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Abstract. Spectral approximation by polynomials on the unit ball is studied in the frame

of the Sobolev spaces W s
p (Bd), 1 < p < ∞. The main results give sharp estimates on the

order of approximation by polynomials in the Sobolev spaces and explicit construction
of approximating polynomials. One major effort lies in understanding the structure of

orthogonal polynomials with respect to an inner product of the Sobolev space W s
2 (Bd).

As an application, a direct and efficient spectral-Galerkin method based on our orthogonal
polynomials is proposed for the second and the fourth order elliptic equations on the unit

ball, its optimal error estimates are explicitly derived for both procedures in the Sobolev

spaces and, finally, numerical examples are presented to illustrate the theoretic results.

1. Introduction

Spectral methods have been used recently for solving partial differential equations on the
unit disk, unit ball, or other domains with cylindrical or spherical geometry. Their increasing
popularity on these domains lies partially in various applications in earth sciences, disk or
sphere shaped mirrors and lenses, fluid flow in a pipe or rotating cylinder, accretion disks in
planetary astronomy, to name a few.

In [6], Poisson equation on an axisymmetric domain is transformed into a system of two-
dimensional problems by the polar transformation, and the axisymmetric problems are then
approximated by an appropriate spectral-Galerkin method. Fast spectral-Galerkin methods
for Helmholtz equations on a disk or a cylinder are proposed in [23, 25], using the polar
transformation with essential pole conditions and the Chebyshev or Legendre polynomial
bases in the radial direction. Subsequently, these types of spectral–Galerkin methods have
been extended to other domains with spherical geometries, including the 3-dimensional ball [5,
24, 26]. Meanwhile, mixed Jacobi-Fourier spectral method are presented for elliptic equations
on a disk [20, 30] and a mixed Jacobi-harmonic spectral approximation is proposed in [15]
for a Navier-Stokes equation in a ball. See [7, 8, 9] for a comprehensive review of spectral
methods and their special treatments in polar/spherical coordinates. Moreover, an alternative
approach for solving differential equations in a smooth domain is to map the domain into the
unit ball and then apply a spectral method [2, 3, 4].

One of the challenging problems in the spectral methods on the unit ball is to measure and
estimate the errors of approximation in genuine, instead of anisotropic, Sobolev norms. Such
estimates were established for the product domain in [9, 10] but has been lacking in most of the
works on the unit disk or the unit ball. The problem of characterizing best approximation by
the smoothness of functions is intensively studied in approximation theory. The two problems
are closely related but not exactly the same as we shall explain below. The purpose of this
paper is to conduct a comprehensive study for the spectral approximation on the unit ball Bd
of Rd, making use of recent advances in both approximation theory, orthogonal polynomials,
and spectral methods.
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Spectral approximation for solving an elliptic equation on Bd looks for approximate solu-
tions that are polynomials written in terms of certain orthogonal basis on the ball and their
coefficients are determined by the Galerkin method. To understand the convergence of such
an approximation process, it is necessary to study polynomial approximation in the Sobolev
space W s

2 (Bd), where s is a positive integer, that consists of functions whose derivatives up
to s-th order are all in L2(Bd). In some literatures, the space W s

2 (Bd) is called Hs(Bd). For
f ∈ W s

2 (Bd), let S−sn f denote its best polynomial approximation of degree at most n. For
spectral approximation, the desired estimate for f ∈W r

2 (Bd), r ≥ s is of the form

(1.1) ‖f − S−sn f‖Wk
2 (Bd) ≤ c n−r+k‖f‖W r

2 (Bd), 0 ≤ k ≤ s,

where ‖ · ‖W r
2 (Bd) denotes the norm of W r

2 (Bd) defined by

‖f‖W r
2 (Bd) :=

( ∑
|α|≤r

‖∂αf‖L2(Bd)

)1/2

.

One of the main result of this paper is to establish this estimate and, more generally, establish
its analogue in the space W s

p (Bd) for 1 < p <∞.
The difficulty of quantifying the error of polynomial approximation on the unit ball lies

in the strong influence of the boundary of the ball on the approximation behavior. This
is well documented for approximation on a closed interval on the real line. A complete
characterization of best approximation on the unit ball is only carried out recently. In [11], two
moduli of smoothness and their equivalentK-functionals were introduced and used to establish
both direct and inverse theorems that characterize the behavior of best approximation on the
unit ball. In [12], approximation in the Sobolev space was studied and estimate (1.1) for
s = 0 was established, more generally for 1 ≤ p ≤ ∞ ([12, Corollary 5.4]), and the derivative
estimates were established for angular derivatives, which however do not imply (1.1). What
we can prove relatively effortless (see Theorem 2.22 below) is the following estimate

(1.2)
∥∥∥φ |α|2 (∂αf − ∂αS0

nf)
∥∥∥
L2(Bd)

≤ c n−s‖f‖W s
2 (Bd), |α| ≤ s− 1, α ∈ Nd0,

where φ(x) = 1−‖x‖2 vanishes on the boundary sphere Sd−1 of Bd and S0
n is the partial sum

of the Fourier orthogonal expansion in L2(Bd). This estimate, however, is weaker than (1.1)
because of the power of φ(x) in its left hand side.

It tuns out that what we need for proving (1.1) is the orthogonal structure of the Soblolev
space W s

2 (Bd), not the orthogonal structure of L2(Bd). An essential step in our study is to
study orthogonal polynomials for with respect to the inner product

〈f, g〉−s := 〈∇sf,∇sg〉Bd +

d s2 e−1∑
k=0

〈∆kf,∆kg〉Sd−1

of W s
2 (Bd), which we call the Sobolev orthogonal polynomials. Initially motivated by direct

and efficient spectral method of Atkinson and his collaborators that uses orthogonal polyno-
mials to solve linear elliptic equations on the disk [2, 3, 4], the Sobolev orthogonal polynomials
on the ball with respect to 〈·, ·〉−1 were studied in [32] and those with respect to 〈·, ·〉−2 were
studied in [22, 31]. In these works, Sobolev orthogonal bases were constructed in terms of the
orthogonal polynomials for L2($µ,Bd) with µ = 1 and 2, respectively, where the weight func-
tion $µ(x) := (1−‖x‖2)µ, which are given explicitly in terms of spherical harmonics and the

Jacobi polynomials P
(α,β)
n (t) that are orthogonal polynomials with respect to (1− t)α(1 + t)β

on [−1, 1]. For larger s, however, the orthogonal structure is more complicated, and we need
to extend the orthogonal basis for L2($µ,Bd) to allow µ to be negative integers, which in
turn requires us to use extensions of the Jacobi polynomials with negative indexes. This is
prompted by the realization that the Sobolev orthogonal polynomials for s = −1 and s = −2
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in [31, 32] can be expressed in terms of orthogonal polynomials for L2($µ,Bd) with µ = −1

and −2, and, heuristically, the negative weight could cancel out the φ|α|/2 term in (1.2). The
Jacobi polynomials with negative indexes have been used in spectral approximation on other
domains in [16, 17, 19, 27]. One of our main results is an explicitly constructed mutually
orthogonal polynomial basis for 〈·, ·〉−s, which could be used as the building blocks for the
spectral-Galerkin method.

For f ∈ L2(Bd), its n-th best polynomial approximation is given by the n-th partial sum
of its Fourier orthogonal expansion on the ball. For f ∈ W s

2 (Bd), we shall prove that the
best approximating polynomials to f are S−sn f , the partial sums of the Fourier orthogonal
expansion in W r

2 (Bd) equipped with the inner product 〈·, ·〉−s, which can be expressed explic-

itly in terms of the mutually orthogonal polynomials that we constructed. For the W s
p (Bd)

with p 6= 2, the best approximating polynomial is not explicitly known, but we are able to
show that a near-best approximating polynomial, denoted by S−sn,η and defined via a smooth

cut-off function η, satisfies our sharp estimate in W s
p (Bd). Both S−sn f and S−sn,ηf are given by

explicit formulas that can be easily computed numerically (see Section 4). Our main result
on approximation in the Sobolev space is the following:

Theorem 1.1. Let s, r = 1, 2 . . .. For any f ∈W r
p (Bd), r ≥ s, 1 < p <∞, there is a constant

c independent of f and n, such that

‖f − S−sn,ηf‖Wk
p (Bd) ≤ cn−r+k‖f‖W r

p (Bd), k = 0, 1, . . . , s,

where S−sn,ηf can be taken as S−sn f for p = 2.

More precise results of this nature are stated in Section 4.1 below. To illustrate the applica-
tion of this result in the spectral approximation, we will consider two examples, the Helmholtz
equation and the biharmonic equation on the unit ball, and demonstrate how our results on
approximation in the Sobolev space can be used to error estimates in the spectral-Galerkin
method. Furthermore, we provide numerical examples for these equations for d = 2 and d = 3,
which further illustrate our findings.

The paper is written with readers in both approximation theory community and spectral
method community in mind. The problem of (1.1) is originated and studied in the spectral
method, which is closely tied to the problem of characterizing best approximation that has
been a central theme and studied intensely in approximation theory. Our approach uses a
mixed bag of tools, developed in both approximation theory and spectral methods. It is our
hope that this paper will stimulate further collaboration between the two communities.

The paper is organized as follows. In the next section we present background materials,
orthogonal polynomials on the unit ball, Fourier orthogonal expansions, and recent results on
approximation on the unit ball. The orthogonal structure of the Sobolev space is developed in
Section 3. The main results on approximation by polynomials in the Sobolev space are stated
and proved in Section 4. Finally, in Section 5, we discuss applications of our main results in
the spectral-Galerkin methods and present our numerical examples. To keep the presentation
fluent, we leave technical details of extending orthogonal bases to negative indexes and proving
equivalence of norms in the Sobolev space to Appendix A and Appendix B, respectively.

2. Preliminary and background

For x, y ∈ Rd, we use the usual notation of ‖x‖ and 〈x, y〉 to denote the Euclidean norm of x
and the dot product of x, y. The unit ball and the unit sphere in Rd are denoted, respectively,
by

Bd := {x ∈ Rd : ‖x‖ ≤ 1} and Sd−1 := {ξ ∈ Rd : ‖ξ‖ = 1}.
Throughout this paper, we let ∂i denote the i-th partial derivative operator, let∇ = (∇1, . . . ,∇d)
be the gradient and let ∆ = ∂2

1 + . . . + ∂2
d be the usual Laplace operator. We denote by c a
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constant that depends only on p, s or other fixed parameters, its value may change from line
to line.

2.1. Spherical harmonics. We follow the notation in [13]. Let Pdn denote the space of
homogeneous polynomials of degree n in d variables. It is known that

dimPdn =

(
n+ d− 1

n

)
.

Harmonic polynomials of d-variables are polynomials in Pdn that satisfy the Laplace equation
∆Y = 0. Spherical harmonics are the restriction of harmonic polynomials on the unit sphere.
Let Hdn denote the space of spherical harmonic polynomials of degree n. It is well–known that

adn := dimHdn =

(
n+ d− 1

n

)
−
(
n+ d− 3

n− 2

)
.

If Y ∈ Hdn, then Y (x) = ρnY (ξ) in spherical–polar coordinates x = ρξ. We call Y (x) a solid
spherical harmonic. Evidently, Y is uniquely determined by its restriction on the sphere. We
shall also use Hdn to denote the space of solid spherical harmonics.

The spherical harmonics of different degrees are orthogonal with respect to the inner prod-
uct

〈f, g〉Sd−1 :=
1

ωd

∫
Sd−1

f(ξ)g(ξ)dσ(ξ),

where dω is the surface measure and ωd = 2π
d
2 /Γ(d2 ) is the surface area; the inner product is

normalized so that 〈1, 1〉Sd−1 = 1.
In spherical polar coordinates, the Laplace operator can be written as

(2.1) ∆ =
d2

dρ2
+
d− 1

ρ

d

dρ
+

1

ρ2
∆0,

where ρ = ‖x‖ and ∆0, the spherical part of ∆, is the Laplace-Beltrami operator that has
spherical harmonics as eigenfunctions; more precisely, for n = 0, 1, 2, . . .,

(2.2) ∆0Y = −n(n+ d− 2)Y, Y ∈ Hdn.

Let f ∈ L2(Sd−1) and let {Y n` : 1 ≤ ` ≤ adn} be an orthonormal basis of Hdn such that
〈Y n` , Y nι 〉Sd−1 = δ`,ι. The spherical harmonic expansion of f is defined by

f(ξ) =

∞∑
n=0

adn∑
`=1

f̂n` Y
n
` (ξ), f̂n` = 〈f, Y n` 〉Sd−1 .

We define the partial sum of the harmonic expansion and the projection operator projHn :
L2(Sd−1) 7→ Hdn by

(2.3) SHn f(ξ) :=

n∑
m=0

projHm f(ξ) and projHm f(ξ) :=

adm∑
`=1

f̂m` Y
m
` (ξ),

respectively. The projection operator is independent of the choice of orthonormal basis of Hdn.
Furthermore, since projHm f is homogeneous, we can extend its definition to the unit ball by
projHm f(x) = ρm projHm f(ξ) for x = ρξ ∈ Bd. We extend SHn f accordingly. If h is a harmonic
function on the unit ball, then SHn h is the best approximation to h in L2(Bd).
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2.2. Orthogonal structure on the unit ball. Our basic reference in this section is [14].
For µ ∈ R, let $µ be the weight function defined by

$µ(x) = (1− ‖x‖2)µ, ‖x‖ < 1.

The classical orthogonal polynomials on the unit ball are orthogonal with respect to the inner
product

(2.4) 〈f, g〉µ =
1

bµd

∫
Bd
f(x) g(x)$µ(x) dx, µ > −1.

where bµd = π
d
2 Γ(µ+1)

Γ(µ+ d
2 +1)

is the normalization constant such that 〈1, 1〉µ = 1. For clarity, we write

〈f, g〉Bd = 〈f, g〉0.
Let Πd denote the space of polynomials in d real variables. For n = 0, 1, 2, . . . , let Πd

n

denote the linear space of polynomials in d variables of (total) degree at most n. A polynomial
P ∈ Πd

n is called orthogonal with respect to $µ on the ball if 〈P,Q〉µ = 0 for all Q ∈ Πd
n−1.

Let Vdn($µ) denote the space of orthogonal polynomials of total degree n with respect to $µ.
It is well–known that

dim Πd
n =

(
n+ d

n

)
and dimVdn($µ) =

(
n+ d− 1

n

)
.

The space of Vdn has many different bases. Let {Pnα (x) : |α| = n} denote a basis of Vdn($µ),
then 〈Pnα , Pmβ 〉µ = 0 if n 6= m. The basis is called mutually orthogonal if 〈Pnα , Pnβ 〉µ = 0

whenever α 6= β, and it is called orthonormal if 〈Pnα , Pnα 〉µ = 1 in addition. Let (a)n :=

a(a+1) . . . (a+n−1) be the Pochhammer symbol. We use the standard multi–index notation
that, for α ∈ Nd0,

α! = α1! · · ·αd!, and (α)γ = (α1)γ1 · · · (αd)γd .
One basis of Vdn($µ) is given in terms of the Jacobi polynomials and spherical harmonics.

Let P
(µ,ν)
j (t) denote the usual Jacobi orthogonal polynomial of degree j with respect to weight

function (1− t)µ(1 + t)ν on [−1, 1].

Proposition 2.1. For n ∈ N0 and 0 ≤ j ≤ n
2 , let {Y n−2j

` : 1 ≤ ` ≤ adn−2j} be an orthonormal

basis for Hdn−2j. Define

(2.5) Pµ,nj,` (x) :=
(n− j + d

2 )j

(n− j + d
2 + µ)j

P
(µ,n−2j+ d−2

2 )
j (2 ‖x‖2 − 1)Y n−2j

` (x).

Then the set {Pµ,nj,` (x) : 0 ≤ j ≤ n
2 , 1 ≤ ` ≤ adn−2j} is a mutually orthogonal basis of Vdn($µ)

whenever µ > −1. More precisely,

〈Pµ,nj,` , P
µ,m
k,ι 〉µ = hµj,nδn,m δj,k δ`,ι,

where hµj,n is given by

(2.6) hµj,n :=
(µ+ 1)j(1− n− d

2 )j(
d
2 )n

j!(1− n− d
2 − µ)j(

d
2 + µ+ 1)n

.

This is a standard mutually orthogonal basis on the unit ball; see [14, p. 39]. We include a
constant in the definition of Pµ,nj,` (x) in order to extend this definition to the case of µ ≤ −1,
which is explained in Appendix A.

It is known that orthogonal polynomials with respect to $µ are eigenfunctions of a second
order differential operator Dµ. More precisely, we have

DµP = −(n+ d)(n+ 2µ)P, ∀P ∈ Vdn($µ),(2.7)
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where

Dµ := ∆−
d∑
j=1

∂

∂xj
xj

[
2µ+

d∑
i=1

xi
∂

∂xi

]
.

In term of the mutually orthogonal basis {Pµ,nj,` : 1 ≤ ` ≤ adn−2j , 0 ≤ j ≤ n/2, n = 0, 1, . . .},
the Fourier orthogonal expansion of f ∈ L2($µ,Bd) is defined by

f(x) =

∞∑
n=0

∑
0≤j≤n/2

adn−2j∑
`=1

f̂nj,`P
µ,n
j,` , where f̂nj,` :=

1

hµj,n
〈f, Pµ,nk,` 〉µ.

We define the partial sum of the orthogonal expansion and the projection operator projµn :
L2($µ,Bd) 7→ Vdn($µ) by

(2.8) Sµnf(x) :=

n∑
m=0

projµm f(x) and projµm f(x) :=
∑

0≤j≤m/2

adm−2j∑
`=1

f̂mj,`P
µ,m
j,` ,

respectively. By definition, Sµn is the orthogonal projection of L2($µ,Bd) onto Πd
n; that is,

Sµnf = f if f ∈ Πd
n and

〈Sµnf − f, v〉µ = 0, ∀v ∈ Πd
n.

2.3. Fourier orthogonal expansions and approximation. For 1 ≤ p <∞, let ‖f‖p,Sd−1

denote the Lp(Sd−1) norm

‖f‖p,Sd−1 :=

(
1

ωd

∫
Sd−1

|f(ξ)|pdσ(ξ)

)1/p

,

and let ‖f‖∞,Sd−1 = ‖f‖∞ be the uniform norm for f ∈ C(Sd−1). Furthermore, for 1 ≤ p <∞,

let ‖f‖p,µ denote the Lp($µ,Bd) norm

‖f‖p,µ :=

(
1

bµd

∫
Bd
|f(x)|p$µ(x)dx

)1/p

,

and let ‖f‖∞,µ = ‖f‖∞ be the uniform norm for f ∈ C(Bd). In the case of µ = 0, we shall
denote the norm by ‖f‖p,Bd := ‖f‖p,0.

In the remaining of this subsection, we write Lp (resp. ‖f‖p) for either Lp($µ,Bd) or

Lp(Sd−1) (resp. ‖f‖p,µ or ‖f‖p,Sd−1), and write projn f and Snf for either projHn f and

SHn f defined in (2.3) or projµn f and Sµnf defined in (2.8). When the setting is on Sd−1,
Πd
n = Πd

n(Sd−1).

Definition 2.2. Let f ∈ Lp if 1 ≤ p < ∞ and f ∈ C if p = ∞. For n ≥ 0, the error of the
best approximation to f by polynomials of degree at most n is defined by

(2.9) En(f) := inf
g∈Πdn

‖f − g‖p, 1 ≤ p ≤ ∞.

With norm specified, we shall write En(f)p,µ, En(f)p,Bd and En(f)p,Sd−1 .

The standard Hilbert space theory shows that Snf is the best L2 approximation to f ; that
is,

En(f)2 = ‖f − Sµnf‖2
For p 6= 2, we no longer know the polynomial of best approximation explicitly, but a near best
approximation is known (see, for example, [13, p. 284]).
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Definition 2.3. A C∞-function η on [0,∞) is called an admissible cut-off function if η(t) = 1
for 0 ≤ t ≤ 1 and η(t) = 0 for t ≥ 2. If η is such a function, define

(2.10) Sn,ηf(x) :=

∞∑
k=0

η

(
k

n

)
projn f(x).

When projn is specified, we will write SHn,ηf and Sµn,ηf accordingly.

Since η is supported on [0, 2), the summation in Sn,ηf can be terminated at k = 2n − 1,
so that Sn,ηf is a polynomial of degree at most 2n− 1. It approximates f as well as the best
approximation polynomial of degree n.

Theorem 2.4. Let f ∈ Lp if 1 ≤ p <∞ and f ∈ C if p =∞. Then

(1) Sn,ηf ∈ Πd
2n−1 and Sn,ηf = f for f ∈ Πd

n.
(2) For n ∈ N, ‖Sn,ηf‖p ≤ c‖f‖p.
(3) For n ∈ N, there is a constant c > 0, independent of f , such that

(2.11) ‖f − Sn,ηf‖p ≤ (1 + c)En(f)p.

The quantity En(f)p,Sd−1 and En(f)p,µ can be characterized by the smoothness of the
function f ; see [11, 12] and Section 4 below.

2.4. Best approximation on the unit sphere. We recall result on the characterization of
best approximation by polynomials in Lp(Sd−1) in terms of the smoothness of the functions.
In approximation theory, smoothness of a function is usually measured by the modulus of
smoothness and its equivalent K-functional. Since we are primarily interested in functions in
Sobolev spaces, we shall state the result only in terms of K-functional.

For s = 0, 1, 2, . . . and 1 ≤ p < ∞, we define the Sobolev space W s
p (Sd−1) to be the space

of functions whose spherical/angular derivatives up to s-th order are all in Lp(Sd−1). For
p =∞, we replace Lp space by the space C(Sd−1) of continuous functions on Sd−1. The norm
and semi-norm of W s

p (Sd−1) can be defined by

‖f‖W s
p (Sd−1) := ‖f‖p,Sd−1 + |f |◦W s

p (Sd−1), |f |◦W s
p (Sd−1) :=

∑
1≤i<j≤d

‖Ds
i,jg‖p,Sd−1 ,(2.12)

where Di,j := xi∂j − xj∂i, 1 ≤ i < j ≤ d are angular differential operators. In polar

coordinates on the plane (xi, xj) = ri,j(cos θi,j , sin θi,j), Di,j = ∂
∂θi,j

, which explains their

name; see [13, Section 1.8] for further properties of these operators.

Definition 2.5. Let f ∈ Lp(Sd−1) if 1 ≤ p < ∞ and f ∈ C(Sd−1) if p = ∞. For s ∈ N0 an
t ≥ 0, define the K-functional

(2.13) Ks(f, t)p,Sd−1 := inf
g∈W s

p (Sd−1)

{
‖f − g‖p,Sd−1 + ts|g|◦W s

p (Sd−1)

}
.

This definition and the characterization of best approximation below were established in
[11], where an equivalent modulus of smoothness was also defined.

Theorem 2.6. Let s ∈ N and let f ∈ Lp(Sd−1) if 1 ≤ p < ∞, and f ∈ C(Sd−1) if p = ∞.
Then

(2.14) En(f)p,Sd−1 ≤ cKs(f, n
−1)p,Sd−1

and

(2.15) Ks(f, n
−1)p,Sd−1 ≤ c n−s

n∑
k=1

ks−1Ek(f)p,Sd−1 .
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The estimate (2.14) is usually called direct, or Jackson, inequality, while (2.15) is usually
called inverse inequality. If f ∈ W s

p (Sd−1), then we can choose g = f in the infimum of
K-functional, which gives the following corollary.

Corollary 2.7. Let s ∈ N and let f ∈ W s
p (Sd−1) if 1 ≤ p < ∞, and f ∈ C(Sd−1) if p = ∞.

Then

(2.16) En(f)p,Sd−1 ≤ c n−s|f |◦W s
p (Sd−1) ≤ c n

−s‖f‖W s
p (Sd−1).

We will also need an estimate in the fractional order Sobolev space W r+θ
p (Sd−1), where 0 <

θ < 1, which is defined as the interpolation space (W s
p (Sd−1),W s+1

p (Sd−1))θ,p; see Appendix
B.

Theorem 2.8. If f ∈W r+θ
p (Sd−1) for r ∈ N0, 0 ≤ θ < 1 and 1 < p <∞, then

‖f − SHn,ηf‖W s+θ
p (Sd−1) ≤ cn

−r+s‖f‖W r+θ
p (Sd−1), s = 0, 1, . . . , r.(2.17)

Proof. Since Di,j maps Hdn to itself for 1 ≤ i < j ≤ d [13, Lemma 1.8.3], it follows readily

that Di,j projHn = projHn Di,j . As a result, Ds
i,jS

H
n f = SHn D

s
i,jf and Ds

i,jS
H
n,ηf = SHn,ηD

s
i,jf .

Thus by (2.11) and (2.16),∥∥Ds
i,j(S

H
n,ηf − f)

∥∥
p,Sd−1 ≤ cEn(Ds

i,jf)p,Sd−1 ≤ cns−r|Ds
i,jf |◦W r−s

p (Sd−1)
,

for s = 0, 1, . . . , r, which gives (2.17) for θ = 0. Consequently, it follows that∥∥SHn,ηf − f∥∥W s
p (Sd−1)

≤ cns−r‖f‖W r
p (Sd−1),

which implies that ‖SHn,η − I‖L(W r
p (Sd−1),W s

p (Sd−1)) ≤ cns−r for any r ≥ s, where ‖ · ‖L(X,Y )

denotes the norm of the operator from X 7→ Y . It then follows from (B.4) that

‖SHn,η − I‖L(W r+θ
p (Sd−1),W s+θ

p (Sd−1)) ≤ cn
s−r.

This completes the proof of (2.17). �

2.5. Best approximation on the unit ball. We recall result on best approximation by
polynomials in Lp(Bd). We define the Sobolev space W s

p ($µ,Bd) to be the space of functions

whose derivatives up to the s-th order are all in Lp($µ,Bd). For p =∞, we replace Lp space
by the space C(Bd) of continuous functions on Bd. The norm of W s

p ($µ,Bd) is defined by

(2.18) ‖f‖W s
p ($µ,Bd) :=

( ∑
|α|≤s

‖∂αf‖pp,µ
)1/p

.

When µ = 0, we write ‖f‖W s
p (Bd) := ‖f‖W s

p ($0,Bd).

A K-functional on the unit ball (and its equivalent modulus of smoothness) is defined in
[11] and used to characterize the best approximation in Lp($µ,Bd). Throughout this paper,
we define

ϕ(x) :=
√

1− ‖x‖2.

Definition 2.9. Let f ∈ Lp($µ,Bd) if 1 ≤ p < ∞ and f ∈ C(Bd) if p = ∞. For s ∈ N and
t > 0, define

Ks,ϕ(f, t)p,µ := inf
g∈W s

p ($µ,Bd)

{
‖f − g‖p,µ + ts|g|◦W s

p ($µ,Bd)

}
.

where

(2.19) |g|◦W s
p ($µ,Bd) :=

∑
1≤i<j≤d

‖Ds
i,jg‖p,µ +

d∑
i=1

‖ϕs∂si g‖p,µ.
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Both direct and inverse theorems were established for En(f)µ,p in [11, Theorem 6.6]. They
are analogues of Theorem 2.6. We will only state the corollary that is an analogue of Corollary
2.7 and only for µ = 0, where we write |f |◦W s

p (Bd) = |f |◦W s
p ($0,Bd).

Corollary 2.10. Let s ∈ N and let f ∈ W s
p (Bd) if 1 ≤ p < ∞, and f ∈ C(Bd) if p = ∞.

Then

(2.20) En(f)p,Bd ≤ c n−s|f |◦W s
p (Bd) ≤ c n

−s‖f‖W s
p (Bd).

It should be mentioned that [11] contains anotherK-functional that differs fromKs,ϕ(f, t)p,µ
in its last term, which can also be used to estimate En(f)p,µ. Several results on approxima-
tion in the Sobolev spaces and Lipschitz spaces were established in [12], which contains, for
example, the estimates

‖Ds
i,j(f − Sµn,ηf)‖p,µ ≤ cEn(Ds

i,jf)p,µ 1 ≤ i < j ≤ d.

For the spectral approximation, however, we are more interested in the derivatives ∂α instead
of the angular derivatives. One result in this direction can be derived with the help of the
following lemma.

Lemma 2.11. For µ > −1 and 1 ≤ i ≤ d,

(2.21) ∂iS
µ
nf = Sµ+1

n−1(∂if) and ∂iS
µ
n,ηf = Sµ+1

n−1,η(∂if).

Proof. By the definition of Fourie orthogonal expansion, f − Sµnf =
∑
m=n+1 projµm f and

projµm f ∈ Vdm($µ). By Lemma A.3, ∂i projµm f ∈ Vdm−1($µ+1). It follows that 〈∂i(f −
Sµnf), P 〉µ+1 = 0 for all P ∈ Πd

n−1. Consequently, Sµ+1
n−1(∂if − ∂iS

µ
nf) = 0. Since Sµ+1

n−1

reproduces polynomials of degree at most n− 1, Sµ+1
n−1(∂iS

µ
nf) = ∂iS

µ
nf , which implies that

0 = Sµ+1
n−1(∂if − ∂iSµnf) = Sµ+1

n−1(∂if)− ∂iSµnf.

This proves the first identity in (2.21). Since projn = Sn−Sn−1, it follows that projµ+1
n−1(∂if) =

∂i projµn f, from which the second identity in (2.21) follows immediately. �

Theorem 2.12. If f ∈ W s
p ($µ,Bd) for 1 ≤ p < ∞, or f ∈ Cs(Bd) for p = ∞, then for

|α| = s,

‖∂αf − ∂αSµn,ηf‖p,µ+|α| ≤ cEn−|α|(∂αf)p,µ ≤ cn−s‖f‖W s
p ($µ,Bd).(2.22)

Proof. This follows immediately from Lemma 2.11, Theorem 2.4 and Corollary 2.10. �

As explained in the introduction, the estimate with µ = 0 and p = 2 is weaker than the
desired estimate (1.1) because of the factor (1− ‖x‖2)|α| that appears in its left hand side.

3. Orthogonal structure in the Sobolev space

In this section, we consider orthogonal structure in the Sobolev space W s
p (Bd). Let

∇2m := ∆m and ∇2m+1 := ∇∆m, m = 1, 2, . . . .

Definition 3.1. For s = 1, 2, . . ., we define a bilinear form on the space W s
2 (Bd) by

〈f, g〉−s := 〈∇sf,∇sg〉Bd +

d s2 e−1∑
k=0

λk〈∆kf,∆kg〉Sd−1 ,(3.1)

where λk, k = 0, 1 . . . , d s2e − 1, are positive constants.
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It is easy to see that this defines an inner product for W s
2 (Bd). We denote the space of

orthogonal polynomials of degree n with respect to this inner product by Vdn($−s). The reason
that we use the negative index to denote such an inner product will become clear momentarily.

For our purpose, we need to extend the definition of orthogonal polynomials Pµ,nj,` defined

in (2.5) so that µ can be negative. The extension is carried out in Appendix A. Below we

shall use P−s,nj,` for s = 1, 2, . . ., and what we essentially need is the following lemma proved
in Appendix A.

Lemma 3.2. Let µ ∈ R, s ∈ N and n ∈ N0. Then for 1 ≤ ` ≤ adn−2j,

P−s,nj,` (x) =
(1− n− d

2 )j

(−j)s(1− n− d
2 + 2s)j−s

(‖x‖2 − 1)sP s,n−2s
j−s,` (x), s ≤ j ≤ n

2 .(3.2)

Furthermore, make the convention Pµ,nj,` (x) = 0 if j < 0 or j > n
2 ; and define j0 = ψ(j) if

ψ(j) := s+ j − n− d/2 + 1 ∈ {1, 2, . . . , j}, and j0 = 0 otherwise. Then for 0 ≤ j ≤ n
2 ,

∆kP−s,nj,` (x) = 4k(n+ d
2 − 2k)2kP

2k−s,n−2k
j−k,` (x) + q(‖x‖2)Y n−2j

` (x),(3.3)

where q ∈ Π1
j0−k−1, in particular, q = 0 if s+ k ≥ j.

For s = 1, the inner product (3.1) becomes

〈f, g〉−1 = 〈∇f,∇g〉Bd + λ0〈f, g〉Sd−1 .

Theorem 3.3. A mutually orthogonal basis of Vdn($−1) is given by {P−1,n
j,` (x) : 0 ≤ j ≤

n
2 , 0 ≤ ` ≤ a

d
n−2j} with

h−1
j,n := 〈P−1,n

j,` , P−1,n
j,` 〉−1 = 2d(n+ d

2 − 1)(1− δj,0) + (λ0 + dn)δj,0.(3.4)

In particular, the space Vdn($−1) can be decomposed as

Vdn($−1) = (1− ‖x‖2)Vdn−2($1)⊕Hdn.

This theorem was first established in [32], where the polynomials P−1,n
j,` (x) for j ≥ 1 are

written in the form

P−1,n
j,` (x) =

(2n+ d− 2)(2n+ d− 4)

2j(2n− 2j + d− 2)
(‖x‖2 − 1)P 1,n−2

j−1,` (x), 1 ≤ j ≤ n

2
,(3.5)

which follows from (3.2). Recall that polynomials in Vdn($µ) are eigenfunctions of a second
order differential operator Dµ for µ > −1. It turns out that polynomials in Vdn($−1) are
eigenfunctions of D−1, which explains our notation of $−1. For s ≥ 2, however, Vdn($−2) is
closely related, but not exactly, the space of eigenfunctions of D−2; see the discussion in [22].

In the case of s = 2, the inner product becomes

〈f, g〉−2 = 〈∆f,∆g〉Bd + λ0〈f, g〉Sd−1 .

Theorem 3.4. A mutually orthogonal basis of mutually orthogonal basis for Vdn($−2) is given
by

Qn0,`(x) = Y n` (x), Qn1,`(x) = (1− ‖x‖2)Y n−2
` (x),

Qnj,`(x) = (1− ‖x‖2)2P
(n−2j+ d−2

2 )
j−2 Y n−2j

` (x), 2 ≤ j ≤ n

2
,

where where {Y n−2j
ν : 1 ≤ ν ≤ adn−2j} is an orthonormal basis of Hdn−2j. In particular, the

space Vdn($−2) satisfies a decomposition

(3.6) Vdn($−2) = (1− ‖x‖2)2Vdn−4($2)⊕ (1− ‖x‖2)Hdn−2 ⊕Hdn.
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The decomposition in the theorem is established in [22], from which the mutually orthogonal

basis follows from results in [31]. The polynomials Qnj,` are closely related to P−2,n
j,` as can be

seen by (3.2). Indeed, P−2,n
j,` (x) = cQnj,`(x) except when j = 1, in which case

P−2,n
1,` (x) = c1,`Q

n
1,`(x)−

n+ d
2 − 1

n+ d
2 − 3

Y n−3
` (x), 2n+ d > 6

and P−2,n
1,` (x) = c1,`Q

n
1,`(x) + 2 for n = d = 2, where cj,` is a constant that can be obtained

by comparing the leading coefficients.
The orthogonal structure of W s

2 (Bd) for s ≥ 3 is more complicated. As we shall see below,
the analogue of (3.6) no longer holds if s > 2. We start with a lemma.

Lemma 3.5. Let k and n be nonnegative integers. For Y ∈ Hdn,

(3.7) ∆k
[
(1− ‖x‖2)jY (x)

]∣∣∣
x=ξ

= 4k(−j)k(−k)j−k
(n+ d

2 )k

(n+ d
2 )j

Y (ξ).

Proof. It suffices to prove (3.7) for all Y (x) = Y n` (x), ` = 0, 1, . . . , adn. By (A.8), (A.3), (3.2)
and (3.3), we obtain

∆k[(1− ‖x‖2)jY n` (x)] = ∆k[(1− ‖x‖2)jP j,n0,` (x)] =
(−j)j

(n+ j + d
2 )j

∆kP−j,n+2j
j,` (x)

= 4k(−j)j
(n+ 2j + d

2 − 2k)2k

(n+ j + d
2 )j

P 2k−j,n+2j−2k
j−k,` (x),

which is equal to zero if 0 ≤ j ≤ k − 1 and its restriction on Sd−1 is zero if j ≥ 2k + 1 by
(3.2). It is easy to see that the right hand side of (3.7) is also zero for j in these ranges. In
the remaining case k ≤ j ≤ 2k, we use (A.8) and (A.5) to derive

P 2k−j,n+2j−2k
j−k,` (ξ) =

(n+ j − k + d
2 )j−k(2k − j + 1)j−k

(j − k)!(n+ k + d
2 )j−k

Y n` (ξ),

and simplify the constant by

(−j)j
(n+ 2j + d

2 − 2k)2k

(n+ j + d
2 )j

(n+ j − k + d
2 )j−k(2k − j + 1)j−k

(j − k)!(n+ k + d
2 )j−k

= (−j)k(−k)j−k
(n+ d

2 )k

(n+ d
2 )j

.

Then (3.7) is established. �

For i = 0, 1, . . . , j, consider the system of linear equations

4k
j∑
i=k

(−i)k(−k)i−k
(n+ d/2)k

(n+ d/2)i−k
ci = δk,j , 0 ≤ k ≤ j.(3.8)

The system has a unique solution, since the matrix of the system is tridiagonal with nonzero
diagonal elements. In fact, c0 = δj,0, cj = (−1)j4−j/(j!(n + d/2)j) and the rest ci can be
deduced recursively starting from cj .

Lemma 3.6. For any n, j ∈ N0, let cn,ji , 0 ≤ i ≤ j, be the unique solution of the linear

system (3.8). If j < 0, define Y n,j` (x) := 0 and, if j ≥ 0, define

Y n,j` (x) :=

j∑
i=0

cn,ji (1− ‖x‖2)iY n` (x), 1 ≤ ` ≤ adn.

Then for s ∈ N0, x ∈ Bd and ξ ∈ Sd−1,

∆sY n,j` (x) = Y n,j−s` (x) and ∆sY n,j` (ξ) = δs,jY
n
` (ξ).(3.9)
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Proof. The second identity of (3.9) follows directly from the definition of cni,j and the Lemma
3.5. To prove the first identity, we use the spherical-polar coordinates x = ρξ and derive from
(2.1) and (2.2) that

∆[q(‖x‖2)Y n` (x)] = q(ρ2)ρn−2∆0Y
n
` (ξ) +

(
∂2
ρ + d−1

ρ ∂ρ
)
q(ρ2)ρnY n` (ξ)(3.10)

=Dq(‖x‖2)Y n` (x),

where Dq is defined by

Dq(t) := 4
[
tq′′(t) + (n+ d

2 )q′(t)
]
.

If q is a polynomial of degree j, then Dq is a polynomial of degree j − 1. In particular, this
shows that ∆j+1Y n,j` (x) = 0. Consequently, each Y n,j` (x) is the solution of the following
elliptic equation {

∆j+1u = 0 in Bd,
∆ku = δj,kY

n
` on Sd−1, k = 0, 1, . . . , j,

(3.11)

which admits a unique solution by the posedness and regularity theory of the elliptic equation
[29, Thoerem 5.5.2, pp. 390-391]. On the other hand, it is easy to see that ∆sY n,j+s` (x) is also

a solution of (3.11). By the uniqueness of the solution, we must have ∆sY n,j+s` (x) = Y n,j` (x),
which completes the proof. �

We did not find a closed-form formula for of cn,ji . Here are the first three Y n,j` :

Y n,0` (x) = Y n` (x), Y n,1` (x) =
1− ‖x‖2

n+ d
2

Y n` (x),

Y n,2` (x) =
(n+ d

2 )(1− ‖x‖2)2 + 2(1− ‖x‖2)

2(n+ d
2 )(n+ d

2 )2

Y n` (x).

With the help of Y n,j` , we can now define a mutually orthogonal basis for Vdn($−s).

Lemma 3.7. For s ∈ N, n ∈ N0, 0 ≤ j ≤ n
2 and 1 ≤ ` ≤ adn−2j, define

Q−s,nj,` (x) =


P−s,nj,` (x), j ≥ s,

P−s,nj,` (x)−
d s2 e−1∑
k=0

∆kP−s,nj,` (ξ)

Y n−2j
` (ξ)

Y n−2j,k
` (x), d s2e ≤ j ≤ s− 1,

Y n−2j,j
` (x), 0 ≤ j ≤ d s2e − 1,

(3.12)

where ξ ∈ Sd−1. Then, for 0 ≤ j ≤ n
2 and 1 ≤ ` ≤ adn−2j,

1. ∆kQ−s,nj,` (ξ) = δj,kY
n−2j
` (ξ) for 0 ≤ k ≤ d s2e − 1;

2. If s is even, then ∆b
s
2 cQ−s,nj,` (x) = 2s(n+ d

2 − s)sP
0,n−s
j− s2 ,`

(x);

3. If s is odd, then ∆b
s
2 cQ−s,nj,` (x) = 2s−1(n + d

2 − s + 1)s−1P
−1,n−s+1

j− s−1
2 ,`

(x) for j 6= b s2c and

∆b
s
2 cQ−s,nb s2 c,`

(x) = Y
n−2b s2 c
` (x) = P−1,n−s+1

0,` (x).

Proof. For j ≥ s, it follows from (3.3) that ∆kP−s,nj,` (x) = 4k(n + d
2 − 2k)2kP

2k−s,n−2k
j−k,` (x),

which instantly gives item 2 and item 3 for s ≤ j ≤ n
2 . Further, for 0 ≤ k ≤ d s2e − 1, one

derives from (3.2) that ∆kP−s,nj,` (ξ) = 0 owing to j − k ≥ s− 2k ≥ 1. Hence, item 1 follows if
s ≤ j ≤ n

2 .

A combination of (3.3) and (A.8) implies that
∆kP−s,nj,` (ξ)

Y n−2j
` (ξ)

is a constant independent of ξ.

Hence, Q−s,nj,` is defined in such a way that ∆kQ−s,nj,` (ξ) = 0 for d s2e ≤ j ≤ s − 1, as can be
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easily verified using (3.9). Furthermore, by (3.9) and (3.3), we obtain

∆b
s
2 cQ−s,nj,` (x) = ∆b

s
2 cP−s,nj,` (x)− δd s2 e−1,b s2 c

∆b
s
2 cP−s,nj,` (ξ)

Y n−2j
` (ξ)

Y n−2j
` (x)

= 4b
s
2 c(n+ d

2 − 2b s2c)2b s2 c

(
P

2b s2 c−s,n−2b s2 c
j−b s2 c,`

(x)− δd s2 e−1,b s2 c
P

2b s2 c−s,n−2b s2 c
j−b s2 c,`

(ξ)

Y n−2j
` (ξ)

Y n−2j
` (x)

)
.

By (3.2) and j − b s2c ≥ s− 2b s2c ≥ 1 for odd s, P
2b s2 c−s,n−2b s2 c
j−b s2 c,`

(ξ) = 0; thus ∆b
s
2 cQ−s,nj,` (x) =

4b
s
2 c(n+ d

2 −2b s2c)2b s2 cP
2b s2 c−s,n−2b s2 c
j−b s2 c,`

(x), which proves item 2 and item 3 for d s2e ≤ j ≤ s−1.

Finally, if 0 ≤ j ≤ d s2e − 1, all three items follow directly from (3.9). �

Theorem 3.8. The polynomials in {Q−s,nj,` (x) : 0 ≤ j ≤ n
2 ; 1 ≤ ` ≤ adn−2j} form a mutually

orthogonal basis of Vdn($−s). More precisely,〈
Q−s,nj,` , Q−s,n

′

j′,`′

〉
−s = h−sj,nδn,n′δj,j′δ`,`′(3.13)

for 〈·, ·〉−s defined in (3.1), where

h−sj,n :=


22s−1d(n+ d

2 − s)s(n+ d
2 − s+ 1)s−1, j ≥ d s2e,

d(n− 2j) + λj , j = s−1
2 ,

λj , 0 ≤ j < s−1
2 .

Proof. From item 1 of Lemma 3.7 and the orthonormality of {Y n` : 1 ≤ ` ≤ adn}, it follows
immediately that

d s2 e−1∑
k=0

λk
〈
∆kQ−s,nj,` ,∆kQ−s,n

′

j′,`′

〉
Sd−1 = λjδn,n′δj,j′δ`,`′ , 0 ≤ j, j′ ≤

⌈
s
2

⌉
− 1

and the left hand side is equal to zero if j ≥
⌈
s
2

⌉
or j′ ≥

⌈
s
2

⌉
. Thus, we remain to consider

J := 〈∇sQ−s,nj,` ,∇sQ−s,n
′

j′,`′ 〉Bd .

If s is odd, we temporarily denote cj,n = 2s−1(n+ d
2 − s+ 1)s−1 if j 6= s+1

2 and c s−1
2 ,n = 1.

From item 3 of Lemma 3.7, we obtain that

J = cj,ncj′,n′〈∇P−1,n−s+1

j− s−1
2 ,`

,∇P−1,n′−s+1

j′− s−1
2 ,`′

〉
Bd ,

which is equal to zero if j ≤ s−3
2 or j′ ≤ s−3

2 , whereas it can be seen from (3.4) with λ0 = 0
that

J =
[
d(n− s+ 1)δ s−1

2 ,j + 2d(n+ d
2 − s)(cj,n)2(1− δ s−1

2 ,j)
]
δn,n′δj,j′δ`,`′

for j, j′ ≥ s−1
2 . As a result, this completes the proof of (3.13) for odd s.

If s is even, we obtain from item 2 of Lemma 3.7 that

J = 4s(n+ d
2 − s)s(n

′ + d
2 − s)s〈P

0,n−s
j− s2 ,`′

, P 0,n′−s
j′− s2 ,`′

〉
Bd .

It is obvious that J = 0 if j ≤ s
2 − 1 or j′ ≤ s

2 − 1. For j, j′ ≥ s
2 , it follows from (2.6) that

J =
d
2 [2s(n+ d

2 − s)s]
2

n+ d
2 − s

δn,n′δj,j′δ`,`′ ,

which proves (3.13) for even s. The proof is completed. �
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Just as the projection operator defined for µ > −1, we define the orthogonal projection
operator proj−sn : W s

2 (Bd) 7→ Vdn($−s), where s is a positive integer, by

proj−sn f(x) :=
∑

0≤j≤n2

1

h−sj,n

adn−j∑
`=1

〈
f,Q−s,nj,`

〉
−sQ

−s,n
j,` (x),(3.14)

Lemma 3.9. Let f ∈W s
p (Bd) and s ∈ N. For k = 0, 1, . . . d s2e − 1,

(3.15) ∆k proj−sn f(ξ) = projHn−2k ∆kf(ξ), ξ ∈ Sd−1,

Proof. Form Lemma 3.7, Theorem 3.8 and the orthonormality of {Y n` }, it follows that

∆k proj−sn f(ξ) =
∑

0≤j≤n/2

1

h−sj,n

adn−2j∑
`=1

〈f,Q−s,nj,` 〉−sδj,kY
n−2j
` (x)

=

adn−2k∑
`=1

〈∆kf, Y n−2k
` 〉Sd−1Y

n−2k
` (ξ) = projHn−2k ∆kf(ξ),

for 0 ≤ k < s−1
2 . In the remaining case of s is odd and k = s−1

2 , it follows from Lemma 3.7,
Theorem 3.8 and (3.4) that

∆k proj−sn f(ξ) =
∑

0≤j≤n2

1

h−sj,n

adn−2j∑
`=1

〈f,Q−s,nj,` 〉−sδj,kY
n−2j
` (x)

=
1

d(n− 2k) + λk

adn−2k∑
`=1

[
〈∇∆kf,∇Y n−2k

` 〉Bd + λk〈∆kf, Y n−2k
` 〉Sd−1

]
Y n−2k
` (ξ)

=
1

d(n− 2k) + λk

adn−2k∑
`=1

[
d〈∆kf, ∂nY

n−2k
` 〉Sd−1 + λk〈∆kf, Y n−2k

` 〉Sd−1

]
Y n−2k
` (ξ)

=

adn−2k∑
`=1

〈∆kf, Y n−2k
` 〉Sd−1Y

n−2k
` (ξ) = projHn−2k ∆kf(ξ),

where the third equality sign is derived using Green’s formula. �

Lemma 3.10. Assume that f ∈ W s
p (Bd) satisfies f(x) = (1 − ‖x‖2)sg(x). Then for s =

1, 2 . . .,

(3.16) proj−sn f(x) = (1− ‖x‖2)s projsn−2s g(x), x ∈ Bd.

Proof. The fact of (1 − ‖x‖2)s in f implies immediately from (3.10) that ∆kf(ξ) = 0 if k =

0, 1, . . . , d s2e − 1, so that 〈f,Q−s,nj,` 〉−s = 〈∇sf,∇sQ−s,nj,` 〉Bd . By (3.12) and (3.9), ∆sQ−s,nj,` =

∆sP−s,nj,` for 0 ≤ j ≤ n
2 . Applying Green’s identity repeatedly and using (3.3), we then obtain

〈f,Q−s,nj,` 〉−s = (−1)s〈f,∆sQ−s,nj,` 〉Bd = (−1)s〈f,∆sP−s,nj,` 〉Bd

=(−4)s(n+ d
2 − 2s)2s〈f, P s,n−2s

j−s,` 〉Bd =
(−4)ss!(n+ d

2 − 2s)2s

(d2 + 1)s
〈g, P s,n−2s

j−s,` 〉s,

which is zero if j < s; while for j ≥ s, it follows from (3.12), (3.13), (3.2) and (2.6) that

〈f,Q−s,nj,` 〉−sQ
−s,n
j,` (x)

h−sj,n
=
〈g, P s,n−2s

j−s,` 〉s(1− ‖x‖2)sP s,n−2s
j−s,` (x)

hsj,n
,

which finally proves (3.16). �
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4. Approximation by polynomials on the ball

This section contains our main results on approximation in the Sobolev space on the ball
and their proofs. To facilitate readers who are mainly interested in the results, we state our
main theorems in the first subsection and give their proofs in subsequent subsections.

4.1. Main results. Let η ∈ C∞[0,∞) be an admissible cut-off function. With respect to the
inner product 〈·, ·〉−s of W s

p (Bd), we define

(4.1) S−sn f(x) :=

n∑
k=0

proj−sk f(x) and S−sn,ηf(x) :=

∞∑
k=0

η

(
k

n

)
proj−sk f(x).

By definition, S−sn f ∈ Πd
n and S−sn,ηf ∈ Πd

2n−1, and it is obvious that

(4.2) 〈f − S−sn f, v〉−s = 0 and 〈f − S−sn,ηf, v〉−s = 0, ∀v ∈ Πd
n.

Our first result is on approximation in the space of W 1
p (Bd).

Theorem 4.1. Let r ∈ N. If f ∈W r
p (Bd) and 1 < p <∞, then

‖f − S−1
n,ηf‖p,Bd ≤ cn−1

d∑
i=1

En−1(∂if)p,Bd ≤ cn−r‖f‖W r
p (Bd),(4.3)

‖∂if − ∂iS−1
n,ηf‖p,Bd ≤ cEn−1(∂if)p,Bd ≤ cn−r+1‖∂if‖W r−1

p (Bd), 1 ≤ i ≤ d,(4.4)

where S−1
n,ηf can be replaced by S−1

n f if p = 2.

For W s
p (Bd), s = 2, 3, . . . , the errors are not directly bounded by En(f)p,Bd but we still

have the order of convergence.

Theorem 4.2. Let r, s ∈ N and r ≥ s. If f ∈W r
p (Bd) and 1 < p <∞, then, for n ≥ s,

‖f − S−sn,ηf‖Wk
p (Bd) ≤ cn−r+k‖f‖W r

p (Bd), k = 0, 1, . . . , s,(4.5)

where S−sn,ηf can be replaced by S−sn f if p = 2.

We denote by
◦
W s
p (Bd) the subspace of W s

p (Bd) defined by

(4.6)
◦
W s
p (Bd) :=

{
f ∈W s

p (Bd) : ∂kn f
∣∣
Sd−1 = 0, k = 0, 1, . . . , s− 1

}
,

where ∂n denote the normal derivative of Sd−1. For s = 1, 2, . . . and 1 ≤ p ≤ ∞, we define a
semi-norm of W s

p (Bd) by

|f |W s
p (Bd) :=

( ∑
α∈Nd0 , |α|=s

‖∂αf‖p
p,Bd

)1/p

.(4.7)

If f ∈
◦
W s
p (Bd), then it can be shown (see the end of Appendix B) that, for 1 < p <∞,

(4.8) ‖f‖W s
p (Bd) ∼ |f |W s

p (Bd) ∼ ‖∇rf‖p,Bd ∼
d∑
i=1

‖∂si f‖p,Bd .

Theorem 4.3. Let r, s ∈ N and k ∈ N0. If f ∈
◦
W s
p (Bd)∩W r

p (Bd) with r ≥ s and 1 < p <∞,
then, for n ≥ s,

‖f − S−sn,ηf‖Wk
p (Bd) ≤ cn−r+k

∑
|α|=s

|∂αf |◦
W r−s
p (Bd)

≤ cn−r+k‖f‖W r
p (Bd).(4.9)

where S−sn,ηf can be replaced by S−sn f if p = 2.
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It should be pointed out that if f ∈
◦
W s
p (Bd), then f(x) = (1 − ‖x‖2)sg(x) for some

g ∈W s
p (Bd) and, by Lemma 3.10,

S−sn,ηf(x) = (1− ‖x‖2)sSsn−2s,ηg(x).

These results will be proved in the following subsections, where the following observation
will be useful. For f ∈ W s

p (Bd), it follows immediately from applying the Hölder inequality

on Bd and Sd−1 that

|〈f, g〉−s| ≤
(
‖∇sf‖p,Bd +

d s2 e−1∑
k=0

√
λk‖∆kf‖p,Sd−1

)(
‖∇sg‖p,Bd +

d s2 e−1∑
k=0

√
λk‖∆kg‖p,Sd−1

)
.

Using Lemma B.3 and the inequality (B.3), we obtain the following lemma.

Lemma 4.4. For f ∈W s
p (Bd) and g ∈W s

q (Bd), with 1
p + 1

q = 1 and 1 < p <∞,

(4.10) |〈f, g〉−s| ≤ c‖f‖W s
p (Bd)‖g‖W s

p (Bd).

4.2. Approximation by polynomials in W 1
p (Bd). According to Theorem 3.3, if f ∈

W 1
p (Bd), then we can decompose f into two parts

f(x) = (1− ‖x‖2)g(x) + h(x), where ∆h = 0.

Then it is readily checked by Lemma 3.10 that

proj−1
n f(x) = (1− ‖x‖2) proj1n−2 g(x) + projHn h(x).

For f ∈ W 1
p (Bd), let S−1

n f be defined as in (4.1). The following lemma is essential for the
proof of Theorem 4.1.

Theorem 4.5. For 1 ≤ i ≤ d and n = 1, 2, . . .,

(4.11) ∂iS
−1
n f = S0

n−1(∂if) and ∂iS
−1
n,ηf = S0

n−1,η(∂if).

Proof. Since ∂iS
−1
n f ∈ Πd

n−1, it suffices to prove〈
∂iS
−1
n f − ∂if, v

〉
Bd = 0, ∀v ∈ Πd

n−1,(4.12)

for the first identity of (4.11). From the Fourier expansion of f ,

f =
∑
m≥0

∑
0≤j≤m/2

adm−2j∑
`=1

f̂−1,m
j,` P−1,m

j,` , f̂−1,m
j,` = (h−1,m

j,` )−1〈f, P−1,m
j,` 〉−1,

it follows that

∂if − ∂iS−1
n f =

∑
m≥n+1

∑
0≤j≤m/2

adm−2j∑
`=1

f̂−1,m
j,` ∂iP

−1,m
j,` .

If j ≥ 1, by integration by part and (3.2), we obtain that, for m ≥ n+ 1,〈
∂iP

−1,m
j,` , v

〉
Bd = c

〈
(1− ‖x‖2)P 1,m−2

j−1,` , ∂iv
〉
Bd = 0, v ∈ Πd

n−1.

If j = 0, then P−1,m
0,` (x) = cY m` (x). Since ∂iY

m
` is a homogenous polynomial of degree m− 1,

and ∆∂iY
m
` = 0, it follows that ∂iY

m
` ∈ Hdm−1 ⊆ Vdm−1($0), so that〈

∂iP
−1,m
0,` , v

〉
Bd = 0, m ≥ n+ 1, v ∈ Πd

n−1.

As a result, (4.12) holds, which proves the first identity of (4.11).
Since ∂i proj−1

n f = ∂i(S
−1
n f − S−1

n−1f) = S0
n−1∂if − S0

n−2∂if = proj−1
n−1 ∂if , the second

identity of (4.11) follows readily. �
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Proof of Theorem 4.1. For 1 ≤ i ≤ d, by (4.11), Theorem 2.4 and (2.20), we obtain

‖∂if − ∂iS−1
n,ηf‖p,Bd = ‖∂if − S0

n−1,η(∂if)‖p,Bd ≤ cEn−1(∂if)p,Bd ≤ cn−r+1‖∂if‖W r−1
p (Bd),

which proves (4.4). Furthermore, by (3.15) and (2.16),

‖f − S−1
n,ηf‖p,Sd−1 = ‖f − SHn,ηf‖p,Sd−1 ≤ cn−r+1‖f‖W r−1

p (Sd−1).

Putting these together then applying Lemma B.2 with s = 1 and F(f) = ‖f‖p,Sd−1 , Lemma
B.2 with s = r, and F(f) = ‖f‖W r−1

p (Sd−1), we obtain

‖f − S−1
n,ηf‖W 1

p (Bd) ≤ cn−r+1
[
‖∇f‖W r−1

p
+ ‖f‖W r−1

p (Sd−1)

]
≤ cn−r+1‖f‖W r

p
.(4.13)

To prove (4.3), we use the Aubin-Nitsche duality argument. We define

g = f − S−1
n,ηf and g∗ =

{
|g|p−1sign(g), g 6= 0,

0, g = 0.

Then g ∈ Lp(Bd), g∗ ∈ Lq(Bd) and ‖g‖p,Bd‖g∗‖q,Bd = 〈g∗, g〉Bd = ‖g‖p
p,Bd = ‖g∗‖q

q,Bd with
1
p + 1

q = 1. Consider the following auxiliary elliptic boundary value problem

−∆u = g∗ in Bd, and ∂nu+ u = 0 on Sd−1.

It admits a unique solution u ∈ W 2
q (Bd) such that ‖u‖W 2

q
≤ c‖g∗‖q ([29, Theorem 5.5.2,

pp. 390-391]). Let 〈·, ·〉−1 denote the inner product (3.1) with λ0 = d. The equivalent varia-
tional form reads

(4.14) 〈u, v〉−1 = 〈∇u,∇v〉Bd + d〈u, v〉Sd−1 = 〈g∗, v〉Bd ∀v ∈W 1
p (Bd).

Since S−1
n,η reproduces polynomials of degree n, it follows that〈

S−1
bn2 c,η

u, g
〉
−1

=
〈
S−1
bn2 c,η

u, u− S−1
n,ηu

〉
−1

= 0,

Consequently, by (4.14) with v = g, the Hölder inequality (4.10), and (4.13) with r = 2, we
obtain

〈g∗, g〉Bd = 〈u, g〉−1 =
〈
u− S−1

bn2 c,η
u, g
〉
−1

≤ ‖u− S−1
bn2 c,η

u‖W 1
q (Bd)‖g‖W 1

p (Bd) ≤ cn−1‖u‖W 2
q (Bd)‖g‖W 1

p (Bd).

We then apply ‖u‖W 2
q
≤ c‖g∗‖q,Bd and (4.13) again to obtain

‖g‖p,Bd =
〈g∗, g〉Bd
‖g∗‖q,Bd

≤ cn−1‖g‖W 1
p (Bd) ≤ cn−r‖f‖W r

p (Bd).

This completes the proof of (4.3). �

4.3. Approximation by polynomials in W s
p (Bd). By definition, S−sn f is a polynomial in

Πd
n and S−sn,ηf is a polynomial in Πd

2n−1. We need an analogue of Theorem 4.5.

Theorem 4.6. For n, s ∈ Nd0 and n ≥ s,

∆b
s
2 cS−sn f = S

2b s2 c−s
n−2b s2 c

∆b
s
2 cf, ∆b

s
2 cS−sn,ηf = S

2b s2 c−s
n−2b s2 c,η

∆b
s
2 cf.(4.15)

Proof. By the definition (3.14), we recall that

proj−sn f(x) =
∑

0≤j≤n/2

adn−2j∑
l=1

f̂−s,nj,` Q−s,nj,` (x), f̂−s,nj,` =
1

h−sj,n
〈f,Q−s,nj,` 〉−s.

We first assume s = 2m. By item 2 of Lemma 3.7, it follows that

∆mQ−s,nj,` (x) = 2s(n+ d
2 − s)sP

0,n−s
j−m,`(x),
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which is equal to zero if j ≤ m−1. By item 1 of Lemma 3.7, ∆kQ−s,nj,` (ξ) = 0 holds for j ≥ m
and 0 ≤ k ≤ m− 1, it then follows from (3.1), (3.13) and (2.6) that

f̂−s,nj,` ∆mQ−s,nj,` (x) =
∆mQ−s,nj,` (x)

h−sj,n
〈∆mf,∆mQ−s,nj,` 〉Bd =

〈∆mf, P 0,n−s
j−m,`〉Bd

h0
j−m,n−s

P 0,n−s
j−m,`(x),

for any j ≥ m. Since {P 0,n−s
j−m,` : m ≤ j ≤ n

2 , 1 ≤ ` ≤ adn−2j} is a mutually orthogonal basis of

Vdn−s($0), we conclude that

∆m proj−sn f(x) = proj0n−s ∆mf(x),

which leads to (4.15) for even s.
Now we assume s = 2m + 1. The same argument of using Lemma 3.7, (3.13) and (3.4)

shows that ∆mQ−s,nj,` (x) = 0 for j ≤ m− 1 and

f̂−s,nj,` ∆mQ−s,nj,` (x) =
∆mQ−s,nj,` (x)

h−sj,n

[
〈∇∆mf,∇∆mQ−s,nj,` 〉Bd + λm〈∆mf,∆mQ−s,nj,` 〉Sd−1

]
=
〈∆mf, P−1,n−2m

j−m,` 〉−1

h−1
j−m,n−2m

∣∣∣∣∣
λ0=λm

P−1,n−2m
j−m,` (x), j ≥ m.

This implies

∆m proj−sn f(x) = proj−1
n−2m ∆mf(x)

by Theorem 3.3. Thus, (4.15) also holds for odd s. �

Proof of Theorem 4.2. If s = 2m, it follows from Theorem 4.6, Theorem 2.4 and Corollary
2.10 that

‖∇sf −∇sS−sn,ηf‖p,Bd = ‖∆mf − S0
n−2m,η(∆mf)‖p,Bd ≤ cEn−s(∆mf)p,Bd

≤ cn−r+s‖∆mf‖W r−s
p (Bd) ≤ cn

−r+s
∑
|α|=s

‖∂αf‖W r−s
p (Bd),

whereas, if s = 2m+ 1, we obtain form Theorem 4.6, Theorem 4.1, and Corollary 2.10 that

‖∇sf −∇sS−sn,ηf‖p,Bd = ‖∇∆m−1f −∇S−1
n−s+1,η(∆m−1f)‖p,Bd ≤ c

d∑
i=1

En−s(∂i∆
m−1f)p,Bd

≤ cn−r+s
d∑
i=1

‖∂i∆mf‖W r−s
p (Bd) ≤ cn

−r+s
∑
|α|=s

‖∂αf‖W r−s
p (Bd).

Moreover, for 0 ≤ k ≤ d s2e − 1, we obtain, by (3.15) and (2.17),

‖∆k(f − S−sn,ηf)‖
W
s−2k−1/p
p (Sd−1)

= ‖∆kf − SHn−2k,η(∆kf)‖
W
s−2k−1/p
p (Sd−1)

≤ cn−r+s‖∆kf‖
W
r−2k−1/p
p (Sd−1)

.

Putting these together and applying Lemma B.3 and (B.2), we obtain

‖f − S−sn,ηf‖W s
p (Bd) ≤ cn−r+s

‖∇sf‖W r−s
p (Bd) +

b s2 c−1∑
k=0

‖∆kf‖
W
r−2k−1/p
p (Sd−1)

(4.16)

≤ cn−r+s‖f‖W r
p (Bd),

which establishes (4.5) for the case k = s.
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Next we consider the estimate (4.5) for k = 0. This requires the following formula: for
s = 1, 2, 3, . . .

(−1)s
∫
Bd
∇sf(x)∇sg(x)dx =

b s2 c−1∑
j=0

∫
Sd−1

∆s−j−1f(ξ)∂n∆
jg(ξ)dξ(4.17)

−
d s2 e−1∑
j=0

∫
Sd−1

∂n∆
s−j−1f(ξ)∆jg(ξ)dξ +

∫
Bd

∆sf(x) g(x)dx,

where ∂n = d
dn denote the derivative in the radius direction. For s = 1, the first term in the

right hand side is taken to be zero and (4.17) is the classical Green’s identity. For s = 2, 3, . . .,
we apply Green’s identity repeatedly.

We need the following auxiliary partial differential equations with boundary values,
(−∆)su = v, in Bd,
∆s−1−ku = 0, on Sd−1, k = 0, 1, . . . , b s2c − 1,

∂n∆
s−1−ku− (−1)s∆ku = 0, on Sd−1, k = 0, 1, . . . , d s2e − 1.

(4.18)

Let 〈·, ·〉−s be defined as in (3.1) with all λk = d. Using (4.17) with f = u shows that

〈u, g〉−s = 〈∇su,∇sg〉Bd + d

d s2 e−1∑
k=0

〈∆ku,∆kg〉Sd−1 = 〈v, g〉Bd ,(4.19)

for g ∈W s
q (Bd), where 1

p + 1
q = 1 for 1 < p <∞. If v = 0, then (4.19) with u = g shows that

‖u‖−s := 〈u, u〉−s = 0, which implies that u ≡ 0. This shows that the homogenous problem
of (4.18) has a unique solution u = 0. Hence, by Theorem 5.4.4/2 and Theorem 5.5.1 in [29],
∆s is an isomorphic mapping from the space U2s

q (Bd) onto Lq(Bd), where

U2s
q (Bd) :=

{
u :∈W 2s

q (Bd) : ∆s−1−ku = 0 on Sd−1, k = 0, 1, . . . ,
⌊s

2

⌋
− 1,

and ∂n∆
s−1−ku− (−1)s∆ku = 0, on Sd−1, k = 0, 1, . . . ,

⌈s
2

⌉
− 1
}
.

As in the proof of Theorem 4.1, we use duality arguments and define

g = f − S−sn,ηf and g∗ =

{
|g|p−1sign(g), g 6= 0,

0, g = 0.

By the isomorphism property of ∆s, (4.18) with v = g∗ admits a unique solution that satisifes
‖u‖W 2s

q (Bd) ≤ ‖g∗‖q,Bd [29, Theorem 5.5.1].

Since S−sn,η reproduces polynomials of degree n, it follows that〈
g, S−sbn2 c,η

u
〉
−s =

〈
f − S−sn,ηu, S−sbn2 c,ηu

〉
−s = 0.

As a result, we derive from (4.19) with v = g∗, (4.10) and (4.16) with r = s that

〈g∗, g〉Bd =〈u, g〉−s =
〈
u− S−sdn2 e,ηu, g

〉
−s

≤‖u− S−sdn2 e,ηu‖W s
q (Bd)‖g‖W s

q (Bd) ≤ cn−s‖u‖W 2s
q (Bd)‖g‖W s

q (Bd).

We then apply ‖u‖W 2s
q (Bd) ≤ c‖g∗‖q and obtain, using (4.16) again, that

‖g‖p,Bd =
〈g∗, g〉Bd
‖g∗‖q,Bd

≤ cn−s‖g‖W s
q (Bd) ≤ cn−r‖f‖W r

p
.

By the definition of g, this establishes (4.5) for k = 0. Finally, the case 0 < k < s of (4.5)
follows from Lemma B.1. �
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4.4. Proof of Theorem 4.3. If f ∈
◦
W (Bd) or if f is a radial function, then 〈f, g〉−s =

〈∇sf,∇sg〉Bd . As a result, by Corollary 2.10, (4.16) can be replaced by

‖f − S−sn,ηf‖W s
p (Bd) ≤ cn−r+s

∑
|α|=s

|∂αf |◦
W r−s
p (Bd)

.

The proof of the first inequality of (4.9) now follows exactly the proof of Theorem 4.2. The
second inequality of (4.9) follows from

|∂αf |◦
W r−s
p (Bd)

≤ c‖∂αf‖W r−s
p (Bd) ≤ c‖f‖W r

p (Bd),

which completes the proof. �

5. Applications and numerical examples

To illustrate our results, we consider numerical solutions of two elliptic equations of the
second and fourth order, respectively, on the unit ball, and we choose the spectral-Galerkin
method using orthogonal polynomials on the ball. We will carry out a convergence analyses of
the approximation scheme in the Hilbert space and present numerical examples that illustrate
our theorems.

5.1. Second order equation. We consider the non-homogenous boundary problem of the
Helmholtz equation on the unit ball,

−∆u+ λu = f in Bd, ∂nu+ ηu = g on Sd−1,(5.1)

where the constant λ ≥ 0, η ≥ 0 and λ+ η > 0. Let

A1(u, v) :=
[
〈∇u,∇v〉Bd + dη〈u, v〉Sd−1

]
+ λ〈u, v〉Bd = 〈u, v〉−1 + λ〈u, v〉Bd

In the variational formulation, solving (5.1) is equivalent to find u ∈W 1
2 (Bd) such that

A1(u, v) =〈f, v〉Bd + d〈g, v〉Sd−1 , v ∈W 1
2 (Bd),(5.2)

which, by the Lax-Milgram lemma [18], admits a unique solution that satisfies

‖∇u‖22,Bd + λ‖u‖22,Bd + dη‖u‖22,Sd−1 ≤ c(‖f‖22,Bd + d‖g‖22,Sd−1).(5.3)

The spectral-Galerkin approximation to (5.1) amounts to find un ∈ Πd
n such that

A1(un, v) = 〈f, v〉Bd + d〈g, v〉Sd−1 , v ∈ Πd
n,(5.4)

which has a unique solution that satisfies (5.3) with un in place of u.
By Theorem 3.3, the orthogonal expansions of un ∈ Πd

n can be written as

un =

n∑
k=0

∑
0≤j≤n/2

adn−2j∑
`=1

ûkj,`P
−1,k
j,` .

Substituting this expression into (5.4) and setting v = P−1,k
j,` , we obtain a linear system of

equations on {ûkj,`}. The matrix [A1(P−1,k
j,` , P−1,k′

j′,`′ )] contains two parts. The first part, called

stiff matrix, has been computed in (3.4). To evaluate the second part, called the mass matrix,

we use the definition of P−1,k
j,` given in (A.8). By (A.3) and (A.8), it is not difficult to check

that

P−1,n
0,` = Y n` and P−1,n

j,` = P 0,n
j,` − P

0,n−2
j−1,` , j ≥ 1.
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Hence, using (2.6), we obtain that

〈P−1,n
j,` , P−1,n′

j′,`′ 〉Bd =


d

2n+d (2− δj,0), n = n′, j = j′, ` = `′,

− d
2n′+d , n = n′ + 2, j = j′ + 1, ` = `′,

− d
2n+d , n′ = n+ 2, j′ = j + 1, ` = `′,

0, otherwise.

Thus, the stiff matrix is diagonal and the mass matrix is tridiagonal when the coefficients are
arranged appropriately.

The convergence of this approximation scheme is given in the following theorem.

Theorem 5.1. Let u and un be the solutions of (5.1) and (5.4), respectively. If u ∈W s
2 (Bd)

with s ≥ 1, then

‖u− un‖Wk
2 (Bd) ≤ cn−s+k‖u‖W s

2 (Bd), 0 ≤ k ≤ 1 ≤ s.

Proof. Recall that S−1
n denote the nth partial sum of orthogonal expansion with respect to

〈·, ·〉−1. By (4.2), (5.2) and (5.4),

A1(un − S−1
n u, v) =〈un − S−1

n u, v〉−1 + λ〈un − S−1
n u, v〉Bd

=〈un − u, v〉−1 + λ〈un − u, v〉Bd + λ〈u− S−1
n u, v〉Bd

=λ〈u− S−1
n u, v〉Bd , v ∈ Πd

n.

Taking v = un − S−1
n u ∈ Πd

n, we obtain

A1(un − S−1
n u, un − S−1

n u) ≤ λ‖u− S−1
n u‖2,Bd‖un − S−1

n u‖2,Bd

≤ 1

2
λ‖u− S−1

n u‖22,Bd +
1

2
A1(un − S−1

n u, un − S−1
n u),

which implies that

‖∇(un − S−1
n u)‖2,Bd +

√
dη‖un − S−1

n u‖2,Sd−1 +
√
λ‖un − S−1

n u‖2,Bd ≤
√

3λ‖u− S−1
n u‖2,Bd .

Thus, by Lemma B.2 and (4.4), for s = 1, 2, . . .,

‖un − u‖W 1
2 (Bd) ≤ c‖u− S−1

n u‖W 1
2 (Bd) ≤ cn−s+1‖u‖W s

p
.

Furthermore, by a standard Aubin-Nitsche argument, we also have

‖un − u‖2,Bd ≤ cn−1‖un − u‖W 1
2 (Bd),

where we omit the details. Together, the last two displayed inequalities complete the proof. �

5.2. Fourth order equation. We consider the following fourth order elliptic equation on
the unit ball,

∆2u− λ1∆u+ λ0u = f, in Bd, u = ∂nu = 0, on ∂Bd.(5.5)

where the constants λ1, λ0 ≥ 0 and, for simplicity, we consider homogeneous boundary. In

the variational formulation, solving (5.5) is equivalent to find u ∈
◦
W 2

2 (Bd) such that

A2(u, v) := 〈∆u,∆v〉Bd + λ1〈∇u,∇v〉Bd + λ0〈u, v〉Bd = 〈f, v〉Bd , v ∈
◦
W 2

2 (Bd).(5.6)

Let the approximation space be
◦
Πd
n := Πd

n ∩
◦
W 2

2 (Bd). The spectral Galerkin approximation

scheme for (5.5) amounts to find un ∈
◦
Πd
n such that

A2(un, v) = 〈f, v〉Bd , v ∈
◦
Πd
n,(5.7)

which has a unique and stable solution by the Lax-Milgram lemma [18].
The convergence of this approximation scheme is given in the following theorem.
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Theorem 5.2. Let u and un be the solutions of (5.5) and (5.7), respectively. If u ∈W s
2 (Bd)

with s ≥ 2, then

‖u− un‖Wk
2 (Bd) ≤ cn−s+k

∑
|α|=2

‖∂αu‖W s−2
2 (Bd), 0 ≤ k ≤ 2 ≤ s.(5.8)

Proof. From (5.6) and (5.7), it follows that A2(u−un, v) = 0. Since S−2
n u ∈

◦
Πd
n, by (4.2), we

obtain

A2(S−2
n u− un, v) = A2(S−2

n u− un, v)

= 〈S−2
n u− u, v〉−2 + λ1〈∇(S−2

n u− u),∇v〉Bd + λ0〈S−2
n u− u, v〉Bd

= λ1〈∇(S−2
n u− u),∇v〉Bd + λ0〈S−2

n u− u, v〉Bd .

Taking v = S−2
n u− un ∈

◦
Πd
n in (5.6), the above inequality shows that

‖∆(un − S−2
n u)‖22,Bd+λ1‖∇(un − S−2

n u)‖22,Bd + λ0‖un − S−2
n u‖22,Bd

≤λ1‖∇(u− S−2
n u)‖22,Bd + λ0‖un − S−2

n u‖22,Bd ,
which leads to, by (B.5),

‖un − u‖W 2
2 (Bd) ≤ ‖u− S−2

n u‖W 2
2 (Bd) + ‖un − S−2

n u‖W 2
2 (Bd)

≤ ‖u− S−2
n u‖W 2

2 (Bd) + c‖∆(un − S−2
n u)‖2,Bd ≤ c‖u− S−2

n u‖W 2
2 (Bd).

Consequently, the estimate for k = 2 of (5.8) follows from (4.9) in Theorem 4.3.
A standard dual argument can then be used to derive the error estimate in the case of

k = 0 an k = 1 of (5.8), we omit details. �

5.3. Numerical results. We consider examples for the equations (5.1) and (5.5).

Example 5.3. For the Helmholtz equation (5.1), we give numerical results in two and three
dimensions with λ = 1 in the following settings:

(a) d = 2, f(x) = x1(11− x2
1 − x2

2) and g(ξ) = 2ηξ1 such that u(x) = 3x1 − (x2
1 + y2

1)x1;

(b) d = 3, f(x) =
4− x2

1 − x2
2

4 + x2
1 + x2

2 − 4x1
and g(ξ) =

4(1− ξ2
3)(ξ1 − 4) + 16ξ1

(5− ξ2
3 − 4ξ1)2

+
η(3 + ξ2

3)

5− ξ2
3 − 4ξ1

such that u = f .

Let {t(β)
i , ω

(β)
i }ni=0 be the zeros and the corresponding Christoffel numbers of the Jacobi

polynomials P
(0,β)
n+1 (t). Set ρi =

√
(t

(d/2−1)
i + 1)/2, θi = arccos t

(0)
i for i = 0, . . . , n and

φj = 2jπ
2n+1 for j = 0, 1, . . . , 2n. We report the discrete maximum error eM (u − un) and the

discrete L2–error eL2(u− un), defined by

eM (f) = max
0≤k1,k2/2≤n

∣∣f(xk)
∣∣, eL2(f) =

∑
0≤k1,k2/2≤n

∣∣f(xk)
∣∣2 π ω

(0)
k1

2(2n+ 1)
,

with the measuring points xk =
(
ρk1 cos(φk2), ρk1 sin(φk2)

)
in two dimensions and by

eM (f) = max
0≤k1,k2,k3/2≤n

∣∣f(xk)
∣∣, eL2(f) =

∑
0≤k1,k2,k3/2≤n

∣∣f(xk)
∣∣2π ω(1/2)

k1
ω(0)k2

2
√

2(2n+ 1)
,

with xk =
(
ρk1 cos(φk3), ρk1 sin(θk2) cos(φk3), ρk1 sin(θk2) sin(φk3)

)
in three dimensions.

Theoretically, the spectral-Galerkin approximation (5.4) with any n ≥ 5 recover the exact
solution of Example 5.3 (a). Figure 1 shows the maximum and the L2–errors between the
exact solution and the approximation solution of (5.4). It is easy to see from Figure 1 (a)
that all the errors plotted are close to the machine precision, and an exponential oder of
convergence is found in Figure 1 (b). These conclusions match our theoretical results.
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Figure 1. L2- (solid) and maximum (dashed) errors of Example 5.3. Left:
d = 2, η = 0; right: d = 3, η = 1.

Example 5.4. For the biharmonic equation (5.5), we consider an example with λ1 = λ0 = 1,
d = 2 and the exact solution u = cos(2π(x2 + y2))− 1. The function f in the right hand side
is determined by (5.5).

Figure 2 shows the maximum and the L2- errors of the approximation scheme (5.7). An
exponential order of convergence is observed in this plot, which is in agreement with Theorem
5.2.
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Figure 2. L2- (solid) and maximum (dash) errors of Example 5.4.

Appendix A. Generalized orthogonal polynomials on the unit ball

For α, β > −1, the Jacobi polynomials are defined by

P
(α,β)
j (t) =

(a+ 1)j
j!

2F1

(
−j, j + α+ β + a;α+ 1;

1− t
2

)
.
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which are orthogonal to each other with respect to the weight function wα,β(t) := (1− t)α(1+
t)β on [−1, 1],∫ 1

−1

P
(α,β)
j (t)P

(α,β)
k (t)wα,β(t)dt =

2α+β+1δj,k
2j + α+ β + 1

Γ(j + α+ 1)Γ(j + β + 1)

j!Γ(j + α+ β + 1)
.(A.1)

As it is shown in [28], writing the 2F1 in the following explicit form

P
(α,β)
j (t) =

j∑
k=0

(k + α+ 1)j−k (j + α+ β + 1)k
(j − k)! k!

(
t− 1

2

)k
,(A.2)

extends the definition of P
(α,β)
j (t) for all negative values of α and/or β in literature. However,

if −j − α − β ∈ {1, 2, . . . , j}, then a reduction of the degree of P
(α,β)
j occurs. To avoid the

degree reduction, we define the generalized Jacobi polynomials by

P̂
(α,β)
j (t) :=

j∑
k=j0

(k + α+ 1)j−k
(j − k)! k!(j + α+ β + k + 1)j−k

(
t− 1

2

)k
, j ∈ N0,(A.3)

where j0 = jα,β0 (j) := −j − α− β if −j − α− β ∈ {1, 2, . . . , j} and j0 = 0 otherwise. We also

define that P
(α,β)
j (t) = P̂

(α,β)
j (t) = 0 whenever j is a negative integer. By the definition, it is

evident that

(A.4) P̂
(α,β)
j (t) :=

1

(j + α+ β + 1)j
P

(α,β)
j (t), if j0 = 0.

The lemma below contains several properties of these polynomials, which are well–known
properties of the Jacobi polynomials if j0 = 0.

Lemma A.1. For α, β ∈ R,

P̂
(α,β)
j (1) =

(α+ 1)j
j!(j + α+ β + 1)j

δj0,0,(A.5)

P̂
(α,β)
j (t) =

1

(j + α+ 1)−α

( t− 1

2

)−α
P̂

(−α,β)
j+α (t), j ≥ −α ∈ N,(A.6)

d

dt
P̂

(α,β)
j (t) =

1

2
P̂

(α+1,β+1)
j−1 (t), j ≥ 0.(A.7)

By comparison of the corresponding powers of t − 1, both (A.6) and (A.7) follow from
(A.4), and (A.5) is an immediate consequences of (A.4).

We now extend the definition of the orthogonal polynomials (2.5) on the unit ball to
negative µ,

Definition A.2. Let µ ∈ R. For n ∈ N0 and 0 ≤ j ≤ n
2 , let {Y n−2j

` : 1 ≤ ` ≤ adn−2j} be an

orthonormal basis for Hdn−2j. Define

Pµ,nj,` (x) := (n− j + d
2 )jP̂

(µ,n−2j+
d
2−1)

j (2‖x‖2 − 1)Y n−2j
` (x).(A.8)

We now prove Lemma 3.2, which we restate below.

Lemma 3.2. Let s ∈ N and k, n ∈ N0. Then for 1 ≤ ` ≤ adn−2j,

P−s,nj,` (x) =
(1− n− d

2 )j

(−j)s(1− n− d
2 + 2s)j−s

(‖x‖2 − 1)sP s,n−2s
j−s,` (x), s ≤ j ≤ n

2 ,(3.2)

∆kP−s,nj,` (x) = 4k(n+ d
2 − 2k)2kP

2k−s,n−2κ
j−k,` (x) + p(‖x‖2)Y n−2j

` (x), 0 ≤ j ≤ n
2 ,(3.3)

where p ∈ Π1
j0−k−1, j0 = j

−s,n−2j+ d
2−1

0 (j) and Pµ,nj,` (x) = 0 if j < 0 or j > n
2 . In particular,

p = 0 if j + k ≥ s.
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Proof. The identity (3.2) is an immediate consequence of (A.6) and (A.8). Let q be a poly-
nomial of degree j. Recall that, by (3.10),

∆[q(‖x‖2)Y n` (x)] = Dq(‖x‖2)Y n` (x)

with Dq(u) := 4
[
uq′′(u) + (n+ d

2 )q′(u)
]
. Let β = n− 2j + d

2 − 1, q(u) = P̂
(−s,β)
j (2u− 1) and

t = 2u− 1. It follows from (A.3) and (A.6) that

Dq(u) = 8
[
(β + 1)∂t + (1 + t)∂2

t

]
P̂

(−s,β)
j (t)

= 4

j∑
k=j0

(k − s+ 1)j−kk

(j − k)!k!(j − s+ β + k + 1)j−k

[
(β + k)

t− 1

2
+ k − 1

]( t− 1

2

)k−2

= 4(j + β)

j∑
k=j0

(k − s+ 2)j−k
(j − k)!(k − 1)!(j − s+ β + k + 1)j−k

( t− 1

2

)k−1

+
4(j0 − s+ 1)j−j0

(j − j0)!(j0 − 2)!(j − s+ β + j0 + 1)j−j0

( t− 1

2

)j0−2

= 4(j + β)P̂
(−s+2,β)
j−1 (t) + pj0−2(t),

where pj0−2 ∈ Π1
j0−2, and the last equal sign is derived using the fact that j0 = j

(−s,β)
0 (j) =

j
(−s+2,β+1)
0 (j − 1) + 1 if j0 ≥ 1. Putting above computations together, it follows that

∆P−s,nj,` (x) = (n− j + d
2 )j∆

[
P̂

(−s,n−2j+
d
2−1)

j (2‖x‖2 − 1)Y n−2j
` (x)

]
= 4(n− j + d

2 − 1)j+1P̂
(−s+2,n−2j+

d
2−1)

j−1 (2‖x‖2 − 1)Y n−2j
` (x) +Qj0−2(x)

= 4(n+ d
2 − 1)(n+ d

2 − 2)P−s+2,n−2
j−1,` (x) +Qj0−2(x),

where Qj0−2(x) = (n− j + d
2 )jpj0−2(2‖x‖2 − 1)Y n−2j

` (x). Using this identity recursively, we
derive

∆kP−s,nj,` (x)4k(n+ d
2 − 2k)2kP

−s+2k,n−2k
j−k,` (x) +Qj0−k−1(x),

where Qj0−k−1(x) = p(2‖x‖2−1)Y n−2j
` (x) for certain p ∈ Π1

j0−k−1. Specifically, s− (n−2j+
d
2 − 1)− j = s+ j − n− d

2 + 1 ≤ k if j + k ≥ s, in return, j0 ≤ k and Π1
j0−k−1 3 p = 0. This

completes the proof. �

Monic orthogonal polynomials in Vdn($µ) are defined by (cf. [14, p. 42])

V µα (x) =
∑
γ

(−α)2γ

(1− µ− d
2 − |α|)|γ|γ!

2−2|γ|xα−2γ .(A.9)

Since (−αi)2γi = 0 if 2γi > αi, V
µ
α is a polynomial of degree |α|; in fact, V µα (x)−xα ∈ Πd

|α|−1.

Moreover, {V µα : |α| = n, α ∈ Nd0} is a basis of Vdn($µ). Moreover, V µα is well defined if

and only if (1 − µ − d
2 − |α|)|γ| 6= 0 for all γ ≤ bα/2c. If there exists γ0 ∈ Nd0 such that

(1− µ− d
2 − |α|)|γ0| = 0 and 2γ0 ≤ α, we use a truncated series for V −sα (x),

V µα (x) =
∑

|γ|≤µ+
d
2 +|α|−1

(−α)2γ

(1− µ− |α| − d
2 )|γ|γ!

2−2|γ|xα−2γ ,(A.10)

which removes the lower order terms in V µα (x).

Lemma A.3. For β ∈ Nd0 and µ ∈ R with µ+ d
2 + |α| /∈ {1, 2, . . . , bα2 c},

∂βV µα (x) = (−1)|β|(−α)βV
µ+|β|
α−β (x), α ∈ Nd0.(A.11)
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Proof. Taking derivative ∂i on (A.9) or (A.10), and using the fact that (−αi)2γi(αi − 2γi) =
αi(1− αi)2γi , it is easy to see that

∂iV
µ
α (x) =

∑
γ

(−α)2γ

(1− µ− d
2 − |α|)|γ|γ!

2−2|γ|(αi − 2γi)x
α−2γ−ei = αiV

µ+1
α−ei(x),

which, when used recursively, leads to (A.11). �

Appendix B. Sobolev spaces

In this appendix we discuss equivalent norms of the Sobolev space W s
p (Bd). Several results

that we shall need hold for fairly general domain Ω in Rd. We state only their simplified
version for Ω = Bd and/or Ω = Sd−1. In this appendix, we adopt the convention that A ∼ B
means c1A ≤ B ≤ c2A for some constants c2 > c1 > 0.

For s = 1, 2, . . . and 1 ≤ p ≤ ∞, we define a semi-norm of W s
p (Bd) by

|f |W s
p (Bd) :=

( ∑
α∈Nd0 , |α|=s

‖∂αf‖p
Lp(Bd)

)1/p

.

Lemma B.1 ([1, Theorem 5.12, p.143]). Let 0 < ε0 <∞, let 1 ≤ p <∞, and let j and s be
integers with 0 < j < s − 1. There exists a constant K = K(ε0, s, p, d) such that for every
f ∈W s

p (Bd),

|f |W j
p (Bd) ≤ Kε|f |W s

p (Bd) +Kε−j/(s−j)‖f‖Lp(Bd), 0 < ε ≤ ε0.

As a consequence of this lemma, it follows that

‖f‖W s
p (Bd) ∼ ‖f‖Lp(Bd) + |f |W s

p (Bd) ∼ ‖f‖Lp(Bd) +

d∑
i=1

‖∂si f‖Lp(Bd),(B.1)

where the last equivalence signs are derived from [29, Thoerem 4.2.4, p.316].
We need another lemma on equivalent norms in W s

p (Bd).

Lemma B.2. [21, Theorem 1.1.16] Let s = 1, 2, . . . and let F(f) be a continuous seminorm
in W s

p (Bd) such that F(Ps−1) 6= 0 for any nonzero polynomial Ps−1 ∈ Πd
s−1. Then∑

|α|=s

‖∂αf‖Lp(Bd) + F(f) ∼ ‖f‖W s
p (Bd).

A combination of (B.1) with Lemma B.2 leads to

‖f‖Wm+s
p (Bd) ∼

∑
|β|=m+s

‖∂βf‖Lp(Bd) +

[ ∑
|α|=s

‖∂αf‖Lp(Bd) + F(f)

]
∼
∑
|α|=s

‖∂αf‖Wm
p (Bd) + F(f).

(B.2)

We need the fractional order Sobolev space on Sd−1, which is defined via the interpolation
space. For f ∈W s0

p (Sd−1) +W s1
p (Sd−1) with s0, s1 ∈ N0, we define the K-functional

Ks0,s1(f, t)p,Sd−1 := inf
f=f0+f1

{
‖f0‖W s0

p (Sd−1) + t‖f1‖W s1
p (Sd−1)

}
.

For 0 < θ < 1 and 0 < θ < 1, the fractional order Sobolev space W s+θ
p (Sd−1) is defined as the

interpolation space (W s
p (Sd−1),W s+1

p (Sd−1))θ,p via the K-functional [29, §1.3],

W s+θ
p (Sd−1) :=

{
f ∈W s

p (Sd−1) +W s+1
p (Sd−1) : ‖f‖W s+θ

p (Sd−1) <∞
}
,
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where the norm is defined by

‖f‖W s+θ
p (Sd−1) :=

(∫ ∞
0

[
t−θKs,s+1(f, t)p,Sd−1

]p dt
t

)1/p

.

It follows that W s+1
p (Sd−1) ⊂W s+θ

p (Sd−1) ⊂W s
p (Sd−1) and, furthermore [29, §1.3],

‖f‖W s
p (Sd−1) ≤ c‖f‖W s+θ

p (Sd−1), f ∈W s+θ
p (Sd−1).(B.3)

It is worth to point out that the interpolator (·, ·)θ,p is of type θ. Let Xθ := W r+θ
p (Sd−1),

Yθ := W s+θ
p (Sd−1) for 0 ≤ θ ≤ 1 and assume T ∈ L(Xi, Yi), i = 0, 1. It follows then that

T ∈ L(Xθ, Yθ) and

‖T‖L(Xθ,Yθ) ≤ ‖T‖1−θL(X0,Y0)‖T‖
θ
L(X1,Y1).(B.4)

Recall that ∇2m = ∆m and ∇2m+1 = ∆m∇. We define ‖∇f‖p,Bd := |f |W 1
p

and define

‖∇2m+1f‖p,Bd using ∆2m+1 = ∇∆m accordingly. The following lemma is needed in the proof
of main theorems.

Lemma B.3. For f ∈W r
p (Bd) and r ≥ 1,

‖∇rf‖Lp(Bd) +

d r2 e−1∑
k=0

‖∆kf‖
W
r−2k−1/p
p (Sd−1)

∼ ‖f‖W r
p (Bd).(B.5)

Proof. By Thoerem 5.5.2 in [29, p. 391], {∆, I|Sd−1} is an isomorphic mapping from W 2+s
p (Bd)

onto W s
p (Bd)×W 2+s−1/p

p (Sd−1), which means that

‖f‖W s+2
p (Bd) ∼ ‖∆f‖W s

p (Bd) + ‖f‖
W

2+s−1/p
p (Sd−1)

, ∀ f ∈W s+2
p (Bd).

It then follows from recursive reduction that, for any f ∈W r
p (Bd),

‖f‖W r
p (Bd) ∼‖∆mf‖W r−2m

p (Bd) +

m−1∑
k=0

‖∆kf‖
W
r−2k−1/p
p (Sd−1)

,

which proves (B.5) for r = 2m. Furthermore, assuming r = 2m + 1 and taking F(f) =
‖f‖

W
1−1/p
p (Sd−1)

and s = 1 in Lemma B.2, we can then deduce that

‖f‖W r
p (Bd) ∼‖∇∆mf‖Lp(Bd) +

m∑
k=0

‖∆kf‖
W
r−2k−1/p
p (Sd−1)

,

which proves (B.5) for r = 2m+ 1. The proof is completed. �

In particular, for f ∈
◦
W s
p (Bd), (B.5) together with the inequality ‖∂i∂jf‖Lp(Bd) ≤ c‖∆f‖Lp(Bd)

for 1 < p <∞ imply the inequality (4.8).
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