposed in this paper, may play a role in reducing the cost of standard
SVD-based techniques employed in the related applications.
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