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Optimal decay estimates for time-fractional and other
non-local subdiffusion equations via energy methods

Vicente Vergara∗ and Rico Zacher†

Abstract

We prove sharp estimates for the decay in time of solutions to a rather general class of
non-local in time subdiffusion equations on a bounded domain subject to a homogeneous
Dirichlet boundary condition. Important special cases are the time-fractional and ultraslow
diffusion equation, which have seen much interest during the last years, mostly due to their
applications in the modeling of anomalous diffusion. We study the case where the equation
is in divergence form with bounded measurable coefficients. Our proofs rely on energy
estimates and make use of a new and powerful inequality for integro-differential operators
of the form ∂t(k ∗ ·). The results can be generalized to certain quasilinear equations. We
illustrate this by looking at the time-fractional p-Laplace and porous medium equation.
Here it turns out that the decay behaviour is markedly different from that in the classical
parabolic case.

AMS subject classification: 45K05, 47G20, 35K92

Keywords: temporal decay estimates, time-fractional diffusion, ultraslow diffusion, subdiffusion
equations, weak solution, p-Laplacian, porous medium equation, comparison principle, energy
estimates, quasilinear equation, Tauberian theorem

1 Introduction and main results

Let Ω ⊂ RN be a bounded domain. We are interested in the long-time behaviour of solutions to
the non-local in time diffusion equation

∂t
(
k ∗ [u− u0]

)
− div

(
A(t, x)Du

)
= 0, t > 0, x ∈ Ω, (1)

subject to the Dirichlet boundary condition

u|∂Ω = 0, t > 0, x ∈ ∂Ω. (2)

Here u0 = u0(x) plays the role of the initial datum for u, that is

u|t=0 = u0, x ∈ ∂Ω. (3)

The kernel k ∈ L1, loc(R+) is given, and k ∗ v denotes the convolution on the positive halfline

R+ := [0,∞) w.r.t. the time variable, that is (k ∗ v)(t) =
∫ t

0 k(t − τ)v(τ) dτ , t ≥ 0. We assume
that k is a kernel of type PC, by which we mean that the following condition is satisfied.

∗The first author was partially supported by FONDECYT grant 1110033.
†The second author was supported by a Heisenberg fellowship of the German Research Foundation (DFG).
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(PC) k ∈ L1, loc(R+) is nonnegative and nonincreasing, and there exists a kernel l ∈ L1, loc(R+)
such that k ∗ l = 1 on (0,∞).

We also write (k, l) ∈ PC in this situation. From (k, l) ∈ PC it follows that l is completely
positive, see e.g. Theorem 2.2 in [4], in particular l is nonnegative.

Concerning the coefficients A = (aij) we merely assume measurability, boundedness, and a
uniform parabolicity condition, that is we assume that

(H) A ∈ L∞((0, T )× Ω;RN×N ) for all T > 0, and ∃ν > 0 such that
(
A(t, x)ξ|ξ

)
≥ ν|ξ|2, for a.a. (t, x) ∈ (0,∞)× Ω, and all ξ ∈ R

N .

An important example for a pair (k, l) ∈ PC is given by (k, l) = (g1−α, gα) with α ∈ (0, 1),
where gβ denotes the standard kernel

gβ(t) =
tβ−1

Γ(β)
, t > 0, β > 0.

In this case, (1) is an equation of fractional time order α ∈ (0, 1), often called time-fractional
diffusion equation for A = νI; here the term ∂t(k ∗ v) becomes the classical Riemann-Liouville
fractional derivative ∂αt v of the (sufficiently smooth) function v, see e.g. [12].

Another interesting example is given by the pair

k(t) =

∫ 1

0

gβ(t) dβ, l(t) =

∫ ∞

0

e−st

1 + s
ds, t > 0. (4)

In this case the operator ∂t(k ∗ ·) is a so-called operator of distributed order, see e.g. [13]. More
examples will be discussed in Section 6 below.

Equations of the form (1) appear in mathematical physics in the context of anomalous dif-
fusion processes, see e.g. [13], [14], [17], [21]. Let us consider for a moment the situation where
Ω = RN and A = I. Denote by Z(t, x) the fundamental solution of (1) with Z(0, x) = δ(x).
For k as in the previous examples it is known that Z(t, ·) is a probability density function for
all t > 0. An important quantity that describes how fast particles diffuse and which can be
measured in experiments is the mean square displacement which is defined as

m(t) =

∫

RN

|x|2Z(t, x) dx, t > 0.

In the case of the classical diffusion equation (i.e. α = 1) m(t) = ct, t > 0 with some constant
c > 0. In the time-fractional diffusion case (i.e. the first example) one observes that m(t) = ctα

(cf. [17]), which shows that the diffusion is slower than in the classical case of Brownian motion.
In the second example, m(t) behaves like c log t for t→ ∞, see [13]. In this case (1) describes a
so-called ultraslow diffusion process.

Another context where equations of the form (1) and nonlinear variants of them arise is the
modelling of dynamic processes in materials with memory. Examples are given by the theory of
heat conduction with memory, see [20] and the references therein, and the diffusion of fluids in
porous media with memory, see [3], [10].

One of the main goals of this paper is to prove sharp decay estimates for suitably defined
solutions to (1)–(3). Among others, it turns out that the L2(Ω)-norm of u decays algebraically
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like ct−α in the first example, whereas in the ultraslow diffusion example it behaves like c(log t)−1

for t→ ∞. Recall that in the classical case one has an exponential decay (as Ω is assumed to be
bounded). These decay rates reflect, like the mean square displacement, the different degrees of
slowness of diffusion in these examples.

To motivate our first main result, let us consider the special case A(t, x) = I, that is the
equation

∂t
(
k ∗ [u− u0]

)
−∆u = 0, t > 0, x ∈ Ω, (5)

together with (2) and (3). Assume that u0 ∈ L2(Ω). Let {φn}
∞
n=1 ⊂ °H1

2 (Ω) be an orthonormal
basis of L2(Ω) consisting of eigenfunctions of the negative Dirichlet Laplacian with eigenvalues
λn > 0, n ∈ N. Denote by λ1 the smallest such eigenvalue. For µ ≥ 0 define the relaxation
function sµ on [0,∞) as the solution of the Volterra equation

sµ(t) + µ(l ∗ sµ)(t) = 1, t ≥ 0. (6)

Note that s0 ≡ 1 and that (6) is equivalent to the integro-differential equation

d

dt
(k ∗ [sµ − 1]) (t) + µsµ(t) = 0, t > 0, sµ(0) = 1.

It is known that the assumption (k, l) ∈ PC implies that sµ is nonnegative, nonincreasing, and
that sµ ∈ H1

1, loc(R+); moreover ∂µsµ(t) ≤ 0, see e.g. Prüss [20]. The solution u can now be
represented via Fourier series as

u(t, x) =

∞∑

n=1

sλn
(t) (u0|φn)φn(x), t ≥ 0, x ∈ Ω, (7)

where (·|·) denotes the standard inner product in L2(Ω), cf. [18, Theorem 4.1] for the special
case k = g1−α. By Parseval’s identity and since ∂µsµ ≤ 0, it follows from (7) that

|u(t, ·)|2L2(Ω) =

∞∑

n=1

s2λn
(t) |(u0|φn)|

2

≤ s2λ1
(t)

∞∑

n=1

|(u0|φn)|
2

= s2λ1
(t)|u0|

2
L2(Ω),

and thus
|u(t, ·)|L2(Ω) ≤ sλ1

(t)|u0|L2(Ω), t ≥ 0. (8)

This decay estimate is optimal as the example u0 = φ1 with solution u(t, x) = sλ1
(t)φ1(x) shows.

To our knowledge the estimate (8) for solutions of (5) seems to be new in the case of a general
kernel k enjoying property (PC). The special case k = g1−α can already be found in [16] and [18,
Corollary 4.1]. Concerning the long-time behaviour of solutions to abstract linear and nonlinear
Volterra equations we also refer to [1], [4], [20], and [19] and the references given therein.

One of the purposes of this paper is to generalize the decay estimate (8) to the weak setting
with an operator in divergence form as described as above.
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Let u0 ∈ L2(Ω). We say that a function u is a weak solution (subsolution, supersolution) of
(1)–(3) on ΩT := (0, T )× Ω if u belongs to the space

V (T ) := { v ∈ L2([0, T ]; °H1
2 (Ω)) such that

k ∗ v ∈ C([0, T ];L2(Ω)), and (k ∗ v)|t=0 = 0},

and for any nonnegative test function

η ∈ °H1,1
2 (ΩT ) = H1

2 ([0, T ];L2(Ω)) ∩ L2([0, T ]; °H1
2 (Ω))

(
°H1
2 (Ω) := C∞

0 (Ω)H
1
2 (Ω)

)

with η|t=T = 0 there holds

∫ T

0

∫

Ω

(
− ηt

(
k ∗ [u− u0]

)
+ (ADu|Dη)

)
dx dt = (≤, ≥) 0.

We say that a function u : (0,∞)×Ω → R is a global weak solution (subsolution, supersolution) of
(1)–(3) if for any T > 0 the restriction u|(0,T )×Ω is a weak solution (subsolution, supersolution)
of (1)–(3) on (0, T )× Ω.

We remark that existence and uniqueness of a global weak solution to (1)–(3) under the
above assumptions follow from the results in [28]. Observe that u ∈ V (T ) does not imply
u ∈ C([0, T ];L2(Ω)) in general, so it is not so clear how to interpret the initial condition.
However, once one knows that the functions u and k ∗ (u − u0) are sufficiently smooth, then
u|t=0 = u0 is satisfied in an appropriate sense (see [28]). We further mention that for any weak
solution of (1)–(3) on (0, T ) × Ω we also have d

dt (k ∗ (u − u0)) ∈ L2([0, T ];H
−1
2 (Ω)), where the

time derivative has to be understood in the generalized sense and H−1
2 (Ω)) denotes the dual

space of °H1
2 (Ω), see [28].

Notice also that under the above assumptions the weak maximum principle is valid and takes
the same form as in the classical parabolic case (see [26]). Thus the global weak solution u of
(1)–(3) satisfies

ess inf
Ω

u0 ≤ u(t, x) ≤ ess sup
Ω

u0, for a.a. (t, x) ∈ (0,∞)× Ω, (9)

provided u0 ∈ L∞(Ω). We also refer to [15] for a different proof of the maximum principle in the
more special situation of strong solutions to the time-fractional diffusion equation. We further
remark that in the special case k = g1−α with α ∈ (0, 1) Hölder continuity of the weak solution
to (1)–(3) with u0 ∈ L∞(Ω) has been established recently in [25], see also [27].

Denoting by y+ and y− := [−y]+ the positive and negative part, respectively, of y ∈ R, our
first main result concerning (1)–(3) reads as follows.

Theorem 1.1 Let u0 ∈ L2(Ω) and suppose that the conditions (H) and (PC) are satisfied. Then
for any global weak subsolution (supersolution) u of (1)–(3), there holds

∣∣u+(−)(t, ·)
∣∣
L2(Ω)

≤ sνλ1
(t)
∣∣[u0]+(−)

∣∣
L2(Ω)

, a.a. t > 0.

As a direct consequence we obtain
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Corollary 1.1 Let u0 ∈ L2(Ω) and assume that the conditions (H) and (PC) are fulfilled. Then
the global weak solution u of (1)–(3) satisfies the estimate

|u(t, ·)|L2(Ω) ≤ sνλ1
(t) |u0|L2(Ω), a.a. t > 0. (10)

These decay estimates are again optimal as the special case A = νI shows, in fact specializing
further to ν = 1 we recover the estimate (8).

We would like to point out that even though (1) is linear, Theorem 1.1 and Corollary 1.1
are nonlinear results. For example one could think of A(t, x) = A0(t, x, u(t, x)) with some
appropriate nonlinear function A0. It is further possible to extend these results without much
effort to quasilinear equations of the form

∂t
(
k ∗ [u− u0]

)
− divA(t, x, u,Du) = 0, t > 0, x ∈ Ω,

where A satisfies suitable measurability and structure conditions, in particular

(A(t, x, u,Du)|Du) ≥ ν|Du|2 with some ν > 0.

To illustrate this aspect, we mention a quasilinear time-fractional problem with Dirichlet bound-
ary condition which has been studied recently in [27], where A(t, x) = A(u(t, x)). There it was
shown that the L2-norm of the solution decays at least like t−α/2. Applying Corollary 1.1 not
only improves this estimate, but also provides the optimal result which says that |u(t, ·)|2 decays
like t−α.

The proof of Theorem 1.1 is based on suitable energy estimates and a new and extremely
useful inequality for integro-differential operators of the form ∂t(k ∗ ·) we will refer to as the
Lp-norm inequality for ∂t(k ∗ ·), see Section 3 below. For p = 2 and k = g1−α with α ∈ (0, 1) it
takes the form

|u(t)|L2(Ω)∂
α
t

(
|u(·)|L2(Ω) − |u0|L2(Ω)

)
(t) ≤

∫

Ω

u(t, x) ∂αt (u− u0)(t, x) dx, a.a. t ∈ (0, T ), (11)

for all u0 ∈ L2(Ω) and all sufficiently smooth functions u : [0, T ]× Ω → R. Once (11) is known,
it is quite straightforward to prove the desired decay rate for solutions in the time-fractional case
by formal estimates. In fact, testing the PDE with u, integrating over Ω, and using A ≥ νI as
well as Poincaré’s inequality gives

∫

Ω

u ∂αt (u− u0) dx+ νλ1

∫

Ω

|u|2 dx ≤ 0, t > 0.

By (11) this implies

|u(t)|L2(Ω)∂
α
t

(
|u(·)|L2(Ω) − |u0|L2(Ω)

)
(t) + νλ1|u(t)|

2
L2(Ω) ≤ 0, t > 0.

Assuming |u(t)|L2(Ω) > 0 we thus obtain the fractional differential inequality

∂αt
(
|u|L2(Ω) − |u0|L2(Ω)

)
(t) + νλ1|u(t)|L2(Ω) ≤ 0, t > 0,

which implies (10), by a comparison principle argument (see Section 2.3 below). To give a
rigorous proof of Theorem 1.1, which is on sub- and supersolutions in the weak setting, requires
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much more effort. In particular the problem has to be regularized in time suitably in order to
justify the application of the so-called fundamental identity for operators of the form ∂t(k ∗ ·)
(see (15) below), which is the basic tool for deriving a priori estimates for equations of the form
(1) (cf. [26]) and also the key ingredient in the proof of the Lp-norm inequality.

Our techniques also apply to other types of non-local in time subdiffusion equations. In the
present paper we also consider the time-fractional p-Laplace equation

∂αt (u− u0)−∆pu = 0 in R+ × Ω,

u|∂Ω = 0 at R+ × ∂Ω,

u|t=0 = u0 in Ω,

where α ∈ (0, 1) and 1 < p < ∞. It is well known that in the classical case α = 1, solutions
decay algebraically as t → ∞ if p > 2, whereas for p < 2 one has the phenomenon of extinction
in finite time ([5]). It turns out that in the time-fractional case solutions decay algebraically like
t−

α
p−1 in the whole range of p, see Theorem 8.1; our results indicate that extinction in finite time

does not occur anymore, at least if p > 2N
N+2 . This interesting phenomenon is due to the slowness

of the diffusion in the case α < 1. A corresponding result can be shown for the time-fractional
porous medium equation, see Theorem 9.1.

The paper is organized as follows. In Section 2 we collect some preliminary results on oper-
ators of the type ∂t(k ∗ ·) and related Volterra integral equations. In particular we prove rather
general comparison results for these equations, which seem to be new and are interesting in its
own right. Section 3 is devoted to the Lp-norm inequality and several variants of it. In Section
4 we derive a subsolution inequality for the positive part of a subsolution to (1)–(3). This is an
important step in our proof of Theorem 1.1, which is completed in Section 5. In Section 6 we
illustrate our results by looking at several examples of pairs of kernels (k, l) ∈ PC. We will see
that this class of kernels is quite rich in that the solutions may exhibit a very different kind of
decay like e.g. exponential, algebraic, or logarithmic decay. We obtain sharp decay rates, making
use of results on the Laplace transform and the Karamata-Feller Tauberian theorem. In Section
7 we discuss the asymptotic behaviour of the solution to the nonlinear time-fractional differential
equation

∂αt (u− u0) + νuγ = 0, t ≥ 0, u(0) = u0 > 0,

where α ∈ (0, 1) and ν, γ > 0. This equation is fundamental for deriving optimal decay estimates
for the quasilinear problems studied in the last two sections, Sections 8 and 9, which are concerned
with the time-fractional p-Laplace and porous medium equation, respectively.

2 Preliminaries

2.1 Regularization of the kernel

Let (k, l) ∈ PC. For µ > 0 let hµ ∈ L1,loc(R+) denote the resolvent kernel associated with µl,
that is we have

hµ(t) + µ(hµ ∗ l)(t) = µl(t), t > 0, µ > 0. (12)

Note that hµ = −ṡµ ∈ L1, loc(R+), in particular hµ is nonnegative. It is well-known that for any
f ∈ Lp([0, T ]), 1 ≤ p <∞, there holds hn ∗ f → f in Lp([0, T ]) as n→ ∞, see e.g. [26].

6



For µ > 0 we set
kµ = k ∗ hµ. (13)

It is known (see e.g. [26]) that kµ = µsµ, µ > 0, and thus the kernels kµ are also nonnegative
and nonincreasing, and they belong to H1

1 ([0, T ]) for any T > 0.
The following lemma, which can be found in [26], provides an equivalent weak formulation

where the singular kernel k appearing in the integro-differential operator w.r.t. time is approxi-
mated by a more regular kernel.

Lemma 2.1 Let u0 ∈ L2(Ω) and suppose that the conditions (H) and (PC) are satisfied. Then
u ∈ V (T ) is a weak solution (subsolution, supersolution) of (1)–(3) on ΩT if and only if for any
nonnegative function ψ ∈ °H1

2 (Ω) there holds

∫

Ω

(
ψ∂t[kn ∗ (u − u0)] +

(
hn ∗ [ADu]|Dψ

))
dx = (≤, ≥) 0, a.a. t ∈ (0, T ), n ∈ N. (14)

2.2 The fundamental identity

We next state a fundamental identity for integro-differential operators of the form ∂t(k ∗ ·), cf.
also [26], [25]. It can be viewed as the analogue to the chain rule (H(u))′ = H ′(u)u′.

Lemma 2.2 Let T > 0 and U be an open subset of R. Let further k ∈ H1
1 ([0, T ]), H ∈ C1(U),

and u ∈ L1([0, T ]) with u(t) ∈ U for a.a. t ∈ (0, T ). Suppose that the functions H(u), H ′(u)u,
and H ′(u)(k̇ ∗ u) belong to L1([0, T ]) (which is the case if, e.g., u ∈ L∞([0, T ])). Then we have
for a.a. t ∈ (0, T ),

H ′(u(t))
d

dt
(k ∗ u)(t) =

d

dt

(
k ∗H(u)

)
(t) +

(
−H(u(t)) +H ′(u(t))u(t)

)
k(t)

+

∫ t

0

(
H(u(t− s))−H(u(t))−H ′(u(t))[u(t− s)− u(t)]

)
[−k̇(s)] ds. (15)

The lemma follows from a straightforward computation. In particular identity (15) applies to
the regularized operator u 7→ ∂t(kn ∗ u) from above. We remark that an integrated version of
(15) can be found in [9, Lemma 18.4.1]. Observe that (15) remains valid for singular kernels k,
like e.g. k = g1−α with α ∈ (0, 1), provided that u is sufficiently smooth.

The special case H(y) = 1
2y

2 extends to the Hilbert space setting. The following lemma can
be found in [23].

Lemma 2.3 Let T > 0 and H be a real Hilbert space with inner product 〈·, ·〉H. Then for any
k ∈ H1

1 ([0, T ]) and any u ∈ L2([0, T ];H) there holds

〈
u(t),

d

dt
(k ∗ u)(t)

〉
H

=
1

2

d

dt
(k ∗ |u|2H)(t) +

1

2
k(t)|u(t)|2H

+
1

2

∫ t

0

|u(t)− u(t− s)|2H[−k̇(s)] ds, a.a. t ∈ (0, T ).
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2.3 Auxiliary results on Volterra equations

Lemma 2.4 Let (k, l) ∈ PC, µ > 0, and T > 0. Let fn ∈ L1([0, T ]), n ∈ N, and denote by
vn ∈ L1([0, T ]) the solution of

∂t(kn ∗ w)(t) + µw(t) = fn(t), a.a. t ∈ (0, T ),

where kn is defined as in (13). Suppose that fn → f in L1([0, T ]). Then vn → v in L1([0, T ]),
where v solves the equation

v(t) + µ(l ∗ v)(t) = (l ∗ f)(t), a.a. t ∈ (0, T ).

Proof. a) Note first that for any w, f̃ ∈ L1([0, T ]),

∂t(kn ∗ w) = f̃ , a.e. in (0, T )

is equivalent to

w =
1

n
f̃ + l ∗ f̃ , a.e. in (0, T ).

This can be easily seen, e.g., with the aid of the Laplace transform.
b) Using a) with f̃ = fn − µvn we see that

vn + µl ∗ vn =
1

n
fn + l ∗ fn −

µ

n
vn =: Fn,

which gives
vn = Fn − hµ ∗ Fn. (16)

On the other hand we have
v = l ∗ f − hµ ∗ l ∗ f. (17)

c) Subtracting (17) from (16) and taking the L1([0, T ])-norm we obtain

|vn − v|1 ≤ |l ∗ (fn − f)|1 +
1

n

(
|fn|1 + |hµ ∗ fn|1

)
+ |hµ ∗ l ∗ (fn − f)|1

+
µ

n
|vn − v|1 +

µ

n
|v|1 +

µ

n
|hµ ∗ (vn − v)|1 +

µ

n
|hµ ∗ v|1.

We may now use Young’s inequality for convolutions and absorb, for large n, the terms on the
right-hand side that involve (vn − v)-factors to conclude that vn → v in L1([0, T ]). �

Lemma 2.5 Let (k, l) ∈ PC, µ ≥ 0, and T > 0. Let n ∈ N and kn be defined as in (13). Suppose
further that u, v, f ∈ L1([0, T ]) are such that

∂t(kn ∗ u) + µu ≤ f, a.e. in (0, T );

∂t(kn ∗ v) + µv ≥ f, a.e. in (0, T ).

Then u ≤ v a.e. in (0, T ).
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Proof. From the assumptions it follows immediately that

∂t(kn ∗ [u− v]) + µ(u − v) ≤ 0, a.e. in (0, T ).

We multiply this inequality with (u− v)+ and apply the fundamental identity (15) with H(y) =
1
2 (y+)

2. This gives

1

2
∂t(kn ∗ [u− v]2+) + µ[u− v]2+ ≤ 0, a.e. in (0, T ). (18)

Next, we apply the positive operator ( 1n + l∗) to (18), thereby getting (cf. step a) in the proof of
Lemma 2.4) that

(u− v)2+ + µ(
1

n
+ l∗)(u− v)2+ ≤ 0, a.e. in (0, T ),

which in turn implies the assertion. �

We also need the following nonlinear comparison result with a singular kernel.

Lemma 2.6 Let T > 0, (k, l) ∈ PC, and f ∈ C(R). Assume that f is nondecreasing. Suppose
that v, w ∈ H1

1 ([0, T ]) satisfy v(0) ≤ w(0) and

∂t
(
k ∗ [v − v(0)]

)
+ f(v) ≤ 0, a.a. t ∈ (0, T ),

∂t
(
k ∗ [w − w(0)]

)
+ f(w) ≥ 0, a.a. t ∈ (0, T ).

Then v(t) ≤ w(t) for all t ∈ [0, T ].

Proof. Subtracting the second from the first inequality yields

∂t
(
k ∗ [v − w]

)
+ f(v)− f(w) ≤

(
v(0)− w(0)

)
k(t) ≤ 0.

We convolve this inequality with the positive kernel hn with n ∈ N (see (12) for its definition).
Since k ∗ (v − w)(0) = 0 and using kn = hn ∗ k we obtain

∂t
(
kn ∗ [v − w]

)
+ hn ∗

(
f(v)− f(w)

)
≤ 0.

Next, we multiply by (v − w)+ and apply the fundamental identity as in the previous proof to
get

1

2
∂t
(
kn ∗ (v − w)2+

)
+
[
hn ∗

(
f(v)− f(w)

)]
(v − w)+ ≤ 0.

Convolving with the positive kernel l then yields

1

2
hn ∗ (v − w)2+ + l ∗

([
hn ∗

(
f(v)− f(w)

)]
(v − w)+

)
≤ 0.

We now send n→ ∞ and select an appropriate subsequence, if necessary, to infer that

1

2
(v − w)2+ + l ∗

([
f(v)− f(w)

]
(v − w)+

)
≤ 0. (19)

Since f is nondecreasing, the second term is nonnegative, and thus (19) implies (v − w)+ = 0,
that is v ≤ w in [0, T ]. �
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Remark 2.1 The last result remains true for weak sub- and supersolutions, that is for v, w ∈
L1([0, T ]) with k ∗ v ∈ C([0, T ]), k ∗ w ∈ C([0, T ]), f(v), f(w) ∈ L1([0, T ]), and for v0 ≤ w0

satisfying

∫ T

0

(
−ϕ̇
(
k ∗ [v − v0]

)
+ ϕf(v)

)
dt ≤ 0,

∫ T

0

(
−ϕ̇
(
k ∗ [w − w0]

)
+ ϕf(w)

)
dt ≥ 0,

for all nonnegative ϕ ∈ H1
1 ([0, T ]) with ϕ(T ) = 0. In this situation one has v(t) ≤ w(t) for a.a.

t ∈ (0, T ).

2.4 A version of the Karamata-Feller Tauberian theorem

The asymptotic behaviour of a function w(t) as t → ∞ can be determined, under suitable
conditions, by looking at the behaviour of its Laplace transform ŵ(z) as z → 0, and vice versa.
An important situation where such a correspondence holds is described by the Karameter-Feller
Tauberian theorem. We state a special case of it, which suffices for our purposes. See the
monograph [8] for a more general version and proofs.

Theorem 2.1 Let L : (0,∞) → (0,∞) be a function that is slowly varying at ∞, that is, for
every fixed x > 0 we have L(tx)/L(t) → 1 as t → ∞. Let β > 0 and w : (0,∞) → R be a
monotone function whose Laplace transform ŵ(z) exists for all z ∈ C+ := {λ ∈ C : Reλ > 0}.
Then

ŵ(z) ∼
1

zβ
L

(
1

z

)
as z → 0 if and only if w(t) ∼ gβ(t)L(t) as t→ ∞.

Here the approaches are on the positive real axis and the notation f(t) ∼ g(t) as t → t∗ means
that limt→t∗ f(t)/g(t) = 1.

3 The Lp-norm inequality

The following inequality seems to be new and is the key inequality to obtain, among others, sharp
Lp-norm decay estimates for various types of linear and nonlinear integro-differential equations
involving an operator ∂t(k ∗ ·).

In what follows we use the convention that y|y|−β is equal to 0 for y = 0 whenever β ∈ (0, 1).

Lemma 3.1 Let 1 < p <∞, T > 0, and Ω be an arbitrary measurable subset of RN . Let further
k ∈ H1

1 ([0, T ]) be nonnegative and nonincreasing. Then for any u ∈ Lp([0, T ];Lp(Ω)) there holds

|u(t)|p−1
Lp(Ω)∂t

(
k ∗ |u(·)|Lp(Ω)

)
(t) ≤

∫

Ω

|u|p−2u ∂t(k ∗ u)(t) dx, a.a. t ∈ (0, T ).
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Proof. Let H(y) = 1
p |y|

p, y ∈ R. Then H ′(y) = |y|p−2y and thus by the fundamental identity,
Fubini’s theorem, and Hölder’s inequality we have
∫

Ω

|u|p−2u∂t(k ∗ u) dx =
1

p

∫

Ω

∂t(k ∗ |u|
p) dx+

∫

Ω

(
−

1

p
|u|p + |u|p

)
k(t) dx

+

∫

Ω

∫ t

0

(
1

p
|u(t− s, x)|p −

1

p
|u(t, x)|p

)
[−k̇(s)] ds dx

−

∫

Ω

∫ t

0

(
|u(t, x)|p−2u(t, x)[u(t− s, x)− u(t, x)]

)
[−k̇(s)] ds dx

=
1

p
∂t(k ∗ |u(·)|

p
p) +

(
−
1

p
|u(t)|pp + |u(t)|pp

)
k(t)

+

∫ t

0

(
1

p
|u(t− s)|pp −

1

p
|u(t)|pp + |u(t)|pp

)
[−k̇(s)] ds

−

∫ t

0

(∫

Ω

(
|u(t, x)|p−2u(t, x)u(t− s, x) dx

))
[−k̇(s)]ds

≥ ∂t
(
k ∗H(|u(·)|p)

)
+ (−H(|u(t)|p) +H ′(|u(t)|p)|u(t)|p) k(t)

+

∫ t

0

(H(|u(t− s)|p)−H(|u(t)|p)) [−k̇(s)] ds

−

∫ t

0

(
H ′(|u(t)|p)

(
|u(t− s)|p − |u(t)|p

))
[−k̇(s)] ds

= H ′(|u(t)|p)∂t
(
k ∗ |u(·)|p) = |u(t)|p−1

p ∂t
(
k ∗ |u(·)|p

)
.

This proves the lemma. �

Corollary 3.1 Let 1 < p < ∞, T > 0, and Ω be an arbitrary measurable subset of RN . Let
further k ∈ H1

1 ([0, T ]) be nonnegative and nonincreasing. Then for any u0 ∈ Lp(Ω) and any
u ∈ Lp([0, T ];Lp(Ω)) there holds

|u(t)|p−1
Lp(Ω)∂t

(
k ∗
(
|u(·)|Lp(Ω) − |u0|Lp(Ω)

))
(t) ≤

∫

Ω

|u|p−2u ∂t
(
k ∗ [u− u0]

)
(t) dx,

for a.a. t ∈ (0, T ).

Proof. By Lemma 3.1 and Hölder’s inequality we have for a.a. t ∈ (0, T )

∫

Ω

|u|p−2u ∂t
(
k ∗ [u− u0]

)
dx =

∫

Ω

|u|p−2u ∂t(k ∗ u) dx− k(t)

∫

Ω

|u|p−2uu0 dx

≥ |u(t)|p−1
p ∂t

(
k ∗ |u(·)|p

)
(t)− k(t)|u(t)|p−1

p |u0|p

= |u(t)|p−1
p ∂t

(
k ∗
(
|u(·)|p − |u0|p

))
(t).

This proves the corollary. �

Observe that for sufficiently smooth functions u the statements of Lemma 3.1 and Corollary
3.1 remain valid for kernels k which are allowed to be singular at 0; an important example is
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given by k = g1−α with α ∈ (0, 1), which leads to an Lp-norm inequality for ∂αt . Lemma 3.1
and Corollary 3.1 also extend to arbitrary positive measures on RN . For illustrative purposes
and future reference, let us state a version of Corollary 3.1 for functions u(t) taking values in the
sequence space lp(N), endowed with the norm |x|lp = (

∑∞

n=1 |xn|
p)1/p.

Lemma 3.2 Let 1 < p < ∞, T > 0, and k ∈ H1
1 ([0, T ]) be nonnegative and nonincreasing.

Then for any sequence u0 = {(u0)n}
∞
n=1 ∈ lp(N) and any function u ∈ Lp([0, T ]; lp(N)) there

holds with u(t) = {(u(t))n}
∞
n=1

|u(t)|p−1
lp

∂t
(
k ∗
(
|u(·)|lp − |u0|lp

))
(t) ≤

∞∑

n=1

|(u(t))n|
p−2(u(t))n ∂t

(
k ∗ [un − (u0)n]

)
(t),

for a.a. t ∈ (0, T ).

The next result generalizes the case p = 2 in Corollary 3.1 to the Hilbert space setting. It follows
directly from Lemma 2.3.

Lemma 3.3 Let H be a real Hilbert space and T > 0. Let k ∈ H1
1 ([0, T ]) be nonnegative and

nonincreasing. Then for any u0 ∈ H and u ∈ L2([0, T ];H) we have

|u(t)|H∂t
(
k ∗
(
|u(·)|H − |u0|H

))
(t) ≤

〈
u(t),

d

dt
(k ∗ [u− u0])(t)

〉
H
, a.a. t ∈ (0, T ).

4 On the positive part of a subsolution

Lemma 4.1 Let u0 ∈ L2(Ω) and assume that (H) is satisfied. Let u ∈ V (T ) be a weak subsolu-
tion (supersolution) of (1)–(3) on ΩT . Then for any nonnegative ψ ∈ °H1

2 (Ω) there holds

∫

Ω

(
ψ∂t
[
kn ∗ (u+(−) − [u0]+(−))

]
+
(
hn ∗ (AD[u+ (−)])|Dψ

))
dx ≤ 0, a.a. t ∈ (0, T ), n ∈ N.

Proof. Suppose u ∈ V (T ) is a weak subsolution of (1)–(3) on ΩT . For ε > 0, define

Hε(y) =

{
(y2 + ε2)

1
2 − ε : y > 0

0 : y ≤ 0.

Clearly Hε ∈ C1(R) and H ′
ε ∈ W 1

∞(R). Indeed

H ′
ε(y) =

y

(y2 + ε2)
1
2

, H ′′
ε (y) =

ε2

(y2 + ε2)
3
2

, y > 0.

In particular, Hε is convex.
Let η ∈ °H1,1

2 (ΩT ) ∩ L∞(ΩT ) be a nonnegative function with η|t=T = 0. For t ∈ (0, T ) , we
take in (14) the test function ψ = H ′

ε(u)η, which is admissible, by boundedness of H ′
ε and H ′′

ε .
We have

Dψ = ηH ′′
ε (u)Du +H ′

ε(u)Dη,

12



and thus the resulting inequality can be written as

∫

Ω

(
ηH ′

ε(u)∂t(kn ∗ u) +
(
hn ∗ [ADu]|ηH ′′

ε (u)Du+H ′
ε(u)Dη

))
dx

≤

∫

Ω

ηH ′
ε(u)kn(t)u0 dx, (20)

for a.a. t ∈ (0, T ) and any n ∈ N.
By the fundamental identity (15) and convexity of Hε, we have pointwise a.e.

H ′
ε(u)∂t(kn ∗ u) ≥ ∂t

(
kn ∗Hε(u)

)
+
(
−Hε(u) +H ′

ε(u)u
)
kn(t)

≥ ∂t
(
kn ∗Hε(u)

)
. (21)

Here we also used convexity of Hε to deduce that

−Hε(y) +H ′
ε(y)y ≥ −Hε(0) = 0, y ∈ R.

Combining (20) and (21), and using that u0 ≤ [u0]+, we obtain

∫

Ω

(
η∂t
(
kn ∗Hε(u)

)
+
(
hn ∗ [ADu]|ηH ′′

ε (u)Du+H ′
ε(u)Dη

))
dx

≤

∫

Ω

ηH ′
ε(u)kn(t)[u0]+ dx, (22)

for a.a. t ∈ (0, T ) and any n ∈ N. We integrate (22) over (0, T ), and then integrate by parts
w.r.t. time. Sending n→ ∞ in the resulting inequality and using the approximation property of
the kernels hn yields

∫ T

0

∫

Ω

(
− ηt

(
k ∗Hε(u)

)
+
(
ADu|ηH ′′

ε (u)Du+H ′
ε(u)Dη

))
dx dt

≤

∫ T

0

∫

Ω

ηH ′
ε(u)k(t)[u0]+ dx dt. (23)

By positivity of H ′′
ε (u) and the parabolicity assumption on A, the term (ADu|ηH ′′

ε (u)Du) is
nonnegative and thus can be dropped in (23). We then send ε → 0 and use that Hε(y) → y+
and that H ′

ε(y) → χ(0,∞)(y) for all y ∈ R, thereby obtaining

∫ T

0

∫

Ω

(
− ηt(k ∗ u+)

)
dx dt+

∫ T

0

∫

Ω+(t)

(ADu|Dη) dx dt ≤

∫ T

0

∫

Ω

ηk(t)[u0]+ dx dt, (24)

where we set Ω+(t) = {x ∈ Ω : u(t, x) > 0}, t ∈ (0, T ). Note that for any t ∈ (0, T ), we have
D[u(t, x)]+ = Du(t, x)χΩ+(t)(x), a.a. x ∈ Ω. Using this fact and integrating by parts w.r.t. time
in the integral on the left-hand side of (24), it follows that

∫ T

0

∫

Ω

(
− ηt

(
k ∗ (u+ − [u0]+)

)
+
(
AD[u+]|Dη

))
dx dt ≤ 0, (25)
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for all η ∈ °H1,1
2 (ΩT ) ∩ L∞(ΩT ). By means of an approximation argument that makes use of

truncations, it is not difficult to see that (25) even holds true for all η ∈ °H1,1
2 (ΩT ).

Finally, we may argue exactly as in the proof of Lemma 3.1 in [26] to deduce from (25) the
assertion in the subsolution case.

If u is a weak supersolution, then −u is a weak subsolution of the same problem with u0
replaced by −u0, and thus the assertion in the supersolution case follows from the one in the
subsolution case. �

5 Proof of Theorem 1.1 and Corollary 1.1

Proof of Theorem 1.1. Let T > 0. Suppose u ∈ V (T ) is a weak subsolution of (1)–(3) on ΩT .
Let ε > 0 and ϕ ∈ C∞

0 (Ω) be a fixed nonnegative function that is not identically 0 on Ω. We
set u+,ε = u+ + εϕ and [u0]+,ε = [u0]+ + εϕ. Then it follows from Lemma 4.1, that for any

nonnegative function ψ ∈ °H1
2 (Ω) and any n ∈ N, there holds

∫

Ω

(
ψ∂t
(
kn ∗ (u+,ε − [u0]+,ε)

)
+
(
hn ∗ [AD[u+]]|Dψ

))
dx ≤ 0, a.a. t ∈ (0, T ). (26)

For t ∈ (0, T ) we take in (26) the test function ψ = u+,ε. This gives for any ε > 0 and any n ∈ N,

∫

Ω

(
u+,ε∂t

(
kn ∗ (u+,ε − [u0]+,ε)

)
+
(
hn ∗ [AD[u+]]|Du+,ε

))
dx ≤ 0, a.a. t ∈ (0, T ). (27)

By Corollary 3.1 we have for a.a. t ∈ (0, T )

∫

Ω

u+,ε∂t
(
kn ∗ (u+,ε − [u0]+,ε)

)
dx ≥ |u+,ε(t)|L2(Ω)∂t

(
kn ∗ (|u+,ε|L2(Ω) − |[u0]+,ε|L2(Ω))

)
.

Combining (27) and the previous estimate we arrive at

|u+,ε(t)|L2(Ω)∂t
(
kn ∗ |u+,ε|L2(Ω)

)
+

∫

Ω

(
hn ∗ [AD[u+]]|Du+,ε

)
dx

≤ kn(t)
∣∣u+,ε

∣∣
L2(Ω)

∣∣[u0]+,ε

∣∣
L2(Ω)

.

Since u+,ε ≥ εϕ ≥ 0 in ΩT and ϕ is not identically 0 in Ω, we have that

Wǫ(t) := |u+,ε(t)|L2(Ω) > 0, a.a. t ∈ (0, T ),

and thus we obtain for a.a. t ∈ (0, T ),

∂t
(
kn ∗Wǫ

)
(t) +

1

Wε(t)

∫

Ω

(
hn ∗ [AD[u+]]|Du+,ε

)
dx ≤ kn(t)

∣∣[u0]+,ε

∣∣
L2(Ω)

, (28)

for all ε > 0 and all n ∈ N.
Setting

Rε,n(t) =

∫

Ω

(
AD[u+]− hn ∗ [AD[u+]]|Du+,ε

)
dx
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and using u+,ε = u+ + εϕ, (28) can be rewritten as

∂t
(
kn ∗Wǫ

)
(t) +

1

Wε(t)

∫

Ω

(
AD[u+,ε]|Du+,ε

)
dx ≤ kn(t)

∣∣[u0]+,ε

∣∣
L2(Ω)

+
Rε,n(t)

Wε(t)

+
1

Wε(t)

∫

Ω

ε
(
ADϕ|Du+,ε

)
dx. (29)

For any δ ∈ (0, ν) we have

1

Wε(t)

∫

Ω

ε
(
ADϕ|Du+,ε

)
dx ≤

1

Wε(t)

(
ε2|ADϕ|2L2(Ω)

4δ
+ δ|Du+,ε|

2
L2(Ω)

)

≤
ε|A|2L∞(ΩT )|Dϕ|

2
L2(Ω)

4δ|ϕ|L2(Ω)
+
δ|Du+,ε|

2
L2(Ω)

Wε(t)
.

Using this estimate and the parabolicity condition in (H), we deduce from (29) that

∂t
(
kn ∗Wǫ

)
(t) + (ν − δ)

|Du+,ε(t)|
2
L2(Ω)

Wε(t)
≤ kn(t)

∣∣[u0]+,ε

∣∣
L2(Ω)

+
Rε,n(t)

Wε(t)

+
ε|A|2L∞(ΩT )|Dϕ|

2
L2(Ω)

4δ|ϕ|L2(Ω)
.

By Poincaré’s inequality, this implies for a.a. t ∈ (0, T ) that

∂t
(
kn ∗Wǫ

)
(t) + λ1(ν − δ)Wε(t) ≤ kn(t)

∣∣[u0]+,ε

∣∣
L2(Ω)

+
Rε,n(t)

Wε(t)
+
Mε

δ
, (30)

where the positive constant M =M(|A|L∞(ΩT ), ϕ).
Next, denote the right-hand side of (30) by Gδ,ε,n(t) and let Vδ,ε,n be the solution of the

equation
∂t
(
kn ∗ V )(t) + λ1(ν − δ)V (t) = Gδ,ε,n(t), a.a. t ∈ (0, T ),

which exists, since Gδ,ε,n ∈ L1(0, T ). By the comparison principle, see Lemma 2.5, we have

Wε(t) ≤ Vδ,ε,n(t), a.a. t ∈ (0, T ),

for all ε > 0, δ ∈ (0, ν), and all n ∈ N. Sending n→ ∞ and choosing a subsequence if necessary
this implies, by Lemma 2.4, that

Wε(t) ≤ Vδ,ε(t), a.a. t ∈ (0, T ),

for all ε > 0, δ ∈ (0, ν), where Vδ,ε solves

Vδ,ε + λ1(ν − δ) l ∗ Vδ,ε = l ∗Gδ,ε

and Gδ,ε,n → Gδ,ε in L1([0, T ]), that is

(l ∗Gδ,ε)(t) =
∣∣[u0]+,ε

∣∣
L2(Ω)

+
Mε

δ
(1 ∗ l)(t), a.a. t ∈ (0, T ).
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We next send first ε→ 0 and afterwards δ → 0 and choose suitable subsequences. By the contin-
uous dependence of Vδ,ε on the parameters ε and δ, see e.g. [9], and the dominated convergence
theorem it follows that

|u+(t)|L2(Ω) ≤ V (t), a.a. t ∈ (0, T ),

where V is the solution of
V + λ1ν l ∗ V =

∣∣[u0]+
∣∣
L2(Ω)

.

Evidently, V (t) = sνλ1
(t)|[u0]+|L2(Ω), and thus we obtain the desired estimate in the subsolution

case, as T > 0 was arbitrary.
The supersolution case is reduced to the subsolution case by looking at −u, which is a global

weak subsolution of the same problem with u0 replaced by −u0. �

Proof of Corollary 1.1. Suppose u is a global weak solution of (1)–(3). Then from Theorem 1.1
we know that the positive and negative part of u, respectively, satisfy the estimate

∣∣u+(−)(t, ·)
∣∣
L2(Ω)

≤
∣∣[u0]+(−)

∣∣
L2(Ω)

sνλ1
(t), a.a. t > 0. (31)

Since v+ and v− are orthogonal in L2(Ω) for any v ∈ L2(Ω), we have by the Pythagorean theorem
that

|u+(t, ·)|
2
L2(Ω) + |u−(t, ·)|

2
L2(Ω) = |u(t, ·)|2L2(Ω), |[u0]+|

2
L2(Ω) + |[u0]−|

2
L2(Ω) = |u0|

2
L2(Ω).

Hence the assertion of Corollary 1.1 follows from (31) by squaring and addition of the two
resulting estimates. �

Remark 5.1 It is also possible to derive Lp-norm decay estimates for suitably defined solutions
of (1)–(3) assuming u0 ∈ Lp(Ω), where 1 < p < ∞. In fact, testing the PDE with |u|p−2u and
assuming that v := |u|(p−2)/2u ∈ V (T ) for all T > 0 we get with ρ(p) := 4(p− 1)/p2

|u(t, ·)|p ≤ sνλ1ρ(p)(t)|u0|p, a.a. t > 0.

Assuming that u0 is bounded and taking the limit p→ ∞ gives |u(t, ·)|∞ ≤ |u0|∞ for a.a. t > 0,
since ρ(p) → 0 and s0 ≡ 1. This simple estimate is also a direct consequence of (9).

6 Decay behaviour for some specific examples

Theorem 1.1 and Corollary 1.1 show that the decay properties of the solution to (1)–(3) is
determined by the behaviour of the relaxation function sµ(t) with µ > 0 for t → ∞. In this
section we discuss in detail this asymptotic behaviour for several examples of pairs of kernels
(k, l) ∈ PC. We will see that this class of kernels allows for very different kinds of decay, e.g.
exponential, algebraic, and logarithmic decay.

We first note that in general sµ(t) cannot decay faster than the kernel k(t). Moreover, it is
possible that sµ(t) does not go to 0 as t→ ∞. In fact we have

Lemma 6.1 Let (k, l) ∈ PC and µ > 0. Then (i)

[
1− sµ(t)

]
k(t) ≤ µsµ(t) ≤

[
1− sµ(t)

] 1

(1 ∗ l)(t)
, a.a. t > 0. (32)
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In particular, for any δ > 0 there exists Cδ > 0 such that

sµ(t) ≥ Cδ k(t), a.a. t > δ.

(ii) limt→∞ sµ(t) = 0 if and only if l /∈ L1(R+).

Proof. (i) Recall that (k, l) ∈ PC implies that sµ and hµ = −ṡµ are nonnegative, and that
kµ = µsµ = hµ ∗ k. Since k is nonincreasing, it follows that

kµ(t) ≥ (1 ∗ hµ)(t) k(t) = (1 ∗ [−ṡµ])(t) k(t) = [1− sµ(t)
]
k(t),

which shows the lower bound in (32). The upper bound can be easily deduced from the definition
of sµ. In fact, since sµ is nonincreasing we have

sµ(t) + µsµ(t) (1 ∗ l)(t) ≤ 1, t ≥ 0.

The second part of assertion (i) follows directly from (32), the monotonicity of sµ, and the fact
that sµ(t) < 1 for any t > 0.

(ii) By the definition of sµ and positivity of sµ and l, and since sµ is nonincreasing, we have

sµ(t) + µsµ(t)

∫ t

0

l(τ) dτ ≤ 1, t > 0,

which implies that sµ(t) → 0 as t→ ∞ if l /∈ L1(R+). On the other hand, if l ∈ L1(R+) then

lim
t→∞

sµ(t) = lim
z→0+

zŝµ(z) = lim
z→0+

1

1 + µl̂(z)
=

1

1 + µ|l|L1(R+)
> 0,

by [6, Theorem 34.3]. �

Remark 6.1 We point out that (32) is equivalent to

1

1 + µ k(t)−1
≤ sµ(t) ≤

1

1 + µ (1 ∗ l)(t)
, a.a. t > 0.

Before looking at some specific examples we remark that PC pairs enjoy a useful stability property
with respect to exponential shifts. Writing kµ(t) = k(t)e−µt and 1µ(t) = e−µt, t > 0, µ ≥ 0 we
have

(k, l) ∈ PC ⇒ (kµ, lµ + µ(1 ∗ lµ)) ∈ PC, µ ≥ 0. (33)

To see (33), observe first that for any µ ≥ 0, kµ is evidently nonnegative and nonincreasing.
Multiplying k ∗ l = 1 by 1µ gives kµ ∗ lµ = 1µ, which in turn implies that µkµ ∗ 1 ∗ lµ = µ1 ∗ 1µ =
1− 1µ. Adding these relations, we obtain kµ ∗ [lµ + µ(1 ∗ lµ)] = 1.

Example 6.1 The classical time-fractional case. We consider the pair

(k, l) = (g1−α, gα), where α ∈ (0, 1). (34)

Recall that the Laplace transform of gβ, β > 0, is given by ĝβ(z) = z−β, Re z > 0, and so it is
easy to see that gβ1

∗ gβ2
= gβ1+β2

for all β1, β2 > 0. In particular (k, l) ∈ PC.
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In the case of (34)

sµ(t) = Eα(−µt
α), where Eα(z) :=

∞∑

j=0

zj

Γ(αj + 1)
, z ∈ C,

is the well-known Mittag-Leffler function (see e.g. [12]). Employing the bounds from Remark
6.1, a simple computation shows that the Mittag-Leffler function satisfies the estimate

1

1 + Γ(1− α)x
≤ Eα(−x) ≤

1

1 + x
Γ(1+α)

, x ≥ 0. (35)

An upper bound of the form Eα(−x) ≤ C(α)/(1+x), x ≥ 0, can also be found in [16]. Corollary
1.1 and (35) yield the algebraic decay estimate

|u(t, ·)|L2(Ω) ≤
1

1 + Γ(1− α)−1νλ1tα
|u0|L2(Ω) ≤

C(α, ν, λ1)

1 + tα
|u0|L2(Ω), a.a. t > 0.

Note that in this example the relaxation function sµ has the same decay as the kernel k.

Example 6.2 The time-fractional case with exponential weight. We consider

k(t) = g1−α(t)e
−γt, l(t) = gα(t)e

−γt + γ(1 ∗ [gαe
−γ·])(t), t > 0,

with α ∈ (0, 1) and γ > 0. By the remark prior to Example 6.1 we have (k, l) ∈ PC. The Laplace
transform of l is given by

l̂(z) =
1

(z + γ)α
+
γ

z

1

(z + γ)α
=

(z + γ)1−α

z
,

and thus

ŝµ(z) =
1

z

1

1 + µl̂(z)
=

1

z + µ(z + γ)1−α
.

Let ω ∈ (0, γ) be the unique solution of ω = µ(γ − ω)1−α. Note that for fixed α the function
ω = ω(µ, α) tends to 0 as µ→ 0, and ω → γ as µ→ ∞. Then for any z ∈ C+ = {λ ∈ C : Reλ >
0} we have

z − ω + µ(z − ω + γ)1−α 6= 0

and thus the Laplace transform of the function f(t) := sµ(t)e
ωt is defined for all z ∈ C+. We

claim that for some constant C > 0

|zf̂(z)| ≤ C for all z ∈ C+. (36)

Having established (36) it follows easily that |z2f̂ ′(z)| is bounded in C+ as well. These bounds in
turn imply that f ∈ L∞(R+), by Proposition 0.1 and Corollary 0.1 in [20]. Hence sµ(t) ≤Me−ωt

for all t ≥ 0. This exponential decay rate is optimal, as ŝµ has a singularity at −ω.
To prove the claim, let ψ(z) := (z+γ−ω)1−α where |z| < δ0 := γ−ω. There exists δ ∈ (0, δ0)

such that ψ(z) = ψ(0) + ψ′(0)z + r(z) and the remainder term satisfies

|r(z)| ≤
1

2
|z|

(
1

µ
+

1− α

(γ − ω)α

)
=

1

2
|z|

(
1

µ
+ ψ′(0)

)
, for all |z| < δ.
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By definition of ω, we have µψ(0)− ω = 0, and thus for |z| < δ, z 6= 0, it follows that

|zf̂(z)| =

∣∣∣∣
z

z + µψ′(0)z + µr(z)

∣∣∣∣ =
1

µ

∣∣∣∣∣
1

1
µ + ψ′(0) + r(z)

z

∣∣∣∣∣ ≤
2

1 + µψ′(0)
.

On the other hand if |z| is sufficiently large, say |z| > R, and Re z ≥ 0 we have |z| ≥ 2(ω+ µ|z+
γ − ω|1−α and thus

|zf̂(z)| ≤
|z|

|z| − ω − µ|z + γ − ω|1−α
≤ 2.

Finally, by compactness, zf̂(z) is bounded in {z ∈ C+ : δ ≤ |z| ≤ R}. This shows (36).
From Corollary 1.1 and sµ(t) ≤Me−ωt we infer the exponential decay estimate

|u(t, ·)|L2(Ω) ≤ M(α, ν, λ1) e
−ω(νλ1,α)t|u0|L2(Ω), a.a. t > 0.

Example 6.3 The time-fractional case where l decays exponentially. We consider the situation
from the previous example but with the kernels k and l being switched, that is

k(t) = gα(t)e
−γt + γ(1 ∗ [gαe

−γ·])(t), l(t) = g1−α(t)e
−γt t > 0.

Note that k̇(t) = ġα(t)e
−γt < 0, t > 0, so that (k, l) ∈ PC. Since l ∈ L1(R+), sµ(t) does not go

to 0 as t→ ∞, by Lemma 6.1. We have

lim
t→∞

sµ(t) =
1

1 + µ|l|L1(R+)
=

γ1−α

µ+ γ1−α
> 0.

Example 6.4 A sum of two fractional derivatives. Let 0 < α < β < 1 and

k(t) = g1−α(t) + g1−β(t), t > 0.

Evidently, k is completely monotone, that is, k is in C∞ and (−1)nk(n)(t) ≥ 0 for all t > 0
and n ∈ N ∪ {0}. Further k(0+) = ∞ and so by Theorem 5.4 in Chapter 5 of [9], the kernel k
has a resolvent l ∈ L1,loc(R+) of the first kind, that is k ∗ l = 1 on (0,∞), and this resolvent is
completely monotone as well. In particular (k, l) ∈ PC. The Laplace transforms of k and l are

k̂(z) =
1

z1−α
+

1

z1−β
, l̂(z) =

1

zα + zβ
, z ∈ C+.

Since α < β it is clear that k(t) ∼ g1−α(t) as t→ ∞. Letting µ > 0 we have

ŝµ(z) =
1

z + µzl̂(z)
=

1

z + µ z
zα+zβ

∼
1

µz1−α
as z → 0,

and thus the Karamata-Feller Tauberian theorem, Theorem 2.1, implies µsµ(t) ∼ g1−α(t) for
t → ∞. We see that the fractional derivative of lower order determines the decay behaviour of
the relaxation function sµ. Observe as well that

1̂ ∗ l (z) =
1

z

1

zα + zβ
∼

1

z1+α
as z → 0,
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which yields (1 ∗ l)(t) ∼ g1+α(t) as t→ ∞, by Theorem 2.1. From this and Remark 6.1 we infer
that there is T1 > 0 such that

sµ(t) ≤
1

1 + µ
2Γ(1+α) t

α
, for all t ≥ T1, µ > 0.

Appealing to Corollary 1.1 we obtain the decay estimate

|u(t, ·)|L2(Ω) ≤
1

1 + νλ1

2Γ(1+α) t
α
|u0|L2(Ω) ≤

C(α, ν, λ1)

1 + tα
|u0|L2(Ω), a.a. t ≥ T1.

These considerations extend trivally to kernels k(t) =
∑m

j=1 δjg1−αj
(t) with δj > 0 and 0 < α1 <

α2 < . . . < αm < 1.

Example 6.5 The distributed order case (ultraslow diffusion). We consider the pair (4) already
mentioned in the introduction, that is

k(t) =

∫ 1

0

gβ(t) dβ, l(t) =

∫ ∞

0

e−st

1 + s
ds, t > 0.

Both kernels are nonnegative and nonincreasing. We have

k̂(z) =

∫ 1

0

ĝβ(z) dβ =

∫ 1

0

z−β dβ =
z − 1

z log z
, z ∈ C+,

and

l̂(z) =

∫ ∞

0

e−zt

(∫ ∞

0

e−st

1 + s
ds

)
dt =

∫ ∞

0

∫ ∞

0

e−(z+s)t dt
1

1 + s
ds

=

∫ ∞

0

ds

(z + s)(1 + s)
=

1

z − 1

∫ ∞

0

(
1

1 + s
−

1

z + s

)
ds

=
1

z − 1
log

(
1 + s

z + s

)∣∣∣
s=∞

s=0
=

log z

z − 1
, z ∈ C+.

Thus (k, l) ∈ PC. The Laplace transform of sµ with µ > 0 is given by

ŝµ(z) =
1

z

1

1 + µl̂(z)
=

1

z

1

1 + µ log z
z−1

, z ∈ C+.

We see that k̂ and µŝµ have the same asymptotic behaviour near 0, namely

k̂(z), µŝµ(z) ∼
1

z log(1z )
z → 0,

where we consider z > 0. We may apply the Karamata-Feller Tauberian theorem, Theorem 2.1,
with L(t) := 1/ log t, t ≥ 2, L(t) := 1/ log 2, t ∈ (0, 2), and β = 1, which implies that

k(t), µsµ(t) ∼
1

log t
t→ ∞.
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This can already be found in [13], where this example is discussed in great detail.
To obtain an estimate that is uniform w.r.t. µ we can also use the upper bound for sµ in

Remark 6.1. We have 1̂ ∗ l(z) = log(z)/[z(z− 1)], z ∈ C+, thus 1̂ ∗ l(z) ∼ z−1 log(1/z) as z → 0,
and therefore (1 ∗ l)(t) ∼ log(t) as t → ∞, by Theorem 2.1 with L(t) = log t for t ≥ 2, say, and
β = 1. We conclude that there is a number T1 > 1 (independent of µ) such that 1

2 log t ≤ (1∗ l)(t)
for all t ≥ T1, and hence

sµ(t) ≤
1

1 + µ
2 log t

, t ≥ T1.

This together with Corollary 1.1 yields the logarithmic decay estimate

|u(t, ·)|L2(Ω) ≤
1

1 + νλ1

2 log t
|u0|L2(Ω), a.a. t > T1.

Example 6.6 Switching the kernels from the previous example. We consider now the pair

k(t) =

∫ ∞

0

e−st

1 + s
ds, l(t) =

∫ 1

0

gβ(t) dβ, , t > 0.

From the previous considerations we know already that (k, l) ∈ PC. The kernel k(t) in this
example behaves like t−1 as t→ ∞. This can be seen from the representation

k(t) = et
∫ ∞

t

e−r dr

r
, t > 0.

In fact, on the one hand we have

k(t) ≤
et

t

∫ ∞

t

e−r dr =
1

t
,

on the other hand we have with η = 1 + ε > 1

k(t) ≥ et
∫ ηt

t

e−r dr

r
≥

et

ηt

[
−e−r

]ηt
t

=
1

(1 + ε)t
(1− e−εt),

and thus k(t) ≥ 1−ε
(1+ε)t for t > Tε with sufficiently large Tε. Since ε > 0 is arbitrary, we see that

k(t) ∼ t−1 as t→ ∞.
The Laplace transform of sµ with µ > 0 is given by

ŝµ(z) =
1

z

1

1 + µ z−1
z log z

=
1

z + µ z−1
log z

=:
1

ϕ(z)
, z ∈ C+.

Note that ϕ(z) = z + µ
∫ 1

0 z
β dβ, and thus Reϕ(z) > 0 for all z ∈ C+ \ {0}. We see that both k̂

and µŝµ behave like log(1/z) as z → 0. Unfortunately, Theorem 2.1 does not apply to sµ (and
k) since β = 0 is excluded there. One idea to overcome this obstacle would be to apply the
Karamata-Feller Tauberian theorem to the function 1 ∗ sµ, which is nondecreasing and has the

property that 1̂ ∗ sµ(z) ∼ (µz)−1 log(1/z) as z → 0. This would show that (1 ∗ sµ)(t) ∼ µ−1 log t
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as t → ∞. Since sµ is nonincreasing, we would have tsµ(t) ≤ (1 ∗ sµ)(t) for all t > 0 and thus

µsµ(t) . log t
t as t→ ∞. Alternatively, one might look at 1 ∗ l. We have

1̂ ∗ l (z) =
z − 1

z2 log z
∼

1

z2 log(1/z)
as z → 0,

which by Theorem 2.1 implies that (1 ∗ l)(t) ∼ t/ log t as t→ ∞. Remark 6.1 then also gives an
upper asymptotic estimate for sµ(t) as t→ ∞ of the form c log t/t.

However, this decay estimate is not optimal. In fact, we will show that sµ decays like c t−1

for any µ > 0, that is, the relaxation function has the same algebraic decay as the kernel k. To
prove the claim, we will show that the Laplace transform of the function w(t) := tsµ(t) satisfies
an estimate of the form

|zŵ(z)|+ |z2ŵ′(z)| ≤M, for all z ∈ C+ (37)

with some constantM > 0. Having established (37), it follows from Proposition 0.1 and Corollary
0.1 in [20] that w ∈ L∞(R+), and thus sµ(t) ≤ C/t for t > 0.

By a basic property of the Laplace transform we have

ŵ(z) = t̂sµ (z) = −ŝµ
′
(z) =

ϕ′(z)

ϕ(z)2
,

and

ϕ′(z) = 1 + µ
log z − 1 + 1

z

(log z)2
= 1 + µ

∫ 1

0

βzβ−1 dβ.

It is readily seen that as |z| → 0 (z ∈ C+ \{0}) we have z(log z)2ϕ′(z) → µ and ϕ(z) log z → −µ,
and thus zŵ(z) → µ−1. On the other hand zŵ(z) → 0 as |z| → ∞. By continuity of zŵ(z) in
C+ \ {0}, we thus get an estimate |zŵ(z)| ≤ C for all z ∈ C+ \ {0}. Differentiating once more
we obtain

ŵ′ =
ϕ′′ϕ− 2(ϕ′)2

ϕ3
,

with

ϕ′′(z) = µ
2z − 2− z log z − log z

z2(log z)3
.

Observe that z2(log z)2ϕ′′(z) → −µ as |z| → 0. Using this and the above properties and writing

z2ŵ′(z) =

[
z2ϕ′′(z)(log z)2]

(
ϕ(z) log z

)
− 2
[
ϕ′(z)z(log z)2

]2 1
log z(

ϕ(z) log z
)3

we see that z2ŵ′(z) → −µ−1 as |z| → 0. On the other hand it is not difficult to verify that
z2ŵ′(z) → 0 as |z| → ∞. By continuity of z2ŵ′(z) in z ∈ C+ \ {0}, these observations imply an
estimate of the form |z2ŵ′(z)| ≤ C1 for all z ∈ C+ \ {0}. This proves (37).

Even more is true. A careful estimation shows that (37) holds with some M of the form

M = C̃
µ where C̃ is independent of µ. This then leads to an estimate sµ(t) ≤

C
µt for all µ, t > 0.

Since sµ(t) ≤ 1 for all µ, t ≥ 0, we thus obtain

sµ(t) ≤
c

1 + µt
, for all t, µ ≥ 0, (38)
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with some constant c that is independent of µ.
From the previous considerations and Corollary 1.1 we obtain the algebraic decay estimate

|u(t, ·)|L2(Ω) ≤
C(ν, λ1)

t
|u0|L2(Ω), a.a. t > 0.

7 On a basic nonlinear fractional differential equation

Let α ∈ (0, 1), γ, ν > 0, and u0 > 0. We are interested in the decay behaviour of the solution to
the nonlinear fractional differential equation

∂αt (u− u0) + νuγ = 0, t ≥ 0, u(0) = u0. (39)

Constructing a subsolution. Define the positive numbers µ and ε by

µ := νΓ(1− α)Γ(1 + α)uγ0 , ε :=

(
u0Γ(1 + α)

2µ

) 1
α

.

We consider the function

v(t) =

{
u0 − µg1+α(t) : t ∈ [0, ε]

Ct−
α
γ : t ≥ ε,

(40)

where
C := ε

α
γ

(
u0 − µg1+α(ε)

)
= ε

α
γ
u0
2
.

Observe that v ∈ H1
1,loc(R+), v(0) = u0, v(ε) = u0/2, v is nonincreasing, and v(t) > 0 for all

t ≥ 0.
For t ∈ (0, ε) we have

∂αt (v − u0) + νvγ = −µ∂αt g1+α + ν(u0 − µg1+α)
γ

≤ −µ+ νuγ0 ≤ 0,

by definition of µ. Using v̇ ≤ 0 we have for t > ε

∂αt (v − u0)(t) = (g1−α ∗ v̇)(t) ≤

∫ ε

0

g1−α(t− τ)v̇(τ) dτ

≤ g1−α(t)

∫ ε

0

v̇(τ) dτ = −g1−α(t)
u0
2
.

Thus

∂αt (v − u0) + νvγ ≤ −g1−α(t)
u0
2

+ νCγt−α

= −g1−α(t)
( u0

2
− νΓ(1− α)εα

(u0
2

)γ )

= −g1−α(t)
u0
2

(
1−

ν

µ
Γ(1− α)Γ(1 + α)

(u0
2

)γ )
≤ 0,

by definition of µ. Hence v is a subsolution of (39).
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Constructing a supersolution. Define t0 > 0 by means of

tα0 =
u1−γ
0

ν

(
g1−α

(
1

2

)
+
α

γ

2α+
α
γ

Γ(2− α)

)
.

We consider the function

w(t) =

{
u0 : t ∈ [0, t0]

Ct−
α
γ : t ≥ t0,

with C = u0t
α
γ

0 . (41)

For t < t0 we evidently have

∂αt (w − u0) + νwγ = νwγ ≥ 0.

Next, observe that for t > t0,

∂αt (w − u0)(t) = (g1−α ∗ ẇ)(t) = −C
α

γ

∫ t

t0

g1−α(t− τ) τ−
α
γ
−1 dτ.

Assuming t ∈ [t0, 2t0] we may thus estimate as follows.

∂αt (w − u0)(t) ≥ −C
α

γ
t
−α

γ
−1

0 g2−α(t− t0) ≥ −u0t
α
γ

0

α

γ
t
−α

γ
−1

0

t1−α
0

Γ(2− α)

≥ −u0
α

γΓ(2− α)

(
t

2

)−α

= −νw(t)γ 2αu1−γ
0

α

νγΓ(2− α)tα0
≥ −νw(t)γ ,

by definition of t0. For t > 2t0 we have

∂αt (w − u0)(t) = −C
α

γ
t−α−α

γ

∫ 1

t0/t

g1−α(1− τ ′) τ ′−
α
γ
−1 dτ ′

= −C
α

γ
t−α−α

γ

(∫ 1/2

t0/t

. . .+

∫ 1

1/2

. . .

)

≥ −u0t
α
γ

0

α

γ
t−α−α

γ

(
g1−α

(
1

2

)
γ

α

(
t0
t

)−α
γ

+ g2−α

(
1

2

)(
1

2

)−α
γ
−1
)

≥ −νw(t)γ
u1−γ
0

νtα0

(
g1−α

(
1

2

)
+
α

γ

2α+
α
γ

Γ(2− α)

)
= −νw(t)γ ,

by the choice of t0. This shows that w is a supersolution of (39).
Appealing to Lemma 2.6 we thus obtain the following result.

Theorem 7.1 Let α ∈ (0, 1), ν, γ > 0, and u0 > 0. Let u ∈ H1
1, loc(R+) be the solution of (39)

and v and w be defined as in (40) and (41), respectively. Then v(t) ≤ u(t) ≤ w(t) for all t ≥ 0.
In particular there exist constants c1, c2 > 0 such that

c1

1 + t
α
γ

≤ u(t) ≤
c2

1 + t
α
γ

, t ≥ 0.

Theorem 7.1 shows that the situation in the case α < 1 differs markedly from that in the case
α = 1, where we have algebraic decay as u(t) ∼ ct−1/(γ−1) for γ > 1, exponential decay for
γ = 1, and extinction in finite time for γ < 1.
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8 On the time-fractional p-Laplace equation

Let α ∈ (0, 1), 1 < p < ∞, and Ω ⊂ RN be a bounded Lipschitz domain. We are interested in
decay estimates for the solution u of the problem

∂αt (u− u0)−∆pu = 0 in R+ × Ω,

u|∂Ω = 0 at R+ × ∂Ω, (42)

u|t=0 = u0 in Ω.

Here ∆pu = div
(
|Du|p−2Du

)
. Assuming u0 ∈ L2(Ω) we can define weak solutions of (42) in a

similar way as in the introduction for (1)–(3). The natural energy class for a finite time-interval
[0, T ] is given by

Vp(T ) := { v ∈ L 2
1−α

,∞([0, T ];L2(Ω)) ∩ Lp([0, T ]; °H1
p (Ω)) such that

g1−α ∗ v ∈ C([0, T ];L2(Ω)), and (g1−α ∗ v)|t=0 = 0},

where the symbol Lq,∞ refers to the weak Lq-space. Existence and uniqueness of weak solutions
to (42) in Vp(T ) do not seem to be known in the literature. However we believe that it is possible
to construct weak solutions in Vp(T ) using the theory of monotone operators and the techniques
from [28], at least for p ≥ 2N

N+2 . Assuming u0 ∈ L∞(Ω) global L∞-bounds for weak solutions
have been established in [24] by the De Giorgi iteration technique. It is also shown in [24] that
the weak maximum principle is valid.

In the sequel we write u ∈ Vp if u belongs to Vp(T ) for any T > 0.

Theorem 8.1 (i) Suppose that 2N
N+2 ≤ p < ∞ and that u0 ∈ L2(Ω). Let u ∈ Vp be a weak

solution of (42). Then

|u(t)|L2(Ω) ≤
C

1 + t
α

p−1

, a.a. t > 0, (43)

where the constant C = C(α, p,N,Ω, u0).

(ii) Suppose that 1 < p < 2N
N+2 , N > 2, and that u0 ∈ Ls(Ω) where s = N(2−p)

p . Let u ∈ Vp
be a weak solution of (42). Then

|u(t)|Ls(Ω) ≤
C

1 + t
α

p−1

, a.a. t > 0, (44)

where the constant C = C(α, p,N,Ω, u0).

Proof. We proceed by formal a priori estimates. The argument can be made rigorous by adopting
the regularization techniques from the proof of Lemma 4.1 and Theorem 1.1. We may also assume
without loss of generality that u0 and u are nonnegative. In fact, by a result analogous to Lemma
4.1 we may replace u by its positive and negative part, respectively.

(i) In the case 2N
N+2 ≤ p <∞ we multiply the PDE by u and integrate over Ω. This gives

∫

Ω

u∂αt (u− u0) dx+ |Du(t)|pp ≤ 0, a.a. t ∈ (0, T ).

By Corollary 3.1 and the Sobolev embedding H1
p (Ω) →֒ L2(Ω), it follows that

|u(t)|2∂
α
t

(
|u|2 − |u0|2

)
+ ν|u(t)|p2 ≤ 0, a.a. t ∈ (0, T ),
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where ν = ν(Ω, N, p) is a positive constant. Thus |u(t)|2 is a (weak) subsolution of the equation

∂αt (ϕ− ϕ0) + νϕp−1 = 0, t > 0, ϕ(0) = ϕ0 = |u0|2.

The desired estimate (43) follows now from Lemma 2.6, Remark 2.1, and Theorem 7.1.
(ii) We come now to the case 1 < p < 2N

N+2 . Note first that s > 2 and that s→ 2 as p→ 2N
N+2 .

Multiplying the PDE by us−1 and integrating over Ω yields
∫

Ω

us−1∂αt (u − u0) dx+ µ|Dv(t)|pp ≤ 0, t ∈ (0, T ), (45)

where

v = u
s+p−2

p and µ = (s− 1)

(
p

s+ p− 2

)p

> 0.

Corollary 3.1 implies
∫

Ω

us−1∂αt (u− u0) dx ≥ |u(t)|s−1
s ∂αt

(
|u|s − |u0|s

)
.

On the other hand we have the Sobolev embedding H1
p (Ω) →֒ Lp∗(Ω) with p∗ = Np

N−p and the

relation s+p−2
p · p∗ = s, and thus

|u(t)|ss = |v(t)|p
∗

p∗ ≤ C|Dv(t)|p
∗

p

for some constant C > 0. Consequently, it follows from (45) that

|u(t)|s−1
s ∂αt

(
|u|s − |u0|s

)
+

µ

C
|u(t)|

sp

p∗

s ≤ 0, a.a. t ∈ (0, T ).

Since sp
p∗

− s+ 1 = p− 1, we may deduce that |u(t)|s is a (weak) subsolution of

∂αt (ϕ− ϕ0) + νϕp−1 = 0, t > 0, ϕ(0) = ϕ0 = |u0|s, ν =
µ

C
,

and thus (44) follows from Lemma 2.6, Remark 2.1, and Theorem 7.1. �

The decay rates in Theorem 8.1 are optimal, at least for p > 2N
N+2 . In fact, consider a function

u of the form
u(t, x) = v(t)w(x),

where w ∈ °H1
p (Ω) minimizes the functional

F (ψ) =
1

p

∫

Ω

|Dψ|p dx

over the set
K = {ψ ∈ °H1

p (Ω) : |ψ|L2(Ω) = 1},

and thus, by standard theory, satisfies −∆pw = λ1w for some λ1 > 0, cf. also [11, Section 6].
Choosing v to be the solution of

∂αt (v − 1) + λ1v
p−1 = 0, t > 0, v(0) = 1, (46)

a short computation then shows that u solves (42) with u|t=0 = u0 = w. Theorem 7.1 implies
that v(t) > 0 for all t ≥ 0, and thus u cannot become extinct in finite time. Note that in the
case α = 1 and p > 2 solutions decay like ct−1/(p−2) (cf. [5]) which is not the same decay rate
we obtain when sending α→ 1 in Theorem 8.1 (ignoring the dependence of C on α).
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9 On the time-fractional porous medium equation

Let α ∈ (0, 1), 0 < m < ∞, and Ω ⊂ RN be a bounded Lipschitz domain with N > 2. This
section is devoted to the problem

∂αt (u − u0)−∆
(
um
)
= 0 in R+ × Ω,

u|∂Ω = 0 at R+ × ∂Ω, (47)

u|t=0 = u0 ≥ 0 in Ω.

We assume that at least u0 ∈ Lm+1(Ω) and consider nonnegative weak solutions u which are
such that for each T > 0 we have um ∈ L2([0, T ]; °H1

2 (Ω)) and g1−α ∗ (um+1) ∈ C([0, T ];L2(Ω)).
In view of the basic a priori estimates this is a natural class. In the literature nothing seems to
be known on problem (47), in paricular existence, uniqueness, and regularity of weak solutions
has not been studied so far.

Theorem 9.1 (i) Suppose that N−2
N+2 ≤ m <∞ and that u0 ∈ Lm+1(Ω). Let u be a nonnegative

weak solution of (47). Then there exists a constant C = C(α,m,N,Ω, u0) such that

|u(t)|Lm+1(Ω) ≤
C

1 + t
α
m

, a.a. t > 0.

(ii) Suppose that 0 < m < N−2
N+2 , and that u0 ∈ Ls(Ω) where s =

N(1−m)
2 . Let u be a nonnegative

weak solution of (47). Then there exists a constant C = C(α,m,N,Ω, u0) such that

|u(t)|Ls(Ω) ≤
C

1 + t
α
m

, a.a. t > 0.

Proof. We proceed by formal a priori estimates. The argument can be made rigorous by adopting
the regularization techniques from the proof of Theorem 1.1.

(i) Suppose N−2
N+2 ≤ m <∞. Multiplying the PDE by um and integrating over Ω gives

∫

Ω

um∂αt (u − u0) dx + |Dv(t)|22 ≤ 0, a.a. t ∈ (0, T ),

where we set v = um. By Hölder’s inequality and Sobolev embedding we have for some constants
c1, c2 > 0 and with 2∗ = 2N

N−2

|u(t))|2mm+1 ≤ c1|u(t)|
2m
m·2∗ = c1|v(t)|

2
2∗ ≤ c2|Dv(t)|

2
2.

Using this and Corollary 3.1 we obtain the fractional differential inequality

∂αt
(
|u|m+1 − |u0|m+1

)
+

1

c2
|u(t)|mm+1 ≤ 0, a.a. t ∈ (0, T ),

which implies the asserted decay estimate.
(ii) Suppose now that 0 < m < N−2

N+2 . Testing the PDE with us−1 we obtain

∫

Ω

us−1∂αt (u− u0) dx+ µ|Dv(t)|22 ≤ 0, a.a. t ∈ (0, T ),
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with

v = u
s−1+m

2 and µ =
4m(s− 1)

(s− 1 +m)2
.

Note that s = 2∗ · s−1+m
2 , and thus by Sobolev embedding we have for some constant c > 0

|u(t)|s−1+m
s = |v(t)|22∗ ≤ c|Dv(t)|22.

Using this and Corollary 3.1 we get

∂αt
(
|u|s − |u0|s

)
+
µ

c
|u(t)|ms ≤ 0, a.a. t ∈ (0, T ),

which in turn leads to the assertion. �

Recall that in the case α = 1 and 0 < m < 1 any weak solution becomes extinct in finite time

provided the initial value u0 ∈ Lq(Ω) with q > 1 and q ≥ s = N(1−m)
2 , cf. [22, Prop. 5.23]. This

is no longer the case for the corresponding time-fractional problem, at least for m > N−2
N+2 . In

this case one can construct similarly as in the previous section a positive solution u of the form
u(t, x) = v(t)w(x) where v solves (46) and w is a positive solution of

−∆(wm) = λ1w in Ω, w = 0 on ∂Ω,

with some λ1 > 0; see [22, Section 4.2] and [2] for existence of such a w. By means of such a
separable solution we also see that the decay rates stated in Theorem 9.1 are optimal, at least
when m > N−2

N+2 . Note that in the case α = 1 and m > 1 solutions decay like ct−1/(m−1) which is
not the same decay rate we get when sending α → 1 in Theorem 9.1 (ignoring the dependence
of C on α).
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