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0 Introduction

The homogenization of (stationary) elasticity has been dealt with intensively in the liter-
ature. We refer to [2, 5, 13] as general references and the quoted literature given there.
The viscoelastic models, i.e., elasticity models, where the stress tensor also depends on
the derivative of the strain tensor, have been studied in the light of homogenization e.g. in
[1, 7]. The former also incorporates time-dependent coefficients and the latter includes also
thermodynamic behavior. In both the articles [1, 7] a memory effect is derived. Focusing
on the equations of fractional elasticity, we give an operator-theoretic explanation of such
effects. By framing the homogenization of fractional elasticity into the homogenization
theory of evolutionary equations developed in [17] with extensions in [19, 20], we show
that it is – in a particular sense – a generic property of the homogenized equations to have
memory effects. For this we have to extend results in the theory of (abstract) homogeniza-
tion of evolutionary equations in the sense of [17] and apply the results to the equations of
fractional elasticity.

The equations of linear (fractional) elasticity can be found in [10, Section 3.1.12.5] or [6,
pp. 102]. Denoting the derivative with respect to time by B0 and the derivative with respect
to the i’th spatial variable by Bi, we state the equations as follows. Let Ω Ň Rn be an
open set, modeling a body in its non-deformed state. We describe the displacement field
of that body as a function u : p0,8q ˆΩ Ñ R

n. The conservation of momentum yields the
following equality

µpxqB2
0upt, xq ´ Div T pt, xq “ F pt, xq, (0.1)

where Div T pt, xq “
´řn

j“1 BjTijpt, xq
¯
i
with T : p0,8qˆΩ Ñ Rnˆn being the stress tensor,

µ : Ω Ñ Rnˆn the mass density matrix, and F : p0,8q ˆ Ω Ñ Rn an external forcing term.
Equation (0.1) is completed by a constitutive relation or material law, linking the stress
tensor T and the strain tensor

εpuqi,j :“
1

2
pBiuj ` Bjuiq .

In this article, we treat a constitutive relation of fractional type:

T pt, xq “ Cpxqεpuqpt, xq ` Bα0Dpxqεpuqpt, xq, (0.2)

where1 α P r1{2, 1s is given and the maps C : Ω Ñ Rpnˆnq2 and D : Ω Ñ Rpnˆnq2 , obeying
suitable symmetry requirements, represent the coefficients of instantaneous elasticity and
the effects of the memory of the material, respectively, cf. [6, p. 183-4]. We also refer
to [3, p. 24]. According to [3] material models of fractionl type are used to describe the

1The condition that α only ranges from 1{2 to 1 is rather technical. In fact, using other methods and –
at the same time – imposing more conditions on the operator C namely, besides its boundedness, one
has to assume that it is selfadjoint and non-negative definite, we have shown in [11, Theorem 4.1], that
the range of α may vary in p0, 1s.
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1 Setting

visco-elastic behavior with less summands in comparison to material models with only
integer order derivatives. The equations (0.1) and (0.2) are subject to certain boundary
and initial conditions for both u and T .

In the first part of this note we show that an abstract well-posedness result developed in
[10] for evolutionary equations applies to these equations. We furthermore give an account
of generalizations of equations (0.1) and (0.2). Well-posedness conditions are the (usual)
constraints of selfadjointness and uniform ellipticity and boundedness for D and µ. We
also refer to [15, Section 4] for well-posedness conditions for other viscoelastic models.

The second part of this paper deals with the issue of homogenization, i.e., we consider the
equations of fractional elasticity with highly oscillatory coefficients. In order to explain the
idea, we give a simple example. We assume that C,D and µ are given as functions on the
whole of Rn. Now, what is the behavior in the limit k Ñ 8 of the sequence of displacement
fields pukqk being the sequence of solutions of the following problems

#
µpkxqB2

0ukpt, xq ´ Div Tkpt, xq “ F pt, xq,
Tkpt, xq “ Cpkxqεpukqpt, xq ` Bα0Dpkxqεpukqpt, xq,

pk P Nq? (0.3)

We show that there exists a weakly convergent subsequence with limit u satisfying the
following equation of similar form

#
µhomB2

0upt, xq ´ Div T pt, xq “ F pt, xq,
T pt, xq “ Bα0Dhomεpuqpt, xq ` Bα0

ř8
k“1

`
´ř8

ℓ“1p´B´α
0 qℓKℓDhom

˘k
εpuqpt, xq,

(0.4)

for suitable µhom, Dhom and a sequence of linear operators pKℓqℓ. One can show that in
the special case of µ and D periodic, the operator µhom is the same as the integral mean
over the period of µ, and Dhom is the usual homogenized matrix, see e.g. [2, 13], also
cp. Remark 3.2(f). The reason for the limit equation to contain a power series in B´α

0 is
due to the convergence of the operators involved. The latter can only be expected to be
convergent in the weak operator topology, cf. e.g. [18, Proposition 4.3 and Theorem 4.5]
for easy examples.

In order to derive such a result, we have to extend recent results ([17, 19]) in the theory
of homogenization of evolutionary equations. In particular, in comparison to [19], we need
to establish a stronger version of a ’weak-strong principle’-result.

1 Setting

We recall some notions and definitions given in [10, 8]. Throughout this section let H be
a Hilbert space. For ν ą 0, let

Hν,0pR;Hq :“ L2pR, expp´2νxq dx;Hq

6



be the Bochner-Lebesgue space of H-valued square-integrable functions with respect to the
weighted Lebesgue measure with Radon-Nikdodym derivative expp´2νp¨qq. We denote by
B0,ν the closure of the mapping2

C8
c pR;Hq Ň Hν,0pR;Hq Ñ Hν,0pR;Hq : f ÞÑ f 1.

The Fourier-Laplace transform

Lνf :“
ˆ
x ÞÑ 1?

2π

ż

R

e´νy´ixyfpyq dy

˙

defined for f P C8
c pR;Hq extends to a unitary mapping Hν,0pR;Hq Ñ L2pR;Hq. We use

the same notation for this extension. Denoting by mf :“ px ÞÑ xfpxqq the multiplication-
by-argument-operator on L2pR;Hq considered with its maximal domain, we get the follow-
ing spectral representation for B0,ν :

B0,ν “ L˚
νpim ` νqLν .

In particular, 0 P ̺pB0,νq. The spectral representation gives rise to a functional calculus for
the bounded and normal operator B´1

0,ν . More precisely, denoting Bpr, rq :“ tz P C; |z´r| ă
ru, we let M : Bpr, rq Ñ LpHq be a bounded and analytic mapping taking values in LpHq,
the space of bounded linear mappings on H , where r ą 1{p2νq. Then we define

MpB´1
0,νq :“ L˚

νM

ˆ
1

im ` ν

˙
Lν , (1.1)

where
`
M

`
1

im`ν

˘
φ
˘

ptq :“ M
`

1
it`ν

˘
φptq for t P R and φ P C8

c pR;Hq. If the value of
ν ą 0 is clear from the context, we shall neglect the explicit reference to it in the notation
of the derivative. Our main example of analytic functions of B´1

0 is Bβ0 :“ Brβs
0 Bβ´rβs

0 “
Brβs
0

`
B´1
0

˘rβs´β
, for some β P R. The values in the space of operators come into play, when

we want to consider products such as CBα0 for some C P LpHq or power series expressions
as in equation (0.4).

Now, let A : DpAq Ň H Ñ H be a densely defined closed linear operator with nonempty
resolvent set ̺pAq. If λ P ̺pAq, then we define HkpAq to be the completion of DpA|k|q
with respect to the norm |pA´ λqk¨|H for all k P Z. Note that HkpAq continuously embeds
into Hk´1pAq and that A has a continuous extension from HkpAq to Hk´1pAq. We will
use the same notation for that extension. Furthermore, there is a canonical extension of
A to a densely defined closed linear operator with nonempty resolvent set in the space
Hν,0pR;Hq in the way that pAuqptq :“ Auptq for (a.e.) t P R and u P Hν,0pR;H1pAqq. The
latter extension can be made more precise with the help of tensor product constructions,
see [22], [10, Section 1.2.3] or Section 5 in this article. Moreover, if C : DpCq Ň H0 Ñ H1

is a densely defined, closed linear operator from the Hilbert space H0 to H1 then it has a

2We denote by C8

c pR;Hq the space of indefinitely differentiable functions with values in H .
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1 Setting

continuous extension as an operator from H0p|C|q to H´1p|C˚|, see e.g. [10, Lemma 2.1.16]
or [16, Remark 2.1(a)].

We denote Hν,kpR;Hq :“ HkpB0q for all k P Z. Moreover, since 0 P ̺pB0q, we choose |Bk0 ¨|
as the norm in Hν,kpR;Hq. With the latter choice the operator Bℓ0 becomes unitary from
Hν,kpR;Hq to Hν,k´ℓpR;Hq for all k, ℓ P Z, ν ą 0.

The well-posedness result which will apply to our functional analytic formulation of frac-
tional elasticity reads as follows.

Theorem 1.1 ([10, Theorem 6.2.5]). Let H be a Hilbert space, r ą 0, ν ą 1
2r

. Let

A : DpAq Ň H Ñ H be skew-selfadjoint, M : Bpr, rq Ñ LpHq bounded and analytic. As-

sume that there exists c ą 0 such that for all z P Bpr, rq we have

Re z´1Mpzq ŕ c. (1.2)

Then the closure of the operator

B0MpB´1
0 q ` A : Hν,1pR;H1pAqq Ň Hν,0pR;Hq Ñ Hν,0pR;Hq,

is continuously invertible, i.e.,

Sν :“ B0MpB´1
0 q ` A

´1

P LpHν,0pR;Hqq.

Moreover, ‖Sν‖ ő 1{c and Sν is causal in the sense that for all a P R and f P Hν,0pR;Hq
we have

χp´8,aspm0qSνf “ χp´8,aspm0qSν χp´8,aspm0qf,
where χp´8,aspm0q denotes the multiplication operator in Hν,0pR;Hq associated with the

cut-off function R Q t ÞÑ χp´8,asptq.
Remark 1.2. (a) If we invoke the extrapolation spaces introduced above, it is possible to
neglect the closure bar. Indeed, for u P Hν,0pR;Hq, we have Au P Hν,0pR;H´1pAqq and
B0MpB´1

0 qu P Hν,´1pR;Hq and the operator B0MpB´1
0 q `A, which is continuously invertible

in Hν,0pR;Hq, has the (maximal) domain

tu P Hν,0pR;Hq; B0MpB´1
0 qu ` Au P Hν,0pR;Hqu.

Moreover, since B0 commutes with all operators in the operator sum B0MpB´1
0 q ` A, the

solution theory from Theorem 1.1 carries over to the complete extrapolation scale of B0 in
the sense that the inverse of B0MpB´1

0 q ` A is a continuous operator from Hν,kpR;Hq to
Hν,kpR;Hq for all k P Z.

(b) The heart of the solution theory is the positive definiteness condition (1.2). This
results in a positive definiteness condition for B0MpB´1

0 q ` A in Hν,0pR;Hq. Indeed, a
density argument shows that for all u P tv P Hν,0pR;Hq;

`
B0MpB´1

0 q ` A
˘
v P Hν,0pR;Hqu,

we have
c|u|2 ő Rexu,

`
B0MpB´1

0 q ` A
˘
uy.
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(c) Note that causality of the solution operator Sν in Theorem 1.1 relies on analyticity
of M . Furthermore, it is possible to show that the operator MpB´1

0 q is causal itself ([10,
Theorem 6.1.1]).

(d) Later on, we will use the following fact concerning causal operators. For all a P R,
the solution operator Sν leaves χpa,8qpm0qrHν,0pR;Hqs, the Hilbert space of H-valued Hν,0-
functions vanishing outside ra,8q, invariant. Indeed, let a P R then

χp´8,aspm0qSνχpa,8qpm0q “ χp´8,aspm0qSν
`
1 ´ χp´8,aspm0q

˘

“ χp´8,aspm0qSν ´ χp´8,aspm0qSνχp´8,aspm0q
“ χp´8,aspm0qSνχp´8,aspm0q ´ χp´8,aspm0qSνχp´8,aspm0q
“ 0.

(e) The solution operator Sν is independent of ν in the sense that if µ ŕ ν then Sν and
Sµ coincide on the intersection of the respective domains. For a proof of this fact see [10,
Theorem 6.1.4] or [17, Theorem 1.4.2].

2 A functional analytic formulation for fractional
elasticity

Let Ω Ň Rn be an open set. First, we introduce the spaces on which the spatial (derivative-)
operators are defined. Denote by HsympΩq the subspace of L2pΩqnˆn containing only (equiv-
alence classes of) functions with values in the space of symmetric matrices. We endow
HsympΩq with the scalar product

pΦ,Ψq ÞÑ
ż

R

tracepΦpxq˚Ψpxqq dx

to get a Hilbert space and denote by Grad0 the closure of the mapping

L2pΩqn Ŋ C8
c pΩqn Q Φ ÞÑ

ˆ
1

2
pBiΦj ` BjΦiq

˙

i,jPt1,...,nu

P HsympΩq,

where Bi denotes the (distributional) derivative with respect to the i’th variable. It can be
shown that the negative adjoint of Grad0 is the distributional divergence applied to the
rows of the matrices in the space HsympΩq, i.e.,

´Grad˚
0 “: Div : DpDivq Ň HsympΩq Ñ L2pΩqn,Φ ÞÑ

˜
nÿ

j“1

BjΦij
¸

iPt1,...,nu

,

9



2 A functional analytic formulation for fractional elasticity

where DpDivq “
"
Φ P HsympΩq;

´řn
j“1 BjΦij

¯
iPt1,...,nu

P L2pΩqn
*

. Similarly, denoting by

Div0 the closure of the mapping

C8
c pΩqnˆn X HsympΩq Ň HsympΩq Ñ L2pΩqn,Φ ÞÑ

˜
nÿ

j“1

BjΦij
¸

iPt1,...,nu

,

we define3 Grad :“ ´Div˚
0 , which is an extension of Grad0 acting as the distributional

(symmetrized) gradient with maximal domain in L2pΩqn.

We recall the building blocks for the equations of (fractional) elasticity. The displacement
field u is related to the stress tensor T via

µB2
0u ´ Div T “ F, (2.1)

where µ is a strictly positive definite continuous selfadjoint operator. Now, the stress tensor
T depends on the strain tensor εpuq “ Gradu and its fractional time-derivative Grad Bα0 u
(1{2 ő α ő 1) in the way that

T “ C Grad u` DGrad Bα0 u, (2.2)

for bounded operators C and D, where the latter is selfadjoint and strictly positive definite.

Note that
∥

∥

∥
Bβ0
∥

∥

∥
ő νβ for all β ő 0. Differentiating equation (2.2) with respect to time,

introducing the unknown v :“ B0u and choosing ν large enough, we arrive at

Grad v “ pC ` Bα0Dq´1B0T.

Indeed, using the estimate
∥

∥

∥
Bβ0
∥

∥

∥
ő νβ for all β ő 0 and the bounded invertibility of D,

we deduce that C ` Bα0D is continuously invertible with inverse being representable by a
Neumann series expression. In fact, we deduce that

∥

∥CpBα0Dq´1
∥

∥ ő ‖C‖
∥

∥D´1B´α
0

∥

∥ ő ‖C‖
∥

∥D´1
∥

∥ ν´α.

Thus, choosing ν ą 0 sufficiently large, we get that ‖CpBα0Dq´1‖ ă 1. Hence, for
sufficiently large ν ą 0,

pC ` Bα0Dq´1 “ pBα0Dq´1
`
C pBα0Dq´1 ` 1

˘´1

“ pBα0Dq´1 ` pBα0Dq´1
8ÿ

k“1

`
´C pBα0Dq´1

˘k

3We note here that for a function being in the domain of Grad0 is a generalization of vanishing at the
boundary of Ω, i.e., homogeneous Dirichlet boundary conditions. To be in the domain of Div0 is a
generalization of homogeneous Neumann boundary conditions.
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“ pBα0Dq´1 ` B´2α
0 D´1

8ÿ

k“1

B´pk´1qα
0

`
´CD´1

˘k
.

We get the following system, written in block operator matrix form,

ˆ
B0

ˆ
µ 0

0 pC ` DBα0 q´1

˙
´
ˆ

0 Div

Grad 0

˙˙ˆ
v

T

˙
“
ˆ
F

0

˙
. (2.3)

Equation (2.3) is of the form stated in Theorem 1.1, which can be seen by setting formally

MpB´1
0 q :“

ˆ
µ 0

0 pC ` DBα0 q´1

˙

and

A :“ ´
ˆ

0 Div

Grad 0

˙
.

However, in order to obtain skew-selfadjointness of A, boundary conditions have to be im-
posed. The first well-posedness theorem treats homogeneous Dirichlet boundary conditions
and the second one is about homogeneous Neumann boundary conditions.

Theorem 2.1 (homogeneous Dirichlet boundary conditions). Let Ω Ň Rn be an open set,

α P r1{2, 1s, K ą 0. Let µ P L pL2pΩqnq , C,D P L pHsympΩqq. We assume µ,D to be

selfadjoint and that there exists c ą 0 such that µ ŕ c and D ŕ c. Then there exists ν0 ą 0

and such that for all ν ŕ ν0 and pF,Gq P Hν,0 pR;L2pΩqn ‘ HsympΩqq there is a unique

pv, T q P Hν,0 pR;L2pΩqn ‘ HsympΩqq with

ˆ
B0

ˆ
µ 0

0 pC ` DBα0 q´1

˙
´
ˆ

0 Div

Grad0 0

˙˙ˆ
v

T

˙
“
ˆ
F

G

˙
.

Moreover, the estimate

|pv, T q|Hν,0pR;L2pΩqn‘HsympΩqq ő K|pF,Gq|Hν,0pR;L2pΩqn‘HsympΩqq

is satisfied.

Similarly, we have a corresponding result for homogeneous Neumann boundary conditions.

Theorem 2.2 (homogeneous Neumann boundary conditions). Let Ω Ň Rn be an open

set, α P r1{2, 1s, K ą 0. Let µ P L pL2pΩqnq , C,D P L pHsympΩqq. We assume µ,D to be

selfadjoint and that there exists c ą 0 such that µ ŕ c and D ŕ c. Then there exists ν0 ą 0

such that for all ν ŕ ν0 and pF,Gq P Hν,0 pR;L2pΩqn ‘ HsympΩqq we have a unique pair

pv, T q P Hν,0 pR;L2pΩqn ‘ HsympΩqq satisfying

ˆ
B0

ˆ
µ 0

0 pC ` DBα0 q´1

˙
´
ˆ

0 Div0
Grad 0

˙˙ˆ
v

T

˙
“
ˆ
F

G

˙
.

11



2 A functional analytic formulation for fractional elasticity

Moreover, the estimate

|pv, T q|Hν,0pR;L2pΩqn‘HsympΩqq ő K|pF,Gq|Hν,0pR;L2pΩqn‘HsympΩqq

is satisfied.

Remark 2.3. It will be obvious from the proof that the choice of ν0 in the above two
Theorems can be done in a way such that ν0 only depends on K, the operator norms of
C, µ,D and the constant of positive definiteness for µ and D.

The only difference between the Dirichlet and the Neumann case is that they have different

spatial operators, i.e., in the former case we consider

ˆ
0 Div

Grad0 0

˙
, whereas in the latter

case we consider

ˆ
0 Div0

Grad 0

˙
. The relevant common property of both these operators

is that they are skew-selfadjoint. Thus, regarding the proofs of both the Theorems 2.1
and 2.2, we only have to verify that the positive definiteness condition in Theorem 1.1 is
satisfied. We emphasize that we require µ, C,D to be bounded linear operators in suitable
spaces. In particular, the representation as multiplication operators as in the introduction
is not needed here, also cp. Example 2.9 below.

Proof of Theorems 2.1 and 2.2. We have to verify that there exists ν0 ą 0 such that for
all z P Bp1{p2ν0q, 1{p2ν0qq we have

Re

ˆ
z´1

ˆ
µ 0

0 pC ` z´αDq´1

˙˙
ŕ 1{K. (2.4)

In order to prove (2.4), we observe that due to µ ŕ c, z´1 “ it ` ν for some t P R and
ν ą ν0 we have that

Re z´1µ “ Repit` νqµ “ νµ ŕ νc.

Thus, choose ν0 sufficiently large to get the positive definiteness condition of the top left
corner in (2.4). The second diagonal entry in (2.4) is a bit more delicate. Let ν0 be
such that ‖CD´1‖ ν´α ă 1

2
for all ν ŕ ν0. Using a Neumann expansion, we get for

z P Bp1{p2ν0q, 1{p2ν0qq that

pC ` z´αDq´1 “
`
z´αD

˘´1 ` z2αD´1

8ÿ

k“1

zpk´1qα
`
´CD´1

˘k
.

With the help of the estimates

∥

∥

∥

∥

∥

z2α´1D´1

8ÿ

k“1

zpk´1qα
`
´CD´1

˘k
∥

∥

∥

∥

∥

ő ν1´2α

∥

∥

∥

∥

∥

D´1

8ÿ

k“1

zpk´1qα
`
´CD´1

˘k
∥

∥

∥

∥

∥

12



ő ν1´2α
∥

∥D´1CD´1
∥

∥

∥

∥

∥

∥

∥

8ÿ

k“0

zkα
`
´CD´1

˘k
∥

∥

∥

∥

∥

ő 2ν1´2α
∥

∥D´1CD´1
∥

∥ ,

and D´1 ŕ 1{ ‖D‖ (use the spectral theorem) we get for z P Bp1{p2ν0q, 1{p2ν0qq with
z´1 “ it ` ν for some t P R, ν ą ν0 that

Re z´1pC ` z´αDq´1 “ Re z´1

˜
`
z´αD

˘´1 ` z2α pDq´1
8ÿ

k“1

zpk´1qα
`
´CD´1

˘k
¸

ŕ ν1´α{ ‖D‖ ´ 2ν1´2α
∥

∥D´1CD´1
∥

∥ . (2.5)

Now, we observe that by choosing ν0 large, we have that the right-hand side in (2.5) is
eventually larger than 1{K.

Remark 2.4. Of course in both the Theorems 2.1 and 2.2 the solution operator is causal.

For later treatment of homogenization, we note here that we need a similar well-posedness
result for a slightly modified system. After having proved the well-posedness of the mod-
ified system we state its interconnection to the original one. We shall only discuss the
Neumann boundary value problem as the Dirichlet boundary value problem can be dealt
with similarly.

Theorem 2.5. Let Ω Ň Rn be an open set and such that RpGradq, the range of the

symmetrized gradient, is a closed4 subset of HsympΩq, α P r1{2, 1s, K ą 0. We denote by

Π: HsympΩq Ñ RpGradq the orthogonal projector onto RpGradq. Let µ P L pL2pΩqnq , C,D P
L pHsympΩqq. We assume µ,D to be selfadjoint and that there exists c ą 0 such that

µ ŕ c and D ŕ c. Then there exists ν0 ą 0 such that for all ν ŕ ν0 and pF, rGq P
Hν,0 pR;L2pΩqn ‘ RpGradqq there is a unique pv, rT q P Hν,0 pR;L2pΩqn ‘ RpGradqq with

ˆ
B0

ˆ
µ 0

0 pΠpC ` DBα0 qΠ˚q´1

˙
´
ˆ

0 Div0Π
˚

ΠGrad 0

˙˙ˆ
v
rT

˙
“
ˆ
F
rG

˙
.

Moreover, the estimate

|pv, rT q|Hν,0pR;L2pΩqn‘RpGradqq ő K|pF, rGq|Hν,0pR;L2pΩqn‘RpGradqq

is satisfied.

4The closedness condition of the range of the symmetrized gradient happens to be the case if one assumes
that the domain of Grad, endowed with the graph norm, is compactly embedded in L2pΩqn. This, in
turn, can be realized if Ω is bounded and satisfies suitable geometric requirements, see e.g. [21] and the
references therein. In the homogeneous Dirichlet case the closedness of the range is warranted if one
assumes that Ω is bounded. Indeed, the closedness follows by Korn’s inequality.
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2 A functional analytic formulation for fractional elasticity

Proof. The proof is similar to the one for the Theorems 2.1 and 2.2. First of all we observe

that the operator

ˆ
0 Div0Π

˚

ΠGrad 0

˙
is skew-selfadjoint in L2pΩqn ‘ RpGradq. Observe

that ΠGrad is closed since Π|RpGradq is the identity. For the skew-selfadjointness it thus
suffices to show that pΠGradq˚ “ ´Div0Π

˚. So, let Φ P DppΠGradq˚q. Then for all
w P D pΠGradq “ D pGradq we have

xpΠGradq˚
Φ, wy “ xΦ,ΠGradwy “ xΠ˚Φ,Gradwy.

Hence, Π˚Φ P DpGrad˚q “ DpDiv0q and ´Div0Π
˚Φ “ pΠGradq˚

Φ. Therefore, pΠGradq˚ Ň
´Div0Π

˚. On the other hand, let Ψ P Dp´Div0Π
˚q and let w P DpGradq “ DpΠGradq.

Then
xΨ,ΠGradwy “ xΠ˚Ψ,Gradwy “ xGrad˚ Π˚Ψ, wy.

Hence, Ψ P DppΠGradq˚q and pΠGradq˚Ψ “ ´Div0Π
˚Ψ.

Next, we need to verify that the well-posedness condition is satisfied. For this observe that
the Fourier-Laplace transform commutes with both Π and Π˚. Regarding the proof of the
Theorems 2.1 and 2.2, we need to inspect the expression

`
ΠpC ` z´αDqΠ˚

˘´1

more closely for suitable complex numbers z. We compute

`
ΠpC ` z´αDqΠ˚

˘´1 “
`
ΠCΠ˚ ` z´αΠDΠ˚

˘´1

Now, both rC :“ ΠCΠ˚ and rD :“ ΠDΠ˚ are continuous linear operators from RpGradq to

RpGradq. Moreover, from rD˚ “ ΠD˚Π˚ “ ΠDΠ˚ “ rD and

x rDΦ,Φy “ xΠDΠ˚Φ,Φy “ xDΠ˚Φ,Π˚Φy ŕ c|Π˚Φ| “ c|Φ|RpGradq pΦ P RpGradqq

we realize that rD is self-adjoint and strictly positive definite in RpGradq with c as a possible
positive definiteness constant. Hence, literally the same proof for the Theorems 2.1 and
2.2 applies here with D and C respectively replaced by rD and rC.

Having proved the well-posedness also for the projected system, we state the interconnec-
tion between the solution obtained in Theorem 2.2 and the one in Theorem 2.5.

Theorem 2.6. Let Ω Ň Rn be an open set and such that RpGradq Ň HsympΩq is closed,

α P r1{2, 1s, K ą 0. We denote by Π: HsympΩq Ñ RpGradq the orthogonal projector onto

RpGradq. Let µ P L pL2pΩqnq , C,D P L pHsympΩqq. We assume µ,D to be selfadjoint and

that there exists c ą 0 such that µ ŕ c and D ŕ c. Let ν0 be the maximum of the ν0’s

occurring in Theorem 2.2 and Theorem 2.5 and let ν ŕ ν0 and F P Hν,0pR;L2pΩqnq. Let

14



pv, T q P Hν,0 pR;L2pΩqn ‘ HsympΩqq solve

ˆ
B0

ˆ
µ 0

0 pC ` DBα0 q´1

˙
´
ˆ

0 Div0
Grad 0

˙˙ˆ
v

T

˙
“
ˆ
F

0

˙
(2.6)

and let prv, rT q P Hν,0 pR;L2pΩqn ‘ RpGradqq solve

ˆ
B0

ˆ
µ 0

0 pΠpC ` DBα0 qΠ˚q´1

˙
´
ˆ

0 Div0Π
˚

ΠGrad 0

˙˙ˆ
rv
rT

˙
“
ˆ
F

0

˙
. (2.7)

Then prv, rT q “ pv,ΠT q.

Proof. The second line of (2.6) reads

Grad v “ B0pC ` DBα0 q´1T P Hν,´1 pR;HsympΩqq X Hν,0pR;H´1p|Div0|qq.

Now, since pC ` DBα0 q´1T P Hν,0pR;HsympΩqq, we deduce that B´1
0 v takes values in the

domain of Grad. Thus, we get that

Grad B´1
0 v “ pC ` DBα0 q´1T P Hν,0 pR;HsympΩqq .

and after multiplying by pC `DBα0 q and by Π and using that Π˚ΠGrad “ Grad we arrive
at

ΠpC ` DBα0 qΠ˚ΠGrad B´1
0 v “ ΠT P Hν,´1 pR;RpGradqq .

Using that ν0 is chosen large enough, we get that

ΠGrad B´1
0 v “ pΠpC ` DBα0 qΠ˚q´1

ΠT P Hν,´1 pR;RpGradqq .

Hence,

ΠGrad v “ B0 pΠpC ` DBα0 qΠ˚q´1
ΠT P Hν,´2 pR;RpGradqq X Hν,´1 pR;H´1p|´Div0Π

˚|q .

The first line of the system (2.6) reads as

´Div0 T “ ´B0µv ` f P Hν,´1pR;L2pΩqnq X Hν,0pR;H´1p|Grad|qq

Integrating the latter equation with respect to time gives

µv ´ Div0 B´1
0 T “ B´1

0 f.

Observe that Div0Π
˚Π “ Div0 and, thus, Div0Π

˚ΠB´1
0 “ Div0Π

˚B´1
0 Π. Hence,

B´1
0 f “ µv ´ Div0 B´1

0 T

“ µv ´ Div0Π
˚ΠB´1

0 T

15



2 A functional analytic formulation for fractional elasticity

“ µv ´ Div0Π
˚B´1

0 ΠT P Hν,0pR;L2pΩqnq.

Therefore,
f “ B0µv ´ Div0Π

˚ΠT P Hν,´1pR;L2pΩqnq
We conclude that pv,ΠT q P Hν,0 pR;L2pΩqn ‘ RpGradqq satisfies the system (2.7) as an
equation in Hν,´2pR;L2pΩqn ‘ RpGradqq. Now, since the solution for (2.7) is unique by

Theorem 2.5 (also use Remark 1.2(a)) it coincides with prv, rT q.

Remark 2.7. Recall the system (2.3). We shall assume homogeneous Dirichlet boundary
conditions, but certain initial conditions pv0, T0q P DpDivq ‘ DpGrad0q. Consider the
equation

B0

ˆ
µ 0

0 pC ` DBα0 q´1

˙ˆˆ
v

T

˙
´ χRą0

ˆ
v0
T0

˙˙
´
ˆ

0 Div

Grad0 0

˙ˆ
v

T

˙
“
ˆ
F

0

˙
.

If we assume that F has support only on the positive reals, then the latter system coincides
with (2.3) on the positive reals. Introducing the new variables rv :“ v ´ χRą0

v0 and rT :“
T ´ χRą0

T0 then we arrive at the following system

ˆ
B0

ˆ
µ 0

0 pC ` DBα0 q´1

˙
´
ˆ

0 Div

Grad0 0

˙˙ˆ
rv
rT

˙
“
ˆ
F

0

˙
`
ˆ

0 Div

Grad0 0

˙
χRą0

ˆ
v0
T0

˙
.

The latter system admits, by our general solution theory, a unique solution with support
on the positive reals due to causality. Moreover, a standard regularity argument ensures
that indeed prv, rT qptq Ñ 0, i.e., pv, T qptq Ñ pv0, T0q as t Ñ 0` in a suitable sense, for details
we refer to [10, Theorem 6.2.10].

The main observation in the last remark is that non-homogeneous initial conditions result
in a different right-hand side. A similar effect occurs when considering non-homogeneous
boundary conditions. We sketch the non-homogeneous Neumann boundary data case.
Details can be found in [14, 10].

Remark 2.8. We impose the Neumann data TB. In order to avoid additional (explicit)
regularity assumptions on Ω, we assume that the boundary data is given as a function
TB P Hν,1pR;H1p|Div|qq. Now the non-homogeneous boundary value problem associated
with (2.3) reads as $

’&
’%

B0µv ´ Div T “ F

B0T “ pC ` DBα0 qGrad v

T ´ TB P Hν,0pR;H1p|Div0|qq.

Introducing the new variable rT :“ T ´ TB, we arrive at

#
B0µv ´ Div0 rT “ F ` Div TB

B0
rT “ pC ` DBα0 qGrad v ´ B0TB.
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This gives

ˆ
B0

ˆ
µ 0

0 pC ` DBα0 q´1

˙
´
ˆ

0 Div0
Grad 0

˙˙ˆ
v
rT

˙

“
ˆ
F

0

˙
´ B0

ˆ
µ 0

0 pC ` DBα0 q´1

˙ˆ
0

´TB

˙
´
ˆ

0 Div

Grad 0

˙ˆ
0

´TB

˙
.

In summary, non-homogeneous initial or boundary data lead to different right-hand sides
in the system. We end this section with an example for non-local spatial operators as
coefficients. For simplicity, we consider the case of one spatial dimension, although it will
be obvious how to extend the example to higher dimensions.

Example 2.9. We consider the case of homogeneous Dirichlet boundary conditions of
a (visco-)elastic beam. In one spatial dimension (Ω Ň R), the strain tensor is given by
εpuq “ B1u. We denote the corresponding (symmetrized) gradient with Dirichlet boundary
conditions by B1,0. The equations read

#
µB2

0u ´ B1T “ f,

T “ CB1,0u` DB1,0Bα0 u.

In order to have an example of non-local-in-space operators, note that the one-dimensional
Dirichlet Laplacian ∆D :“ ´B˚

1,0B1,0 is strictly negative and is clearly selfadjoint. The
negative square root of ∆D is selfadjoint and bounded (at least if Ω is assumed to be
bounded). Hence, a possible model could be

#
µB2

0u ´ B1T “ f,

T “ p´∆Dq´βB1,0u` DB1,0Bα0 u.

for some β ą 0 and suitable f .

3 A homogenization theorem for fractional elasticity

Before we give the main contribution of the present paper we recall the notion of G-
convergence:

Definition (G-convergence, [24, p. 74], [20]). Let H be a Hilbert space. Let pAn : DpAnq Ň
H Ñ Hqn be a sequence of one-to-one mappings onto H and let B : DpBq Ň H Ñ H be
one-to-one. We say that pAnqn G-converges to B if for all f P H the sequence pA´1

n pfqqn
converges weakly to some u, which satisfies u P DpBq and Bpuq “ f . B is called a G-limit

of pAnqn. We say that pAnqn strongly G-converges to B, An
s´GÝÑ B in H , if for all weakly

converging sequences pfnqn in H , we have pA´1
n pfnqqn weakly converges to some u, which

satisfies u P DpBq and Bpuq “ w- limnÑ8 fn.
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3 A homogenization theorem for fractional elasticity

Our main homogenization theorem in fractional elasticity reads as follows. We will formu-
late both the Neumann case as well as the Dirichlet case within one theorem. Let

A P
"ˆ

0 Div0
Grad 0

˙
,

ˆ
0 Div

Grad0 0

˙*
.

Denote by ΠA the orthogonal projection from HsympΩq onto5 RpGradq if A corresponds

to the Neumann case or onto RpGrad0q if A corresponds to the Dirichlet case. We define

the reduced operator Ared :“
`
1 0
0 ΠA

˘
A
´

1 0
0 Π˚

A

¯
. Recall that in Theorem 2.5 we stated a

solution theory for the corresponding reduced systems of fractional elasticity. For Hilbert
spaces H,H1 we write H ãÑãÑ H1 if H is compactly embedded in H1.

Theorem 3.1. Let Ω Ň Rn be open. Assume that either H1p|Grad|q ãÑãÑ H0p|Grad|q for

the Neumann case orH1p|Grad0|q ãÑãÑ H0p|Grad0|q for the Dirichlet case. Let pCnqn, pDnqn
in LpHsympΩqq and pµnqn in LpL2pΩqnq be bounded sequences. Assume there exists c ą 0

such that for all n P N we have that µn, Dn are selfadjoint and

Dn ŕ c and µn ŕ c.

Then there exists ν0 ą 0 such that for all ν ŕ ν0 we have a subsequence pnkqk of pnqn and

µ P LpL2pΩqnq, D, pKℓqℓ in LpRpΠAqq such that

ˆ
B0

ˆ
µnk

0

0 pΠApCnk
` Dnk

Bα0 qΠ˚
Aq´1

˙
´ Ared

˙

s´GÝÑ
ˆ

B0

ˆ
µ 0

0 B´α
0 D´1 ` B´α

0

ř8
ℓ“1p´B´α

0 qℓKℓ

˙
´ Ared

˙

in χpa,8qpm0qrHν,0pR;H0pAredqqs for all a P R.

Remark 3.2. (a) The crucial fact, why we introduced Ared, is that Ared has compact re-
solvent. In consequence, we do not need to introduce the projection ΠA in the case of Ω
being a one-dimensional, bounded interval.

(b) From the proof of Theorem 3.1, we will see that the subsequence can be chosen in a

way such that D´1 “ τw- limkÑ8 D
´1
nk

and Kℓ “ τw- limkÑ8D
´1
nk

`
Cnk

D´1
nk

˘ℓ
, ℓ P N. Here

τw denotes the weak operator topology.

(c) For convenience and in order not to get drowned in notation, we stated a weaker
version of what we will actually prove. Theorem 3.1 follows from Corollary 4.2 being itself
a consequence of Theorem 4.1 below. In particular, in the situation of Theorem 3.1, we
will show that for the extracted subsequence pnkqk we have the following result. For ν0
sufficiently large, let ν1 ą ν ŕ ν0 and take a weakly convergent sequence

pfk, gkqk in Hν,0pR;H0pAredqq X Hν1,0pR;H0pAredqq “: Hν,0 X Hν1,0pR;H0pAredqq
5In the following application it is true that RpGradq Ň HsympΩq or RpGrad0q Ň HsympΩq is closed.
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with limit pf, gq satisfying the following equi-integrability condition at ´8:

sup
kPN

|χp´8,aqpm0qpfk, gkq|ν1,0 Ñ 0 pa Ñ ´8q.

Denote

Sk :“
ˆ

B0

ˆ
µnk

0

0 pΠApCnk
` Dnk

Bα0 qΠ˚
Aq´1

˙
´ Ared

˙´1

pk P Nq

and S correspondingly. Then Skpfk, gkq á Spf, gq in Hν1,0pR;H0pAredqq as k Ñ 8.

The last assertion is stronger than the assertion in Theorem 3.1. Indeed, Theorem 3.1
states that for all weakly convergent sequences pfk, gkqk in Hν,0pR;H0pAredqq consisting
of functions supported on pa,8q for some a P R, we get that Skpfk, gkq á Spf, gq in
Hν,0pR;H0pAredqq. In order to deduce the last convergence from the above, observe that
by the condition on the support of the fk’s and gk’s the equi-integrability condition is
trivially satisfied. Moreover, pfk, gkqk is weakly convergent in Hν1,0pR;H0pAredqq for all
ν1 ą ν also by the support condition. By the above, we infer that Skpfk, gkq á Spf, gq in
Hν1,0pR;H0pAredqq. In particular, this means that xSkpfk, gkq, φy Ñ xSpf, gq, φy as k Ñ 8
for all φ P C8

c pR;H0pAredqq. The boundedness of pSkpfk, gkqqk in Hν,0pR;H0pAredqq yields
the asserted convergence.

(d) We also note that from Theorem 3.1 it follows that

ˆ
B0

ˆ
µnk

0

0 pΠApCnk
` Dnk

Bα0 qΠ˚
Aq´1

˙
´ Ared

˙

GÝÑ
ˆ

B0

ˆ
µ 0

0 B´α
0 D´1 ` B´α

0

ř8
ℓ“1p´B´α

0 qℓKℓ

˙
´ Ared

˙

in Hν,0pR;H0pAredqq. Indeed, since C8
c pR;H0pAredqq is dense in Hν,0pR;H0pAredqq, the

assertion follows with a standard density argument (use that pSkqk is bounded).

(e) Implicitly Theorem 3.1 asserts that the limiting equation is well-posed. Indeed, we will
show that the norm bound of the solution operator is the same. (This follows easily from
the abstract homogenization result Corollary 4.2)

(f) We emphasize that even if both pDnqn and pD´1
n qn converge in the weak operator

topology, it is unclear whether ppΠADnΠ
˚
Aq´1qn converges in the weak operator topology

of LpRpΠAqq, see also [19, Remark 4.6(ii)]. However, it is possible to show that if pDnqn
is a multiplication operator, i.e., Dn “ Dpn¨q for some periodic, bounded and measurable
mapping D : Rn Ñ Rpnˆnq2 as in classical homogenization theory, then ppΠADnΠ

˚
Aq´1qn

converges in the weak operator topology. The limit is well-known and can be computed
by solving so-called local problems, cf. e.g. [2, 4, 13]. In this way, we extend well-known
homogenization results.

Remark 3.3. In [1], a Kelvin-Voigt model is treated. The space-time operator of this
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3 A homogenization theorem for fractional elasticity

equation may be reformulated as follows

B0

ˆ
̺n 0

0 pB0Bn ` Anq´1

˙
´ Ared,

where ̺n, An, Bn are suitable coefficients. The coefficients An and Bn in the situation of
[1] may also depend on time. To get that the corresponding equation is well-posed, it is
also assumed that Bn is selfadjoint and strictly positive definite uniformly in n as well as
differentiable w.r.t. time with bounded and measurable derivative. For An a similar dif-
ferentiability condition is assumed. The authors of [1] show that the homogenized system,
i.e., the limit as n Ñ 8, has memory effects. Note that, in the time-independent frame-
work treated here – as it was already observed (at least) in [7] – the occurrence of memory
effects is clear. We can give a heuristic operator-theoretic explanation for the memory
effect phenomenon to occur. Indeed, in order to express the limit of pB0Bn `Anq´1 choose
ν large enough to derive a Neumann series expansion. Considering the resulting seriesř8
k“0p´B´1

n AnB´1
0 qkB´1

0 B´1
n , we may let n tend to infinity in this expression (possibly by

passing to a subsequence). The limit series is then of the form
ř8
k“0CkpB´1

0 qkB´1
0 for suit-

able pCkqk. In general the operators involved only converge in the weak operator topology.
Since computing the inverse is not a continuous process in the weak operator topology, one
cannot expect that the limit series is a Neumann series expression similar to the series one
started out with. This fact then results in a memory effect. The authors of [1, 7] give also
explicit formulas for the limit equation. We also refer to [18, Example 5.7] for a similar
effect in the homogenization of ordinary differential equations.

Remark 3.4. The homogenized equations written in a similar form as the system one
started out with are given in the introduction. We will consider the homogeneous Dirichlet
case only. The result of Theorem 3.1 roughly states the following. Let a P R and let
pfkqk be a weakly convergent sequence in Hν,0pR;L2pΩqnq with limit f and such that6

infkPN inf pspt fkq ŕ a. Let puk, Tkqk in Hν,1pR;L2pΩqnq‘Hν,0pR;RpGrad0qq be the sequence
of solutions of the equations

#
µnk

B2
0ukpt, xq ´ DivΠ˚

ATkpt, xq “ fkpt, xq
ΠATkpt, xq “ ΠACnk

Π˚
AΠAGrad0 ukpt, xq ` ΠABα0Dnk

Π˚
AΠAGrad0 ukpt, xq,

ppt, xq P R ˆ Ω, k P Nq.

Then puk, Tkqk weakly converges to the solution pu, T q of the following system

#
µB2

0upt, xq ´ DivΠ˚
AT pt, xq “ fpt, xq

T pt, xq “
`
B´α
0 D´1 ` B´α

0

ř8
ℓ“1p´B´α

0 qℓKℓ

˘´1
ΠAGrad0 upt, xq,

ppt, xq P R ˆ Ωq.

Another Neumann expansion of the inverse in the latter equation gives the system in the
introduction. In principle, we could discuss non-homogeneous boundary value problems

6We denote the support of v P Hν,0pR;Hq by spt v :“ Rz
Ť

tU Ň R; v|U “ 0, U openu.
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here. However, as they can be discussed in a unified and abstract way as in Section 4, see
e.g. [14], we postpone the discussion to a future article.

We emphasize here that our homogenization theorem only asserts something about the
convergence of the part of the stress T, which can be represented as a symmetrized gradient.
However, in view of Theorem 2.6, we see that the homogenization theorem presented
asserts the convergence of (a subsequence of) the displacement fields solving the equation
for fractional elasticity.

We apply our findings to Example 2.9:

Example 3.5 (Example 2.9 continued). Assume that Ω “ p0, 1q. By the Arzela-Ascoli
theorem, H1p|B1,0|q ãÑãÑ H0p|B1,0|q. Assume µ,D are given as 1-periodic, bounded, mea-
surable functions from R to R. Moreover, we assume that µ,D ŕ c. By [4, Theorem
2.6], we deduce that pµpn¨qqn and pDpn¨qkqn converge for any k P N to the respective in-
tegral means over the period in the σpL8, L1q-topology. Thus, we infer the convergence
of the induced multiplication operators in the weak operator topology (compare with [18,
Proposition 4.3]). Let puk, Tkqk be the sequence of solutions to the following problems

#
µpk¨qB2

0uk ´ B1Tk “ fk

Tk “ p´∆Dq´βk B1,0uk ` Dpk¨qBα0 B1,0uk,
pk P Nq,

where pfkqk is a weakly convergent sequence in an appropriate space and pβkqk a convergent
sequence of non-negative real numbers. Denoting f :“ w- limkÑ8 fk, we deduce that (a
subsequence of) puk, Tkqk weakly converges to the solution of the equation

$
’’’’’’’’&
’’’’’’’’%

¨
˚̋

ż

r0,1s

µpxq dx

˛
‹‚B2

0u ´ B1T “ f

T “

¨
˚̋

ż

r0,1s

1

Dpxq dx

˛
‹‚

´1

Bα0 B1,0u ` Bα0
8ÿ

k“1

¨
˚̋´

8ÿ

ℓ“1

p´B´α
0 qℓKℓ

¨
˚̋

ż

r0,1s

1

Dpxq dx

˛
‹‚

´1˛
‹‚

k

B1,0u,

where Kℓ “ limkÑ8 Dpk¨q´1
`
Dpk¨q´1p´∆Dq´βk

˘ℓ
(for a suitable subsequence).

A combination of the results presented yields – to the best of the author’s knowledge – the
first explicit formula for the limit equation in fractional elasticity:

Theorem 3.6. Let µ,D, c P L8pRq, α P r1{2, 1s. Assume that µ,D ŕ d for some d ą 0

and that µ,D, c are periodic with period 1. Then there exists ν0 ą 0 such that for all

ν ą ν0 and for all f P Hν,0pR;L2p0, 1qq, k P N there exist uniquely determined puk, Tkq P
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3 A homogenization theorem for fractional elasticity

Hν,1pR;L2p0, 1qq ‘ Hν,0pR;L2p0, 1qq such that7

#
µpkm1qB2

0uk ´ B1Tk “ f,

Tk “ cpkm1qB1,0uk ` Dpkm1qB1,0Bα0 uk.

Moreover, the sequence ppuk, Tkqqk is weakly convergent. The respective limit pu, T q P
Hν,1pR;L2p0, 1qq ‘ Hν,0pR;L2p0, 1qq satisfies

$
’’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’’%

¨
˚̋

ż

r0,1s

µpxq dx

˛
‹‚B2

0u´ B1T “ f

T “

¨
˚̋

ż

r0,1s

1

Dpxq dx

˛
‹‚

´1

Bα0 B1,0u

`Bα0
8ÿ

k“1

¨
˚̋´

8ÿ

ℓ“1

p´B´α
0 qℓ

ż

r0,1s

ˆ
cpxqℓ

Dpxqℓ`1

˙
dx

¨
˚̋

ż

r0,1s

1

Dpxq dx

˛
‹‚

´1˛
‹‚

k

B1,0u.

Proof of Theorem 3.6 – part 1: Well-posedness. For the unique existence of puk, Tkq, k P N,
we apply Theorem 2.1. In fact, the conditions µ,D ŕ d implies that the multiplication
operators µpkm1q and Dpkm1q are selfadjoint and strictly positive definite in L2p0, 1q with
positive definiteness constants independent of k. The boundedness of µ,D, c yields that
µpkm1q, Dpkm1q, cpkm1q P LpL2p0, 1qq with operator norms independent of k. Hence, by
Theorem 2.1 together with Remark 2.3 (choose K “ 1), there exists ν0 ą 0 such that
ν ŕ ν0 and for all pF,Gq P Hν,0pR;L2p0, 1q2q there is a unique pv, T q P Hν,0pR;L2p0, 1q2q
with ˆ

B0

ˆ
µpkm1q 0

0 pcpkm1q ` Dpkm1qBα0 q´1

˙
´
ˆ

0 B1

B1,0 0

˙˙ˆ
v

T

˙
“
ˆ
F

G

˙
.

Now, for the special choice pF,Gq “ pf, 0q for some f P Hν,0pR;L2p0, 1qq, we conclude
unique existence of the corresponding solutions ppvk, Tkqqk. Using the extrapolation spaces

of B0 and

ˆ
0 B1

B1,0 0

˙
, we may read the equation satisfied by pvk, Tkq line-by-line in order to

get that
B0µpkm1qvk ´ B1Tk “ f

and
B0pcpkm1q ` Dpkm1qBα0 q´1Tk ´ B1,0vk “ 0.

Thus,
Tk “ pcpkm1q ` Dpkm1qBα0 qB1,0B´1

0 vk.

7By ψpm1q we denote the multiplication operator of multiplying with a function ψ in L2p0, 1q.
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Hence, setting uk :“ B´1
0 vk P Hν,1pR;L2p0, 1qq, we arrive at

#
µpkm1qB2

0uk ´ B1Tk “ f,

Tk “ cpkm1qB1,0uk ` Dpkm1qB1,0Bα0 uk.

On the other hand, performing the computations backwards, we realize that any solution
puk, Tkq of the latter equation yields a solution pB0uk, Tkq. Hence, the part of uniqueness
and existence in the theorem in question is proved.

In order to prove the Theorems 3.1 and 3.6, we have to develop some abstract theory in
homogenization. This will be done in the next section.

4 An abstract compactness result in the theory of
homogenization

Regarding the examples already discussed in earlier work, e.g. in [17, 10], we realize that in
order to model homogenization theory in the abstract setting of Theorem 1.1 one should
focus on the bounded and analytic function M , since it encodes the properties of the
underlying material. That is why we introduce the Hardy space

H8pE;LpHqq :“ tM : E Ñ LpHq;M analytic, boundedu,

where E Ň C is an open subset. H8pE;LpHqq, or H8 for short if E and H is clear from the
context, becomes a Banach space if endowed with the normM ÞÑ ‖M‖8 :“ supzPE ‖Mpzq‖.
Let r ą 0. We call elements M P H8pBpr, rq;LpHqq also material laws or constitutive

relations. If, in addition, M satisfies the estimate (1.2) for some c ą 0, we call M a
pcq-material law. Homogenization theory goes along with the study of particular weak
topologies, cp. e.g. [13, 23, 17]. In view of applications to homogenization theory the
topology induced by the norm on H8 is too strong. Hence, we need to introduce a weaker
one. Therefore we denote HpEq :“ tf : E Ñ C; f analyticu and endow this space with the
compact open topology, i.e., the topology induced by uniform convergence on compact sets.
Now, let τw be the topology on H8pE;LpHqq induced by the mappings

H8 Q M ÞÑ pE Q z ÞÑ xφ,Mpzqψyq P HpEq

for φ, ψ P H . We denote H8
w :“ pH8, τwq and identify H8

w with the underlying set if we
want to emphasize the topology under consideration. A subset of H8

w is called bounded,
if it is bounded with respect to ‖¨‖8. The main abstract homogenization theorem proved
here reads as follows.

Theorem 4.1 (abstract homogenization result). Let H be a Hilbert space, A : DpAq Ň
H Ñ H skew-selfadjoint with compact resolvent, ν ą 0, r ą 1{p2νq. Let pMnqn be a

23



4 An abstract compactness result in the theory of homogenization

bounded and convergent sequence in

H8,c
w pBpr, rq;LpHqq :“ tM P H8

w ; @z P Bpr, rq : Re z´1Mpzq ŕ cu.

Denote M :“ limnÑ8 Mn. Then for all weakly convergent pfnqn in Hν,0 X Hν1,0pR;Hq for

some ν ą ν1 ą 1{p2rq, which satisfy

sup
nPN

|χp´8,aspm0qfn|ν,0 Ñ 0 pa Ñ ´8q

the solutions punqn in Hν,0pR;Hq of the problems

`
B0MnpB´1

0 q ` A
˘
un “ fn

weakly converge to the solution u of the problem

`
B0MpB´1

0 q ` A
˘
u “ w- lim

nÑ8
fn.

We will prove Theorem 4.1 in Section 5.

Note that since pMnqn converges in H8,c
w the limit M is also a pcq-material law. Hence

the limit equation is well-posed. Moreover, note that, by [19, Proposition 1.3], which
asserts that H8,c

w Ň H8
w is closed, convergence for pMnqn in the subspace H8,c

w or in H8
w is

equivalent, also see Remark 3.2(e).

What we actually use for the proof of Theorem 3.1 is the following statement.

Corollary 4.2 (abstract compactness result). Let H be a Hilbert space, A : DpAq Ň H Ñ
H skew-selfadjoint with compact resolvent, ν ą 0, r ą 1{p2νq. Let pMnqn be a bounded

sequence in H8,c
w pBpr, rq;LpHqq. Then there exists a subsequence pnkqk and M P H8,c

w such

that M “ limkÑ8 Mnk
and for all weakly convergent pfkqk in Hν,0 X Hν1,0pR;Hq for some

ν ą ν1 ą 1{p2rq, which satisfy

sup
kPN

|χp´8,aspm0qfk|ν,0 Ñ 0 pa Ñ ´8q

the solutions pukqk in Hν,0pR;Hq of the problems

`
B0Mnk

pB´1
0 q ` A

˘
uk “ fk

weakly converge to the solution u of the problem

`
B0MpB´1

0 q ` A
˘
u “ w- lim

kÑ8
fk.

Corollary 4.2 is indeed a straightforward consequence of Theorem 4.1, once the following
compactness result is shown. A similar result has already been pointed out in [18, Theorem
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3.4]. Since we assert a slightly stronger version of [18, Theorem 3.4], we present a (new)
short proof in this exposition.

Theorem 4.3. Let H be a Hilbert space, E Ň C open. Then

BH8 :“ tM P H8pE;LpHqq; ‖M‖8 ő 1u Ň H8
w

is compact. If, in addition, H is separable then BH8 is metrizable and hence sequentially

compact.

Proof. For ε ŕ 0 define BHpEqpεq :“ tf P HpEq; @z P E : |fpzq| ő εu. By Montel’s theorem
BHpEqpεq Ň HpEq is compact pε ŕ 0q. Observe the following equation to hold

BH8 “
˜

ź

φ,ψPH

BHpEq p|φ||ψ|q
¸

X
 
M : E Ñ C

HˆH ; @z P E :Mpzq sesquilinear
(
. (4.1)

Indeed, “Ň” follows from the fact that if M P BH8 then for φ, ψ P H the map xφ,Mp¨qψy
lies in HpEq and satisfies the estimate |xφ,Mpzqψy| ő |φ||ψ| for all z P E. Moreover,
Mpzq P LpHq and hence pφ, ψq ÞÑ xφ,Mpzqψy is sesquilinear for all z P E. The relation “Ŋ”
follows from Riesz-Frechet (any bounded sesquilinear mapping Mpzq onHˆH is a bounded
linear operator on H) and a Dunford-type theorem that ensures that local boundedness
and weak analyticity for a norming subset of LpHq1 is sufficient for analyticity with values
in LpHq, cf. [9, p. 139].

Now, it is easy to see that

 
M : E Ñ C

HˆH ; @z P E :Mpzq sesquilinear
(

X
ź

φ,ψPH

BHpEq p|φ||ψ|q Ň
ź

φ,ψPH

BHpEq p|φ||ψ|q

is closed, if the product is endowed with the product topology. Hence, using the compact-
ness of BHpEq and invoking Tikhonov’s theorem, we deduce with the help of equation (4.1)
that BH8 is compact as well.

If we assume that H is separable, the metrizability follows by a standard argument.

Proof of Corollary 4.2. The compactness of the embedding H1pAq ãÑ H0pAq together with
the fact that DpAq is dense in H0pAq implies the separability of H0pAq. Thus, the sequence
pMnqn in Corollary 4.2 of material laws has a convergent subsequence in H8

w , by Theorem
4.3. For that subsequence Theorem 4.1 applies.

We come to the proof of the second part of Theorem 3.6.

Proof of Theorem 3.6 – part 2: The computation of the limit equation. The Arzela-Ascoli

theorem tells us that

ˆ
0 B1

B1,0 0

˙
has compact resolvent in L2p0, 1q2. Now, consider for
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4 An abstract compactness result in the theory of homogenization

k P N the operator (without loss of generality we assume that ν0 ą 0 has been chosen so
large that the Neumann series expansion is permitted)

Mk

`
B´1
0

˘
:“

ˆ
µpkm1q 0

0 pcpkm1q ` Dpkm1qBα0 q´1

˙

“
ˆ
µpkm1q 0

0 Dpkm1q´1B´α
0

ř8
ℓ“0

`
´cpkm1qB´α

0 Dpkm1q´1
˘ℓ
˙
.

In particular, for z P Bp1{p2ν0q, 1{p2ν0qq we get for k P N

Mkpzq “
ˆ
µpkm1q 0

0 Dpkm1q´1zα
ř8
ℓ“0 p´cpkm1qzαDpkm1q´1qℓ

˙
. (4.2)

Recall from [4, Theorem 2.6] that for periodic mappings p P L8pRq the sequence pppn¨qqn
converges to the integral mean over the period in the σpL8, L1q-topology. Thus, the cor-
responding multiplication operators in L2 converge in the weak operator topology. Hence,
for any z P Bp1{p2ν0q, 1{p2ν0qq we deduce that pMkpzqqk converges in the weak operator
topology in LpL2p0, 1q2q to the limit Mpzq given by

Mpzq “
˜ş1

0
µpxq dx 0

0
ş1
0
Dpxq´1 dxzα ` zα

ř8
ℓ“1 p´zαqℓ

ş1
0

cpxqℓ

Dpxqℓ`1 dx

¸
.

Using that L2p0, 1q2 is separable and Theorem 4.3, we deduce with a standard subsequence
argument that pMkqk converges to M in H8

w . Note that the latter particularly implies that
M P H8. Thus, by Theorem 4.2 we get that pvk, Tkq P Hν,0pR;L2p0, 1q2q weakly converges
to the solution pv, T q P Hν,0pR;L2p0, 1q2q of the equation

˜
B0

˜ş1
0
µpxq dx 0

0
ş1
0
Dpxq´1 dxB´α

0 ` B´α
0

ř8
ℓ“1

`
´B´α

0

˘ℓ ş1
0

cpxqℓ

Dpxqℓ`1 dx

¸
´
ˆ

0 B1

B1,0 0

˙¸ˆ
v

T

˙
“
ˆ
f

0

˙
.

Reading off the system line-by-line, we get that

B0

ż 1

0

µpxq dxv ´ B1T “ f

and

B0

˜ż 1

0

Dpxq´1 dxB´α
0 ` B´α

0

ÿ

ℓ“1

`
´B´α

0

˘ℓ
ż 1

0

cpxqℓ
Dpxqℓ`1

dx

¸
T “ B1,0v.

Thus, ˜ż 1

0

Dpxq´1 dx `
ÿ

ℓ“1

`
´B´α

0

˘ℓ
ż 1

0

cpxqℓ
Dpxqℓ`1

dx

¸
T “ Bα0 B1,0B´1

0 v.
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Now, without restriction we assume that ν has been chosen large enough such that

˜ż 1

0

Dpxq´1 dx`
ÿ

ℓ“1

`
´B´α

0

˘ℓ
ż 1

0

cpxqℓ
Dpxqℓ`1

dx

¸´1

“
ˆż 1

0

Dpxq´1 dx

˙´1
˜
1 `

ˆż 1

0

Dpxq´1 dx

˙´1 ÿ

ℓ“1

`
´B´α

0

˘ℓ
ż 1

0

cpxqℓ
Dpxqℓ`1

dx

¸´1

“
ˆż 1

0

Dpxq´1 dx

˙´1 8ÿ

k“0

˜
´
ˆż 1

0

Dpxq´1 dx

˙´1 ÿ

ℓ“1

`
´B´α

0

˘ℓ
ż 1

0

cpxqℓ
Dpxqℓ`1

dx

¸k

exists as a Neumann series expression. Substituting u :“ B´1
0 v we arrive at the asserted

limit expression. The proof is finished.

Before ending this section with a proof of Theorem 3.1, we recall [19, Lemma 4.1] (also see
[17, Lemma 3.2.2]) needed in the proof.

Lemma 4.4. Let H1, H2 be two Hilbert spaces, C : DpCq Ň H1 Ñ H2 be a densely

defined, closed linear operator. Assume that pDpCq, |¨|Cq ãÑ pH1, |¨|H1
q is compact. Then

pDpC˚q X NpC˚qK, |¨|C˚q ãÑ pH2, |¨|H2
q is compact.

Proof. The proof rests on the theorem of the polar decomposition [9, p.334] for densely
defined, closed operators.

Proof of Theorem 3.1. Since the domain of the operator Grad (Grad0, resp.) endowed
with the graph norm is assumed to be compactly embedded into L2pΩqn, we deduce with
the help of Lemma 4.4 the compactness of the embedding H1pAredq ãÑ H0pAredq. The
boundedness of `

MnpB´1
0 q

˘
n

“
ˆˆ

µn 0

0 pΠApCn ` DnBα0 qΠ˚
Aq´1

˙˙

n

in H8
w ensures the applicability of Corollary 4.2. The limit expression follows by a Neumann

series expansion similar to the one in the proof of Theorem 3.6 part 2.

5 The proof of Theorem 4.1 and the weak-strong
principle

The method to prove Theorem 4.1 is similar to the one used in the proof of [19, Theorem
3.5]. In order to follow this strategy here, we have to derive a stronger version of [19,
Theorem 2.4], the so-called ’weak-strong-principle’. In [19] the property of the material
laws being analytic at 0 was used. This assumption has to be weakened due to the fact
that fractional (time-)derivatives do not correspond to a material law being analytic at 0.
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5 The proof of Theorem 4.1 and the weak-strong principle

The strengthened weak-strong principle result Theorem 5.2 does not need this assumption
anymore. Consequently, the proof of Theorem 5.2 is completely different to the one in
[19]. In order to motivate Theorem 5.2, we recall a fact relating convergent material laws
and the convergence of the associated operators arising in the aforementioned functional
calculus for B´1

0 .

Lemma 5.1 ([18, Lemma 3.5]). Let H be a Hilbert space, ν ą 0, r ą 1
2ν

. Let pMnqn
be a bounded sequence in H8

w pBpr, rq;LpHqq converging to M P H8
w . Then pMnpB´1

0 qqn
converges in the weak operator topology of LpHν,0pR;Hqq to MpB´1

0 q.

In the light of the previous result one might wonder if pvnqn converges weakly in Hν,0pR;Hq
and pMnqn converges in H8

w that then also

lim
nÑ8

MnpB´1
0 qvn “ lim

nÑ8
MnpB´1

0 qw- lim
nÑ8

vn.

Easy examples show that this equality does not hold in general. Hence, suitable assump-
tions are needed to deduce such an equality. Our version of the weak-strong principle
reflects this fact.

Theorem 5.2 (weak-strong principle). Let H,H1 be Hilbert spaces, and such that H1 ãÑãÑ
H. Let ν0 ą 0, r ą 1{p2ν0q and pvnqn be a weakly convergent sequence in Hν0,1pR;H1q with

limit v P Hν0,1pR;H1q and assume that infnPN inf spt vn ą ´8. Let pMnqn be a bounded

and convergent sequence in H8
w pBpr, rq;LpHqq with limit M . Then for all ν ą ν0 and

f P Hν,´1pRq – Hν,1pRq˚ we have

fpMnpB´1
0 qvnq nÑ8á fpMpB´1

0 qvq P H.

Moreover, MnpB´1
0 qvn nÑ8á MpB´1

0 qv P Hν,1pR;Hq.

Remark 5.3. Note that from the assertion of Theorem 5.2 it also follows thatMnpB´1
0 qvn nÑ8á

MpB´1
0 qv P Hν0,1pR;Hq. Indeed, the assumptions in Theorem 5.2 guarantee that

`
MnpB´1

0 qvn
˘
n

is a bounded sequence in Hν0,1pR;Hq. Thus, we get weak convergence with the same ar-
gument as in Remark 3.2(c).

The proof of Theorem 5.2 needs some preliminaries. We need the concept of tensor products
of Hilbert spaces. As a general reference we refer to the monograph [22], a short overview
of the concepts needed is also given in [10, Section 1.2.3] or [17, Appendix B.1 and B.2].
We recall some notation. Let H,H1, H2 be Hilbert spaces. We denote the Hilbert space
tensor product of H1 and H2 by H1 b H2. For any densely defined closed linear operator
A : DpAq Ň H1 Ñ H2 we denote the canonical extension of A as a mapping from the
product space H b H1 to H b H2 by 1H b A. Similarly, write A b 1H for the respective
extension from H1 bH to H2 bH . Note that if H “ L2pµq for some σ-finite measure space
pΩ, µq then H b H1 – L2pµ;H1q. We use (and have used) this identification throughout
without further notice. A first elementary observation is the following.
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Lemma 5.4. Let H,H1, H2 be Hilbert spaces and assume that U : H1 Ñ H2 is unitary.

Let g P H˚
2 and denote the dual operator of U by U 1 : H˚

2 Ñ H˚
1 . Then the following

holds: If pvnqn is a sequence in H1 b H, v P H1 b H and such that for all f P H˚
1

we have pf b 1Hqpvnq á pf b 1Hqpvq P H as n Ñ 8, then pg b 1HqppU b 1Hqpvnqq á
pg b 1HqppU b 1Hqpvqq P H as n Ñ 8.

Proof. We have pgb1HqppUb1Hqpvnqq “ pU 1gb1Hqpvnq á pU 1gb1Hqpvq “ pgb1HqppUb
1Hqpvqq P H as n Ñ 8.

The second lemma relates weak convergence in Hν,0pR;Hq to pointwise (weak) convergence
of the Fourier-Laplace transforms.

Lemma 5.5. Let H be a Hilbert space, ν0 ą 0 and let pvnqn be a weakly convergent sequence

in Hν0,0pR;Hq with limit v. Assume, in addition, that s :“ infnPN inf spt vn ą ´8. Then

for t P R and ν ą ν0
Lνvnptq á Lνvptq P H pn Ñ 8q.

Moreover, pt ÞÑ Lνvnptqqn is bounded in CbpR;Hq, the space of bounded continuous func-

tions from R to H.

Proof. Note that due to the support constraint on the sequence pvnqn the sequence px ÞÑ
e´νxvnpxqqn “ px ÞÑ e´pν´ν0qxe´ν0xvnpxqqn is bounded in L1pR;Hq. This establishes the
second assertion. Furthermore, for φ P H , n P N, t P R,

xLνvnptq, φy “
B

1?
2π

ż

R

e´ixte´νxvnpxq dx, φ

F

“ 1?
2π

ż

R

@
e´ixte´νxvnpxq, φ

D
dx

“ 1?
2π

ż

R

@
vnpxq, eixte´pν´2ν0qxχRąs

pxqφ
D
e´2ν0x dx

“ xvn,
1?
2π
eip¨qte´pν´2ν0qp¨qχRąs

p¨qφyHν0,0
pR;Hq

nÑ8ÝÑ xv, 1?
2π
eip¨qte´pν´2ν0qp¨qχRąs

p¨qφyHν0,0
pR;Hq “ xLνvptq, φy.

Proof of Theorem 5.2. For the first assertion, by Lemma 5.4, it suffices to prove that

xg,Mn

ˆ
1

im` ν

˙
Lνvny á xg,M

ˆ
1

im ` ν

˙
Lνvy P H pn Ñ 8q

for all g P H´1pim ` νq “ H1pim ` νq˚. For this note that pLνvnqn weakly converges in
H1pim` νq bH1 by the unitarity of Lν , particularly, it is a bounded sequence in H1pim`
νq bH . The boundedness of

`
Mn

`
1

im`ν

˘˘
n

ensures the boundedness of
`
Mn

`
1

im`ν

˘
Lνvn

˘
n

in H1pim ` νq b H . Hence, we find a weakly convergent subsequence for which we re-use

29



5 The proof of Theorem 4.1 and the weak-strong principle

the indices n. It remains to identify the limit. For this, we deduce by Hν,1pR;H1q ãÑ
Hν,0pR;H1q and Lemma 5.5 that for all t P R the sequence pLνvnptqqn converges weakly to
Lνvptq in H1. The compact embedding H1 ãÑãÑ H gives strong convergence of pLνvnptqqn
to Lνvptq in H . Thus, for all t P R

Mn

ˆ
1

it ` ν

˙
Lνvnptq á M

ˆ
1

it ` ν

˙
Lνvptq P H.

Let g P H´1pim ` νqpŇ L1,locpRqq be bounded and with bounded support. Then by
Lebesgue’s dominated convergence theorem

B
g,Mn

ˆ
1

im ` ν

˙
Lνvn

F
“
ż

R

gptq˚ ¨Mn

ˆ
1

it` ν

˙
Lνvnptq dt

“
ż

R

ˆ
1

´it` ν
gptq

˙˚

Mn

ˆ
1

it ` ν

˙
pit ` νqLνvnptq dt

á
ż

R

ˆ
1

´it ` ν
gptq

˙˚

M

ˆ
1

it` ν

˙
pit` νqLνvptq dt P H,

as n Ñ 8 (Note that pt ÞÑ pit ` νqLνvnptqqn is locally bounded by Lemma 5.5.) The
density of bounded functions with bounded support in H´1pim ` νq identifies the limit of`
Mn

`
1

im`ν

˘
Lνvn

˘
n

being equal to M
`

1
im`ν

˘
Lνv.

The last assertion of Theorem 5.2 follows again with a subsequence argument: Let pnkqk be
a subsequence of pnqn. Then, since

`
Mnk

pB´1
0 qvnk

˘
k

is bounded in Hν,1pR;Hq, there exists
a weakly convergent subsequence, again denoted with the index sequence pnkqk. Denote
its limit by w P Hν,1pR;Hq. For t P R let δt P Hν,´1pRq be the evaluation functional at
t P R (δt is indeed an element of Hν,´1pRq due to a Sobolev embedding result, see e.g.
[10, Lemma 3.1.59] or [19, Remark 2.1(ii)]). Observing that δt maps weakly convergent
sequences in Hν,1pR;Hq to weakly convergent sequences in H , we arrive at

δt
`
Mnk

pB´1
0 qvnk

˘
á wptq P H

and, by our results above,

δt
`
Mnk

pB´1
0 qvnk

˘
á

`
MpB´1

0 qv
˘

ptq P H.

Hence, wptq “
`
MpB´1

0 qv
˘

ptq for all t P R. This shows the assertion.

There is yet another useful lemma helping to conclude the proof of Theorem 4.1:

Lemma 5.6. Let H be a Hilbert space, pfnqn a weakly convergent sequence in L2pR;Hq.
Assume, in addition, that fnptq á fptq in H for a.e. t P R and n Ñ 8. Then for all a P R
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and n P N, we have that

ż a

´8

|fnptq ´ fptq|2 dt ő 4 sup
nPN

ż a

´8

|fnptq|2 dt.

Proof. Let a P R and n P N. For almost every t P R we have the (standard) estimate
|fptq| ő lim infnÑ8|fnptq|. Hence, we get, employing Fatou’s lemma, that

ż a

´8

|fnptq ´ fptq|2 dt ő 2

ż a

´8

|fnptq|2 ` |fptq|2 dt

ő 2

ż a

´8

|fnptq|2 ` lim inf
nÑ8

|fnptq|2 dt

ő 2

ˆ
sup
nPN

ż a

´8

|fnptq|2 dt ` lim inf
nÑ8

ż a

´8

|fnptq|2 dt

˙

ő 4 sup
nPN

ż a

´8

|fnptq|2 dt.

Now, we have all the tools at hand to prove Theorem 4.1. The principle idea of the proof
is the same as in [19, Theorem 3.5]. Therefore, we will not go too much into the details
for the arguments already used in [19]. However, there are several adjustments needed to
conclude the proof of Theorem 4.1. We give the main ideas as follows.

Proof of Theorem 4.1. To begin with, let f P Hν,0pR;Hq and such that inf spt f ą ´8.
Now, let un P Hν,0pR;Hq solve

`
B0Mn

`
B´1
0

˘
` A

˘
un “ f. (5.1)

By causality, it follows that infnPN inf spt un ą ´8. Moreover, by Theorem 1.1 it follows
that punqn is a bounded sequence in Hν,0pR;Hq. Furthermore, from (5.1) we read off

Aun “ B0Mn

`
B´1
0

˘
un ` f P Hν,´1pR;Hq.

Thus, estimating the right-hand side and using the boundedness of punqn in Hν,0pR;Hq,
we deduce that

|Aun|Hν,´1pR;Hq “ |B0Mn

`
B´1
0

˘
un ` f |Hν,´1pR;Hq

ő |Mn

`
B´1
0

˘
un|Hν,0pR;Hq ` |f |Hν,´1pR;Hq

ő sup
nPN

∥

∥MnpB´1
0 q

∥

∥ sup
nPN

|un|Hν,0pR;Hq ` |f |Hν,´1pR;Hq

ă 8.

Thus, punqn is a bounded sequence in Hν,´1pR;H1pAqq. There is a weakly convergent
subsequence punk

qk in Hν,0pR;Hq X Hν,´1pR;H1pAqq with limit u. In consequence,
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5 The proof of Theorem 4.1 and the weak-strong principle

pB´2
0 unk

qk is a weakly convergent sequence in Hν,1pR;H1pAqq as B´2
0 is a unitary trans-

formation from Hν,´1pR;H1pAqq onto Hν,1pR;H1pAqq. Now, infn inf spt B´2
0 un ą ´8, by

causality of B´2
0 . Thus, by Theorem 5.2 and Remark 5.3, we get that Mnk

pB´1
0 qB´2

0 unk

kÑ8á
MpB´1

0 qB´2
0 u in Hν,1pR;Hq. Hence, using that B3

0 commutes with functions of B´1
0 and that

B3
0 can be considered as a unitary mapping from Hν,1pR;Hq to Hν,´2pR;Hq, we get that

w- limkÑ8 B0Mnk

`
B´1
0

˘
unk

“ B0M
`
B´1
0

˘
u in Hν,´2pR;Hq. Realizing that pAunk

qk weakly
converges to Au, we arrive at

`
B0M

`
B´1
0

˘
` A

˘
u “ f.

The well-posedness of the latter equation yields uniqueness of the limit of punk
qk. Thus,

punqn weakly converges in Hν,0pR;Hq. A density argument shows that
`
B0Mn

`
B´1
0

˘
` A

˘´1

converges in the weak operator topology of LpHν,0pR;Hqq to
`
B0M

`
B´1
0

˘
` A

˘´1
.

Let pfnqn be a weakly convergent sequence in Hν,0 XHν1,0pR;Hq for some ν ą ν1 ą 1{p2rq
satisfying the integrability condition given in the theorem. Denote its limit by f . Now, let
un P Hν,0pR;Hq solve `

B0Mn

`
B´1
0

˘
` A

˘
un “ fn.

Following an idea given in [12, proof of Lemma 3.2], we decompose un “ vn ` wn in the
way that vn and wn are the solutions of the respective equations

`
B0Mn

`
B´1
0

˘
` A

˘
vn “ f,

and `
B0Mn

`
B´1
0

˘
` A

˘
wn “ fn ´ f,

for all n P N.

We already know that pvnqn weakly converges to the solution u of the following problem

`
B0M

`
B´1
0

˘
` A

˘
u “ f.

We are left with showing that pwnqn (weakly) converges to 0. For this, observe that we
have that pB´2

0 wnqn is bounded in Hν,1pR;H1pAqq. Thus, there exists a weakly convergent
subsequence of pB´2

0 wnqn in Hν,1pR;H1pAqq. We re-use the index sequence pnqn for this
subsequence. Recall that, by the Sobolev embedding theorem (see e.g. [10, Lemma 3.1.59]
or [8, Lemma 5.2]), the operator δt of point evaluation at time t P R is a continuous
mapping from Hν,1pR;H1pAqq to H1pAq. Hence, δt maps weakly convergent sequences to
weakly convergent sequences. In particular, for every t P R the sequence pδt

`
B´2
0 wn

˘
qn “

pB´2
0 wnptqqn weakly converges in H1pAq. By compactness of the embedding H1pAq ãÑ

H0pAq “ H , weakly convergent sequences in H1pAq are mapped to strongly convergent
sequences in H0pAq. Hence, pB´2

0 wnptqqn strongly converges in H0pAq. Moreover, let C ą 0

be an upper bound for p|B´2
0 wn|ν,0qn.

For n P N, we compute with the help of the strict monotonicity of
`
B0Mn

`
B´1
0

˘
` A

˘
(recall
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Remark 1.2(b)) for a P R:

c|B´2
0 wn| ő |xpB0MnpB´1

0 q ` AqB´2
0 wn, B´2

0 wny|
“ |xB´2

0 pfn ´ fq, B´2
0 wny|

ő
ż a

´8

|B´2
0 pfn ´ fqptq||B´2

0 wnptq|e´2νt dt

`
ż 8

a

|xB´2
0 pfn ´ fqptq, B´2

0 wnptqy|e´2νt dt.

Further, we get with Lemma 5.6 applied to the sequence
`
e´ν¨B´2

0 fnp¨q
˘
n

that

ż a

´8

|B´2
0 pfn ´ fqptq||B´2

0 wnptq|e´2νt dt

ő |χp´8,aspm0qB´2
0 pfn ´ fq|ν,0|χp´8,aspm0qB´2

0 wn|ν,0

ő C|χp´8,aspm0qB´2
0 pfn ´ fq|ν,0

ő 2C sup
nPN

|χp´8,aspm0qB´2
0 χp´8,aspm0qfn|ν,0

ő 2C

ν2
sup
nPN

|χp´8,aspm0qfn|ν,0

where we also used causality of B´2
0 . The latter computations together with

ż 8

a

|xB´2
0 pfn ´ fqptq, B´2

0 wnptqy|e´2νt dt

“
ż 8

a

|xB´2
0 pfn ´ fqptqe´ν1t, B´2

0 wnptqe´ν1ty|e´2pν´ν1qt dt.

yield

c|B´2
0 wn| ő 2C

ν2
sup
nPN

|χp´8,aspm0qfn|ν,0

`
ż 8

a

|xB´2
0 pfn ´ fqptqe´ν1t, B´2

0 wnptqe´ν1ty|e´2pν´ν1qt dt. (5.2)

By [10, Lemma 3.1.59] or [8, Lemma 5.2], i.e., the continuity of the embedding

Hν1,1pR;Hq ãÑ Cν1pR;Hq :“ tf P CpR;Hq; sup
tPR

|fptqe´ν1t|H ă 8u,

the expression pt ÞÑ |B´2
0 pfn ´ fqptq|e´ν1t|B´2

0 wnptqe´ν1t|qn is uniformly bounded in both n
and t. Hence, by Lebesgue’s dominated convergence theorem, the last term on the right-
hand side in (5.2) tends to 0 for every given a P R. Thus, pwnqn converges to 0 since the
first term on the right-hand side in (5.2) tends to zero if a Ñ ´8.
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