arXiv:1310.5182v2 [stat.CO] 4 Jun 2014

Massively parallel
approximate Gaussian process regression

Robert B. Gramacy Jarad Niemi
Booth School of Business Department of Statistics
The University of Chicago Iowa State University

rbgramacy@chicagobooth.edu niemi@iastate.edu

Robin M. Weiss
Research Computing Center
The University of Chicago
robinweiss@uchicago.edu

Abstract

We explore how the big-three computing paradigms—symmetric multi-processor
(SMP), graphical processing units (GPUs), and cluster computing—can together be
brought to bear on large-data Gaussian processes (GP) regression problems via a careful
implementation of a newly developed local approximation scheme. Our methodological
contribution focuses primarily on GPU computation, as this requires the most care and
also provides the largest performance boost. However, in our empirical work we study
the relative merits of all three paradigms to determine how best to combine them. The
paper concludes with two case studies. One is a real data fluid-dynamics computer
experiment which benefits from the local nature of our approximation; the second is
a synthetic example designed to find the largest data set for which (accurate) GP
emulation can be performed on a commensurate predictive set in under an hour.

Key words: emulator, nonparametric regression, graphical processing unit, symmetric
multi-processor, cluster computing, big data, computer experiment

1 Introduction

Gaussian processes (see, e.g., Rasmussen and Williams, 2006) form the canonical regression
model for data arising from computer experiments (Santner et al., |2003). Their nonparamet-
ric flexibility, interpolative capability, and conditionally analytic predictive distributions with
high accuracy and appropriate coverage make them ideally suited to applications where accu-
racy, and full uncertainty quantification /propagation, are equally important. Some examples
include design (Santner et al. 2003)), sequential design (Seo et al., |2000), optimization (Jones

et al., 1998)), contour finding (Ranjan et al., |2011), and calibration (Kennedy and O’Hagan),
2001; Bayarri et al., [2007), to name just a few.

The main disadvantage to Gaussian process (GP) regression models is computational.
Inference and prediction require decomposing an N x N matrix, for NV observations, and that
usually requires an O(N?) operation. With modern desktop computers, that limits GPs to
N in the low thousands for point inference (e.g., via maximum likelihood estimation [MLE]
or cross validation [CV]), and to the hundreds for sampling methods (Bayesian Monte Carlo
or bootstrap). Point inference can be pushed to N in the tens of thousands when modern
supercomputer computing facilities are paired with new distributed linear algebra libraries,
as illustrated by [Paciorek et al.| (2013).

As data sets become ever larger, research into approximate GP modeling has become
ever more frenzied. Early examples include the works of [Vecchia (1988); Nychka et al.
(2002); |Stein et al.| (2004); |Quinonero-Candela and Rasmussen| (2005); Furrer et al.| (2006);
Cressie and Johannesson| (2008). More recent examples include those of Haaland and Qian
(2011)); Sang and Huang| (2012); [Kaufman et al.| (2012); Eidsvik et al. (2013)). Sparsity is
a recurring theme. The approximations involve either explicitly working with a subset of
the data, or imposing a covariance structure which produces sparse matrices that can be
quickly decomposed. Another way to get fast inference is to impose structure on the design,
e.g., forcing a lattice design. This can lead to substantial shortcuts in the calculations (e.g.,
Gilboa et al., [2012; Plumlee, 2013]), but somewhat limits applicability.

In this work we consider the particular approximation suggested by |Gramacy and Apley
(2014). That approximation drew inspiration from several of the works referenced above,
but primarily involves modernizing an old idea of local kriging neighborhoods (Cressie, 1991},
pp. 131-134) by borrowing from active learning heuristics for sequential design (Seo et al.|
2000). The idea is to build a GP predictor for a particular location, x, by greedily building a
sub-design X,,(z) C X, where n < N, according to an appropriate criteria. Then, prediction
over a vast grid can be parallelized by processing each element, z, of the grid independently
of the others. Such independence can also yield a thrifty nonstationary modeling feature.

Our primary contribution centers around recognizing that the criteria, which must be
repeatedly evaluated over (nearly) the entire design space X, can be implemented on a
graphical processing unit (GPU). In essence, we are proposing to nest a parallel (GPU)
computation within an already parallelized symmetric multiprocessor (SMP) environment.
Both the GPU implementation (in CUDA), and its interface to the outer parallel scheme (via
OpenMP), must be treated delicately to be efficient. We then round out the supercomputing
trifecta by distributing computation on a cluster of multi-core, and multi-GPU, nodes.

GPUs offer great promise in scientific computing, in some cases leading to 100x speedups.
We find more modest speedups in our examples (40-60x), echoing similar results obtained
with GPU-accellerated large matrix operations (Franey et all) 2012; Eidsvik et al. 2013}
Paciorek et al., 2013)). In contrast to these works, however, we do not make use of library
routines. In fact, our approximations explicitly keep the required matrices small. Our
repetitive local searches involve low-level operations which can be implemented on the GPU
with a very small (and completely open source) kernel. The entire implementation, including

CUDA, C, and R subroutines, is made available as an R package called 1aGP (Gramacy, 2013)).

The remainder of the paper is outlined as follows. Section [2]reviews GP computer model-
ing generally, and the (Gramacy and Apley (2014) local approximate GP scheme specifically,
with focus on the particular subroutine that is re-implemented in this paper. Section [3| de-
tails our CUDA implementation of that subroutine, and in Section [4] we study the speedups
obtained in isolation (i.e., compared to a CPU version of the same subroutine), and within
the wider context (incorporating the calling environment on a multi-core, multi-GPU com-
pute node) on a toy problem. In Section |5 we augment with an off-the-shelf, simple network
of workstations (SNOW), cluster computing facility in order to emulate a large real-data
computer experiment from the literature. We then separately consider a synthetic data-
generating mechanism to find the largest problem we can solve with an hour of (multi-node
cluster) computing time. The paper concludes with a brief discussion in Section @

2 Computer model emulation

Computer simulation of a system under varying conditions represents a comparatively inex-
pensive alternative to actual physical experimentation and/or monitoring. Examples include
aeronautics (designing a new aircraft wing) and climate science (collecting atmospheric ozone
data). In some cases it is the only (ethical) alternative, e.g., in epidemiology. Still, computer
models can be complex and computationally demanding, and therefore only a limited (if still
vast) number of runs Dy = (z1,¥1), ..., (zn,yn) for input conditions z;, producing outputs
yi, can be obtained. Computer model emulation, therefore, remains an integral component
of many applications involving data arising from computer simulation. Given the data Dy,
an emulator provides a distribution over possible responses Y (z)|Dy for new inputs z. A
key requirement is that the emulator be able to provide that distribution at much lower
computational expense than running new simulations.

2.1 Gaussian process regression

The GP regression model is canonical for emulation, primarily for the following two reasons.

1. The predictive equations p(y(z)|Dy, Ky) have a closed form given a small number of
“tuning” parameters, 6, describing the correlation structure Ky(-, -), which is discussed
separately below. They are Student-t with degrees of freedom N,

mean @Dy, 0) = k' (x) K'Y, (1)

and scale o?(z|Dy,0) = R, z) - Ij\[() K™ k(az)]) (2)

where kT (x) is the N-vector whose i component is Ky(x,z;), K is an N x N matrix
whose entries are Kp(z;,7;), and ¢ = YT K'Y, Using properties of the Student-¢, the
variance of Y (z) is V(z) = Var[Y (z)| Dy, 0] = o*(z|Dy,0) x N/(N —2).

Observe that the mean is a linear predictor, which depends on the responses Y, and
that the variance is independent of Y given Ky(-,). The result is a “football-shaped”
predictive interval which is wide away from data locations x;, and narrows at the x,—a
visually appealing feature for an emulator.

2. Maximum likelihood inference for 6 is straightforward given analytic forms of the
(marginalized) likelihood equations

I'[N/2] LAY
H0 = o< (3) i

S

whose derivatives, for Newton-like optimization, are also available analytically.

Together, analytic prediction and straightforward optimization for inference, make for a
relatively easy implementation of a non-parametric regression.

The choice of correlation structure, Ky(+,-), can have a substantial impact on the nature
of inference and prediction, restricting the smoothness of the functions and controlling a
myriad of other aspects. However there are several simple default choices that are popu-
lar in the literature. In this paper we use an isotropic Gaussian correlation Ky, (z,2’) =
exp{—||z — 2'||?/0}, where 0 is called the lengthscale parameter. We make this choice purely
for simplicity of the exposition, and because it is historically the most common choice for
computer experiments. The general methodology we present is independent of this choice.

Unfortunately, the above equations reveal a computational expense that depends on the
size of the correlation matrix, K. Inverse and determinant calculations are O(N?) which,
even for modest N, can mean that (in spite of the above attractive features) GPs may not
satisfy the key requirement of being fast relative to the computer simulation being emulated.
Advances in hardware design, e.g., multi-core machines and GPUs, may offer some salvation.
Recently several authors (Franey et al., 2012; Eidsvik et al. |2013; [Paciorek et al., 2013) have
described custom GP prediction and inference schemes which show a potential to handle
much larger problems than ever before.

2.2 Local approximate Gaussian process modeling

It makes sense to develop emulators which can exploit these new resources, especially as they
move into the mainstream. For obvious reasons, emulation in better than O(N?) time is also
desirable, and for that imposing sparsity is a popular tactic. |Gramacy and Apley| (2014)
proposed a local scheme leveraging sparsity towards providing fast and accurate prediction,
ideal for computer model emulation on modern multi-core desktops.

The idea is to focus, specifically, on the prediction problem at a particular location, x.
Gramacy and Apley| recognized, as many others have before, that data with inputs far from
x have vanishingly small influence on the resulting GP predictor (assuming typical distance-
based correlation functions). Exploiting that, the scheme seeks to build a GP predictor from
data D, (z) = D,(X,(z)) obtained on a sub-design X,,(z) of the full design X = Xy, where
n < N. One option is a so-called nearest neighbor (NN) sub-design, where D,, is comprised of

4

the inputs in X which are closest to x, measured relative to the chosen correlation function,
but this is known to be sub-optimal (Vecchia, |1988). It is better to take at least a few
design points farther away in order to obtain good estimates of the parameter 6 (Stein et al.,
2004). However, searching for the optimal design bn(af), according to almost any criteria, is a
combinatorially huge undertaking. The interesting pragmatic research question that remains
is: is it possible to do better than the NN scheme without much extra computational effort?

Gramacy and Apley demonstrated that it is indeed possible, with the following greedy
scheme. Suppose a local design X;(x), j < n, has been built-up already, and that a GP
predictor has been inferred from data D;(x). Then, choose ;i1 by searching amongst
the remaining unchosen design candidates Xy \ X;(z) according to a criterion, discussed
momentarily. Augment the data set D;i1(z) = D; U (z;41,y(xj41)) to include the chosen
design point and its corresponding response, and update the GP predictor. Updating a GP
predictor is possible in O(j?) time (Gramacy and Polson, 2011 with judicious application
of the partitioned inverse equations (Barnett, [1979). So as long as each search for x; ; is
fast, and involves no new operations larger than O(j?), then the final scheme, repeating for
J =ng,...,n will require O(n3) time, just like the NN scheme.

Gramacy and Apley| considered two criteria in addition to NN, one being a special case
of the other. The first is to minimize the empirical Bayes mean-square prediction error
(MSPE): J(zj41,2) = B{[Y (&) — ptj11(x|Dj41,0;41)]%|D;(x)} where ;4 is the estimate for
¢ based on D, y. The predictive mean ;41 (x|Djt1, éjH) follows equation (I]), except that
the j+1 subscript has been added in order to indicate dependence on x;;; and the future,
unknown y;,;. They then derive the approximation

; Opi(z;0) 2 R
J(ZEj—i—l,:E) =~ V}({E|:L“j+1;9j) + <#‘66) /gj+1(0j). (4)

The first term in (4)) estimates predictive variance at x after ;41 is added into the design,

V(olayeni) = S0 i),

where vy (230) = [Kjpa (2, 2) — k]T+1($)Kff1kj+l($)] - (5)

Minimizing predictive variance at x is a sensible goal. The second term in estimates
the rate of change of the predictive mean at x, weighted by the expected future inverse
information, gj+1(éj), after x4, and the corresponding y;;1 are added into the design. Note
that this weight does not depend on x, but in weighting the rate of change (derivative) of the
predictive mean at z it is “commenting” on the value of z;;, for estimating the parameter
of the correlation function, . So this MSPE criteria balances reducing predictive variance
with learning local wigglyness of the surface.

It turns out that the contribution of the second term, beyond the new reduced variance,
is small. |(Gramacy and Apley|show that the full MSPE criteria leads to qualitatively similar
local designs X, (z) as ones obtained using just V;(z|z;1;6;), which provides indistinguish-
able out-of-sample predictive performance at a fraction of the computational cost (since no

5

derivative calculations are necessary). This simplified criteria is equivalent to choosing ;44
to maximize reduction in variance:

vj(@;0) — vj (2 0) (6)
= ij(a;)Gj (xjﬂ)mj’l(xjﬂ)kj(x) + QkI(x)gj(xjH)K(xjH, z) + K(xj41, a:')Qmj(:L'jH),

where G;(2') = g; (x’)ng(x’),
gi(&) = —my@ VK (@) and ml(e) = Ky 2!) — K] OK; (@) (7

Those O(j?) calculations are a simple consequence of deploying the partitioned inverse equa-
tions on the salient elements of Eq. , thereby bypassing more expensive O(j%) ones.
Although known for some time in other contexts, (Gramacy and Apley| chose the acronym
ALC to denote the use of that decomposition in local design in order to recognize its first
use towards global design of computer experiments by a method called active learning Cohn
(1996)). That scheme required numerically integrating over the entire design space. Al-
though the localized analog above is simpler because it does not involve an integral, both
global and local versions require a computationally intensive search over a large set of can-
didates xj41 € Xn \ Xj(x). Speeding up this search is the primary focus of our contribution.

Global emulation, that is predicting over a dense grid of z-values, can be done in serial
by looping over the z’s, or in parallel since each calculation of local X, (x)’s is independent
of the others. This kind of embarrassingly parallel calculation is most easily implemented
on symmetric multiprocessor (SMP) machines via OpenMP pragmas. As we demonstrate in
Section [5], one can additionally divvy up predictions on multiple nodes of a cluster for very
big calculations. Finally, |Gramacy and Apley recommend a two-stage scheme wherein local
0,(x)’s are calculated after each local sequential design X, (z) is chosen, so that the second
iteration’s local designs use locally estimated parameters. This leads to a globally non-
stationary model which provides highly accurate predictions under a tight computational
budget. The full scheme is outlined algorithmically in Figure[I] It is worth remarking that
the scheme is completely deterministic, calculating the same local designs for prediction at
x, given identical inputs (n, initial §, and data Dy) in repeated executions. It also provides
local uncertainty estimates—a hallmark of any approximation—via Eq. with D, (z),
which are organically inflated relative to their full data (Dy) counterparts. Empirically,
those uncertainty estimates over cover, as they are perhaps overly conservative. |Gramacy
and Apley suggest adjustments that can be made to project towards narrower bounds which
are closer to their full N counterparts.

3 GPU computing

Under NVIDIA’s CUDA programming model, work is offloaded to a general purpose GPU
device by calling a kernel function—specially written code that targets execution on many
hundreds of GPU cores. CUDA has gained wide-spread adoption since its introduction in 2007
and many “drop-in” libraries for GPU-acceleration have been published, e.g., the CUBLAS

1. Choose a sensible starting global 6, = 6, for all x.

2. Calculate local designs X, (z,,) based on ALC, independently for each x:
(a) Choose a NN design X, (z) of size ny.
(b) For j =ng,...,n—1, set

Tii] = ar max vilx;0,) —viiq(x: 0
7+1 g]() m)]-‘rl() 95)7
zj+1€XN\X; ()

and then update Djiq(x,0,) = D;(x,0;) U (241, Yy(Tj41)).

3. Also independently, calculate the MLE 6,,(z)|D,,(z, 0.) thereby explicitly obtaining
a globally nonstationary predictive surface. Set 6, = 0,,(x).

4. Repeat steps 2-3 as desired.

5. Output predictions Y (x)| D, (z,0,) for each .

Figure 1: Multi-stage approximate local GP modeling algorithm.

library which contains a cublasDgemm function that is the GPU equivalent of the DGEMM
matrix-matrix multiplication function from the C BLAS library. Such GPU-aware libraries
allow for significant speedups at minimal coding investment, and most use of GPUs for
acceleration in statistical applications has been accomplished by replacing calls to CPU-
based library functions with the corresponding GPU kernel call from a GPU-aware library
(Franey et al., 2012; Eidsvik et al., 2013; Paciorek et al., [2013). This can be an effective
approach to GPU-acceleration when the bottleneck in the program lies in manipulating
very large matrices, e.g., of dimension > 1000, as otherwise GPU-aware math libraries can
actually be less efficient than CPU ones. In our application, the calculations in Figure
involve relatively small matrices by design and therefore do not benefit from this drop-in
style approach to GPU-acceleration. Instead, we have developed a custom kernel that is
optimized for our relatively small matrices and also carries out many processing steps in a
single invocation.

The nuances of our implementation require an understanding of the GPU architecture.
In the CUDA computing model, threads are grouped into blocks of up to 1024 threads per
blockE] Up to 65535 thread blocks can be instantiated to create the kernel grid, a structure of
thread blocks on which a GPU kernel function is invoked P| Groups of threads belonging to a
given block are simultaneously executed in a warp. All warps derived from a given block are
guaranteed to be resident on the same Streaming Multiprocessor (SM) on the GPU device.
The number of threads per warp is fixed by the GPU architecture (our cards have 32 threads

L All values reported here are for CUDA Compute Capability version 2.0 which is the version used in our
experiments.
2We restrict ourselves to a 1-d grid; more blocks may be instantiated in 2-3d grids.

per warp) and the assignment of threads to warps is controlled by the GPU hardware. The
number of blocks that can run simultaneously on a given SM is constrained by the amount of
memory and the number of registers required by the threads within each block. The number
of SMs and the total number of blocks is fixed by the GPU hardware architecture (our cards
have 16 SMs, and each can host multiple blocks simultaneously). Assigning multiple blocks
to a single SM allows threads from one block to utilize the SM, e.g., perform floating point
operations, while threads from another block wait for memory transactions to complete.

Relative to other parallel architectures, GPUs allocate a relatively small amount of mem-
ory and registers to each thread. In descending order of access speed, the types of memory
utilized for our kernels are registers, shared memory, and local/global memory. Registers and
local memory are thread-specific and up to 32768 registers are available to the threads be-
longing to a given block. Shared-memory (up to 48KB per block) is accessible by all threads
belonging to the same block and provides a high-speed location for threads within the same
block to communicate with one another and work collectively on data manipulation. Global
memory (up to 5GB per GPU device) is accessible by all threads across all blocks, but is
an order of magnitude slower than shared-memory and registers. Because all inter-block
communication must use global memory, GPU-based applications tend to only achieve high
performance on strongly data-parallel algorithms in which work can be cleanly divided across
the thread blocks, thereby allowing them to operate independently. For detailed information
about parallelism and memory in GPUs, please see Kirk and Wen-mei| (2010).

Due to the multiple levels of parallelism, and the different memory types and speeds,
constructing kernels can be difficult and, sometimes, counterintuitive. In the remainder
of this section, we isolate the calculations from Figure [1| that are best suited to the GPU
architecture, describe how those can be implemented on a GPU, and discuss how best to
utilize the resulting GPU subroutine in the wider context of global approximate emulation.

3.1 GPU ALC calculation

The most computationally intensive subroutine in the local approximate GP algorithm is
Step 2(b) in Figure[l} looping over all remaining candidates and evaluating the reduction in
variance @ to find the next candidate to add into the design. Each reduction in variance
calculation is O(j?), and in a design with N points, there are N’ = N — j candidates. Usually
N > j, so the overall scheme for a single x is O(Nn?), a potentially huge undertaking called
for j = ng,...,n for each predictive location x. As|Gramacy and Apley| (2014)) point out, it
may not be necessary to search over all N — j candidates—searching over a smaller set (say
N’ = 100n) of NNs can consistently yield the same local design as searching over the full
set. However, the resulting O(n?*) search can still represent a considerable computational
undertaking, even for modest n, when the number of predictive locations is large.

The structure of the evaluations of @, independent for each of the N’ candidates, is
ideal for GPU computing. FEach candidate’s calculation can be assigned to a dedicated
thread block so long as N’ < 65535, i.e. the number of thread blocks. Each of the sequence
of O(j?%) operations required for each candidate’s calculation (i.e., each block) can be further
parallelized across j threads within the designated block so long as 7 < n < 1024, potentially

in parallel with many others. Some care is needed to ensure that (a) as many of these
independent calculations as possible actually do occur in parallel; (b) threads execute the
same instructions on nearby memory locations at the same time for high throughput; (c)
there are as few synchronization points as possible; (d) memory transfers to and from the
GPU device are minimized; and (e) memory accesses on the GPU are primarily to fast
memory locations rather than to high-latency global memory.

Figures [2| and |3| describe our GPU implementation via the data/memory structure and
the execution sequence, respectively. In both cases the description is for a particular block
and thread within the block, indexed by b and ¢ respectively. The b index selects a candidate
zp from a row of the set of remaining candidates X;(z) = Xn \ X;(z). When the kernel
executes, many blocks, i.e., a range of b-values, are run in parallel. The number which execute
in parallel depends on the size of the problem, 7 and N, and other operating conditions, but
we find that it is typically in the hundreds for the problems we’ve attempted. Within a
block, the t index selects a column of a matrix, or an entry of a vector, in order to parallelize
the within-block computation. Based on the value of ¢, threads can take different execution
paths. However, execution is swiftest when ~ 32 threads (the warp size) execute the same
sequence of operations on adjacent memory locations. Therefore an effort has been made to
avoid divergent execution paths whenever possible.

Figure 2 describes the inputs/outputs (first two tables) and the working memory (last
two) of the GPU kernel. The right-hand columns of the tables describe variables in terms of
quantities in Eq. @ Note that some are reused. It also indicates what type of memory the
variable is stored in. Initially, all non-scalar inputs reside in slow global memory. Parts of
global memory that are frequently accessed by the block, b, are copied into that block’s shared
memory. Shared memory locations which are repeatedly accessed by particular threads, t,
within a block use temporary register storage. No local memory is required for our kernels.
As a visual queue we use a t subscript to distinguish between a register quantity indexing
a particular value of a shared memory array. For example, k; is used to calculate what will
eventually reside in k[t], the #*® indexed shared memory mapping pointed to by k. Eventually,
k will store k;(x;), a j—vector, and will later be reclaimed to store K, 'k;(xy).

Several of the steps outlined in Figure [3| require more detailed explanation. Notice that
Steps 2 & 6 assume an isotropic Gaussian correlation function. Simple modification would
accommodate another family and/or a separable version via a vectorized 6 parameter. In
two places, a sequence of two synchronized steps (3 — 4 and 6 — 7) calculate the scalar
value(s) of a quadratic form by first having each thread, asynchronously, fill a particular
entry in a j-vector, and then sum its elements via a reduction. Reductions are a way to get
multiple threads to work simultaneously towards calculating something that is more natural
serially, like a sum. Our implementation, abstracted as “sum.reduce(t, v)” for thread t¢’s
contribution to calculating the sum of the vector v, uses the logarithmic version described
on the SHARCNET! (2012) pages, which makes use of |j/2] threads. Since more than half of
the threads are idle in this reduction, we implemented our own bespoke version (employing
the idle threads) for the two simultaneous reductions required by Step 7, which led to a 10%
speedup compared to two separate reductions. [See Appendix [A]]

The thread is indexed by ¢, and the block by b.

Scalar inputs stored in registers:

variable | description

| | integer number of rows in the current local design X;(z)

double precision lengthscale parameter 6

double precision nugget parameter n

the number of rows (N — j) in the candidate matrix X = Xy \ X, ()
integer number of columns in X;(z) and X

’@23 SO

Double-precision input (and output) arrays stored in global memory:

variable | description
X | row-wise flattened X;(z), a j x p matrix
K=! | row-wise flattened K !, a j x j matrix
X | row-wise flattened Xy \ X;(z), a (N — j) x p matrix
covariances K (z, X) between z and rows of X, an n-vector
an N — j vector containing the output of Eq. @

> >

Double-precision working memory scalars stored in registers:

variable | eventual contents via analog in Eq. @
m~! mj_l, identical for all threads in block b
ki | (kj(z)):, the t™ element of k;(x)
later re-used for the t™ entry of K 'k;(x)
gi | (gj(zp))s, the t* element of g;(z)
¢ | K(xp,x), identical for all threads ¢ in block k

later re-used for the t™ entry of G (2/)m;" (x,)k;(x)

Double-precision working memory arrays stored in shared memory:

variable | eventual contents via analog in Eq. @
1y | a p-vector: the b candidate/row of X
k| kj(x), a j-vector;
later re-used for element-wise product of k;(r3) and K Y (zp)
gj(xp), a j-vector
a j-vector with element-wise product of k;(x)" and K 'k;(zs);

later re-used for product of k;(x)" and Gj_l(x’)mj_l(xb)k;j (x)

~ Q@

Figure 2: Inputs, outputs and working memory used by the GPU kernel computing Eq. @

10

Recall that ¢t indexes the thread and b indexes the block.

Each enumerated set of instructions is implicitly followed by a thread synchronization.

1. % Copy the b*® candidate (row of X) into faster shared memory.
if (t < p) then zy[t] < Xp[b X p +]

2. % Calculate K;(xp,).
ki <0
for (i € {1:p}) do ky < Ky + (mp[i] — X[t X p+1])?
k[t] < exp{—Fk:/0}

3. % Initialize g;(xp) with Kj_lkrj(xb), and prepare k;j(xb)TKj_lkj (xp).
g <0
for (i € {1:4}) do g; + g: + kl[i] x K7'[i x j +t].
U[t] < g+ x k[t]

4. % Complete the dot product k;(xs) - K; ' k;(xp).
0[0] + sum.reduce(t, £)

5. % Calculate uj_l(a:b), and finish g;(xp).
m~ <+ 1.0+ n — ([0]
glt] < gi/m™"
% Without syncing threads, calculate K;(x, x,) and initialize the output array.*
ki <0
for (1 € {1: p}) do ky + ki + (mp[1] — x[1])?
A[b] < exp{—k:/0}

6. % Prepare k;(z) G (y)k;j(x) and k] ()g;(xs).
0+ 0 for (i € {1:4}) do €, < £, + g[t] x gli] x p;*
U[t] < £ x hlt]

k[t] = hlt] x glt]

7. % Complete the dot products k;(x) - G;* («')m]
0[0] + sum.reduce(t, ¢)
k[0] <— sum.reduce(t, k)

Yap)k;(z) and ki(x) - Kj_lkj(xb).

8. % Wrapping up Eq. (0).*
Ab] + £]0] + 2.0 x k[0] x A[b] + A[p]?/p~t

Figure 3: Psuedocode for the GPU kernel computing Eq. @ Comments are indicated by
lines beginning with “%”; those followed by “*” superscripts indicate that the following
commands need only be executed on one thread, e.g., thread ¢ = 0.

11

Step 3 is the most computationally intensive, since it involves accessing j items stored
in global memory, the ' column of K~!. There is one other j-loop (Step 6), but it accesses
faster shared memory. Staging the ¢ column of K i !in shared memory does not lead to a
faster implementation since multiple accesses of this data are not required within the block.
By contrast, we copy a row of X in to shared memory (Step 1) since it is reused (Step 5),
thereby avoiding multiple transactions on global memory in this phase of the algorithm. We
remark that it is very important to work column-wise with K~ as opposed to row-wise to
ensure coalescence in memory transactions. Working column-wise allows warps of threads to
access adjacent memory locations storing K ~'. Working row-wise, i.e., accessing K[t x j +1],
gives the same answer (because the matrix is symmetric) but is about j-times slower.

Finally, we remark that the output, A, is not normalized. A final step, multiplying by
¥/(j — 2), is required to match the expression in Eq. (6). This can be done as a CPU
post-processing step, although it is slightly faster on the GPU. In Figure |3;

9. % Normalize by the global variance estimate.

AfD] = YA/(j = 2).

Observe that this is not actually required to find the argmax in Step 2b of Figure [1}

3.2 GPU-CPU full GP approximation

The GPU kernel described above implements Steps 2a and 2b in Figure [, Here we discuss
how it can be best situated within the outer loop(s), ultimately being applied over all pre-
dictive locations x € X'. The simplest option is to serialize: simply calculate for each x in
sequence, one after another. Within that loop, iterate over j = ng,...,n, performing the
required CPU calculations amidst GPU kernel calls to calculate Eq. @ We show in Section
that this leads to significant speedups compared to a serial CPU-only implementation.
But it makes for an inefficient use of a multiplicity (i.e., 1-CPU and 1-GPU) of computing
resources. The CPU is idle while the GPU is working, and vice versa.

Both inefficiencies are addressed by deploying a threaded CPU version identical to the
original one advocated by |Gramacy and Apley| (2014), i.e., using OpenMP. The difference here
is that speedups are attained even in the case of a single CPU core because while one CPU
thread is waiting for a GPU kernel to finish other CPU threads can be performing CPU
operations and/or queuing up the next GPU calculations. Having a small backlog of GPU
kernels waiting for execution is advantageous because it means the next kernel will start
immediately after the current one finishes.

There are diminishing returns for increasing numbers of CPU threads as they compete
for resources on both the CPU and GPU. There would eventually be negative returns due
to inefficiencies on the CPU (too many context switches) or GPU (not enough memory to
queue executions). This latter concern is very unlikely though since, e.g., our device has
more than 5GB of global memory. When N’ < 65535 and j < n < 1024, i.e., the block and
thread constraints, we can still queue quite a few kernels. In typical approximations N’ and
n are an order of magnitude smaller and we find that (marginal) speedups are still observed

12

when there are more than 4 CPU threads per CPU core (in the 1-GPU case).

Obviously, when there are multiple CPUs and/or multiple GPUs, CPU threading is
essential lest the duplicated resources remain untapped. We assume here that all GPUs
are identica]rf] and, so long as the CPU threads spread the kernels roughly equally amongst
GPUs, no further load balancing considerations are required (Hagan, 2011). Given a fixed
number of GPUs (including zero for a CPU-only version) we find a nearly linear speedup
as CPU cores (with one thread each) are added. Multiple threads-per-CPU core can help,
although only marginally as the number of cores increases, and only if there is at least
one GPU. For example, we will show that 32 threads with 16 cores and one or two GPUs
is marginally faster than using 16 threads—one per core. As GPUs are added the initial
benefits are substantial, especially when there are few CPUs. In that case it again makes
sense to have more threads than CPU cores.

4 Empirical results for the new GPU version

In this section we borrow the 2-d data and experimental apparatus of (Gramacy and Apley
(2014). This allows us to concentrate on timing results only—the accuracy, etc., of the
resulting predictions are identical to those reported in that paper. Our discussion is broken
into two parts: first focusing on the ALC calculations in isolation; then as applied in sequence
to build up local designs for many input locations, independently (and in parallel). The node
we used contains two NVIDIA Tesla M2090 GPU devices with 5GB of global memory and the
L1 cache option is set to prefer shared-memory (giving 48KB per block). It has dual-socket
8-core 2.6 GHz Intel Sandy Bridge Xeons with 32GB of main memory.

4.1 GPU calculations

Here we study the performance of GPU ALC calculations [Section relative to the one-
CPU-only alternative, beginning with Figure[d] which summarizes the result of an experiment
set up in the following way. We focus on a single reference location, x, the value of which is
not important as the timing results are the same for any . We consider N’ = 60K, which
is close to the maximum number of blocks, with one block per candidate. The only thing
that varies is the local design size n, from n = 16 to n = 512 (in steps of size 4). All of the
required correlation matrices, etc., are presumed to be calculated in advance (conditional on
sub-designs D, (), and candidates X). The time needed to build these is not included in
the comparison, as they are required as inputs by both CPU and GPU methods. The extra
time needed to copy data from CPU to GPU is, however, included in the GPU timings.
The left panel of the figure shows log timings separately for the CPU and GPU; whereas
the right panel shows the relative speedup offered by the GPU obtained by dividing the
CPU time by the corresponding GPU one. We observe the following. The speedups range
between 20x and 75x, with more modest speedups for small n owing to fewer economies of
scale. Two explanations are: (a) initiating data transfers to the GPU are relatively expensive

3Modern multi-core CPUs are always identical when in the SMP configuration.

13

60
|

50
|

log(walltime)
times faster than cpu

30
|

20
o

T T T T 1 T T T T 1
0 100 200 300 400 500 100 200 300 400 500
n n

Figure 4: Comparing CPU-only and GPU-only wall-clock timings for the ALC calculation
at each of n¢nq = 60000 candidate locations for varying n, the size of the local design.
It is assumed that the relevant covariance structure(s) are precomputed, so these are not
incorporated into the timing results. The left plot shows absolute performance on a log scale;
the right plot makes a relative comparison via ratios of times.

when only a small amount of data is sent/received; and (b) when n is small the number of
GPU threads-per-block (also n) is low, which results in low GPU throughput. We note that
it may be possible to increase performance in the second case, for low block index b, by
implementing more complex thread allocation logic to increase the number of threads-per-
block. However, we favor a direct mapping that leads to a clear implementation over a more
complex but potentially more performant solution.

Observe [Figure , right] that the time series of GPU compute times is periodic, which
is a consequence of the GPU architecture. There are several factors contributing to this
phenomena. Executions where n is a multiple of the warp size, i.e., n = 32k, tend to be
faster, on average. Our reduction scheme (for dot products, etc.) is fastest when n is a power
of 2. There is a sweet spot near n = 128, a power of 2 and multiple of 32, with diminishing
returns thereafter due to the quadratically growing K ! that must be transferred to the
GPU over the relatively slow PCle bus.

4.2 Full GP approximations via CPU and GPU

Here we study how the entire local design scheme, deploying extensive ALC search as a
subroutine, compares under GPU versus CPU when calculated for a dense set of predic-
tive localtions z in a global prediction exercise. As in Section .1 we primarly vary the
approximation fidelity via the local design size, n.

A quick profiling of a CPU-only version, varying n and z, reveals that ALC computations

14

represent the majority of compute cycles, at 50-98%. That wide range arises due the relative
amount of ALC work required compared to other calculations. For example, each iteration j
requires CPU routines to update the GP correlation structure. At the end, when j = n, MLE
calculations may also be invoked. Both can require a relatively substantial number of cycles
depending on the value of j, n, and the quality of initial 8, values, with bad ones leading
to more likelihood evaluations to find the MLE. As j, n, and N’ are increased, leading to a
higher fidelity approximation, the computational demands increase for ALC relative to the
other CPU routines, leading to more impressive speedups with a GPU implementation.

26
|

x better than CPU-only

threads

Figure 5: Speedups from GPU version(s) for varying CPU threads on a 1-core CPU.

To start things off, Figure [5| compares a CPU-only version to one leveraging one- and
two-GPU ALC calculations. The metric shown on the y-axis is a ratio of the wall-clock
execution times obtained while predicting at ~ 10K locations, with n = 50 and using N’ =
1000 NN candidates. The numerators in that ratio are times calculated from the reference
implementation, a single CPU core without GPU(s). The denominators come from each
CPU-GPU competitor, with one or two GPUs respectively, so that we may interpret the
ratio as a factor of improvement over a single-CPU-core-only implementation. (Otherwise
the setup is identical to the previous subsection.) The z-axis varies the number of OpenMP
CPU threads, where each thread works on a different local predictive location x, as described
briefly in Section Threaded computing does not benefit a single-CPU-core-only version.
However, since GPUs can execute in parallel with other CPU calculations, the entire scheme
benefits from having multiple CPU threads because they can asynchronously queue jobs on
the GPU devices. The trend is that speeds increase, with diminishing returns, when the
number of threads is increased. Notice how odd numbers of threads are sub-optimal, which

15

is a peculiarity of the particular GPU-CPU architecture on our machine. Also, notice how
the 2-GPU setup is marginally slower than the 1-GPU one, suggesting that the single CPU
core is not able to make efficient use of the second GPU device.

The previous example illustrates how CPU-only and CPU/GPU schemes might compare
on an older-model laptop or desktop connected to a modern GPU. These days even laptops
are multi-cored (usually two cores), and most modern research workstations have at least four
cores. It is not uncommon for them to have up to sixteen. Therefore we next factor SMP-style
parallelization into the study. In some ways this leads to a fairer CPU vs. GPU comparison,
since GPUs are technically multi-core devices (albeit with very simple cores). Figure |§|

16 cores, n=50, N'=1000 16 cores, n=50, N'=2000 16 cores, n=128, N'=2000
- — _ -
- - -
o o o
- - -
o o o -
@
£m7 — cpuonly © 4 © -\
® - - cpu+lgpu \
% <+ Cpu+2gpus o
o ™~ ~ ~ - D
\
©O O \ © -
~
[To i wn - . wn -
T T T T T T 1 T T T T T T 1 T T T T T T 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
\
v
v
v
28 24 94
s} [
5 x
S \
c \
g 34 - - cpu+lgpu S ER '
= © Cpu+ 2gpus \ \\
2 .
g . '\
%) \ N ~
E LE AN w0 Mo 0 Se
= R) o N e __.
o - o - o -
T T T T T T 1 T T T T T T 1 T T T T T T 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
number of CPU threads number of CPU threads number of CPU threads

Figure 6: Comparing full global approximation times for a ~ 40K-sized design, and a ~ 10K
predictive locations, under various CPU/GPU configurations and approximation fidelities
(larger n and/or N’). The top row makes absolute comparisons via log compute times; the
bottom row makes a relative comparison to CPU-only compute times via a ratio. The solid
horizontal line is at one on the y-axis.

summarizes the result of an experiment utilizing up to 16 cores and 2 GPUs. Problem sizes
are varied along the columns of the figure ((n = 50, N’ = 1000), (n = 50, N = 2000),
(n = 128, N’ = 2000)) and a number of OpenMP CPU threads and GPUs is varied in each
plot. The top row in the figure shows log timings, whereas the bottom row shows times

16

relative to the CPU-only calculation, via the same ratio used in Figure [5

First consider the results obtained for a single CPU thread. The figure shows that the
ALC GPU computation yields between a 6x and 20x speedup, with the better ratios obtained
as the fidelity of the approximation increases. Note that the 1-GPU and 2-GPU results are
the same in this case—a single CPU thread cannot make effective use of multiple GPUs.

When multiple OpenMP CPU threads are in use the compute times steadily decrease as
more processors are added. For example, considering the CPU-only results, the ratio of the
1-CPU time to the 16-core CPU time is 14.5 for all three problem sizes, which suggests very
good efficiency (the best we could hope for is 16x). In the case of the first column, the 16
CPU thread solution is faster than the 1-CPU-thread version interfacing with a GPU. (In
fact it is better up to about 5 CPU threads for the GPU). Using 16 CPU threads performing
CPU-only calculations is almost as good as allowing those same 16 threads to queue jobs on
a single GPU, which is creating a bottleneck. The results for two GPUs are much better,
and we would expect the relative timings to be even better with more GPUs.

We conclude that both SMP and GPU paradigms are helpful for calculating the local GP
approximation. Their combined efforts, compared to using a single CPU alone, represent a
33x, 50x, and 100x, improvement in wall-clock time on the three problem sizes respectively.
If only one option were made available, single CPU-only or single GPU+CPU, the latter is
clearly preferable (giving 6-20x speedups). However, adding on multiple CPU threads can
lead to a 2.6x speedup in the 1-GPU setting, and about 5x in the 2-GPU case, for all three
problems. Finally, augmenting a 16 CPU-only setup with 2 GPUs gives a 2.2x, 3.3x, 6.7x
speedups respectively.

We noticed in this latter case, with 16 CPUs and 2 GPUs, that only 5/16 of CPU
capability was being utilized with so much of the computation being off-loaded to the GPUs.
We found that when this happens it is possible to get a further 1/4 reduction in wall-clock
times by creating new CPU threads (10 or so) to do CPU-only ALC calculations alongside
the GPU ones. Some pilot tuning is needed to get the load balancing of CPU v. GPU
calculations right. Figure @ can serve as a guide, starting with an 80/20 GPU/CPU split for
the lowest fidelity case, increasing 85/15 and 90/10 as the fidelity, and thus relative speedup
obtained from the GPU, is increased.

5 Big computer emulation

Here we demonstrate a three-level cascade of parallelism towards approximate GP emulation
on very big computer experiment data. The first two levels are OpenMP-based and CUDA-
based, using CPUs and GPUs respectively, on a single compute node. The third level is a
cluster, allowing simultaneous use of multiple nodes. For this we use the simple network
of workstations model implemented in the snow package (Tierney et al.| 2013) for R, which
only requires a simple wrapper function to break up the predictive locations X into chunks—
allowing each to be processed on a separate node via clusterApply—and then to combine

17

the outputs into a single object []

We remark that in the case of a single node with multiple cores, our use of snow accom-
plishes something very similar to an OpenMP SMP parallelization. However, given a choice the
latter is faster than the former since establishing a cluster requires starting multiple copies
of R, sending copies of the data to each, and then combining the results. Also, our focus
here is primarily on timing results, reminding readers that fidelity /computational demands
are tightly linked with emulation accuracy. In the case of our second example, |(Gramacy and
Apley| (2014) already illustrated how a relatively thrifty approximation can provide more
accurate predictions compared to modern alternatives in a fraction of the time.

5.1 Langley Glide-Back Booster

Our first example is a real computer experiment for a re-usable rocket booster called the Lan-
gley Glide-Back Booster. The computer model, developed at NASA, involves computational
fluid dynamics (CFD) codes that simulate the characteristics of the booster as it re-enters
the atmosphere—modeling outputs such as lift as a function of inputs such as speed, angle
of attack, and side-slip angle. For more details of the experiment, including how the emula-
tor can benefit from a nonstationary /localized modeling capability due to abrupt dynamical
transitions at speeds near the sound barrier, see (Gramacy and Lee| (2009). The designﬂ has
N = 37908 3-dimensional input configurations, and six outputs but we only consider the first
one, lift, here. The design is gridded to be dense in the first input, speed, and coarse in the
last, side slip angle. We consider using the local GP approximation method to interpolate
the lift response onto a regular grid that is two-times more dense in the first input, and three
times more dense in the second two. That gives a predictive grid of size |X| = 644436.

Our setup here mimics the apparatus described in Section [£.2] using 4 identical compute
nodes, each having 16 cores and 2 GPUs. We establish 16 OpenMP CPU threads queuing GPU
ALC calculations on both GPUs, and 12 further OpenMP CPU threads performing CPU-only
ALC calculations, initially allowing the GPUs to take 80% of the ALC work. The snow
package distributes an equal workload to each of the four nodes. The ALC searches are over
N’ = 1000 NN candidate locations, starting at ng = 6 and ending at n = 50, i.e., following
the left-most panel in Figure [l The wall-clock time for the full emulation was 21 minutes.
By way of comparison, a single CPU-only version (but fully utilizing its 16 cores) takes 235
minutes (4 hours) and fully using all CPU cores on all four nodes takes about 58 minutes
(1 hour). Therefore the GPUs yield about a 4x speedup, which is a little better than the 2x
speedup indicated in the bottom-left panel Figure [6]

A higher fidelity search with N’ = 2000, mimicking the middle panel of Figure [6] except
the CPU/GPU load was beneficially re-balanced so that GPUs do 90% of the work, took
33 minutes in the full (4x 2-GPU/16-CPU) setting. A single CPU-only version (16 cores)

4The built-in parallel package can also be used instead of snow. In our setup, cluster nodes are allocated
via SLURM, an open-source Linux scheduler, and are connected by an Infiniband FRD10 fabric.

5The version of the data we consider here is actually the output of Gramacy & Lee’s emulation of computer
simulations adaptively designed to concentrate more runs near speeds of Mach one, i.e., at the sound barrier,
using a partition-based non-stationary model.

18

takes 458 minutes (~8 hours) and using all four nodes takes 115 minutes (~2 hours). So
the GPUs yield a 4x speedup, which is in line with the bottom-middle panel of Figure [0]
Increasing the fidelity again to N’ = 10K, and re-balancing the load so that GPUs do 95% of
the ALC work by allocating 12 extra CPU threads to do the rest, takes 112 minutes on all 4x
2-GPU/16-CPU nodes, representing a more than 5x speed-up compared to the 4x 16-CPU
(i.e., no GPU) version. Alternatively, keeping N’ = 2000 but increasing the local design size
to n = 128, mimicking the right column of Figure [f] except with GPUs again doing 95% of
the ALC work, takes 190 minutes, representing an almost 6x speedup.

5.2 A one-hour supercomputing budget

We wrap up with a search for the largest emulation possible on the resources available to
us. For data generation we chose the borehole function (Worley, 1987; Morris et al., [1993)
which provides a familiar benchmark. It has an 8-dimensional input space, and our use of
it here follows directly from |Gramacy and Apley| (2014) who copied the setup of Kaufman
et al.| (2012); more details can be found therein.

Table (1| summarizes the timings and accuracies of designs from size N = 1000 to just over
N = 1M, stepping by factors of two. To keep things simple, the predictive set size is taken to
match the design size (|X| = N), but note that they are different random (Latin hypercube)
samples. We allowed the fidelity of the approximation to increase with N along a schedule
that closely matches settings that have worked on similarly sized problems. Specifically, we
started with (n = 40, N’ = 1000) for the smallest problem (N = 1000), and each time N
doubled we increased n additively by two and N’ multiplicatively by 1.5. The left panel of
the table shows results from a 96-node CPU cluster, where each node has 16 cores. The
middle panel shows results from a 5-node GPU/CPU cluster, where each node has 2 GPUS
and 16 cores. Unfortunately, the infrastructure we had access to did not allow CPU and
GPU/CPU nodes to be mixed. The final panel shows the speedup-factor from the GPU
nodes assuming we had 96 instead of five.

On the CPU nodes, over a million inputs and outputs can be processed in under an hour,
~ 100K in about a minute, and ~ 10K in about two seconds. The GPU/CPU cluster has
a little less than half of the capacity, processing half-a-million points in just over an hour.
Assuming we had more GPU/CPU nodes, the final column suggests that the GPUs make
the whole execution 2.5-4.5x faster on these problems. Notice that these efficiencies decrease
and then increase again as fidelity is increased. The initial high efficiencies are actually
due to inefficiencies in the snow execution: 96 cores is overkill for problems sized in the
few thousands, requiring too much of a communication overhead between master and slave
nodes. Whereas the latter high efficiencies are due to improvements in GPU throughput for
larger problems. Finally, notice that accuracy (out-of-sample MSE) is steadily improving
as fidelity increases. By way of comparison, Gramacy and Apley| (2014) showed that with
N € {4000, 8000} the approximations were at least as accurate as those in |[Kaufman et al.
(2012) with less than 1% of the computing effort.

However, comparisons based on accuracy in this context are at best strained. In cases
when each method can execute fast enough to perform a full analysis (e.g., limiting to

19

96x CPU 5x 2 GPUs FarU/ee

N n N’ | seconds mse seconds mse efficiency

1000 40 100 0.48 4.88 1.95 4.63 4.73
2000 42 150 0.66 3.67 296 3.93 4.26
4000 44 225 0.87 2.35 5.99 231 2.79
8000 46 338 1.82 1.73 13.09 1.74 2.66
16000 48 507 4.01 1.25 2948 1.28 2.61
32000 50 760 10.02 1.01 67.08 1.00 2.87
64000 52 1140 28.17 0.78 164.27 0.76 3.29
128000 54 1710 84.00 0.60 443.70 0.60 3.63
256000 56 2565 | 261.90 0.46 1254.63 0.46 4.01
512000 58 3848 | 836.00 0.35 4015.12 0.36 4.00
1024000 60 5772 | 2789.81 0.26 13694.48 0.27 3.91

Table 1: Timings and out-of-sample accuracy measures for increasing problem sizes on the
borehole data. The “mse” columns are mean-squared predictive error to the true outputs on
the |X| = N locations from separate runs (hence the small discrepancies between the two
columns). Both CPU and GPU nodes have 16 CPU cores. So the “96x CPU” shorthand in
the table indicates 1536 CPU cores.

n < 10000), we've observed (based on comparisons like the ones above) accuracies that
are strikingly similar across a wide swath of comparators. We think it is reasonable to
suggest that would remain true for larger problem sizes, although this is nearly impossible
to verify. Often the largest runs reported by authors are on proprietary data, and some
involve proprietary library routines, which makes reproducibility difficult. For example, the
largest problem entertained by [Kaufman et al.| (2012) was a cosmology example with (N =
20000, |X'| = 80000), but timing information was not provided and the data is not publicly
available to our knowledge. Paciorek et al.|(2013) entertained (N = 67275, |X| = 55379), but
again without timing information or public data. Therefore, we conclude that our method
is at worst a worthy competitor relative to these alternatives, but offering the potential for
similar emulation quality on problems that are several orders of magnitude larger.

6 Discussion

The local GP approximation of Gramacy and Apley| (2014) swaps a large problem for many
small independent ones. We show in this paper how those many small problems can be solved
on a cascade of modern processing units. We think this is particularly timely research. Many
modern desktops have multiple cores and (sometimes) multiple GPUs, and many modern
“supercomputers” are not much more than enormous clusters of high-end multi-core desktops
and GPUsff| Our primary focus was on a GPU accelerated version of a key subroutine in

6Some really modern supercomuters are essentially clusters of GPUs, with very little CPU computing
capability, although we did not have access to such a setup for the empirical work in this paper.

20

the approximation, allowing a faster execution at lower cost. Although results have emerged
casting doubt on some of the speed claims made in scientific computing contexts for GPUs
(e.g., Lee et al., [2010]), it is still the case that, penny-for-flop, GPUs are cheap. Therefore, its
proportion of available flops will continue to grow relative to CPUs for some time to come.

We take a different tack to the use of GPUs for GP computer emulation compared to
other recent works, which primary offload large matrix calculation to GPUs. As we show,
the combined effects of approximation and massive parallelization can extend GP emulation
to problems at least an order of magnitude larger than what is currently possible. We note
that others have had similar success parallelizing non-GP models for computer emulation.
For example, Pratola et al.| (2013) parallelized the Bayesian additive regression trees (BART)
method using the message passing interface (MPI) and report handling designs as large as
N = 7M using hundreds of computing cores. Such efforts will likely remain in vogue so long
as computing resources continue to grow “out” (with more nodes/cores, etc.) faster than
they grow “up”, which will be for quite some time to come.

Acknowledgments

This work was completed in part with resources provided by the University of Chicago
Research Computing Center. Many thanks to Matt Pratola for comments on an early version.
We are grateful for valuable comments from two referees and an associate editor during the
formal review process.

A Double reduction CUDA code

The CUDA GPU kernel sumBoth assumes that both inputs, d_datal and d_data2 have length
n, and the call is sumBoth<<1,n>>(d_datal, d_data2) so that blockDim.x = n.

__global__ void sumBoth(double *d_datal, double *d_data2)
{

int tid = threadIdx.x;

int nelem = blockDim.x;

int nTotalThreads = NearestPowerO0Of2(nelem);

int halfPoint = (nTotalThreads >> 1);

if (tid < halfPoint) {
int thread2 = tid + halfPoint;
if (thread2 < nelem) {
d_datal[tid] += d_datal[thread2];
d_data2[tid] += d_data2[thread?2];
}
}
__syncthreads() ;

21

// now its a regular power of 2 reduction on data of size halfPoint
if (tid < halfPoint){
if (tid < halfPoint/2) { // First 1.2 of the threads work on d_datal
for(unsigned int s=halfPoint/2; s>0; s>>=1) {
if (tid < s) d_datal[tid] += d_datal[tid + s];
syncthreads () ;

+
} else { // Second 1/2 of the threads works on d_data2
tid = tid - (halfPoint/2);
for(unsigned int s=halfPoint/2; s>0; s>>=1) {
if (tid < s) d_data2[tid] += d_data2[tid + s];
syncthreads() ;

References

Barnett, S. (1979). Matriz Methods for Engineers and Scientists. McGraw-Hill.

Bayarri, M., Berger, J., Paulo, R., Sacks, J., Cafeo, J., Cavendish, J., Lin, C.-H., and Tu,
J. (2007). “A Framework for Validation of Computer Models.” Technometrics, 49, 2,
138-154.

Cohn, D. A. (1996). “Neural Network Exploration using Optimal Experimental Design.”
In Advances in Neural Information Processing Systems, vol. 6(9), 679-686. Morgan Kauf-
mann Publishers.

Cressie, N. (1991). Statistics for Spatial Data, revised edition. John Wiley and Sons, Inc.

Cressie, N. and Johannesson, G. (2008). “Fixed Rank Kriging for Very Large Data Sets.”
Journal of the Royal Statistical Soceity, Series B, 70, 1, 209-226.

Eidsvik, J., Shaby, B. A., Reich, B. J., Wheeler, M., and Niemi, J. (2013). “Estimation and
prediction in spatial models with block composite likelihoods.” Journal of Computational
and Graphical Statistics, 0, ja, null.

Franey, M., Ranjan, P., and Chipman, H. (2012). “A Short Note on Gaussian Process Mod-
eling for Large Datasets using Graphics Processing Units.” Tech. rep., Acadia University.

Furrer, R., Genton, M., and Nychka, D. (2006). “Covariance tapering for interpolation of
large spatial datasets.” Journal of Computational and Graphical Statistics, 15, 502-523.

22

Gilboa, E., Saatgi, Y., and Cunningham, J. P. (2012). “Scaling Multidimensional Inference
for Structured Gaussian Processes.” ArXiv e-prints.

Gramacy, R. and Polson, N. (2011). “Particle Learning of Gaussian Process Models for
Sequential Design and Optimization.” Journal of Computational and Graphical Statistics,
20, 1, 102-118.

Gramacy, R. B. (2013). 1aGP: Local approzimate Gaussian process regression. R package
version 1.0.

Gramacy, R. B. and Apley, D. W. (2014). “Local Gaussian process approximation for large
computer experiments.” Journal of Computational and Graphical Statistics. to appear;
see arXiv:1303.0383.

Gramacy, R. B. and Lee, H. K. H. (2009). “Adaptive Design and Analysis of Supercomputer
Experiments.” Technometrics, 51, 2, 130-145.

Haaland, B. and Qian, P. (2011). “Accurate Emulators for Large-Scale Computer Experi-
ments.” Annals of Statistics, 39, 6, 2974-3002.

Hagan, R. (2011). “Multi-GPU load Balancing for Simulation and Rendering.” Ph.D. thesis,
Virginia Polytechnic Institute and State University, Blackburgh, VA.

Jones, D., Schonlau, M., and Welch, W. J. (1998). “Efficient Global Optimization of Expen-
sive Black Box Functions.” Journal of Global Optimization, 13, 455—-492.

Kaufman, C., Bingham, D., Habib, S., Heitmann, K., and Frieman, J. (2012). “Efficient
Emulators of Computer Experiments Using Compactly Supported Correlation Functions,
With An Application to Cosmology.” Annals of Applied Statistics, 5, 4, 2470-2492.

Kennedy, M. and O’Hagan, A. (2001). “Bayesian Calibration of Computer Models (with
discussion).” Journal of the Royal Statistical Society, Series B, 63, 425-464.

Kirk, D. B. and Wen-mei, W. H. (2010). Programming massively parallel processors: a
hands-on approach. Morgan Kaufmann.

Lee, V. W., Kim, C.; Chhugani, J., Deisher, M., Kim, D., Nguyen, A. D., Satish, N.,
Smelyanskiy, M., Chennupaty, S., Hammarlund, P., Singhal, R., and Dubey, P. (2010).
“Debunking the 100X GPU vs. CPU myth: an evaluation of throughput computing on
CPU and GPU.” SIGARCH Comput. Archit. News, 38, 3, 451-460.

Morris, D., Mitchell, T., and Ylvisaker, D. (1993). “Bayesian Design and Analysis of Com-
puter Experiments: Use of Derivatives in Surface Prediction.” Technometrics, 35, 243-255.

Nychka, D., Wikle, C., and Royle, J. (2002). “Multiresolution Models for Nonstationary
Spatial Covariance Functions.” Statistical Modelling, 2, 315-331.

23

Paciorek, C., Lipshitz, B., Zhuo, W., Prabhat, Kaufman, C., and Thomas, R. (2013). “Paral-
lelizing Gaussian Process Calculations in R.” Tech. rep., University of California, Berkeley.
ArXiv:1303.0383.

Plumlee, M. (2013). “Efficient inference for random fields using sparse grid designs.” Tech.
rep., Georgia Tech. under review.

Pratola, M. T., Chipman, H., Gattiker, J., Higdon, D., McCulloch, R., and Rust, W. (2013).
“Parallel Bayesian Additive Regression Trees.” Journal of Computational and Graphical
Statistics. To appear.

Quinonero—Candela, J. and Rasmussen, C. (2005). “A Unifying View of Sparse Approximate
Gaussian Process Regression.” Journal of Machine Learning Research, 6, 1939-1959.

Ranjan, P., Haynes, R., and Karsten, R. (2011). “A Computationally Stable Approach to
Gaussian Process Interpolation of Deterministic Computer Simulation Data.” Technomet-
rics, 53, 4, 363-378.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning.
The MIT Press.

Sang, H. and Huang, J. Z. (2012). “A Full Scale Approximation of Covariance Functions
for Large Spatial Data Sets.” Journal of the Royal Statistical Society: Series B, T4, 1,
111-132.

Santner, T. J., Williams, B. J., and Notz, W. L. (2003). The Design and Analysis of Computer
Experiments. New York, NY: Springer-Verlag.

Seo, S., Wallat, M., Graepel, T., and Obermayer, K. (2000). “Gaussian Process Regression:
Active Data Selection and Test Point Rejection.” In Proceedings of the International Joint
Conference on Neural Networks, vol. 111, 241-246. IEEE.

SHARCNET (2012). CUDA Tips and Tricks.

Stein, M. L., Chi, Z., and Welty, L. J. (2004). “Approximating Likelihoods for Large Spatial
Data Sets.” Journal of the Royal Statistical Society, Series B, 66, 2, 275-296.

Tierney, L., Rossini, A. J., Li, N., and Sevcikova, H. (2013). snow: Simple Network of
Workstations. R package version 0.3-12.

Vecchia, A. (1988). “Estimation and model identification for continuous spatial processes.”
Journal of the Royal Statistical Soceity, Series B, 50, 297-312.

Worley, B. (1987). “Deterministic Uncertainty Analysis.” Tech. Rep. ORN-0628, National
Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161, USA.

24

	1 Introduction
	2 Computer model emulation
	2.1 Gaussian process regression
	2.2 Local approximate Gaussian process modeling

	3 GPU computing
	3.1 GPU ALC calculation
	3.2 GPU–CPU full GP approximation

	4 Empirical results for the new GPU version
	4.1 GPU calculations
	4.2 Full GP approximations via CPU and GPU

	5 Big computer emulation
	5.1 Langley Glide-Back Booster
	5.2 A one-hour supercomputing budget

	6 Discussion
	A Double reduction CUDA code

