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Abstract. We study a one-dimensional equation arising in the multiscale modeling of some
non-Newtonian fluids. At a given shear rate, the equation provides the instantaneous mesoscopic
response of the fluid, allowing to compute the corresponding stress. In a simple setting, we study
the well-posedness of the equation and next the long-time behavior of its solution. In the limit of a
response of the fluid much faster than the time variations of the ambient shear rate, we derive some
equivalent macroscopic differential equations that relate the shear rate and the stress. Our analytical
conclusions are confronted to some numerical experiments. The latter quantitatively confirm our
derivations.
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1. Introduction.
Generalities. The present contribution is devoted to the mathematical analysis

of the equation

∂p

∂t
(t, σ) + γ̇(t)

∂p

∂σ
(t, σ) = −χ(σ)p(t, σ) +

(∫
χ(σ)p(t, σ)dσ

)
δ0(σ).(1.1)

Equation (1.1) arises in the modeling of some non-Newtonian fluid flows. Some details
on the modeling will be given below. The variable σ is one-dimensional, varies on the
real line R, and models a quantity homogeneous to a stress (actually to a certain entry
of the stress tensor). The variable t of course denotes the time, and equation (1.1)
is supplied with some initial condition p(t = 0, .) = p0(.). The unknown real-valued
function p(t, σ), solution to (1.1), satisfies the two properties: it is nonnegative

(1.2) p(t, σ) ≥ 0, for all t ≥ 0 and σ ∈ R,

and normalized to one

(1.3)

∫ +∞

−∞
p(t, σ) dσ = 1,

for all times t ≥ 0. The function p models the density of probability to have a
certain (elementary microscopic) stress σ, at time t, at a macroscopic space position x.

The actual, deterministic stress within the fluid is thus given by τ =

∫
σ p(t, σ) dσ,

of Equation (1.5) below. Equation (1.1) is thus implicitly parameterized by this
position x (thus the multiscale nature of the problem, as will be seen below). The
function γ̇, also a function of time, is assumed given. It models the shear rate at the
position x, under which we wish to compute, using (1.1), the mesoscopic response
of the fluid. The notation γ̇ is traditional in Fluid Mechanics, hence its use here.
In (1.1), we denote by χ the characteristic function

χ = 1lR\[−σc,σc]
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2 MODELING OF AGING FLUIDS

where σc > 0 a scalar positive parameter, fixed once and for all. It models some
local threshold value of the stress, which plays a crucial role in the modeling. As is
usual, we denote by δ0 the Dirac mass at zero. From the definitions of χ and δ0, it is
immediately seen that, at least formally (and this will indeed be made rigorous, see
Lemmata 4.1 and 4.2 in Section 4 below), equation (1.1) preserves in time the two
properties (1.2) and (1.3).

Two quantities are typically computed using the solution p to (1.1): first the
so-called fluidity

(1.4) f(t) =

∫
χ(σ)p(t, σ) dσ

and next the (real-valued) stress

(1.5) τ(t) =

∫
σp(t, σ)dσ.

Our purpose in this article is to mathematically study equation (1.1) (in terms of
existence and uniqueness of the solution p, properties and long-time behavior of that
solution) and to derive a macroscopic equation equivalent to this equation. By macro-
scopic equation, we mean an equation (actually a differential equation, or a system
of differential equations) that directly relates the shear rate γ̇, the fluidity f and the
stress τ without the explicit need to compute p. In these macroscopic equations, the
scalar f(t) will be the inverse of the mechanical relaxation time, thus its name “flu-
idity”. We will be able, in particular, to obtain a macroscopic equation which is close
to models that have been proposed for aging fluids [7, 12], see the discussion at the
end of Section 7.

Some elements on the modeling. Equation (1.1) is the simplest possible form of
an equation describing the mesoscopic behavior of a complex fluid, such as a con-
centrated suspension, or more generically a soft amorphous material, with properties
intermediate between those of a fluid and those of a solid. These materials exhibit a
highly non-Newtonian behavior and may give rise to a macroscopic yield stress.

At low stress, such a material behaves in an elastic way. But above a certain stress
threshold, here denoted by the critical value σc, one observes a relaxation toward a
completely relaxed state. This behavior is modeled by equation (1.1). The probability
of finding the fluid in the state of stress σ at time t evolves in time for two differ-

ent reasons: the term γ̇(t)
∂p

∂σ
models the modification of the stress induced by the

existence of the shear rate, while the term −χp+

(∫
χp

)
δ0 encodes the relaxation

toward zero of the part of the stress above the threshold σc. From a probabilistic view-
point, the stochastic process (Σt)t≥0 associated to the Fokker-Planck equation (1.1)
evolves deterministically when |Σt| ≤ σc and jumps to zero with an exponential rate
1 when |Σt| ≥ σc. The process (Σt)t≥0 belongs to the class of piecewise-deterministic
Markov processes, which have been introduced in the probabilistic literature in the
1980’s for biological modeling for example. In particular, coupling arguments have
been proposed to study the longtime behavior of such processes (see [1]). We argue
on the Fokker-Planck equation and proceed differently. The argument we are using
here to study the longtime behavior is purely deterministic in nature, and is based on
a delay equation related to the Fokker-Planck equation (1.1).
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We would like to mention that for more realistic models, a third phenomenon
is typically at play, in addition to the stress induced by the ambient fluid, and to
the relaxation to zero. All states of stress are not independent of one another, and
they may also depend on the state of stress at neighboring points within the fluid.
A certain redistribution of the stress therefore always occurs. This redistribution can
be encoded in various ways, depending on some more detailed elements of modeling.
In the so-called Hébraud-Lequeux model introduced in the seminal article [11] (and
then extensively studied mathematically in the works [5, 6, 8]), the redistribution
is performed by a diffusion term in the stress space, at the given location x in the
ambient physical space, and the complete equation thus writes

∂p

∂t
+ γ̇(t)

∂p

∂σ
= −χp+

(∫
χp

)
δ0(σ) + α

(∫
χp

)
∂2p

∂σ2
(1.6)

where α > 0 is some parameter. In an alternative model introduced by Bocquet and
coll. in [4], the redistribution is achieved by some type of local “convolution” in the
physical space. The equation (we recall, set at the physical location x) writes

∂p

∂t
(t, x, σ) + γ̇(t, x)

∂p

∂σ
(t, x, σ) = −χ(σ)p(t, x, σ) +

(∫
dσ′χ(σ′)p(t, x, σ′)

)
δ0(σ).

+

∫ ∫
dx′dσ′χ(σ′) (p(t, x′, σ′)p(t, x, σ −G(x, x′)σ′)− p(t, x′, σ′)p(t, x, σ)) .(1.7)

with a function G(x, x′) related to the Green function of some local Stokes-type prob-
lem.

The equation (1.1) which we study in the present article ignores the redistribution
phenomenon, which amounts to taking α = 0 in (1.6) or G ≡ 0 in (1.7). In the absence
of such a simplification, we are unable to proceed with the main result of this article,
which is the derivation of the macroscopic equation from our multiscale model. The
well posedness result contained in our Theorem 3.1, on the other hand, also holds
for (1.6) whith α > 0 and has indeed been established some years ago in [5]. Some
more detailed comments on the modeling, as well as some formal foundations of the
model based on a system of interacting particles are presented in [3].

Plan of our contribution. Our article is organized as follows. To start with, we
study in Section 2 the stationary solutions to (1.1). We next show in Section 3 ex-
istence and uniqueness of the solutions to the time-dependent equation (1.1). Our
result is stated in Theorem 3.1. Section 4 follows, establishing some useful properties
of the solution. In order to understand the macroscopic equivalent of equation (1.1)
for a given shear rate γ̇(t), which we assume varies slowly as compared to the charac-
teristic time of equation (1.1), we need to understand the long-time behavior of the
solution to (1.1). We therefore study this behavior in Sections 5 and 6, respectively in
the case of a constant shear rate γ̇(t) ≡ γ̇∞, and in the case of a slowly varying shear
rate γ̇(εt). The results are stated in Theorems 5.1 and 6.1. We are then in position
to derive, in Section 7, the macroscopic differential equations equivalent to (1.1) in
this limit, namely system (7.8). Our final section, Section 8, presents some numerical
experiments which confirm and illustrate our theoretical results.

2. Stationary states. We study in this section the stationary states of (1.1).
We therefore assume that γ̇(t) ≡ γ̇∞ is a fixed scalar and consider the solutions



4 MODELING OF AGING FLUIDS

p∞ : R→ R to the following equation

γ̇∞
dp∞
dσ

= −χp∞ +

(∫
χp∞

)
δ0 in D′(R).(2.1)

Here and in the following, for a subset I ⊂ Rd, D′(I) denotes the set of distributions
on I. By convention, since the time-dependent version of the equation is linear and
formally preserves positiveness and the integral over the real line, we are only inter-
ested in the stationary solutions p∞ that additionally satisfy (1.2) and (1.3), that
is,

(2.2) p∞ ∈ L1(R), p∞ ≥ 0, a.e. and

∫
p∞ = 1.

We have the following result:

Lemma 2.1. When γ̇∞ = 0, the solutions to (2.1)-(2.2) are exactly all nonnegative
normalized densities with compact support in [−σc, σc]. When γ̇∞ 6= 0, there exists a
unique solution p∞ to (2.1)-(2.2).

Proof. In the case γ̇∞ = 0, the equation (2.1) implies p∞ = 0 in D′(R\[−σc, σc]),
hence the result. Up to a change of p∞ into σ → p∞(−σ), we may, without loss of
generality, consider only the case γ̇∞ > 0 for our proof. We first note that p∞ defined
by

p∞(σ) =


0 if σ < 0

1
σc+γ̇∞

if 0 < σ ≤ σc
1

σc+γ̇∞
e−(σ−σc)/γ̇∞ if σc < σ.

(2.3)

is a solution to (2.1), hence the existence result.

We now show uniqueness. By linearity, we assume that p∞ ∈ L1(R) is a solution

of (2.1) with
∫
R p∞ = 0 and show that p∞ = 0. Equation (2.1) implies γ̇∞

dp∞
dσ

+p∞ =

0 in D′(R\[−σc, σc]). Because p∞ ∈ L1(R), this leads to p∞ = αe−
σ
γ̇∞ a.e. on (σc,∞)

with α a scalar and p∞ = 0 a.e. on (−∞,−σc).

In the case α = 0, this implies χp∞ = 0. Consequently, (2.1) rewrites
dp∞
dσ

= 0

on the whole real line. This readily implies p∞ = 0 since
∫
R p∞ = 0.

In the case α 6= 0, we obtain that (2.1) writes

γ̇∞
dp∞
dσ

= α

(∫ ∞
σc

e−
σ′
γ̇∞ dσ′

)
δ0 in D′(−∞, σc)

so that p∞ = α
γ̇∞

(∫∞
σc

e−
σ′
γ̇∞ dσ′

)
1lR+

(σ) a.e. on (−∞, σc). Using that p∞ = αe−
σ
γ̇∞

a.e. on (σc,∞) and
∫
p∞ = 0, we find α = 0 and thus p∞ = 0. This concludes the

proof.

3. Existence and uniqueness. This section is devoted to the proof of the
following result:

Theorem 3.1 (Existence and uniqueness). Consider γ̇ a function of time that
satisfies

γ̇ ∈ L1
loc(0,∞) and γ̇ ≥ mγ̇ a.e. where mγ̇ > 0 is a fixed scalar.(3.1)
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Denote by γ(t) =
∫ t
0
γ̇(s) ds. Consider p0 ∈ L1(R). Then, for any T > 0, there exists

a unique p in C0([0, T );L1) such that p(0, σ) = p0(σ) for almost all σ ∈ R and such
that (1.1) holds for p in the sense of distributions on (0, T )×R. In addition, introduce

A(t) =

∫
χ(σ)p0(σ − γ(t))e−

∫ t
0
χ(σ−γ(t)+γ(u))dudσ(3.2)

and φ defined by induction on k ∈ N∗ as follows

φ(t) = A(t)

+

{
0 when t ∈

(
0, γ−1(σc)

)∫ γ−1(γ(t)−σc)
0

φ(s)e−t+γ
−1(γ(s)+σc)ds when t ∈

(
γ−1(kσc), γ

−1((k + 1)σc)
)
.

(3.3)

Both A and φ belong to L∞(0, T ). Then, the solution p to (1.1) is explicitly given by

p(t, σ) = p0(σ − γ(t))e−
∫ t
0
χ(σ−γ(t)+γ(u))du

+
φ ◦ γ−1(γ(t)− σ)

γ̇ ◦ γ−1(γ(t)− σ)
e
−

∫ t
γ−1(γ(t)−σ) χ(σ−γ(t)+γ(u))du1l(0,γ(t))(σ)(3.4)

and f defined by (1.4) is equal to φ:

f = φ a.e. on (0, T ).(3.5)

Remark 1. The above results also hold for γ̇ < −mγ̇ negative. However, it is
unclear how to extend these results if γ̇ is allowed to vanish.

Remark 2. We will see in the next section that if the initial condition p0 is
nonnegative and normalized, then this property is preserved in time for the solution p.

Proof. We first note that

γ(t) =

∫ t

0

γ̇(s)ds

is a strictly increasing continuous function of the time because of (3.1). Throughout
this proof, we assume T > γ−1(σc). When T ≤ γ−1(σc), the arguments are similar
and actually simpler. We first show uniqueness, then p given by (3.4) belongs to
C0([0, T );L1) and is a solution of (1.1) in D′((0, T )× R).

Step 1: Uniqueness. Equation (1.1) is linear, we therefore consider a solution
p ∈ C0([0, T );L1) associated to the zero initial condition p0 = 0 and we intend to
show that p = 0. Denote by

p̃(t, ξ) = p(t, ξ + γ(t))e
∫ t
0
χ(ξ+γ(u))du.

We now show

∂p̃

∂t
(t, ξ) = f(t)δ−γ(t)(ξ)e

∫ t
0
χ(−γ(t)+γ(u))du in D′((0, T )× R)(3.6)
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with f defined from p by (1.4). We have, for all ψ ∈ D((0, T )×R), (where D((0, T )×R)
denotes the set of C∞ functions with compact support in (0, T )× R)

−
∫ T

0

∫
R
p̃
∂ψ

∂t
= −

∫ T

0

∫
R
p(t, ξ + γ(t))e

∫ t
0
χ(ξ+γ(u))du ∂ψ

∂t
(t, ξ)dξdt

= −
∫ T

0

∫
R
p(t, σ)

∂ψ

∂t
(t, σ − γ(t))e

∫ t
0
χ(σ−γ(t)+γ(u))dudσdt.(3.7)

For n ∈ N, denote now by ρn a mollifier, χn = ρn ∗ χ and

ηn(t, σ) = ψ(t, σ − γ(t))e
∫ t
0
χn(σ−γ(t)+γ(u))du.

The fact that p is solution to (1.1) in D′((0, T )× R) yields

−
∫ T

0

∫
R
p

(
∂ηn

∂t
+ γ̇

∂ηn

∂σ
− χηn

)
=

∫ T

0

f(t)ηn(t, 0)dt.

This rewrites

−
∫ T

0

∫
R
p(t, σ)

∂ψ

∂t
(t, σ − γ(t))e

∫ t
0
χn(σ−γ(t)+γ(u))dudσdt

+

∫ T

0

∫
R
p(t, σ)ηn(t, σ) (χ− χn) (σ)dσdt

=

∫ T

0

f(t)ψ(t,−γ(t))e
∫ t
0
χn(−γ(t)+γ(u))dudt.(3.8)

As n goes to infinity, χn converges to χ in L1
loc(R) and for almost all t ∈ (0, T ), σ ∈ R,∫ t

0

χn(σ − γ(t) + γ(u))du→
∫ t

0

χ(σ − γ(t) + γ(u))du.

Because p and ψ respectively belong to L∞((0, T ), L1) and D((0, T )×R), all terms of
(3.8) are bounded from below and from above by an integrable function independent
of n. We apply the dominated convergence theorem to pass to the limit in (3.8)

−
∫ T

0

∫
R
p(t, σ)

∂ψ

∂t
(t, σ − γ(t))e

∫ t
0
χ(σ−γ(t)+γ(u))dudσdt

=

∫ T

0

f(t)ψ(t,−γ(t))e
∫ t
0
χ(−γ(t)+γ(u))dudt,

hence (3.6), using (3.7).
Define t∗ = γ−1(σc). We now show that p̃ = 0 in L∞(0, t∗;L1), this will prove

that p = 0 in L∞(0, t∗;L1).

From (3.6), we deduce that
∂p̃

∂t
= 0 in D′(Ω̃) with

Ω̃ = (0, t∗)× ((−∞,−γ(t∗)) ∪ (0,∞)) .

Using that p0 = 0, we find p̃ = 0 inD′(Ω̃) and therefore in L∞(0, t∗;L1((−∞,−γ(t∗))∪
(0,∞))). This implies p = 0 in L∞(0, t∗;L1 ((−∞,−γ(t∗)) ∪ (γ(t∗),∞))).
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In particular, since γ(t∗) = σc, we have, for all t ∈ (0, t∗) , f(t) =
∫
χp(t, ·) = 0

and thus, the equation (3.6) reads
∂p̃

∂t
= 0 in D′((0, t∗) × R). We deduce that p̃ = 0

and therefore that p = 0 in L∞(0, t∗;L1).

Taking t∗ as initial time, we find p = 0 in L∞(t∗, 2t∗;L1) with the previous
arguments. Iterating, we obtain p = 0 in L∞(0, T ;L1). This concludes the proof of
uniqueness.

Our next two steps are respectively devoted to proving that p defined by (3.4)
belongs to C([0, T );L1) and that it satisfies equation (1.1).

Step 2: Regularity of expression (3.4). First, the function A defined by (3.2)
belongs to L∞(0, T ) (with ‖A‖L∞(0,T ) ≤ ‖p0‖L1) and therefore φ defined by the

recurrence relation (3.3) also belongs to L∞(0, T ). This implies, for almost all t ∈
[0, T ), ∫

|p(t, σ)| dσ ≤ ‖p0‖L1 +
γ(T )

mγ̇
‖φ‖L∞(0,T ) ,

that is p defined by (3.4) belongs to L∞(0, T ;L1). Denote

p11(t, σ) = p0(σ − γ(t))

p12(t, σ) =

∫ t

0

χ(σ − γ(t) + γ(u))du

p21(t, σ) =
φ ◦ γ−1(γ(t)− σ)

γ̇ ◦ γ−1(γ(t)− σ)
1l(0,γ(t))(σ)1lR∗+(t)

p22(t, σ) =

∫ t

γ−1(γ(t)−σ)
χ(σ − γ(t) + γ(u))du

so that p = p11e−p12+p21e−p22 . We now check that p11 and p21 belong to C0([0, T );L1)
and p12 and p22 belong to C0([0, T );L∞). Using that x 7→ e−x is 1-Lipschitz on [0,∞),
this will prove that p ∈ C0([0, T );L1) .

Consider ε > 0, t ∈ [0, T ) and h such that t + h ∈ [0, T ). By density of D(R) in
L1(R), there exists pε ∈ D(R) such that

‖pε − p0‖L1 < ε.

We obtain

‖p11(t+ h, ·)− p11(t, ·)‖L1 =

∫
R
|p0(σ − γ(t+ h))− p0(σ − γ(t))| dσ

≤ 2 ‖pε − p0‖L1 +

∫
R
|pε(σ − γ(t+ h))− pε(σ − γ(t))| dσ

≤ 2ε+

∫
R
ghε (σ)dσ

with ghε (σ) = |pε(σ − γ(t+ h))− pε(σ − γ(t))|. Moreover, by continuity of pε and γ,
we have, for all σ ∈ R,

ghε (σ)→ 0 as h→ 0
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and ghε ≤ 2 ‖pε‖L∞ on a bounded interval (depending on the support of pε and
on γ(T )). Using Lebesgue dominated convergence Theorem, we deduce that there
exists ηε > 0 such that for all h ∈ (−ηε, ηε),∫

R
ghε (σ)dσ ≤ ε

so that

‖p11(t+ h, ·)− p11(t, ·)‖L1 ≤ 3ε.

This yields p11 ∈ C0([0, T );L1).

We now turn to p12. For almost all σ ∈ R, we have

|p12(t+ h, σ)− p12(t, σ)|

≤
∫ t

0

|χ(σ − γ(t+ h) + γ(u))− χ(σ − γ(t) + γ(u))| du

+

∫ t+h

t

χ(σ − γ(t+ h) + γ(u))du

≤ 1

mγ̇

∫ σ+γ(t)

σ

|χ(v − γ(t+ h))− χ(v − γ(t))| dv + h

≤ 1

mγ̇

∫
R
|χ(v − γ(t+ h))− χ(v − γ(t))| dv + h.

This leads to

‖p12(t+ h, ·)− p12(t, ·)‖L∞ ≤
2

mγ̇
(γ(t+ h)− γ(t)) + h

which yields p12 ∈ C0([0, T );L∞).

For any t ∈ (0, T ) and h such that t+ h ∈ [0, T ), we have

∫
R
|p21(t+ h, σ)− p21(t, σ)| dσ

≤
∫ γ(t)

0

∣∣∣∣φ ◦ γ−1(γ(t+ h)− σ)

γ̇ ◦ γ−1(γ(t+ h)− σ)
− φ ◦ γ−1(γ(t)− σ)

γ̇ ◦ γ−1(γ(t)− σ)

∣∣∣∣ dσ
+

∣∣∣∣∣
∫ γ(t+h)

γ(t)

φ ◦ γ−1(γ(t+ h)− σ)

γ̇ ◦ γ−1(γ(t+ h)− σ)
dσ

∣∣∣∣∣ .
Since φ belongs to L∞(0, T ), φ ◦ γ−1 belongs to L∞(0, γ(T )) ⊂ L1(0, γ(T )) and we
introduce a sequence θn in D(0, γ(T )) such that

θn → φ ◦ γ−1 in L1(0, γ(T ))
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and obtain ∫
R
|p21(t+ h, σ)− p21(t, σ)| dσ

≤ 2

mγ̇

∥∥θn − φ ◦ γ−1∥∥L1(0,γ(T ))

+

∫ γ(t)

0

∣∣∣∣ θn(γ(t+ h)− σ)

γ̇ ◦ γ−1(γ(t+ h)− σ)
− θn(γ(t)− σ)

γ̇ ◦ γ−1(γ(t)− σ)

∣∣∣∣ dσ
+
γ(t+ h)− γ(t)

mγ̇
‖φ‖L∞(0,T ) .

Using the dominated convergence theorem for the second term, this implies that∫
R |p21(t+ h, σ)− p21(t, σ)| dσ vanishes with h. We have obtained that p21 belongs to
C0((0, T );L1). The continuity holds also at t = 0 because for all h ∈ (0, T )

∫
R
|p21(h, σ)− 0| dσ ≤

∫ γ(h)

0

∣∣∣∣φ ◦ γ−1(γ(h)− σ)

γ̇ ◦ γ−1(γ(h)− σ)

∣∣∣∣ dσ
≤ γ(h)

mγ̇
‖φ‖L∞(0,T ) .

Finally, the function p3 = p12 − p22 is in C0((0, T );L∞) (and so is p22). Indeed,
for any t ∈ [0, T ) and h such that t+ h ∈ [0, T ), for almost all σ ∈ R,

|p3(t+ h, σ)− p3(t, σ)|

≤
∫ γ−1(γ(t)−σ)

0

|χ(σ − γ(t+ h) + γ(u))− χ(σ − γ(t) + γ(u))| du

+

∫ γ−1(γ(t+h)−σ)

γ−1(γ(t)−σ)
χ(σ − γ(t+ h) + γ(u))du

so that, with the change of variable v = σ + γ(u),

‖p3(t+ h, ·)− p3(t, ·)‖L∞

≤ 1

mγ̇

(∫
R
|χ(v − γ(t+ h))− χ(v − γ(t))| dv +

∫ γ(t+h)

γ(t)

dv

)

≤ 3

mγ̇
(γ(t+ h)− γ(t)) .

This concludes the proof of the continuity in time of p, with values in L1.

Step 3: Expression (3.4) satisfies (1.1). We first show that p defined by (3.4)
satisfies

∂p

∂t
+ γ̇(t)

∂p

∂σ
= −χp+ φδ0(σ) in D′((0, T )× R).(3.9)
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For all ψ ∈ D((0, T )× R),

−
∫ T

0

∫
R
p

(
∂ψ

∂t
+ γ̇

∂ψ

∂σ
− χψ

)
= −

∫ T

0

∫
R
p0(σ − γ(t))e−

∫ t
0
χ(σ−γ(t)+γ(u))du

(
∂ψ

∂t
+ γ̇

∂ψ

∂σ
− χψ

)
(t, σ)dσdt

−
∫ T

0

∫ γ(t)

0

φ ◦ γ−1(γ(t)− σ)

γ̇ ◦ γ−1(γ(t)− σ)
e
−

∫ t
γ−1(γ(t)−σ) χ(σ−γ(t)+γ(u))du

×
(
∂ψ

∂t
+ γ̇

∂ψ

∂σ
− χψ

)
(t, σ)dσdt

= −
∫ T

0

∫
R
p0(ξ)e−

∫ t
0
χ(ξ+γ(u))du

(
∂ψ

∂t
+ γ̇

∂ψ

∂σ
− χψ

)
(t, ξ + γ(t))dξdt

−
∫ T

0

∫ t

0

φ(v)e−
∫ t
v
χ(−γ(v)+γ(u))du

×
(
∂ψ

∂t
+ γ̇

∂ψ

∂σ
− χψ

)
(t,−γ(v) + γ(t))dvdt

where we have made the changes of variables ξ = σ − γ(t) and v = γ−1(γ(t) − σ).
Introducing

ν(t, ξ) = ψ(t, ξ + γ(t))e−
∫ t
0
χ(ξ+γ(u))du

and µ(t, v) = ψ(t,−γ(v) + γ(t))e−
∫ t
v
χ(−γ(v)+γ(u))du

this rewrites

−
∫ T

0

∫
R
p

(
∂ψ

∂t
+ γ̇

∂ψ

∂σ
− χψ

)
= −

∫
R
p0(ξ)

[∫ T

0

∂ν

∂t
(t, ξ)dt

]
dξ −

∫ T

0

φ(v)

[∫ T

v

∂µ

∂t
(t, v)dt

]
dv

=

∫
R
p0(ξ) [ν(0, ξ)− ν(T, ξ)] dξ

+

∫ T

0

φ(v) [µ(v, v)− µ(T, v)] dv =

∫ T

0

φ(v)ψ(v, 0)dv

thus (3.9).

We finally show that φ =
∫
χp a.e. on (0, T ), where p is defined by (3.4). This

will prove that (1.1) holds in D′((0, T ) × R). First, for almost all t ∈
(
0, γ−1(σc)

)
,

definition (3.4) of p implies
∫
χ(σ)p(t, σ) dσ = A(t). The definition (3.3) of φ im-

plies φ(t) = A(t), thus φ(t) =
∫
χ(σ)p(t, σ) dσ for such a time t. We next take t ∈
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γ−1(σc), T

)
. We have

f(t) = A(t) +

∫ γ(t)

σc

φ ◦ γ−1(γ(t)− σ)

γ̇ ◦ γ−1(γ(t)− σ)
e
−

∫ t
γ−1(γ(t)−σ) χ(σ−γ(t)+γ(u))dudσ

= A(t) +

∫ γ(t)

σc

φ ◦ γ−1(γ(t)− σ)

γ̇ ◦ γ−1(γ(t)− σ)
e−t+γ

−1(γ(t)−σ+σc)dσ

= A(t) +

∫ γ−1(γ(t)−σc)

0

φ(s)e−t+γ
−1(γ(s)+σc)ds

= φ(t),

where we have respectively simplified the exponential term, made the change of vari-
ables s = γ−1(γ(t) − σ) and used the definition (3.3) of φ. This concludes the proof
of this step, and thus that of Theorem 3.1.

4. Properties of the solution. In this section we prove various properties of
the solution of (1.1) the existence and uniqueness of which has been established in
Theorem 3.1. We therefore assume throughout this section that, as for Theorem 3.1,
p0 in L1(R) and γ̇ satisfies (3.1).

Lemma 4.1 (Maximum principle). If p0(σ) ≥ 0 for almost all σ ∈ R then
p(t, σ) ≥ 0 for almost all t ∈ [0, T ), σ ∈ R.

Proof. Using the definition (3.2) of A, we first have A(t) ≥ 0 for almost all
t ∈ [0, T ). Because of recurrence relation (3.3) on φ, we then find that φ(t) ≥ 0 for
almost all t ∈ [0, T ). Consequently, the expression (3.4) on p gives the result.

Lemma 4.2 (Mass conservation). If
∫
R p0 = 1 then

∫
R p(t, ·) = 1 for all t ∈ [0, T ).

Proof. Denote

h(t) =

∫
R
p(t, ·)(4.1)

which is continuous since p belongs to C0([0, T );L1). Using (3.4), we obtain that h
reads

h(t) =

∫
R
p0(σ − γ(t))e−

∫ t
0
χ(σ−γ(t)+γ(u))dudσ

+

∫ γ(t)

0

φ ◦ γ−1(γ(t)− σ)

γ̇ ◦ γ−1(γ(t)− σ)
e
−

∫ t
γ−1(γ(t)−σ) χ(σ−γ(t)+γ(u))dudσ.

For all t ∈
[
0, γ−1(σc)

]
, h rewrites

h(t) =

∫
R
p0(ξ)e−

∫ t
0
χ(ξ+γ(u))dudξ +

∫ γ(t)

0

φ ◦ γ−1(γ(t)− σ)

γ̇ ◦ γ−1(γ(t)− σ)
dσ

=

∫
R
p0(ξ)e−

∫ t
0
χ(ξ+γ(u))dudξ +

∫ t

0

φ(s)ds.

Differentiating h in the sense of distributions in time, we obtain

ḣ(t) = −
∫
R
χ(ξ + γ(t))p0(ξ)e−

∫ t
0
χ(ξ+γ(u))dudξ + φ(t)

= −A(t) + φ(t)

= 0,
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using the definitions (3.2) of A and (3.3) of φ. Using that h is continuous on [0, T )
with h(0) = 1, we find h = 1 on [0, γ−1(σc)]. For all t ∈ (γ−1(σc), T ), h rewrites

h(t) =

∫
R
p0(ξ)e−

∫ t
0
χ(ξ+γ(u))dudξ +

∫ σc

0

φ ◦ γ−1(γ(t)− σ)

γ̇ ◦ γ−1(γ(t)− σ)
dσ

+

∫ γ(t)

σc

φ ◦ γ−1(γ(t)− σ)

γ̇ ◦ γ−1(γ(t)− σ)
e−t+γ

−1(γ(t)−σ+σc)dσ

=

∫
R
p0(ξ)e−

∫ t
0
χ(ξ+γ(u))dudξ +

∫ t

γ−1(γ(t)−σc)
φ(s)ds

+

∫ γ−1(γ(t)−σc)

0

φ(s)e−t+γ
−1(γ(s)+σc)ds.

Differentiating h in D′(γ−1(σc), T ), we obtain

ḣ(t) = −A(t) + φ(t)−
∫ γ−1(γ(t)−σc)

0

φ(s)e−t+γ
−1(γ(s)+σc)ds

= 0,

because of definitions (3.2) of A and (3.3) of φ. This implies h = 1 on [0, T ), hence
the result.

Lemma 4.3 (L∞-bounds). Assume p0 satisfies

p0 ∈ L1(R), p0 ≥ 0.

Then, φ defined by (3.3) (or, equivalently, f , given (3.5)) satisfies

‖φ‖L∞(0,T ) ≤
∫
R
p0.(4.2)

If in addition p0 satisfies

p0 ∈ L∞(R),

then p belongs to L∞(0, T ;L∞) and there exists a constant C∞ which depends only
on ‖p0‖L1∩L∞ and the bound mγ̇ in (3.1) such that

‖p‖L∞T (L∞) ≤ C∞.(4.3)

Proof. First, we notice that

(4.4) f(t) =

∫
R
χp(t, ·) ≤

∫
R
p(t, ·) =

∫
R
p0,

successively using the definition (1.4) of f , Lemma 4.1 and Lemma 4.2. This imme-
diately implies

‖φ‖L∞(0,T ) ≤
∫
R
p0.
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Using the lower bound (3.1) on γ̇, the L∞-bound on p0 and the expression (3.4) of p
in terms of φ, we find that p belongs to L∞(0, T ;L∞) and

‖p‖L∞T (L∞) ≤ ‖p0‖L∞ +

∫
R p0

mγ̇
.

Lemma 4.4 (Delay differential equation). Assume p0 ∈ L∞(R) ∩ L1(R). Then,
A and φ = f respectively defined by (3.2), (3.3) and (1.4), belong to W 1,1(0, T ) thus
are continuous in time. Moreover, A and φ satisfy, for almost all t ∈ (0, T ),

Ȧ(t) +A(t) = γ̇(t)
[
p0(σc − γ(t))e−

∫ t
0
χ(σc−γ(t)+γ(u)) du(4.5)

− p0(−σc − γ(t))e−
∫ t
0
χ(−σc−γ(t)+γ(u)) du

]
and for almost all t ∈

(
γ−1(σc), T

)
,

φ̇(t) + φ(t)− γ̇(t)

γ̇ ◦ γ−1(γ(t)− σc)
φ ◦ γ−1(γ(t)− σc) = Ȧ(t) +A(t).(4.6)

Proof. As stated in Theorem 3.1, the functions A and φ belong to L∞(0, T ) ⊂
L1(0, T ). We show that both Ȧ and φ̇ belong to L1(0, T ).

The expression (3.2) on A rewrites

A(t) =

∫
R\[−σc−γ(t),σc−γ(t)]

p0(ξ)e−
∫ t
0
χ(ξ+γ(u))dudξ.

Differentiating the above expression in the sense of distributions in time, we obtain
equation (4.5). Since p0 belongs to L∞(0, T ) and γ̇ and A belong to L1(0, T ), Ȧ
belongs to L1(0, T ) and the equation (4.5) holds for almost all t ∈ (0, T ).

Since φ = A on (0, γ−1(σc)), φ̇ belongs to L1(0, γ−1(σc)). Differentiating the
recurrence relation (3.3) in the sense of distributions on

(
γ−1(σc), T

)
, we have

φ̇(t) = Ȧ(t) +
γ̇(t)

γ̇ ◦ γ−1(γ(t)− σc)
φ ◦ γ−1(γ(t)− σc)

−
∫ γ−1(γ(t)−σc)

0

φ(s)e−t+γ
−1(γ(s)+σc)ds,

= Ȧ(t) +
γ̇(t)

γ̇ ◦ γ−1(γ(t)− σc)
φ ◦ γ−1(γ(t)− σc) +A(t)− φ(t).

Using that A, γ̇ and φ respectively belong to W 1,1(0, T ), L1(0, T ) and L∞(0, T ), the
right-hand side of the above equation and thus φ̇ belong to L1(γ−1(σc), T ). Moreover,
the equation (4.6) holds for almost all t ∈

(
γ−1(σc), T

)
. This ends the proof.

Lemma 4.5 (Existence of τ). Assume that p0 satisfies

p0 ∈ L1(R), p0 ≥ 0

∫
|σ| p0 <∞.
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Then σp belongs to L∞(0, T ;L1) so that the average stress τ defined by (1.5) belongs
to L∞(0, T ). Moreover, if there exists a scalar Mγ̇ independent from T such that
γ̇ ≤Mγ̇ , then there exists a constant Cτ independent from T such that∥∥∥∥∫ |σ| p(t, σ)dσ

∥∥∥∥
L∞(0,T )

≤ Cτ (1 +Mγ̇T ) .(4.7)

Proof. We multiply the expression (3.4) on p by |σ| and integrate in σ. This
implies∫

|σ| p(t, σ)dσ

≤
∫
|σ| p0(σ − γ(t))dσ +

∫ γ(t)

0

σ
‖φ‖L∞
mγ̇

e
−

∫ t
γ−1(γ(t)−σ) χ(σ−γ(t)+γ(u))dudσ

≤
∫
|σ| p0 +

(∫
p0

)(
γ(T ) +

∫ γ(t)

0

σ

mγ̇
e
−

∫ t
γ−1(γ(t)−σ) χ(σ−γ(t)+γ(u))dudσ

)
,(4.8)

using that γ̇ ≥ mγ̇ and then the upper bound (4.2) on ‖φ‖L∞(0,T ). We deduce∫
|σ| p(t, σ)dσ ≤

∫
|σ| p0 +

(∫
p0

)(
γ(T ) +

∫ γ(T )

0

σ

mγ̇
dσ

)
,

so that σp belongs to L∞(0, T ;L1). Moreover, from (4.8), we obtain, for all t >
γ−1(σc),∫

|σ| p(t, σ)dσ ≤ max

(∫
p0,

∫
|σ| p0

)
(

1 +Mγ̇T +

∫ σc

0

σ

mγ̇
dσ +

1

mγ̇

∫ γ(t)

σc

σe−t+γ
−1(γ(t)−σ+σc)dσ

)
.(4.9)

Additionally, with the change of variable v = t− γ−1(γ(t)− σ+ σc), the last integral
satisfies∫ γ(t)

σc

σe−t+γ
−1(γ(t)−σ+σc)dσ =

∫ t−γ−1(σc)

0

(γ(t)− γ(t− v) + σc) e−v
1

γ̇ ◦ γ−1(γ(t)− σ + σc)
dv

≤
∫ t−γ−1(σc)

0

(∫ t

t−v
Mγ̇du+ σc

)
e−v

mγ̇
dv

≤
∫ ∞
0

(Mγ̇v + σc)
e−v

mγ̇
dv <∞.

Inserting the above inequality in (4.9) yields (4.7). This concludes the proof.

Throughout our article, we now assume that

p0 ∈ L1(R) ∩ L∞(R), p0 ≥ 0,

∫
R
p0 = 1 and

∫
R
|σ| p0 <∞,(4.10)

so that the five Lemmata 4.1, 4.2, 4.3, 4.4 and 4.5 hold.
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5. Longtime behavior in the case γ̇(t) = γ̇∞. In this section, we assume
that γ̇(t) = γ̇∞ where γ̇∞ > 0 is a given fixed constant and we study the longtime
convergence for equation (1.1). This allows us to lay some ground work which will
prove useful for the general case of a slowly varying shear rate addressed in the next
sections. We prove the following.

Theorem 5.1. Assume that γ̇(t) = γ̇∞ with γ̇∞ > 0 a given constant. Supply
equation (1.1) with an initial condition p0 that satisfies (4.10). Consider p the solu-
tion to (1.1) and p∞ the associated stationary solution, the existence and uniqueness
of those has been respectively established in Theorem 3.1 and Lemma 2.1. Then p con-
verges exponentially fast in time to p∞ for almost all σ ∈ R. In addition, f defined
by (1.4) converges exponentially fast in time to

∫
χp∞.

More precisely, there exist b, C1 > 0 such that, for all t and for almost all σ ∈ R,

|p(t, σ)− p∞(σ)| ≤ C1

(
e−t +

(
e−bteb

σ
γ̇∞ + e−te

σ
γ̇∞

)
1l(0,γ̇∞t)(σ)

)
.(5.1)

In addition, there exists a positive continuous function C2 of ω ∈ R∗+ such that for
all t ≥ 0, ∣∣∣∣f(t)−

∫
χp∞

∣∣∣∣ ≤ C2(ω)
(
e−bt + e−t

)
.(5.2)

In the two estimates (5.1) and (5.2), the rate b > 0 can be chosen as

b = −max{x < 0 s.t. x+ 1− e−ωx cos(ω
√

e−2ωx − (x+ 1)2) = 0} − η(5.3)

for any η > 0, where ω is defined by:

ω =
σc
γ̇∞

.(5.4)

Notice that the estimates (5.1) and (5.2) rely on the two natural timescales of
the original problem: the exponential rate 1 of the jump process to zero (the hidden
coefficient 1 multiplying the right-hand side of the Fokker-Planck equation (1.1)), and
the typical time ω required for the process to leave the domain (−σc, σc), when the
shear rate is γ̇∞.

Let us notice from (5.3) that we may assume in the following, without loss of
generality, that

(5.5) b 6= 1.

This will be an assumption on b in the forthcoming sections. This assumption is exclu-
sively technical. We require it to simplify some proofs where convolutions with expo-
nential kernels are involved, in particular to use estimates such as

∫ t
0

e−(t−s)e−bs ds ≤
C(e−bt + e−t) (which is only true if b 6= 1).

Before we get to the proof of Theorem 5.1, to which the rest of this section is
devoted, we need to introduce some notation and make some preliminaries.

Denote by q(t, σ) = p(t, σ)− p∞(σ) and q0(σ) = p0(σ)− p∞(σ). By linearity, and
in place of A and φ introduced in Theorem 3.1, we similarly introduce

B(t) =

∫
χ(ξ + γ̇∞t)q0(ξ)e−

1
γ̇∞

∫ ξ+γ̇∞t
ξ χ(v)dvdξ(5.6)



16 MODELING OF AGING FLUIDS

and

g(t) =

{
B(t) for almost all t ∈ (0, ω)

B(t) +
∫ t−ω
0

g(s)e−t+s+ωds for almost all t ∈ (kω, (k + 1)ω) .
(5.7)

We then have from Theorem 3.1

q(t, σ) = q0(σ − γ̇∞t)e−
1
γ̇∞

∫ σ
σ−γ̇∞t

χ(v)dv +
1

γ̇∞
g

(
t− σ

γ̇∞

)
e−

1
γ̇∞

∫ σ
0
χ(v)dv1l(0,γ̇∞t)(σ).

(5.8)

Using Lemma 4.4, g satisfies, for almost all t > ω,

ġ(t) + g(t)− g(t− ω) = Ḃ(t) +B(t).(5.9)

The equation (5.9) on g is a delay differential equation with constant coefficients.
The proof of Theorem 5.1 is based upon three lemmata for such a delay differential
equation, denoted in generality by

(5.10)

{
u̇(t) + u(t)− u(t− ω) = µ(t) for t ≥ ω

u(t) = ν(t) for t ∈ (0, ω)

where ω > 0 is a constant and µ is a locally integrable function. Equation (5.10) is
understood in the sense of distribution in time. To such a delay differential equation
is classically associated the unique function k(t) satisfying the following properties:

1. k(t) = 0, ∀t < 0;
2. k(0) = 1;
3. k(t) is continuous on [0,∞);
4. k(t) satisfies for all t > 0,

k̇(t) + k(t)− k(t− ω) = 0.(5.11)

The three lemmata useful for the proof of Theorem 5.1 are Lemma 5.4, itself
proved using Lemma 5.2, and Lemma 5.3. The latter two lemmata, Lemma 5.2 and
Lemma 5.3, are borrowed respectively from [10] and [2]. They are valid for more
general delay differential equations, but for simplicity, we state them here for our
specific delay differential equation (5.10).

Lemma 5.2. [10, Equation (5.10), p. 22] Consider k defined by (5.11) and the
associated properties above. Denote by

h(λ) = λ+ 1− e−ωλ.(5.12)

Then, for all αm ∈ R such that no root of h has real part equal to αm, the function k
writes, for all t > 0,

k(t) =

km∑
j=1

Resλ=λj

(
eλt

h(λ)

)
+

1

2πi
lim
T→∞

∫ T

−T

e(αm+iu)t

h(αm + iu)
du.(5.13)

where λ1, . . . , λkm are the roots of h such that <(λj) > αm and Resλ=λj denotes the
residue at λ = λj.
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Intuitively, (5.13) is obtained as follows. The function k solves k̇(t) + k(t)− k(t−
ω) = δ0 on D′(R), which by Laplace transform and using the notation (5.12), yields
h(s)L(k)(s) = 1 (where L(k) denotes the Laplace transform of k). It remains then to
divide by h and apply a reverse Laplace transform to finally obtain k. The difficulty
is of course related to the zeros of the function h.

Lemma 5.3. [2, Theorem 3.7, p. 75] Consider two functions ν ∈ C0 [0, ω] and
µ ∈ L1

loc(ω,∞). Then, there exists a unique solution u(t) ∈ C0(R+) verifying (5.10)
in the sense of distribution, and u(t) satisfies: for t ≥ 0,

u(t) = ν(ω)k(t− ω)−
∫ ω

0

ν(t1)k(t− t1 − ω)dt1 +

∫ t

ω

µ(t1)k(t− t1)dt1.(5.14)

Remark 3. The result of Lemma 5.3 is stated in [2] for µ continuous but holds
for µ ∈ L1

loc(ω,∞). Indeed, the existence of a unique solution is still valid in this
more general setting (see [10, p.14]) and expression (5.14) satisfies (5.10) almost
everywhere.

As announced above, we first use Lemma 5.2 to prove the following

Lemma 5.4. Assume

m0 < ω < M0.(5.15)

Then there exist b > 0 and C0 > 0 which depend only on m0 and M0 and such that
for all t > 0

k(t) =
1

1 + ω
+ k1(t)(5.16)

with

|k1(t)| ≤ C0e−bt.(5.17)

Moreover, b can be chosen as (5.3), for any η > 0.
We immediately emphasize that the point in Lemma 5.4 is to show that the

prefactor C0 and the exponent b appearing in (5.17) do not depend on ω itself, but
can be chosen locally uniformly, that is, depend only on the bounds m0 and M0 of
the interval where ω lies. Proving (5.17) for a fixed ω is a simple consequence of the
classical results contained e.g. in [2, 10].

Remark 4. Using numerical experiments, we will show in Section 8 that the
rate b given by (5.3) for the estimation (5.17) is indeed sharp. It is interesting to note
that our result 5.4 in the present section does not explicitly require such a sharpness.
A simpler alternate proof (which we owe to one of the anonymous referees) shows
a similar, however non sharp estimation. That proof is based on the observation

k1(t) +

∫ t

t−ω
k1(s)ds = 0 which shows that the function k1 necessarily cancels on

any interval (mω, (m + 1)ω). This leads to the following induction relation on the
maximum value Mm of |k1| on (mω, (m+ 1)ω)

Mm+1 ≤ max(Mm−1,Mm)(1− e−2ω).(5.18)
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Indeed, denoting tm ∈ (mω,mω+ω) a real such that k1(tm) = 0, k1 solution of (5.11)
satisfies, for all t ∈ (tm,mω + 2ω),

|k1(t)| =
∣∣∣∣∫ t

tm

es−tk1(s− t)ds
∣∣∣∣ ≤ max(Mm−1,Mm)

∫ t

tm

es−tds,

hence (5.18). Denote b.c the integer part. The induction relation (5.18) then implies

Mm ≤ max(M0,M1)(1− e−2ω)b
m
2 c

and therefore, using that for all t ∈ (0, 2ω), k1(t) = e−t + eω−t(t−ω)1l[ω,2ω](t)− 1
1+ω ,

|k1(t)| ≤ C̃0(ω)e−b̃(ω)t

where C̃0(ω) = 2 + ω and b̃(ω) = − log(1−e−2ω)
2ω are respectively decreasing and in-

creasing functions of ω. This proves Lemma 5.4, with the values b = b̃(M0) and
C0 = C̃0(M0).

Proof of Lemma 5.4. The proof falls in three steps. We first derive an upper
bound on the real part of the nonzero roots of the function h defined by (5.12). This
upper bound actually yields the exponent b in the exponential estimates of Lemma 5.4
and thus of Theorem 5.1. In the second step, we apply Lemma 5.2. In the third and
final step, we conclude.

Step 1: Upper bound on the real part of the nonzero roots of h. The roots of
the function h defined by (5.12) are 0 and the complex numbers λ = α + iβ (with
α, β ∈ R) that satisfy

α+ 1 = e−ωα cos (ωβ) ,(5.19)

β = −e−ωα sin (ωβ) .(5.20)

It is easy to check that α = 0 implies β = 0 and conversely, so that in the following,

we assume α 6= 0 and β 6= 0. The equation (5.20) rewrites − sin(ωβ)

β
= eωα. Since

the function x 7→ − sin(ωx)

x
is non-positive on

[
−π
ω ,

π
ω

]
, β satisfies

|β| > π

ω
.(5.21)

Moreover, we combine (5.19) and (5.20) and obtain

e2ωα
(
(α+ 1)2 + β2

)
= 1.(5.22)

This implies that α is negative and therefore, using the bounds (5.15) and (5.21)
respectively on ω and β,

e2M0α

(
(α+ 1)2 +

π2

M2
0

)
< 1.

The function

ζ : x 7→ e2M0x

(
(x+ 1)2 +

π2

M2
0

)
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is continuous, satisfies ζ(0) > 1 and lim−∞ ζ = 0 so that by the intermediate value
theorem, there exists

b > 0 such that ζ(−b) = 1 and ζ(x) ≥ 1 on [−b, 0] .

The scalar b > 0 depends only on M0. Additionally, the real part α of the nonzero
roots of h satisfies

α < −b

and, combining (5.19) and (5.22),

α+ 1− e−ωα cos(ω
√

e−2ωα − (α+ 1)2) = 0

Therefore b can be chosen as (5.3), for any η > 0.
Step 2: Applying Lemma 5.2. From the previous step, we know that the only root

of h with real part strictly above −b is 0. We now apply Lemma 5.2 with αm = −b.

Since the root 0 is a simple root of h, the residue of
eλt

h(λ)
at 0 is

1

ḣ(0)
=

1

1 + ω
.

Equation (5.13) therefore writes

k(t) =
1

1 + ω
+

1

2πi
lim
T→∞

∫ T

−T

e(−b+iu)t

h(−b+ iu)
du.(5.23)

Proving that there exists C0 > 0 which depends only on m0 and M0, such that for all
t > 0,

lim
T→∞

∣∣∣∣∣
∫ T

−T

e(−b+iu)t

h(−b+ iu)
du

∣∣∣∣∣ ≤ C0e−bt.

therefore amounts to concluding the proof of Lemma 5.4. Actually, we will show that
this holds up to changing b to b − η in the right hand side, for any positive η. This
will conclude the proof.

Step 3: Exponential bound. We first show, for all t > 0,

lim
T→∞

∫ T

−T

e(−b+iu)t

h(−b+ iu)
du = lim

T→∞

1

t

∫ T

−T
e(−b+iu)t

ḣ

h2
(−b+ iu)du.(5.24)

By integration by parts, we have∫ T

−T

e(−b+iu)t

h(−b+ iu)
du =

1

t

∫ T

−T
e(−b+iu)t

ḣ

h2
(−b+ iu)du+

1

it

[
e(−b+iu)t

h(−b+ iu)

]T
−T

.(5.25)

Introduce T0 > 0 such that for all |T | ≥ T0,(
1 +

b2

T 2

) 1
2

− 1

|T |
(
1 + eM0b

)
≥ 1

2
.

Then, for all |T | > T0,

|h(−b+ iT )| =
∣∣∣−b+ iT + 1− e−ω(−b+iT )

∣∣∣
≥
√
b2 + T 2 − 1− eωb ≥

√
b2 + T 2 − (1 + eM0b) ≥ |T |

2
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so that, for all t > 0, ∣∣∣∣∣ 1

it

[
e(−b+iu)t

h(−b+ iu)

]T
−T

∣∣∣∣∣ ≤ 4e−bt

|T | t
.(5.26)

By passing to the limit T →∞ in (5.25), we thus obtain (5.24).

Now, for all u ∈ R,∣∣∣∣∣ ḣh2
∣∣∣∣∣ (−b+ iu) =

∣∣1 + ωe−ω(−b+iu)
∣∣

(1− b− eωb cos(ωu))2 + (u+ eωb sin(ωu))2

<
1 +M0eM0b

(1− b)2 + u2 − 2eωb ((1− b) cos(ωu)− u sin(ωu))
.

Introduce u0 > 0 which we may take depending only on M0, such that for all |u| ≥ u0,

(1− b)2 + u2 − 2eM0b ((1− b) + |u|) > 0

so that ∣∣∣∣∣ ḣh2
∣∣∣∣∣ (−b+ iu) <

1 +M0eM0b

(1− b)2 + u2 − 2eM0b ((1− b) + |u|)
.

For T > u0 and t > 0, this implies

1

t

∣∣∣∣∣
∫ T

−T
e(−b+iu)t

ḣ

h2
(−b+ iu)du

∣∣∣∣∣
≤ e−bt

t

(∫ u0

−u0

∣∣∣∣∣ ḣh2
∣∣∣∣∣ (−b+ iu)du+ 2

∫ ∞
u0

(
1 +M0eM0b

)
du

(1− b)2 + u2 − 2eM0b ((1− b) + |u|)

)
.

(5.27)

The function ω 7→
∫ u0

−u0

∣∣∣ ḣh2

∣∣∣ (−b + iu)du is continuous for ω ∈ [m0,M0] and is

therefore bounded by a constant that only depends on m0 and M0. From (5.24)
and the bound (5.27), we deduce that there exists a constant C0 > 0 that also only
depends on m0 and M0 such that

lim
T→∞

∣∣∣∣∣
∫ T

−T

e(−b+iu)t

h(−b+ iu)
du

∣∣∣∣∣ ≤ C0e−(b−η)t,

for any positive η. This concludes the proof.

We are now in position to turn to the

Proof of Theorem 5.1. The proof proceeds in five steps. In step 1, we apply the
above lemmata to the delay differential equation (5.9). In steps 2 and 3, we derive
some estimates that will be useful, in the last two steps, to show convergence of g,
and eventually q.
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Step 1: Applying Lemmata 5.4 and 5.3. The function g defined by (5.7) satis-
fies (5.10) in the particular case µ = Ḃ + B and ν(t) = B(t). Notice that, by the
Lemma 4.4, the function B defined by (5.6) belongs to W 1,1(0, T ) and thus, in partic-
ular, is continuous in time. We apply Lemma 5.3 and find (by integration by parts):
for all t > ω,

g(t) = B(ω)k(t− ω) +

∫ ω

0

B(t1)k(t− t1 − ω)dt1 +

∫ t

ω

(
Ḃ +B

)
(t1)k(t− t1)dt1

= B(ω)k(t− ω) +

∫ ω

0

B(t1)
(
k̇ + k

)
(t− t1)dt1 +

∫ t

ω

(
Ḃ +B

)
(t1)k(t− t1)dt1

= B(0)k(t) +

∫ t

0

(
Ḃ +B

)
(t1)k(t− t1)dt1.

(5.28)

We now recall that, in this section, the value of ω is fixed by (5.4) at ω = σc
γ̇∞

. We can

apply Lemma 5.4 and insert the decomposition (5.16) of k into the previous equation
on g. We obtain

g(t) =
1

1 + ω

(
B(0) +

∫ t

0

(
Ḃ +B

)
(t1)dt1

)
+B(0)k1(t) +

∫ t

0

(
Ḃ +B

)
(t1)k1(t− t1)dt1.(5.29)

where k1 satisfies (5.17) with b, C0 > 0 only depending on ω = σc
γ̇∞

. Moreover, b can

be chosen as (5.3) for any positive η as stated in Lemma 5.4.
Our next two steps consist in deriving a couple of estimates (see (5.31) and (5.32)

below) on the terms of (5.29).

Step 2: Longtime convergence of B(0) +

∫ t

0

(
Ḃ +B

)
(t1)dt1. Using (4.5), the

function B defined by (5.6) satisfies, for almost all t > 0,

Ḃ(t) +B(t) = γ̇∞

(
− q0(−σc − γ̇∞t)e−

1
γ̇∞

∫−σc
−σc−γ̇∞t

χ(σ)dσ

+ q0(σc − γ̇∞t)e−
1
γ̇∞

∫ σc
σc−γ̇∞t

χ(σ)dσ
)
.(5.30)

Computing B(0) and integrating (5.30) from 0 to t yield

B(0) +

∫ t

0

(
Ḃ +B

)
=

∫
χq0 − γ̇∞

∫ t

0

q0(−σc − γ̇∞t1)e
− 1
γ̇∞

∫−σc
−σc−γ̇∞t1

χ(σ)dσ
dt1

+ γ̇∞

∫ t

0

q0(σc − γ̇∞t1)e
− 1
γ̇∞

∫ σc
σc−γ̇∞t1

χ(σ)dσ
dt1

so that, respectively with the changes of variables v = −σc − γ̇∞t and v = σc − γ̇∞t
in the last two integrals, we obtain

B(0) +

∫ t

0

(
Ḃ +B

)
=

∫
χq0 −

∫ −σc
−σc−γ̇∞t

q0(v)e−
1
γ̇∞

∫−σc
v

χ(σ)dσdv

+

∫ σc

σc−γ̇∞t
q0(v)e−

1
γ̇∞

∫ σc
v

χ(σ)dσdv.
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For t > 2ω, this implies that

B(0) +

∫ t

0

(
Ḃ +B

)
(t1)dt1 =

∫
χq0 −

∫ −σc
−σc−γ̇∞t

q0(v)e−
1
γ̇∞

∫−σc
v

χ(σ)dσdv +

∫ σc

−σc
q0

+

∫ −σc
σc−γ̇∞t

q0(v)e−
1
γ̇∞

∫−σc
v

χ(σ)dσdv

=

∫
q0 −

∫ σc−γ̇∞t

−σc−γ̇∞t
q0(v)e

σc+v
γ̇∞ dv

= −γ̇∞
∫ ω−t

−ω−t
q0(γ̇∞v)eω+vdv

using that

∫
q0 = 0. We deduce∣∣∣∣B(0) +

∫ t

0

(
Ḃ +B

)
(t1)dt1

∣∣∣∣ ≤ γ̇∞ ‖q0‖L∞ e2ω−t.(5.31)

Step 3: Longtime convergence of B(0)k1(t) +
∫ t
0

(
Ḃ +B

)
(t1)k1(t − t1)dt1. Us-

ing (5.30) on Ḃ +B and the estimate (5.17) on k1, we have, for t > 2ω,∣∣∣∣B(0)k1(t) +

∫ t

0

(
Ḃ +B

)
(t1)k1(t− t1)dt1

∣∣∣∣
≤ C0

(
e−bt

∫
χ |q0|+

∫ t

0

γ̇∞ |q0(−σc − γ̇∞t1)| e−t1−b(t−t1)dt1

+

∫ t

0

γ̇∞ |q0(σc − γ̇∞t1)| e2ωe−t1−b(t−t1)dt1

)
≤ C0γ̇∞ ‖q0‖L∞ (1 + e2ω)

(
e−bt + e−bt

∫ t

0

e(b−1)t1dt1

)
≤ C0γ̇∞ ‖q0‖L∞ (1 + e2ω)

(
1

|b− 1|
e−t +

b

|b− 1|
e−bt

)
.(5.32)

Here, we have used the assumption (5.5) on b.
Step 4: Longtime convergence of g(t). Using the decomposition (5.29) and the

estimates (5.31) and (5.32) derived in steps 2 and 3, we have, for t > 2ω,

|g(t)| ≤ γ̇∞ ‖q0‖L∞
(

e2ω

1 + ω
e−t + C0

(
1 + e2ω

)( 1

|b− 1|
e−t +

b

|b− 1|
e−bt

))
.(5.33)

Recall that g defined by (5.7) satisfies by linearity g = φ−
∫
χp∞ and that f = φ a.e.

(see (3.5)). We have obtained estimate (5.2) on f −
∫
χp∞.

Step 5: Longtime convergence of q. We now turn to q(t, σ) = p(t, σ) − p∞(σ).
Using (5.8), we have

|q(t, σ)| ≤ ‖q0‖L∞ e2ω−t +
1

γ̇∞

∣∣∣∣g(t− σ

γ̇∞

)∣∣∣∣ 1l(0,γ̇∞t)(σ).

In view of the estimate (5.2) on g, we deduce, for almost all σ ∈ R and t > 0,

|q(t, σ)| ≤ ‖q0‖L∞ e2ω−t +
C2

γ̇∞

(
e−(t− σ

γ̇∞ ) + e−b(t−
σ
γ̇∞ )

)
1l(0,γ̇∞t)(σ).

This concludes the proof of Theorem 5.1.
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6. Longtime convergence in the case γ̇(εt) . Our main result in this section
is the following.

Theorem 6.1. Consider γ̇ a Lipschitz function with Lipschitz constant Lγ̇ , which
satisfies, for all t ≥ 0,

mγ̇ ≤ γ̇(t) ≤Mγ̇ , for some mγ̇ ,Mγ̇ > 0 constant scalars.(6.1)

Consider an initial condition p0 which satisfies (4.10). For θ > 0, ε > 0 such that
θ
ε > 2 σc

mγ̇
, consider the functions pε(t, σ) and p∞(θ, σ) respectively solutions to


∂pε
∂t

(t, σ) + γ̇(εt)
∂pε
∂σ

(t, σ) = −χ(σ)pε(t, σ) +

(∫
χ(σ)pε(t, σ) dσ

)
δ0(σ)

pε(0, σ) = p0(σ)

(6.2)

γ̇(θ)
∂p∞(θ, σ)

∂σ
= −χ(σ)p∞(θ, σ) +

(∫
χ(σ)p∞(θ, σ) dσ

)
δ0(σ)(6.3)

the existence and uniqueness of which have been respectively established in Theorem 3.1
and Lemma 2.1.

Then, there exist constants b, C3, C4 > 0 independent from θ and ε (satisfying
θ
ε > 2 σc

mγ̇
) such that,

∣∣∣∣∫ χ(σ)

(
pε

(
θ

ε
, σ

)
− p∞(θ, σ)

)
dσ

∣∣∣∣ ≤ C3

(
e−b

θ
ε + e−

θ
ε + ε

)
(6.4)

and, for almost all σ ∈ R such that σ ≤ γ
(
θ
ε

)
,

∣∣∣∣pε(θε , σ
)
− p∞(θ, σ)

∣∣∣∣ ≤ C4

[(
e−b

θ
ε + e−

θ
ε + ε

)
+ ε 1l(σc,∞)(σ) (σ − σc)2

]
.(6.5)

In order to prove Theorem 6.1, we need the following technical lemma.

Lemma 6.2. Consider γ̇ a function of time that satisfies (3.1). Denote by γ(t) =∫ t
0
γ̇(s)ds. Then, for all t > 2σc

mγ̇
and almost all σ ∈ R, we have

∫ t

0

χ (σ − γ(t) + γ(u)) du ≥ t− 2σc
mγ̇

.(6.6)

Proof. Denote by Z(t, σ) =
∫ t
0
χ (σ − γ(t) + γ(u)) du. For all t > 2σc

mγ̇
and almost
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all σ ∈ R, we have

Z(t, σ)

=

∫ t

0

(
1l(−∞,−σc) + 1l(σc,∞)

)
(σ − γ(t) + γ(u)) du

=

∫ t

0

(
1l(−∞,γ−1(−σc+γ(t)−σ)) + 1l(γ−1(σc+γ(t)−σ),∞)

)
(u)du

=


t σ < −σc
γ−1(−σc + γ(t)− σ) −σc < σ < γ(t)− σc
0 γ(t)− σc < σ

+


0 σ < σc

t− γ−1(σc + γ(t)− σ) σc < σ < γ(t) + σc

t γ(t) + σc < σ

=


γ−1(−σc + γ(t)− σ) −σc < σ ≤ σc
t+ γ−1(−σc + γ(t)− σ)− γ−1(σc + γ(t)− σ) σc < σ ≤ γ(t)− σc
t− γ−1(σc + γ(t)− σ) γ(t)− σc < σ ≤ γ(t) + σc

t σ ≤ −σc or σ > γ(t) + σc

using that γ(t) > 2σc. We now estimate the above expression depending on σ. For
almost all σ ∈ (−σc, σc), the function Z is decreasing in σ so that Z(t, σ) ≥ γ−1(γ(t)−
2σc). Moreover, because of (3.1), the function γ̇ satisfies

γ(t)− γ
(
t− 2σc

mγ̇

)
=

∫ t

0

γ̇ −
∫ t− 2σc

mγ̇

0

γ̇ ≥ 2σc

so that γ−1(γ(t)− 2σc) ≥ t−
2σc
mγ̇

, hence (6.6) for almost all σ ∈ (−σc, σc).

Additionally, because of (3.1), the function γ satisfies, for all v > u ≥ 0,

γ(v)− γ(u) =

∫ v

u

γ̇ ≥ mγ̇ (v − u) .

This yields that γ−1 is Lipschitz with a Lipschitz constant 1
mγ̇

on [0,∞). Therefore,

for almost σ ∈ (σc, γ(t)− σc),

t− Z(t, σ) = γ−1(σc + γ(t)− σ)− γ−1(−σc + γ(t)− σ) ≤ 2σc
mγ̇

,

hence (6.6).
For almost all σ ∈ (γ(t)− σc, γ(t) + σc), the function Z is increasing in σ so that

Z(t, σ) ≥ t− γ−1(2σc). Moreover,

2σc =

∫ 2σc
mγ̇

0

mγ̇ ≤
∫ 2σc

mγ̇

0

γ̇(u)du = γ

(
2σc
mγ̇

)
so that γ−1(2σc) ≤ 2σc

mγ̇
, hence (6.6) for almost all σ ∈ (γ(t)− σc, γ(t) + σc).

The result (6.6) also holds in the case σ ∈ R\[−σc, γ(t) + σc] where Z(t, σ) = t.
This ends the proof.
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Now that we have proved the technical Lemma 6.2, we turn to the

Proof of Theorem 6.1. The proof is divided into six steps. The first step estab-
lishes a delay differential equation on a function gε, for which an explicit decomposition
is known thanks to the Lemma 5.3. We then rewrite gε in a different form whose terms
are estimated in Steps 3 and 4. In the last two steps, we use these estimates to obtain
(6.4) and then (6.5).

Before we get to the proof we introduce some notation. The scalars θ > 0, ε > 0
are fixed and satisfy θ

ε > 2 σc
mγ̇

. In Section 5, we have introduced

ωθ =
σc
γ̇(θ)

which from bounds (6.1) on γ̇ satisfies

σc
Mγ̇

< ωθ <
σc
mγ̇

.(6.7)

We can therefore apply Lemma 5.4 to the function kθ satisfying (5.11) with ω = ωθ,
so that there exist b, C0 > 0 which depend only on σc, mγ̇ and Mγ̇ such that (5.16)
and (5.17) hold for all t > 0. Notably, b and C0 are independent from θ (and ε).

Step 1: Applying Lemma 5.3. For a fixed θ, denote by

Aθ(t) =

∫
χ(σ)p0(σ − γ̇(θ)t)e−

1
γ̇(θ)

∫ σ
σ−γ̇(θ)t χ(v)dvdσ(6.8)

and by φθ the solution to

φ̇θ(t) + φθ(t)− φθ (t− ωθ) = Ȧθ(t) +Aθ(t)

with the initial condition φθ(t) = Aθ(t), 0 < t < ωθ. Consistently with (1.4), let us
also introduce fε(t) =

∫
χ(σ)pε(t, σ)dσ where pε satisfies (6.2). Then

gε(t) = fε(t)− φθ(t)(6.9)

belongs to W 1,1(0, T ) (because fε and φθ do, see Lemma 4.4) and satisfies, for almost
all t > ωθ

ġε(t) + gε(t)− gε (t− ωθ) = ḟε(t) + fε(t)− Ȧθ(t)−Aθ(t)− fε(t− ωθ).

Introduce s > 2 σc
mγ̇

. We apply Lemma 5.3 and obtain (using the same computations

as in (5.28) above and the fact that fε(0) = φθ(0)),

gε(s) = (fε − φθ)(ωθ)kθ(s− ωθ) +

∫ ωθ

0

(fε − φθ)(t)kθ(s− t− ωθ)dt

+

∫ s

ωθ

(
ḟε(t) + fε(t)− Ȧθ(t)−Aθ(t)− fε(t− ωθ)

)
kθ(s− t)dt

=

∫ s

0

(
ḟε(t) + fε(t)− Ȧθ(t)−Aθ(t)

)
kθ(s− t)dt−

∫ s

ωθ

fε(t− ωθ)kθ(s− t)dt.

(6.10)
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Step 2: Rewriting gε. In order to rewrite gε we show that, for almost all t ∈ (0, s),

ḟε(t) + fε(t) = γ̇(εt) (pε(t, σc)− pε(t,−σc)) .(6.11)

First, the function pε solution to (6.2) with p0 as initial condition satisfies, for all
η ∈ D([0, s)× R),

−
∫ s

0

∫
R
pε

(
∂η

∂t
+ γ̇(εt)

∂η

∂σ
− χη

)
=

∫
R
p0(σ)η(0, σ)dσ +

∫ s

0

fε(t)η(t, 0)dt.(6.12)

Denote ρ a function of D((0, s)), ρn a mollifier on R and χn = ρn ∗ χ. Inserting
ηn(t, σ) = χn(σ)ρ(t) in (6.12) yields, for n sufficiently large such that χn(0) = 0,

−
∫ s

0

∫
R
pε

(
∂ηn

∂t
+ γ̇(εt)

∂ηn

∂σ
− χηn

)
= 0

which rewrites

−
∫ s

0

ρ̇(t)

∫
χnpε(t, ·)dt−

∫
χ̇n(σ)

∫ s

0

ρ(t)γ̇(εt)pε(t, σ)dtdσ +

∫ s

0

ρ(t)

∫
χχnpε(t, ·)dt

= 0.(6.13)

The function t 7→ (σ 7→ pε(t, σ)) belongs to C([0, s], L1), see Theorem 3.1, so that,
by the dominated convergence theorem, for all t ∈ [0, s],

∫
χnpε(t, ·) and

∫
χχnpε(t, ·)

converge to fε(t) defined by (1.4) as n goes to infinity. Moreover σ 7→ (t 7→ pε(t, σ))
belongs to C(R, L1(0, s)) (the proof is similar to the one in Step 2 of Theorem 3.1)
so that

∫ s
0
ρ(t)γ̇(εt)pε(t, σ)dt is continuous in σ. Passing to the limit n → ∞ in the

above equation yields

−
∫ s

0

ρ̇(t)fε(t)dt−
∫ s

0

ρ(t)γ̇(εt) (pε(t, σc)− pε(t,−σc)) dt+

∫ s

0

ρ(t)fε(t)dt = 0,

hence (6.11) since fε and pε(·,±σc) belong to L1(0, s).
We then denote

Qε(t) = γ̇(εt) (pε(t, σc)− pε(t,−σc))− Ȧθ(t)−Aθ(t)− fε (t− ωθ) 1l(ωθ,s)(t)(6.14)

so that the expression (6.10) on gε rewrites

gε(s) =

∫ s

0

Qε(t)kθ(s− t)dt

=
1

1 + ωθ

∫ s

0

Qε(t)dt+

∫ s

0

Qε(t)kθ,1(s− t)dt,(6.15)

using the decomposition kθ = 1
1+ωθ

+k1,θ (see (5.16)) that was established in Lemma 5.4.

We now derive estimates on the two terms of the above expression, when s = θ
ε .

Step 3: Estimate of
∫ θ
ε

0
Qε. Introduce

η−(t, σ) = 1l[−σc−γ̇(θ)(s−t),−σc](σ)e
σ+σc
γ̇(θ)(6.16)

which satisfies, in D′([0, s)× R),

∂η−
∂σ

= −δ−σc(σ) + δ−σc−γ̇(θ)(s−t)(σ)et−s +
1

γ̇(θ)
1l[−σc−γ̇(θ)(s−t),−σc](σ)e

σ+σc
γ̇(θ)
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and

−∂η−
∂t
− γ̇(εt)

∂η−
∂σ

+ χη− = γ̇(εt)δ−σc(σ) + (γ̇(θ)− γ̇(εt))δ−σc−γ̇(θ)(s−t)(σ)et−s

+
γ̇(θ)− γ̇(εt)

γ̇(θ)
1l[−σc−γ̇(θ)(s−t),−σc](σ)e

σ+σc
γ̇(θ) .

For n,m ∈ N, take as a test function

η = ηn,m− (t, σ) = ρn ∗ 1l[−σc−γ̇(θ)(s−t),−σc](σ)e
σ+σc
γ̇(θ) ζm[0,s)(t)

in (6.12) and pass to the limit in n and thenm. Here and in the following, ζm[0,s) denotes

a C∞([0, s),R) function with compact support in [0, s), such that ζm[0,s) converges
pointwise to 1l[0,s).

We omit the details, the arguments being similar to those in (6.13). We obtain

(6.17)

∫ s

0

γ̇(εt)pε(t,−σc)dt+

∫ s

0

(γ̇(θ)− γ̇(εt)) pε (t,−σc − γ̇(θ) (s− t)) et−sdt

+

∫ s

0

∫ −σc
−σc−γ̇(θ)(s−t)

γ̇(θ)− γ̇(εt)

γ̇(θ)
pε(t, σ)e

σ+σc
γ̇(θ) dσdt

=

∫ −σc
−σc−γ̇(θ)s

p0(σ)e
σ+σc
γ̇(θ) dσ.

With changes of variable σ = −σc − γ̇(θ) (u− t) and σ = −σc − γ̇(θ)t in the last two
integrals, this rewrites∫ s

0

γ̇(εt)pε(t,−σc)dt+

∫ s

0

(γ̇(θ)− γ̇(εt)) pε (t,−σc − γ̇(θ) (s− t)) et−sdt

+

∫ s

0

∫ s

t

(γ̇(θ)− γ̇(εt)) pε(t,−σc − γ̇(θ)(u− t))et−ududt

= γ̇(θ)

∫ s

0

p0(−σc − γ̇(θ)t)e−tdt.(6.18)

Let us assume that s > 2ωθ and introduce

η+(t, σ) = −1l[σc−γ̇(θ)(s−t),−σc](σ)e
σ+σc
γ̇(θ) 1l(0,s−2ωθ)(t)

+ 1l[−σc,σc−γ̇(θ)(s−t)](σ)1l(s−2ωθ,s)(t)− 1l[−σc,σc](σ)(6.19)

which satisfies, in D′((0, s)× R),

∂η+
∂σ

= δσc − δσc−γ̇(θ)(s−t)(σ)e2
σc
γ̇(θ)

+t−s1l(0,s−2ωθ)(t)

− 1

γ̇(θ)
e
σ+σc
γ̇(θ) 1l[σc−γ̇(θ)(s−t),−σc](σ)1l(0,s−2ωθ)(t)− δσc−γ̇(θ)(s−t)(σ)1l(s−2ωθ,s)(t)

and

− ∂η+
∂t
− γ̇(εt)

∂η+
∂σ

+ χη+

= −γ̇(εt)δσc − (γ̇(θ)− γ̇(εt))δσc−γ̇(θ)(s−t)(σ)e2
σc
γ̇(θ)

+t−s1l(0,s−2ωθ)(t)

− γ̇(θ)− γ̇(εt)

γ̇(θ)
e
σ+σc
γ̇(θ) 1l[σc−γ̇(θ)(s−t),−σc](σ)1l(0,s−2ωθ)(t)

− (γ̇(θ)− γ̇(εt))δσc−γ̇(θ)(s−t)(σ)1l(s−2ωθ,s)(t).
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We again use a regularization

ηn,m+ = −ρn ∗ 1l[σc−γ̇(θ)(s−t),−σc](σ)e
σ+σc
γ̇(θ) ζm[0,s−2ωθ)(t)

+ ρn ∗ 1l[−σc,σc−γ̇(θ)(s−t)](σ) ζm(s−2ωθ,s)(t)

− ρn ∗ 1l[−σc,σc](σ) ζm[0,s)(t)

and pass to the limit in (6.12)

−
∫ s

0

γ̇(εt)pε(t, σc)dt−
∫ s−2ωθ

0

(γ̇(θ)− γ̇(εt)) pε (t, σc − γ̇(θ) (s− t)) e
2σc
γ̇(θ)

+t−sdt

−
∫ s−2ωθ

0

∫ s

t+2ωθ

(γ̇(θ)− γ̇(εt)) pε(t, σc − γ̇(θ)(u− t))e
2σc
γ̇(θ)

+t−ududt

−
∫ s

s−2ωθ
(γ̇(θ)− γ̇(εt)) pε (t, σc − γ̇(θ) (s− t)) dt

= −γ̇(θ)

∫ s

0

p0(σc − γ̇(θ)t)e
− 1
γ̇(θ)

∫ σc
σc−γ̇(θ)t

χ
dt−

∫ s− σc
γ̇(θ)

0

fε.(6.20)

In addition, from its definition (6.8), we know that Aθ satisfies (see (4.5))

∫ s

0

Ȧθ +Aθ = −γ̇(θ)

∫ s

0

p0(−σc − γ̇(θ)t)e−tdt

+ γ̇(θ)

∫ s

0

p0(σc − γ̇(θ)t)e
− 1
γ̇(θ)

∫ σc
σc−γ̇(θ)t

χ
dt.(6.21)

Summing up expressions (6.18), (6.20) and (6.21), we obtain

∫ s

0

Qε =

∫ s

0

(γ̇(θ)− γ̇(εt)) pε (t,−σc − γ̇(θ) (s− t)) et−sdt

+

∫ s

0

∫ s

t

(γ̇(θ)− γ̇(εt)) pε(t,−σc − γ̇(θ)(u− t))et−ududt

−
∫ s−2ωθ

0

∫ s

t+2ωθ

(γ̇(θ)− γ̇(εt)) pε(t, σc − γ̇(θ)(v − t))e2ωθ+t−vdvdt

−
∫ s−2ωθ

0

(γ̇(θ)− γ̇(εt)) pε (t, σc − γ̇(θ) (s− t)) e2ωθ+t−sdt

−
∫ s

s−2ωθ
(γ̇(θ)− γ̇(εt)) pε (t, σc − γ̇(θ) (s− t)) dt.

Taking s = θ
ε and summing up the second and the third term (with the change of
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variable u = v − 2ωθ in the third term), this rewrites∫ θ
ε

0

Qε =

∫ θ
ε

0

(γ̇(θ)− γ̇(εt)) pε

(
t,−σc − γ̇(θ)

(
θ

ε
− t
))

et−
θ
ε dt

+

∫ θ
ε

θ
ε−2ωθ

∫ θ
ε

t

(γ̇(θ)− γ̇(εt)) pε(t,−σc − γ̇(θ)(u− t))et−ududt

+

∫ θ
ε−2ωθ

0

∫ θ
ε

θ
ε−2ωθ

(γ̇(θ)− γ̇(εt)) pε(t,−σc − γ̇(θ)(u− t))et−ududt

−
∫ θ

ε−2ωθ

0

(γ̇(θ)− γ̇(εt)) pε

(
t, σc − γ̇(θ)

(
θ

ε
− t
))

e2ωθ+t−
θ
ε dt

−
∫ θ

ε

θ
ε−2ωθ

(γ̇(θ)− γ̇(εt)) pε

(
t, σc − γ̇(θ)

(
θ

ε
− t
))

dt.(6.22)

Using the Lipschitz property of γ̇ and L∞-bound (4.3) on pε, this implies∣∣∣∣∣
∫ θ

ε

0

Qε

∣∣∣∣∣ ≤ C∞Lγ̇
∫ θ

ε

0

(θ − εt)et− θε dt

+ C∞Lγ̇

∫ θ
ε

θ
ε−2ωθ

∫ θ
ε

t

(θ − εt)et−ududt

+ C∞Lγ̇

∫ θ
ε−2ωθ

0

∫ θ
ε

θ
ε−2ωθ

(θ − εt)et−ududt

+ C∞Lγ̇

∫ θ
ε−2ωθ

0

(θ − εt)e2ωθ+t− θε dt

+ C∞Lγ̇

∫ θ
ε

θ
ε−2ωθ

(θ − εt)dt.

For a constant α < 0, we have∫ θ
ε

0

(θ − εv)eα( θε−v)dv =
ε

α2

∫ −αθε
0

u e−udu

<
ε

α2

∫ ∞
0

u e−udu.(6.23)

Using estimate (6.23) or variants, we find∣∣∣∣∣
∫ θ

ε

0

Qε

∣∣∣∣∣ ≤ C∞Lγ̇ε
(∫ ∞

0

u e−udu+ 4ω2
θ + (1 + e2ωθ )

∫ ∞
0

u e−udu

+ e2ωθ
∫ ∞
0

u e−udu+ 2ω2
θ

)
≤ C∞Lγ̇ε

(
2 + 6ω2

θ + 2e2ωθ
)
.

Since ωθ <
σc
mγ̇

, we obtain ∣∣∣∣∣
∫ θ

ε

0

Qε

∣∣∣∣∣ ≤ KC∞Lγ̇ε,(6.24)
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with K a constant that is independent from θ and ε. Throughout the rest of the proof
below, we will likewise denote by K such a constant, whose precise value may change
from one occurrence to another.

Step 4: Estimate of
∫ θ
ε

0
Qε(t)kθ,1

(
θ
ε − t

)
dt. Inserting expression (6.8) ofAθ (see (6.21)

above for a similar computation), Qε defined by (6.14) satisfies∫ θ
ε

0

Qε(t)kθ,1

(
θ

ε
− t
)
dt =

∫ θ
ε

0

γ̇(εt)(pε(t, σc)− pε(t,−σc))kθ,1
(
θ

ε
− t
)
dt

+ γ̇(θ)

∫ θ
ε

0

(
p0(−σc − γ̇(θ)t)e−t − p0(σc − γ̇(θ)t)e

− 1
γ̇(θ)

∫ σc
σc−γ̇(θ)t

χ
)
kθ,1

(
θ

ε
− t
)
dt

−
∫ θ

ε

ωθ

fε(t− ωθ)kθ,1
(
θ

ε
− t
)
dt.

(6.25)

For further use, notice that the integral in the second line above can be rewritten as:∫ θ
ε

0

(
p0(−σc − γ̇(θ)t)e−t − p0(σc − γ̇(θ)t)e

− 1
γ̇(θ)

∫ σc
σc−γ̇(θ)t

χ
)
kθ,1

(
θ

ε
− t
)
dt

=

∫ −σc
−σc−γ̇(θ) θε

p0(σ)e
σ+σc
γ̇(θ) kθ,1

(
θ

ε
+
σ + σc
γ̇(θ)

)
dt

−
∫ σc

σc−γ̇(θ) θε
p0(σ)e−

1
γ̇(θ)

∫ σc
σ

χkθ,1

(
θ

ε
+
σ − σc
γ̇(θ)

)
dt.(6.26)

In order to rewrite the first term of the right-hand side, we use again the func-
tions η− and η+ respectively defined by (6.16) and (6.19). Using a regularization of

η−(t, σ)kθ,1

(
θ
ε − t+ σ+σc

γ̇(θ)

)
as test function in (6.12) (with s = θ/ε) and then passing

to the limit, we obtain∫ θ
ε

0

∫
R

(
−∂η−

∂t
− γ̇(εt)

∂η−
∂σ

+ χη−

)
(t, σ)kθ,1

(
θ

ε
− t+

σ + σc
γ̇(θ)

)
pε(t, σ)dtdσ

+

∫ θ
ε

0

∫
R

γ̇(θ)− γ̇(εt)

γ̇(θ)
η−(t, σ)k̇θ,1

(
θ

ε
− t+

σ + σc
γ̇(θ)

)
pε(t, σ)dtdσ

=

∫
R
p0(σ)η−(0, σ)kθ,1

(
θ

ε
+
σ + σc
γ̇(θ)

)
dσ.

This rewrites (using similar computations as in (6.17) above)∫ θ
ε

0

γ̇(εt)pε(t,−σc)kθ,1
(
θ

ε
− t
)
dt

+kθ,1(0)

∫ θ
ε

0

(γ̇(θ)− γ̇(εt)) pε

(
t,−σc − γ̇(θ)

(
θ

ε
− t
))

et−
θ
ε dt

+

∫ θ
ε

0

∫ −σc
−σc−γ̇(θ)( θε−t)

γ̇(θ)− γ̇(εt)

γ̇(θ)
pε(t, σ)e

σ+σc
γ̇(θ) (kθ,1 + k̇θ,1)

(
θ

ε
− t+

σ + σc
γ̇(θ)

)
dσdt

=

∫ −σc
−σc−γ̇(θ) θε

p0(σ)e
σ+σc
γ̇(θ) kθ,1

(
θ

ε
+
σ + σc
γ̇(θ)

)
dσ.(6.27)
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Similarly, using a regularization of η+(t, σ)kθ,1

(
θ
ε − t+ σ−σc

γ̇(θ)

)
as test function in

(6.12), we obtain

∫ θ
ε

0

∫
R

(
−∂η+
∂t
− γ̇(εt)

∂η+
∂σ

+ χη+

)
(t, σ)kθ,1

(
θ

ε
− t+

σ − σc
γ̇(θ)

)
pε(t, σ)dtdσ

+

∫ θ
ε

0

∫
R

γ̇(θ)− γ̇(εt)

γ̇(θ)
η+(t, σ)k̇θ,1

(
θ

ε
− t+

σ − σc
γ̇(θ)

)
pε(t, σ)dtdσ

=

∫
R
p0(σ)η+(0, σ)kθ,1

(
θ

ε
+
σ − σc
γ̇(θ)

)
dσ +

∫ θ
ε

0

fε(t)η+(t, 0)kθ,1

(
θ

ε
− t− σc

γ̇(θ)

)
dt,

so that (using similar computations as in (6.20) above)

−
∫ θ

ε

0

γ̇(εt)pε(t, σc)kθ,1

(
θ

ε
− t
)
dt

−kθ,1(0)

∫ θ
ε−2ωθ

0

(γ̇(θ)− γ̇(εt)) pε

(
t, σc − γ̇(θ)

(
θ

ε
− t
))

e2ωθ+t−
θ
ε dt

−kθ,1(0)

∫ θ
ε

θ
ε−2ωθ

(γ̇(θ)− γ̇(εt)) pε

(
t, σc − γ̇(θ)

(
θ

ε
− t
))

dt

−
∫ θ

ε−2ωθ

0

∫ −σc
σc−γ̇(θ)( θε−t)

γ̇(θ)− γ̇(εt)

γ̇(θ)
pε(t, σ)e

σ+σc
γ̇(θ) (kθ,1 + k̇θ,1)

(
θ

ε
− t+

σ − σc
γ̇(θ)

)
dσdt

−
∫ θ

ε

θ
ε−2ωθ

∫ −σc
σc−γ̇(θ)( θε−t)

γ̇(θ)− γ̇(εt)

γ̇(θ)
pε(t, σ)k̇θ,1

(
θ

ε
− t+

σ − σc
γ̇(θ)

)
dσdt

−
∫ θ

ε

0

∫ σc

−σc

γ̇(θ)− γ̇(εt)

γ̇(θ)
pε(t, σ)k̇θ,1

(
θ

ε
− t+

σ − σc
γ̇(θ)

)
dσdt

= −
∫ −σc
σc−γ̇(θ) θε

p0(σ)e
σ+σc
γ̇(θ) kθ,1

(
θ

ε
+
σ − σc
γ̇(θ)

)
dσ −

∫ σc

−σc
p0(σ)kθ,1

(
θ

ε
+
σ − σc
γ̇(θ)

)
dσ

−
∫ θ

ε−ωθ

0

fε(t)kθ,1

(
θ

ε
− t− ωθ

)
dt.(6.28)

We now perform the linear combinations: (6.25) - ( (6.27) + (6.28) ). The last two
term of the right-hand side of (6.25) cancel out with the right-hand sides of (6.27)
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and (6.28) (using in particular (6.26)) so that∫ θ
ε

0

Qε(t)kθ,1

(
θ

ε
− t
)
dt = kθ,1(0)

∫ θ
ε

0

(γ̇(θ)− γ̇(εt)) pε

(
t,−σc − γ̇(θ)

(
θ

ε
− t
))

et−
θ
ε dt

+

∫ θ
ε

0

∫ −σc
−σc−γ̇(θ)( θε−t)

γ̇(θ)− γ̇(εt)

γ̇(θ)
pε(t, σ)e

σ+σc
γ̇(θ) (kθ,1 + k̇θ,1)

(
θ

ε
− t+

σ + σc
γ̇(θ)

)
dσdt

−kθ,1(0)

∫ θ
ε−2ωθ

0

(γ̇(θ)− γ̇(εt)) pε

(
t, σc − γ̇(θ)

(
θ

ε
− t
))

e2ωθ+t−
θ
ε dt

−kθ,1(0)

∫ θ
ε

θ
ε−2ωθ

(γ̇(θ)− γ̇(εt)) pε

(
t, σc − γ̇(θ)

(
θ

ε
− t
))

dt

−
∫ θ

ε−2ωθ

0

∫ −σc
σc−γ̇(θ)( θε−t)

γ̇(θ)− γ̇(εt)

γ̇(θ)
pε(t, σ)e

σ+σc
γ̇(θ) (kθ,1 + k̇θ,1)

(
θ

ε
− t+

σ − σc
γ̇(θ)

)
dσdt

−
∫ θ

ε

θ
ε−2ωθ

∫ −σc
σc−γ̇(θ)( θε−t)

γ̇(θ)− γ̇(εt)

γ̇(θ)
pε(t, σ)k̇θ,1

(
θ

ε
− t+

σ − σc
γ̇(θ)

)
dσdt

−
∫ θ

ε

0

∫ σc

−σc

γ̇(θ)− γ̇(εt)

γ̇(θ)
pε(t, σ)k̇θ,1

(
θ

ε
− t+

σ − σc
γ̇(θ)

)
dσdt.

Using Lemma 5.4, kθ,1 satisfies k̇θ,1(t)+kθ,1(t)−kθ,1(t−ωθ) = 0 (this is a consequence
of (5.11) and (5.16)) so that (using (5.17)):∣∣∣k̇θ,1(t)

∣∣∣ ≤ C0

(
1 + e

b σcmγ̇

)
e−bt.(6.29)

Using the Lipschitz property of γ̇, the L∞-bound (4.3) of pε and estimates (5.17) and
(6.29) of kθ,1 and k̇θ,1, we obtain∣∣∣∣∣

∫ θ
ε

0

Qε(t)kθ,1

(
θ

ε
− t
)
dt

∣∣∣∣∣
≤ C0C∞Lγ̇

∫ θ
ε

0

(θ − εt)et− θε dt

+ C0

(
2 + e

b σcmγ̇

)
C∞Lγ̇

∫ θ
ε

0

(θ − εt)eb(t−
θ
ε ) − et−

θ
ε

1− b
dt

+ C0C∞Lγ̇

∫ θ
ε−2ωθ

0

(θ − εt)e2ωθ+t− θε dt

+ C0C∞Lγ̇

∫ θ
ε

θ
ε−2ωθ

(θ − εt)dt

+ C0

(
2 + e

b σcmγ̇

)
C∞Lγ̇

∫ θ
ε−2ωθ

0

(θ − εt)eb(t−
θ
ε+2ωθ) − et−

θ
ε+2ωθ

1− b
dt

+ C0

(
1 + e

b σcmγ̇

)
C∞Lγ̇

∫ θ
ε

θ
ε−2ωθ

(θ − εt)e−2ωθb + eb(t−
θ
ε )

b
dt

+ C0

(
1 + e

b σcmγ̇

)
C∞Lγ̇

∫ θ
ε

0

(θ − εt)eb(t−
θ
ε ) 1 + e−2ωθb

b
dt.
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Using the estimate (6.23) or variants and the bounds (6.7) on ωθ, one concludes∣∣∣∣∣
∫ θ

ε

0

Qε(t)kθ,1

(
θ

ε
− t
)
dt

∣∣∣∣∣ ≤ KC∞C0Lγ̇ε.(6.30)

Step 5: Estimate of gε

(
θ

ε

)
. Using the decomposition (6.15) and estimates (6.24)

and (6.30), we find ∣∣∣∣gε(θε
)∣∣∣∣ ≤ KC∞(1 + C0)Lγ̇ε.

Moreover, the estimate (5.2) established in Theorem 5.1 yields, using the bounds (6.7)
on ωθ ∣∣∣∣φθ (θε

)
−
∫
χp∞(θ, ·)

∣∣∣∣ ≤ C̃3

(
e−b

θ
ε + e−

θ
ε

)
where C̃3 > 0 is independent from ε and θ. By the definition (6.9) of gε, we have
fε −

∫
χp∞(θ, ·) = gε + (φθ −

∫
χp∞(θ, ·)) so that∣∣∣∣fε(θε

)
−
∫
χp∞(θ, ·)

∣∣∣∣ ≤ C̃3

(
e−b

θ
ε + e−

θ
ε

)
+KC∞(1 + C0)Lγ̇ε

≤ C3

(
e−b

θ
ε + e−

θ
ε + ε

)
where C3 > 0 is independent from ε and θ. This concludes the proof of (6.4).

Step 6: Estimate of pε

(
θ

ε
, σ

)
− p∞(θ, σ). Recall that the scalars θ > 0, ε > 0

are fixed and satisfy θ
ε > 2 σc

mγ̇
. For all σ ∈ R, denote

uε,θ,σ = γ−1 (γ(θ)− εσ)

where γ(t) =
∫ t
0
γ̇(s) ds. The expression (3.4) of p, that was established in Theo-

rem 3.1, reads, for almost all σ ∈ R such that σ ≤ γ
(
θ
ε

)
,

pε

(
θ

ε
, σ

)
= p0

(
σ − γ(θ)

ε

)
e−

∫ θ
ε

0 χ(σ− γ(θ)ε +
γ(εv)
ε )dv

+
fε
(uε,θ,σ

ε

)
γ̇(uε,θ,σ)

×


0 if σ < 0

1 if 0 < σ ≤ σc
e−

θ
ε+

1
ε γ
−1(γ(θ)−εσ+εσc) if σc < σ.

(6.31)

Note that the condition σ ≤ γ
(
θ
ε

)
is not restrictive because we are interested in the

limit ε→ 0 for a fixed σ. The rest of the proof depends on the value of σ.
Let us start with the case σ < 0. We have∣∣∣∣pε(θε , σ

)∣∣∣∣ ≤ ‖p0‖L∞ e−
∫ θ
ε

0 χ(σ− γ(θ)ε +
γ(εv)
ε )dv.

We now apply Lemma 6.2 with t = θ
ε >

2σc
mγ̇

and γε(t) = 1
εγ(εt) and obtain∣∣∣∣pε(θε , σ

)∣∣∣∣ ≤ ‖p0‖L∞ e
2σc
mγ̇
− θε ≤ Ke−

θ
ε .(6.32)
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Notice that (6.32) actually holds for all σ ∈ R (this will be used below). From the
expression (2.3) of p∞, p∞(θ, σ) = 0 when σ < 0. This gives (6.5) for almost all
σ < 0.

Let us now consider the case σ ∈ (0, σc]. Let us introduce the notation f∞(θ) =∫
χ(σ)p∞(θ, σ) dσ. We have, for all positive σ,

∣∣∣∣∣fε
(uε,θ,σ

ε

)
γ̇(uε,θ,σ)

− 1

σc + γ̇(θ)

∣∣∣∣∣
≤ 1

mγ̇

∣∣∣fε (uε,θ,σ
ε

)
− f∞(uε,θ,σ)

∣∣∣+
1

mγ̇
|f∞(uε,θ,σ)− f∞(θ)|

+

∣∣∣∣ f∞(θ)

γ̇(uε,θ,σ)
− 1

σc + γ̇(θ)

∣∣∣∣
≤ K(C3 + 1)

(
e−b

θ
ε + e−

θ
ε + ε

)
,(6.33)

using the estimate (6.4) on fε
( ·
ε

)
− f∞, the Lipschitz property and the boundedness

of γ̇ and the expression (2.3) which gives f∞(θ) = γ̇(θ)
σc+γ̇(θ)

. Here, we also used the

fact that uε,θ,σ ≥ θ − εσ
mγ̇

, which is a consequence of the Lipschitz property of γ−1:

|uε,θ,σ − θ| ≤ εσ
mγ̇

. For almost all σ ∈ (0, σc], we deduce (using again (6.32))

∣∣∣∣pε(θε , σ
)
− 1

σc + γ̇(θ)

∣∣∣∣
≤
∣∣∣∣p0(σ − γ(θ)

ε

)
e−

∫ θ
ε

0 χ(σ− γ(θ)ε +
γ(εv)
ε )dv

∣∣∣∣+

∣∣∣∣∣fε
(uε,θ,σ

ε

)
γ̇(uε,θ,σ)

− 1

σc + γ̇(θ)

∣∣∣∣∣
≤ Ke−

θ
ε +K(C3 + 1)

(
e−b

θ
ε + e−

θ
ε + ε

)
.

Moreover, we have, from (2.3), p∞(θ, σ) = 1
σc+γ̇(θ)

for almost all σ ∈ (0, σc]. This

proves (6.5) in this region of σ.

We now eventually consider the case σ > σc. Applying the Taylor-Lagrange
theorem on γ−1 at γ(θ), we have (using the fact that γ̇ is bounded from above)

∣∣∣∣γ−1(γ(θ)− ε(σ − σc))− θ
−ε(σ − σc)

− 1

γ̇(θ)

∣∣∣∣ ≤ Kε(σ − σc).
Using that the function x 7→ e−x is 1-Lipschitz on [0,∞), this implies

∣∣∣e− θε+ 1
ε γ
−1(γ(θ)−εσ+εσc) − e−

σ−σc
γ̇(θ)

∣∣∣ ≤ Kε(σ − σc)2.
For almost all σ > σc, p∞ reads (see (2.3))

p∞(θ, σ) =
1

σc + γ̇(θ)
e
σc−σ
γ̇(θ)
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and thus, we have (using (6.32) and (6.33))∣∣∣∣pε(θε , σ
)
− p∞(θ, σ)

∣∣∣∣
≤
∣∣∣∣p0(σ − γ(θ)

ε

)
e−

∫ θ
ε

0 χ(σ− γ(θ)ε +
γ(εv)
ε )dv

∣∣∣∣
+

∣∣∣∣∣fε
(uε,θ,σ

ε

)
γ̇(uε,θ,σ)

− 1

σc + γ̇(θ)

∣∣∣∣∣ e− θε+ 1
ε γ
−1(γ(θ)−εσ+εσc)

+
1

σc + γ̇(θ)

∣∣∣e− θε+ 1
ε γ
−1(γ(θ)−εσ+εσc) − e−

σ−σc
γ̇(θ)

∣∣∣
≤ Ke−

θ
ε +K(C3 + 1)

(
e−b

θ
ε + e−

θ
ε + ε

)
+Kε(σ − σc)2.

This proves (6.5) and ends the proof.

7. Macroscopic limit. The purpose of this section is to obtain a macroscopic
limit for the equation we have been studying.

For ε > 0 presumably small, we first introduce the notation ũ(θ) = u

(
θ

ε

)
, for

any real-valued function u of the real variable θ/ε. The small parameter ε encodes
the discrepancy between the typical time of variation of the macroscopic shear rate
γ̇(t) and the typical mesoscopic time t with which the solution to (6.2) varies. The
parameter ε will therefore be the small parameter on which our macroscopic limit
is performed. To obtain a macroscopic limit of our equation (6.2), we will look at
a specific macroscopic time, denoted by θ, related to the mesoscopic time t by θ =
ε t. Letting ε vanish, we will obtain the corresponding macroscopic behavior of our
mesoscopic quantities. In this latter process, we will of course use the results of
the previous section, since formally, given a macroscopic time θ, the corresponding
mesoscopic time t = θ/ε is a long time limit.

We begin by formally multiplying (6.2) respectively by σ and χ(σ) and integrating

in σ. We next evaluate at the time
θ

ε
the two equations obtained. This gives the

following system of equations on τ̃ε and f̃ε, the quantities associated with pε solution
to (6.2),

(7.1a)

(7.1b)


ε
dτ̃ε
dθ

(θ) = −
∫
χ(σ)σp̃ε(θ, σ)dσ + γ̇(θ),

ε
df̃ε
dθ

(θ) = −f̃ε(θ) + γ̇(θ)(p̃ε(θ, σc)− p̃ε(θ,−σc)).

The difficulty is that this system is not closed in the couple of unknown functions (τ̃ε, f̃ε)
since p̃ε still appears. We next intend to “eliminate” p̃ε from this system, and thereby
obtain a system of ordinary differential equations, the solution of which is an approx-
imation, for ε sufficiently small, of τ̃ε and f̃ε. There are indeed many options to do
so. We present two sets of equations which we can derive and that, in a sense made
precise below, are equivalent to system (7.1). The precise results are contained in two
theorems we now successively state and prove, namely Theorem 7.1 and Theorem 7.2.

Theorem 7.1. For ε > 0, consider τ∗ε the solution to the following differential
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equation in “macroscopic” time θ :

ε
dτ∗ε
dθ

= −τ∗ε +
σ2
c

2(σc + γ̇(θ))
+ γ̇(θ)(7.2)

supplied with any initial condition τ∗(0) independent of ε. Under the assumptions of
Theorem 6.1, consider the function pε solution to (6.2). Then, there exists a constant
C, independent from ε and θ provided θ

ε > 2 σc
mγ̇

(with mγ̇ the lower bound of γ̇

in (6.1)), such that ∣∣∣∣τε(θε
)
− τ∗ε (θ)

∣∣∣∣ ≤ C (1

θ
+ 1

)
ε,(7.3)

where (in accordance with (1.5)) τε(t) =
∫
σpε(t, σ)dσ denotes the stress associated to

pε solution to (6.2).
Remark 5. The above result holds whatever the initial condition τ∗(0) for the

equation (7.2). Indeed, we are only considering macroscopic times such that θ
ε > 2 σc

mγ̇

and, in the limit ε → 0, the boundary layer in time around θ = 0 does not affect the
result.

Proof. We first give the arguments to derive system (7.1). In the proof of Theorem
5.1, we established equation (6.11), which reads

ḟε(t) = −fε(t) + γ̇(εt) (pε(t, σc)− pε(t,−σc)) .

Denoting ρ a function of D((0, s)), ρn a mollifier on R and χn = ρn ∗ χ, we used
the test function ηn(t, σ) = χn(σ)ρ(t) in the weak form (6.12) of equation (6.2) and
then passed to the limit n→∞. We now establish an equation on τε with the same
method.

Denote I : σ 7→ σ, In = ρn ∗ (I1l[−n,n]) and use ηn = (t, σ) = In(σ)ρ(t) as a test
function in (6.12):

−
∫ s

0

ρ̇(t)

∫
Inpε(t, ·)dt−

∫ s

0

ρ(t)γ̇(εt)

∫
İnpε(t, ·)dt+

∫ s

0

ρ(t)

∫
χInpε(t, ·)dt

= In(0)

∫ s

0

fε(t)ρ(t)dt.

We pass to the limit n → ∞, using that the function t 7→ (σ 7→ pε(t, σ)) belongs to
C([0, s], L1) (see Theorem 3.1),

∫
pε(t, ·) = 1, the dominated convergence theorem for

the terms in the left-hand side, and that In(0) → I(0) = 0 for the right-hand side.
We obtain, for all s > 0,

−
∫ s

0

ρ̇(t)τε(t)dt−
∫ s

0

ρ(t)γ̇(εt)dt+

∫ s

0

ρ(t)

∫
χIpε(t, ·)dt = 0,

so that

τ̇ε(t) = −
∫
χ(σ)σpε(t, σ)dσ + γ̇(εt).(7.4)

Changing the variable t in θ
ε in equations (6.11) and (7.4), we obtain system (7.1).

Now that we have established system (7.1), we rewrite (7.1a) in the form

ε
dτ̃ε
dθ

= −τ̃ε +

∫ σc

−σc
σp̃ε(θ, σ)dσ + γ̇(θ),
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using the definition of χ. Moreover, we use the expression (2.3) of p∞ to rewrite (7.2)
as follows

ε
dτ∗ε
dθ

= −τ∗ε +

∫ σc

−σc
σp∞(θ, σ)dσ + γ̇(θ).

Subtracting the above two equations yields

d (τ̃ε − τ∗ε )

dθ
+
τ̃ε − τ∗ε

ε
=

∫ σc

−σc
σ
p̃ε − p∞

ε
dσ.

Denote ς = 2 σc
mγ̇

so that θ
ε > ς. We next apply the Duhamel formula and find

(τ̃ε − τ∗ε ) (θ) = (τ̃ε − τ∗ε ) (ςε)eς−
θ
ε +

∫ θ

ςε

e
u−θ
ε

∫ σc

−σc
σ
p̃ε − p∞

ε
dσdu.(7.5)

Using the estimate (4.7) on τε, the bounds (6.1) on γ̇, we find

|τ̃ε − τ∗ε | (ςε) ≤ (1 +Mγ̇ς)Cτ +

(
|τ0| e−ς +

∫ ς

0

eu−ς
(

σ2
c

2(σc +mγ̇)
+Mγ̇

)
du

)
≤ K,(7.6)

where we recall that K denotes a constant that is independent from θ and ε and
whose precise value may change from one occurrence to another. Inserting the above
estimate and the estimate (6.5) on |p̃ε − p∞| in (7.5) yields

|τ̃ε − τ∗ε | (θ) ≤ K

[
eς−

θ
ε +

∫ θ

0

e
u−θ
ε

(
e−b

u
ε

ε
+

e−
u
ε

ε
+ 1

)
du

]
(7.7)

≤ K
(

e−
θ
ε +

1

1− b

(
e−b

θ
ε − e−

θ
ε

)
+
θ

ε
e−

θ
ε + ε

)
≤ K

(
b

|1− b|
e−1

θ
+

1

|1− b|
e−1

bθ
+

4e−2

θ
+ 1

)
ε,

using that the functions x 7→ xe−x and x 7→ x2e−x are respectively bounded by e−1

and 4e−2 on R+ in order to derive the last line. This concludes the proof.

Theorem 7.2. For ε > 0, consider (τ∗∗ε , f∗∗ε ) satisfying the following system of
equations in macroscopic time θ:

(7.8a)

(7.8b)


ε
dτ∗∗ε
dθ

(θ) = −κ(θ)f∗∗ε (θ)τ∗∗ε (θ) + γ̇(θ),

ε
df∗∗ε
dθ

(θ) = −f∗∗ε (θ) +
γ̇(θ)

σc + γ̇(θ)
,

where we have introduced the notation

κ(θ) =
2

1 + 1

(1+ σc
γ̇(θ) )

2

,(7.9)

and where the equations are supplied with any couple of scalars (independent of ε)
(τ∗∗(0), f∗∗(0)) as initial conditions. Consider θ > 0 such that θ

ε > 2 σc
mγ̇

. Under the
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assumptions of Theorem 6.1, consider pε the solution of (6.2). Then, there exists a
constant C independent from ε and θ such that,∣∣∣∣τε(θε

)
− τ∗∗ε (θ)

∣∣∣∣+

∣∣∣∣fε(θε
)
− f∗∗ε (θ)

∣∣∣∣ ≤ C (1

θ
+ 1

)
ε.(7.10)

Remark 6. As in Theorem 7.1, the above result holds whatever the set of initial
conditions (τ∗∗(0), f∗∗(0)) for the system of differential equations (7.8).

Proof. The proof falls in three steps. We first study fε, then an auxiliary function
βε and finally τε.

Step 1: Approximation of f∗∗ε . Applying the Duhamel formula to (7.8b) yields

f∗∗ε (θ) = f0e−
θ
ε +

1

ε

∫ θ

0

γ̇(v)

σc + γ̇(v)
e
v−θ
ε dv(7.11)

= f0e−
θ
ε +

γ̇(θ)

σc + γ̇(θ)
− γ̇(0)

σc + γ̇(0)
e−

θ
ε −

∫ θ

0

σcγ̈(v)

(σc + γ̇(v))
2 e

v−θ
ε dv.

Using the Lipschitz property of γ̇ and denoting by f∞(θ) =
∫
χ(σ)p∞(θ, σ)dσ =

γ̇(θ)
σc+γ̇(θ)

(following (1.4) and (2.3)), we easily obtain

|f∗∗ε − f∞| (θ) ≤ K
(

e−
θ
ε + ε

)
.(7.12)

Collecting the above equation and the estimate (6.4) established in Theorem 6.1, we
obtain ∣∣∣f̃ε − f∗∗ε ∣∣∣ (θ) ≤ K (e−b

θ
ε + e−

θ
ε + ε

)
(7.13)

≤ K
(

e−1

bθ
+

e−1

θ
+ 1

)
ε,

using that the function x 7→ xe−x is bounded by e−1 on R+.
Step 2: Introduction of the auxiliary function βε. We now introduce

β(t) =

∫
χ(σ)σp(t, σ)dσ,(7.14)

defined for a density probability p such that σp ∈ L1. Denote ρ a function of D((0, s)),
ρn a mollifier on R and I : σ 7→ σ. Using ηn(t, σ) = (Iχ1l[−n,n]) ∗ ρn(σ)ρ(t) as test
function in (6.12) and passing to the limit with the same arguments as in (6.13), we
obtain

ε
dβ̃ε
dθ

(θ) + β̃ε(θ) = γ̇(θ)
(
f̃ε(θ) + σc (p̃ε(θ, σc) + p̃ε(θ,−σc))

)
.

Consider β∗ε the solution of the ordinary differential equation

ε
dβ∗ε
dθ

+ β∗ε = γ̇(θ)

(
f∗∗ε +

σc
σc + γ̇(θ)

)
(7.15)

supplied with a scalar β0 as initial condition. Subtracting the above two equations
and using that (see (2.3)) p∞(θ, σc) = 1

σc+γ̇(θ)
and p∞(θ,−σc) = 0, we obtain

d(β̃ε − β∗ε )

dθ
+
β̃ε − β∗ε

ε
= Gε(θ)(7.16)
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with

Gε(θ) = γ̇(θ)
f̃ε − f∗∗ε

ε
(θ) + γ̇(θ)σc

p̃ε − p∞
ε

(θ, σc) + γ̇(θ)σc
p̃ε − p∞

ε
(θ,−σc).

Recall that ς = 2 σc
mγ̇

and θ > ςε. Applying the Duhamel formula yields,(
β̃ε − β∗ε

)
(θ) =

(
β̃ε − β∗ε

)
(ςε)eς−

θ
ε +

∫ θ

ςε

e
u−θ
ε Gε(u)du.(7.17)

Using the upper bound (4.7), β̃ε satisfies∣∣∣β̃ε(ςε)∣∣∣ ≤ ∫ |σ|χpε(ς, ·) ≤ ∫ |σ| pε(ς, ·) ≤ (1 +Mγ̇ς)Cτ ≤ K.

Moreover, β∗ε solution of (7.15) satisfies

|β∗ε (ςε)| ≤ |β0| e−ς +

∫ ς

0

eu−ς
((
|f0|+

Mγ̇

σc +mγ̇

)
+

σc
σc +mγ̇

)
du

≤ K.

Using (7.13), the boundedness of γ̇ and the estimate (6.5) on p̃ε−p∞ , the right-hand
side Gε(θ) of (7.16) satisfies,

Gε(θ) ≤ K

(
e−b

θ
ε

ε
+

e−
θ
ε

ε
+ 1

)
.

Inserting the three above inequalities in (7.17) implies∣∣∣β̃ε − β∗ε ∣∣∣ (θ) ≤ K (e−b
θ
ε + e−

θ
ε + ε

)
.(7.18)

Additionally, applying the Duhamel formula to (7.15) and using the explicit formula

f∞(θ) = γ̇(θ)
σc+γ̇(θ)

yield

β∗ε (θ)−
∫ θ

0

γ̇(u)

ε
e
u−θ
ε du = β0e−

θ
ε +

∫ θ

0

γ̇(u)

ε
(f∗∗ε (u)− f∞) e

u−θ
ε du.

Using the Lipschitz property of γ̇ and the estimate (7.12), we obtain

|β∗ε − γ̇| (θ) ≤ K
(

e−
θ
ε + ε

)
.(7.19)

Combining (7.18) and (7.19) leads to∣∣∣β̃ε − γ̇∣∣∣ (θ) ≤ K (e−b
θ
ε + e−

θ
ε + ε

)
(7.20)

and eventually,

|τ̃ε − τ∞| (θ) ≤
∣∣∣∣∫ χσ (p̃ε − p∞)

∣∣∣∣+

∣∣∣∣∫ (1− χ)σ (p̃ε − p∞) dσ

∣∣∣∣
≤ K

(
e−b

θ
ε + e−

θ
ε + ε

)
,(7.21)

respectively using (7.20) and (6.5) to estimate the two terms of the right-hand side.
Here we have used the notation τ∞(θ) =

∫
σp∞(θ, σ) dσ, and the fact that

∫
χ(σ)σp∞(θ, σ)dσ =

γ̇(θ).
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Step 3: Approximation of τε. We now turn to (τ̃ε − τ∗∗ε ). Combining (7.1a)
and (7.8a) yields

ε
d (τ̃ε − τ∗∗ε )

dθ
= +κf∗∗ε τ∗∗ε −

∫
χσp̃ε

= −κf∞ (τ̃ε − τ∗∗ε )− κτ∗∗ε (f∞ − f∗∗ε )

− κf∞ (τ∞ − τ̃ε)−
(
−κf∞τ∞ +

∫
χσp∞

)
−
∫
χσ(p̃ε − p∞).

From the formula (2.3) on p∞, we compute
∫
χσp∞(θ, ·) = γ̇(θ), f∞(θ) = γ̇(θ)

σc+γ̇(θ)
,

τ∞(θ) = 1
2

(
γ̇(θ)2

σc+γ̇(θ)
+ σc + γ̇(θ)

)
so that the term −κf∞τ∞ +

∫
χσp∞ cancels out

because of the definition (7.9) of κ. We therefore obtain

d (τ̃ε − τ∗∗ε )

dθ
+
κf∞
ε

(τ̃ε − τ∗∗ε ) = Hε(θ)(7.22)

with

Hε(θ) = −κτ∗∗ε
f∞ − f∗∗ε

ε
(θ)− κf∞

τ∞ − τ̃ε
ε

(θ)−
∫
χ(σ)σ

p̃ε − p∞
ε

(θ, σ)dσ.

We have κ ≥ 1 (see (7.9)) so that

κf∞ ≥
1

1 + σc
mγ̇

.(7.23)

The Duhamel formula then implies

|τ̃ε − τ∗∗ε | (θ) ≤ |τ̃ε − τ∗∗ε | (ςε)e
1

1+
σc
mγ̇

(ς− θε )
+

∫ θ

ςε

e

1
1+

σc
mγ̇

u−θ
ε

|Hε(u)| du(7.24)

Using the upper bound (4.7), τ̃ε satisfies

|τ̃ε(ςε)| ≤ (1 +Mγ̇ς)Cτ ≤ K.

Moreover, the solution τ∗∗ε of (7.8) satisfies (using the non negativity of κ and f∗∗ε ):

τ∗∗ε (θ) = e−
1
ε

∫ θ
0
κ(s)f∗∗ε (s) dsτ∗∗(0) +

1

ε

∫ θ

0

γ̇(s)e−
1
ε

∫ θ
s
κ(r)f∗∗ε (r) dr ds

≤ τ∗∗(0) +Mγ̇
θ

ε

so that

|τ∗∗ε (ςε)| ≤ K(1 + ς).

Collecting (6.4) established in Theorem 6.1 , (7.20) and (7.21), the right-hand side
Hε(u) of (7.22) satisfies

Hε(u) ≤ K
(

e−b
u
ε

ε
+

e−
u
ε

ε
+ 1

)
.
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Inserting the three above inequalities in (7.24) implies

|τ̃ε − τ∗∗ε | (θ) ≤ K

(
e
− 1

1+
σc
mγ̇

θ
ε

+

∫ θ

0

e

1
1+

σc
mγ̇

u−θ
ε

(
e−b

u
ε

ε
+

e−
u
ε

ε
+ 1

)
du

)

≤ K
(

1

θ
+ 1

)
ε.

We end this section with a discussion on the two macroscopic limits (7.2) and (7.8)
we have obtained. First, as mentioned above, there are many ways to close the
system (7.1) in the limit ε → 0. We have proposed here two possible macroscopic
limits, which are indeed close up to terms of order O(ε) to the original problem (6.2).

Second, we would like to argue that the system (7.8) derived in Theorem 7.2 is
physically more relevant. Indeed, up to changing the coefficient κ(θ) defined by (7.9)
by a constant, this system belongs to a class of equations introduced in [7, 12] to
model the evolution of aging fluids. These equations read (see [12, Eq. (1)])

(7.25a)

(7.25b)


∂τ

∂t
= −fτ + γ̇,

∂f

∂t
= −U(f) + V (f, τ, γ̇),

where U and V are positive functions. The formal similarity between (7.8) and (7.25)
is clear.

For this class of systems, the fluidity f appears as the inverse of the relaxation
time for the stress τ in equation (7.25a). In equation (7.25b) the evolution results
from the competition between the two terms with opposite signs. Aging, meaning
solidification of the fluid, is modeled by the negative term. It makes the fluidity
decrease so that the relaxation phenomenon is slower with time. The opposite effect,
flow-induced rejuvenation, is modeled by the positive term, which makes the fluidity
(the inverse relaxation time) increase.

Note that the assumption κ(θ) constant is a reasonable approximation when γ̇
is small. In this case, system (7.8) is close to system (8.2), which is indeed of the
form (7.25). In section 8, we present numerical results that confirm that the solutions
to (7.8) and (8.2) are indeed close when γ̇ is small.

8. Numerical experiments. This section is devoted to some numerical exper-
iments. We consider three different situations, depending on the value of the function
γ̇(t) for t ∈ [0, T ].

(i) In our first series of tests, we consider the constant shear rate γ̇(t) ≡ γ̇∞, for
different values 0.1, 0.2, · · · , 0.8 of γ̇∞. In that case, the final time is T = 40

(ii) In our second series of tests, we consider γ̇(t) = t, and the final time T = θ
ε

with θ = 1 and ε varying between the values 0.005 and 0.05.
(iii) In our third and final series of tests, we take γ̇(t) = 0.01 · t , and the same

values of T , θ, and ε as in case (ii).
In all our tests, the reference equation, namely (1.1) (or more precisely (6.2)), is
simulated over the time interval [0, T ]. Since in theory it is posed on the whole real
line, we need to truncate the domain and thus actually solve the equation on the
bounded interval σ ∈ [−Mσ,Mσ] (with periodic boundary conditions), for Mσ =
10, with a constant space step ∆σ = Mσ

2.105 . The initial condition p0 is the normal
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centered Gaussian density, appropriately renormalized on the interval [−Mσ,Mσ].
The threshold value for the stress is σc = 2. The time discretization is performed
using a splitting method: over the time interval [n∆t, (n+ 1)∆t],

(8.1a)

(8.1b)


∂pn+

1
2

∂t
= −χpn+ 1

2 +

(∫
χpn+

1
2

)
δ0

∂pn+1

∂t
+ γ̇(εn∆t)

∂pn+
1
2

∂σ
= 0.

Equation (8.1a) is solved explicitly, pointwise for each σ 6= 0, while the equation for
σ = 0 is indeed solved using the conservation of the total mass of the density p. In
short, the value of the density at zero is adjusted so that the integral of p is one.
See [9] for more details. The advection equation (8.1b) is solved using an upwind
finite difference scheme. All computations are performed using C++.

(i) For our first series of tests, performed for the shear rate γ̇(t) = γ̇∞, we first
check the optimality of the long time convergence result stated in Theorem 5.1. For
the various values of γ̇∞ indicated above, we simulate (1.1). Using a least-square
fit, we then estimate, in function of γ̇∞, the exponent of the exponential rate of

convergence of
(∫

(p(t, ·)− p∞)2
)1/2

to zero as time goes to infinity, more precisely
what corresponds to the parameter b of the right-hand side of (5.1). The function p∞
is of course the stationary solution (2.3), itself function of γ̇∞, explicitly determined
in our theoretical study. Note that for this practical experiment we intentionally make
a confusion between the rate of convergence of the pointwise difference p(t, ·) − p∞
in (5.1) and its L2 norm. Figure 8.1 shows, as a function of γ̇∞, a comparison between
the rate of convergence fitted on the numerical results and the theoretical value of the
inferior bound on this rate of convergence provided by our theoretical estimate (5.3).
The two sets of data agree, thereby showing the quality of our estimate (5.3).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
γ

0.30

0.25

0.20

0.15

0.10

0.05

0.00
theoretical bound
fitted rate

Fig. 8.1. Exponential convergence rate function of γ̇(t) = γ̇∞

(ii) We next consider γ̇(t) = t, and implement the change of time scale by taking γ̇(ε t)
as input for equation (1.1), that is, we solve equation (6.2). We do this for various
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values of the small parameter ε. In this case (ii), our purpose is twofold. First, we
consider the quantities∣∣∣f̃ε − f∞∣∣∣ (θ) =

∣∣∣∣∫ χpε

(
θ

ε
, ·
)
−
∫
χp∞(θ, ·)

∣∣∣∣
and

|τ̃ε − τ∞| (θ) =

∣∣∣∣∫ σpε

(
θ

ε
, ·
)
−
∫
σp∞(θ, ·)

∣∣∣∣
where pε and p∞ are the solutions to (6.2) and (6.3), respectively. We wish to check
that, as the estimate proved in Theorem 6.1 suggests, these two quantities behave
linearly in function of ε for small ε. The figures 8.2 and 8.3 show this is indeed the
case.

0.01 0.02 0.03 0.04 0.05
ε

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007
| f̃ε−f∞ |(θ)
| f̃ε−f ∗ ∗ε |(θ)

Fig. 8.2. Convergence of f

Our second purpose is to illustrate that the macroscopic equations obtained
in Theorems 7.1 and 7.2 indeed behave similarly to the original mesoscopic equa-
tion (6.2), that is, provide a fluidity f and a stress τ comparable to that computed
from the solution to the latter equation. For the different values of ε mentioned above,
we therefore simulate equations (7.2) and (7.8) on the time interval [0, θ], with the

time step ∆t = T
1.104 . The values of |τ̃ε − τ∗ε | (θ),

∣∣∣f̃ε − f∗∗ε ∣∣∣ (θ) et |τ̃ε − τ∗∗ε | (θ) are

displayed on Figures 8.2 and 8.3. We observe that the convergence is linear in ε, as
predicted by our theoretical results Theorems 7.1 and 7.2. The macroscopic behavior
is thus suitably reproduced, up to an error of size O(ε).

(iii) Our final test case addresses the case γ̇(t) = 0.01 · t. We again rescale the time
and consider γ̇(εt). A similar experiment as that performed in the previous case (ii)
again shows that equation (7.8) reproduces well the stress tensor computed from the
solution to equation (6.2), for the different values of ε. Simulating (6.2) and (7.8), we
compute |τ̃ε − τ∗∗ε | (θ). The results are displayed on Figure 8.4.

But our purpose here is also to illustrate another fact. When γ̇ is small, and
it is indeed the case for our specific choice of γ̇ in this case (iii), the value of the
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0.01 0.02 0.03 0.04 0.05
ε

0.000

0.005

0.010

0.015

0.020

0.025
| τ̃ε−τ∞ |(θ)
| τ̃ε−τ ∗ε |(θ)
| τ̃ε−τ ∗ ∗ε |(θ)

Fig. 8.3. Convergence of τ

parameter κ(θ) defined by (7.9) and appearing in the macroscopic system (7.8) is
approximately 2. System (7.8) is thus close to the system

(8.2a)

(8.2b)


ε
dτ∗∗∗ε

dθ
= −2f∗∗∗ε τ∗∗∗ε + γ̇(θ)

ε
df∗∗∗ε

dθ
= −f∗∗∗ε +

γ̇(θ)

σc + γ̇(θ)
.

As explained above, this system of differential equations belongs to the class of sys-
tems (7.25) explicitly suggested in [7, 12] as a macroscopic system of evolution of f
and τ for a non Newtonian aging fluid. Our theoretical results of the previous sec-
tions can therefore be interpreted as a derivation, from a model at a finer scale, of
the macroscopic system (8.2), present in the applicative literature. On Figure 8.4, we
indeed check that the stresses solution to the systems (7.8) and (8.2) are close, up to
an error of size O(ε), to the stress provided by (6.2),

Acknowledgments: We thank the two anonymous referees for their many con-
structive remarks, and in particular for the alternate proof outlined in Remark 4.
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[11] P. Hébraud and F. Lequeux, Mode-coupling theory for the pasty rheology of soft glassy
materials, Phys. Rev. Lett., 81 (1998), pp. 2934–2937.

[12] G. Picard, A. Ajdari, L. Bocquet, and F. Lequeux, Simple model for heterogeneous flows
of yield stress fluids, Phys. Rev. E, 66 (2002), p. 051501.


