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Abstract. We study long range propagation of electromagnetic waves in random waveguides
with rectangular cross-section and perfectly conducting boundaries. The waveguide is filled with an
isotropic linear dielectric material, with randomly fluctuating electric permittivity. The fluctuations
are weak, but they cause significant cumulative scattering over long distances of propagation of
the waves. We decompose the wave field in propagating and evanescent transverse electric and
magnetic modes with random amplitudes that encode the cumulative scattering effects. They satisfy
a coupled system of stochastic differential equations driven by the random fluctuations of the electric
permittivity. We analyze the solution of this system with the diffusion approximation theorem,
under the assumption that the fluctuations decorrelate rapidly in the range direction. The result is
a detailed characterization of the transport of energy in the waveguide, the loss of coherence of the
modes and the depolarization of the waves due to cumulative scattering.
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1. Introduction. We study electromagnetic wave propagation in waveguides.
There is extensive applied literature on this subject [17, 18, 16, 11, 5, 19] which in-
cludes open and closed waveguides, waveguides with losses, boundary corrugation and
heterogeneous media. Here we consider the setup illustrated in Figure 1.1, for a waveg-
uide with rectangular cross-section Ω = (0, L1)×(0, L2), filled with an isotropic linear
dielectric material. The waves are trapped by perfectly conducting boundaries and
propagate in the range direction z. The cross-range coordinates are x = (x1, x2) ∈ Ω.
The main goal of the paper is to analyze long range wave propagation in waveguides
with imperfections. We refer to [14, 6, 9, 1, 2] and [7, Chapter 20] for rigorous mathe-
matical studies of long range wave propagation in imperfect acoustic waveguides, and
to [4, 3, 8] for their application to imaging and time reversal. Here we extend the
theory to electromagnetic waves.

We focus attention on waveguides with imperfections due to a heterogeneous
dielectric, but the ideas should extend to waveguides with corrugated boundaries.
Such waveguides can be analyzed by changing coordinates to flatten the boundary
fluctuations as was done in [1] for sound waves, or by using so-called local normal mode
decompositions as proposed in [18, chapter 9]. Our waveguide has straight walls and
is filled with a dielectric material that has numerous inhomogeneities (imperfections).
These are weak scatterers, so their effect is negligible in the vicinity of the source of
the waves. However, the inhomogeneities cause significant cumulative wave scattering
over long ranges. To quantify the cumulative scattering effects we study the following
questions: How are the modal wave components coupled by scattering? How do the
waves depolarize? How do the waves lose coherence? Can we calculate from first
principles the scattering mean free paths, which are the range scales over which the
modal wave components lose coherence? How is energy transported at long ranges
in the waveguides? Can we quantify the equipartition distance where cumulative
scattering is so strong that the waves lose all information about the source? How
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Fig. 1.1. Schematic of the setup. The waveguide is unbounded in the range direction z and has
rectangular cross-section in the plane (x1, x2), with sides L1 and L2.

does the equipartition distance compare with the mode dependent scattering mean
free paths?

To answer these questions we model the scalar valued electric permittivity ε of
the dielectric as a random process. The random model is motivated by the fact that in
applications the imperfections can never be known in detail. They are the uncertain
microscale of the medium, the fluctuations of ε(~x) in ~x = (x, z), so we model them as
random. The fluctuations are small, on a scale (correlation length) comparable to the
wavelength. We assume that there is no dissipation in the medium, meaning that ε(~x)
is real, positive. Complex valued permittivities ε(ω, ~x) which are typically required by
causality i.e., Kramers-Kronig relations, can be incorporated in the model. We do not
consider them here for simplicity, and because we are concentrating on the analysis
at a single frequency ω. Extensions to multi frequency analysis of wave propagation
in dispersive and lossy media can be done, using techniques like in [6, 14, 1] and [7,
chapter 20], but we leave them for a different publication.

The paper is organized as follows: We begin in section 2 with the setup. We state
Maxwell’s equations and the boundary conditions satisfied by the electromagnetic
field. Then we follow the approach in [17] and solve for the components Ez(ω, ~x) and
Hz(ω, ~x) of the electric and magnetic fields in the range direction. We obtain a 4× 4
system of partial differential equations for the components E(ω, ~x) and H(ω, ~x) of
the fields in the cross-range plane. We analyze in section 3 its solution Eo(ω, ~x) and
Ho(ω, ~x) in ideal waveguides with constant permitivity εo. It is a superposition of
uncoupled transverse electric and transverse magnetic modes. The random model of
the waveguide is introduced in section 4. Because the amplitude of the fluctuations
of ε(~x) is small, of order ε� 1, the system of equations for E(ω, ~x) and H(ω, ~x) is a
perturbation of that in ideal waveguides. The remainder of the paper is concerned with
the asymptotic analysis of E(ω, ~x) and H(ω, ~x) at long ranges, in the limit ε→ 0. We
consider long ranges because the ε→ 0 limit of E(ω, ~x) and H(ω, ~x) is the same as the
ideal waveguide solution Eo(ω, ~x) and Ho(ω, ~x) when the waves do not propagate far
from the source. Our analysis is based on the decomposition of E(ω, ~x) and H(ω, ~x)
in transverse electric and magnetic modes, with random amplitudes that encode the
cumulative scattering effects, as explained in section 5. The long range scaling and
the diffusion limit approximation for analyzing the wave field as ε → 0 are stated in
section 6. The main results of the paper are in section 7, where we characterize the
limit process. Explicitly, we describe the loss of coherence and depolarization of the
waves due to cumulative scattering, and the transport of energy. We also show that
as we let the range grow, the waves scatter so much that they eventually reach the
equipartition regime, where they lose all information about the source. We end with
a summary in section 8.
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2. Setup. Let ~e1, ~e2 and ~ez be the unit vectors along the coordinate axes, and
use bold letters with an arrow on top for three dimensional vectors, and bold letters
for two dimensional vectors in the cross-range plane. Exlicitly, we write

~H = H1~e1 + H2~e2 + Hz~ez , H = (H1,H2) , (2.1)

for the magnetic field ~H(ω, ~x), and similarly for the electric field ~E(ω, ~x) and electric

displacement ~D(ω, ~x). They satisfy Maxwell’s equations

~∇× ~H(ω, ~x) = ~J (ω, ~x)− iω ~D(ω, ~x) , (2.2)

~∇× ~E(ω, ~x) = iωµo ~H(ω, ~x) , (2.3)

~∇ · ~H(ω, ~x) = 0 , (2.4)

~∇ · ~D(ω, ~x) = ρ(ω, ~x) , (2.5)

where ~J and ρ are the current source density and free charge density, and µo is the
magnetic permeability, assumed constant. We denote by

~∇ = ∂x1
~e1 + ∂x2

~e2 + ∂z~ez

the three dimensional gradient and by ~∇× and ~∇· the curl and divergence operators.

The current source density

~J (ω, ~x) = (J (ω, ~x),Jz(ω, ~x)) = (J(ω,x), Jz(ω,x)) δ(z) , (2.6)

models a source at the origin of range, supported in the interior of Ω. The Fourier
transform ρ(ω, ~x) of the free charge density can be obtained from the continuity of
charge derived from (2.2) and (2.5)

− iωρ(ω, ~x) + ~∇ · ~J (ω, ~x) = 0 . (2.7)

It vanishes at ranges z 6= 0.

The electric displacement is proportional to the electric field

~D(ω, ~x) = ε(~x)~E(ω, ~x) , (2.8)

with scalar valued, positive and bounded electric permittivity ε. The analysis is for
a single frequency, so we simplify the notation by omitting henceforth ω from the
arguments of the fields.

2.1. The 4 × 4 system of equations. We study the evolution of the two di-
mensional vectors E(~x) and H(~x) for z > 0. They determine the components Ez(~x)
and Hz(~x) in the range direction of the electric and magnetic fields, as follows from
equations (2.2)-(2.3)

Hz(~x) = − i

ωµo
∇⊥ ·E(~x) , (2.9)

Ez(~x) =
i

ωε(~x)

[
∇⊥ ·H(~x)− Jz(~x)

]
, (2.10)
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with ∇⊥ = (−∂x2
, ∂x1

) the perpendicular gradient in the cross-range plane. The 4×4
system of equations for E(~x) and H(~x) is

∂zE(~x) =
i

ω
∇
[

1

ε(~x)
∇⊥ ·H(~x)

]
− i

ω
∇
[
Jz(~x)

ε(~x)

]
− iωµoH⊥(~x) , (2.11)

∂zH(~x) = − i

ωµo
∇
[
∇⊥ ·E(~x)

]
+ iωε(~x)E⊥(~x)−J ⊥(~x) . (2.12)

Here ∇ = (∂x1
, ∂x2

) is the gradient in the cross-range plane, and we let a⊥ = (−a2, a1)
denote the rotation of any vector a = (a1, a2) by 90 degrees, counter-clockwise.

Note that equations (2.9)-(2.12) contain all the information in the Maxwell system
(2.2)-(2.5). Indeed, (2.4) follows from (2.9) and (2.11)

~∇ · ~H(~x) = ∇ ·H(~x) + ∂zHz(~x)

= ∇ ·H(~x)− i

ωµo
∇⊥ · ∂zE(~x)

= ∇ ·H(~x)−∇⊥ ·H⊥(~x)

= 0 ,

because ∇⊥ · ∇a(~x) = 0 for any twice continuously differentiable function a(~x). Sim-
ilarly, (2.5) follows from (2.10) and (2.12)

~∇ · ~D(~x) = ∇ ·D(~x) + ∂zDz(~x)

= ∇ · [ε(~x)E(~x)] +
i

ω

[
∇⊥ · ∂zH(~x)− ∂zJz(~x)

]
= ∇ · [ε(~x)E(~x)]−∇⊥ ·

[
ε(~x)E⊥(~x)

]
− i

ω

[
∇⊥ ·J ⊥(~x) + ∂zJz(~x)

]
= − i

ω
~∇ · ~J (~x)

= ρ(~x) ,

where we used (2.8) and the continuity of charge relation (2.7).

2.2. Boundary conditions. The boundary conditions at the perfectly conduct-
ing boundary ∂Ω are [12, Chapter 8]

~n(x)× ~E(~x) = 0 (2.13)

for ~x = (x, z) and x ∈ ∂Ω. The outer normal ~n(x) = (n(x), 0) at ∂Ω is independent
of the range and is orthogonal to ~ez. Thus, equations (2.13) say that the tangential
components of the electric field vanish at the boundary. Explicitly,

Ez(~x) = 0 , n⊥(x) ·E(~x) = 0 . (2.14)

We need more boundary conditions at ∂Ω to specify uniquely the solution of (2.11-
2.12), but they can be derived from Maxwell’s equations (2.2-2.3), conditions (2.14),
and our assumptions on the source density (2.6), as explained in section 3.

The fields are bounded and outgoing at |z| → ±∞. We explain in section 4.1 that
the causality of the problem in the time domain allows us to restrict the fluctuations
of ε(~x) to a finite range interval, and thus justify the outgoing boundary conditions.
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2.3. Conservation of energy. The fields E(~x) and H(~x) satisfy an energy
conservation relation, stated in the following proposition, and used in the analysis in
section 7.

Proposition 2.1. For any z > 0, we have the conservation relation

S(z) = −
∫

Ω

dx Re
[
E(~x) ·H⊥(~x)

]
= S(0+). (2.15)

where the bar denotes complex conjugate.

Note that

~S(~x) =
1

2
Re
[
~E(~x)× ~H(~x)

]
is the time average of the Poynting vector of a time harmonic wave [12, chapter 7].
Therefore,

S(z) = 2

∫
Ω

dx~ez · ~S(~x)

is twice the flux of energy in the range direction, and (2.15) states that it is conserved
for all z > 0.

To derive (2.15) we obtain from (2.2)-(2.3) that

~∇ ·
[
~E(~x)× ~H(~x)

]
= ~H(~x) ·

[
~∇× ~E(~x)

]
− ~E(~x) ·

[
~∇× ~H(~x)

]
= iωµo

∣∣∣~H(~x)
∣∣∣2 − iωε(~x)

∣∣∣~E(~x)
∣∣∣2 − ~E(~x) · ~J (~x) ,

and from the divergence theorem that∫
Ω

dx~∇ ·
[
~E(~x)× ~H(~x)

]
=

∫
∂Ω

ds(x) ~n(x) ·
{

(I − ~ez~eTz )
[
~E(~x)× ~H(~x)

]}
+∫

Ω

dx ∂z

{
~ez ·

[
~E(~x)× ~H(~x)

]}
.

The boundary term vanishes because of the boundary conditions (2.14)

~n(x) · (I − ~ez~eTz )
[
~E(~x)× ~H(~x)

]
= Ez(~x) n(x) ·H⊥(~x) +Hz(~x) n⊥(x) ·E(~x) = 0,

and the integrand in the second term satisfies

~ez ·
[
~E(~x)× ~H(~x)

]
= −E(~x) ·H⊥(~x) .

The current source density ~J (~x) is supported at z = 0, so we conclude that

−∂z
∫

Ω

dx E(~x) ·H⊥(~x) =

∫
Ω

dx

[
iωµo

∣∣∣~H(~x)
∣∣∣2 − iωε(~x)

∣∣∣~E(~x)
∣∣∣2] , z 6= 0 .

The conservation relation (2.15) follows by taking the real part in this equation.
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3. Ideal waveguides. Maxwell’s equations are separable in ideal waveguides
with constant permitivity εo, and it is typical to solve for the longitudinal components
Ez(~x) and Hz(~x) of the electric and magnetic fields, which then define E(~x) and H(~x)
[12, chapter8]. The solution is given by a superposition of waves, called modes. They
are propagating and evanescent waves and solve Maxwell’s equations with boundary
conditions (2.14). We describe the modes in section 3.1, and then write the solution
in section 3.2.

3.1. The waveguide modes. The longitudinal components of the electric and
magnetic fields satisfy the boundary conditions

Ez(~x) = n(x) · ∇Hz(~x) = 0, x ∈ ∂Ω. (3.1)

The first condition is just (2.14), and the second follows from Maxwell’s equations
(2.2-2.3). Indeed, (2.3) gives

H(~x) =
i

ωµo

[
∇⊥Ez(~x)− ∂zE⊥(~x)

]
, (3.2)

so the normal component of H at ∂Ω satisfies

n(x) ·H(~x) =
i

ωµo

[
−n⊥(x) · ∇Ez(~x) + ∂zn

⊥(x) ·E(~x)
]

= 0, x ∈ ∂Ω. (3.3)

Similarly, we obtain from equation (2.2) that

D(~x) =
i

ω

[
−∇⊥Hz(~x) + ∂zH

⊥(~x)
]
, (3.4)

and the boundary condition (2.14) implies that

n⊥(x) ·D(~x) =
i

ω
[−n(x) · ∇Hz(~x) + ∂zn(x) ·H(~x)] = 0.

The Neumann boundary condition (3.1) on Hz follows from this equation and (3.3).
The waveguide modes are solutions of Maxwell’s equations that depend on the

range z as exp(±iβz), with mode wavenumber β to be defined. We write them as

D̃(x;±β)e±iβz, H̃(x;±β)e±iβz, (3.5)

and similar for the longitudinal components, which satisfy

∆Ẽz(x;±β) + (k2 − β2)Ẽz(x;±β) = 0, (3.6)

∆H̃z(x;±β) + (k2 − β2)H̃z(x;±β) = 0, x ∈ Ω. (3.7)

Here ∆ is the Laplacian in x, k = ω/co is the wavenumber and co = 1/
√
εoνo is the

wave speed.

3.1.1. Spectral decomposition of the Laplacian. The Laplacian operator
acting on functions with homogeneous Dirichlet conditions is symmetric negative def-
inite, with countable eigenvalues

λj =

(
πj1
L1

)2

+

(
πj2
L2

)2

, (3.8)
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and eigenfunctions

Ẽj,z(x) = sin

(
πj1x1

L1

)
sin

(
πj2x2

L2

)
. (3.9)

The indexes j1 and j2 are natural numbers satisfying the constraint j2
1 + j2

2 6= 0. We
associate the pair (j1, j2) to the index j because N × N is countable, and enumerate
the eigenvalues in increasing order.

Similarly, the Laplacian operator acting on functions with homogeneous Neumann
conditions is symmetric negative semidefinite, with the same eigenvalues as (3.8), and
eigenfunctions

H̃j,z(x) = cos

(
πj1x1

L1

)
cos

(
πj2x2

L2

)
. (3.10)

Thus, we see that the electric and magnetic fields have the same mode wavenum-
bers β, which take the discrete values

√
k2 − λj . We write them as

β =

{
βj , j = 1, . . . , N,
iβj , j > N,

for βj =
√
|k2 − λj |, (3.11)

to emphasize that only the firstN are real. The infinitely many modes that correspond
to eigenvalues λj > k2 are evanescent. We assume that βN 6= 0, so there are no
standing waves in the waveguide.

3.1.2. The transverse electric and magnetic modes. It follows immediately
from (3.2), (3.4), (3.9) and (3.10) that D̃ and (H̃)⊥ are given by superpositions of the

vectors ∇⊥H̃j,z(x) and ∇Ẽj,z(x). Thus, we define the vectors

ϕ
(1)
j = αj∇⊥H̃j,z(x) = αj


πj2
L2

cos
(
πj1x1

L1

)
sin
(
πj2x2

L2

)
−πj1L1

sin
(
πj1x1

L1

)
cos
(
πj2x2

L2

)
 , (3.12)

and

ϕ
(2)
j = αj∇Ẽj,z(x) = αj


πj1
L1

cos
(
πj1x1

L1

)
sin
(
πj2x2

L2

)
πj2
L2

sin
(
πj1x1

L1

)
cos
(
πj2x2

L2

)
 , (3.13)

normalized by

αj =


2√

λjL1L2

, j = (j1, j2), j1j2 6= 0,

√
2

λjL1L2
, j = (j1, j2), j1j2 = 0.

(3.14)

so that

‖ϕ(s)
j ‖

2 =

∫
Ω

dx
∣∣∣ϕ(s)

j (x)
∣∣∣2 = 1, s = 1, 2.
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The vectors indexed by s = 1 correspond to transverse electric (TE) modes.
Indeed, they satisfy

∇ ·ϕ(1)(x) = 0, x ∈ Ω, (3.15)

so when we set H⊥(~x) = ϕ(1)(x)eiβjz in (2.10) we get Ez(~x) = 0. Similarly, the
vectors indexed by s = 2 correspond to transverse magnetic (TM) modes. They
satisfy

∇⊥ ·ϕ(2)(x) = 0, x ∈ Ω, (3.16)

and give Hz(~x) = 0 by equation (2.9).

The superposition of ϕ
(1)
j (x) and ϕ

(2)
j (x) in the definition of the fields Ẽ and

(H̃)⊥ is their Helmholtz decomposition in a divergence free part and a curl free part.

3.1.3. Analogous derivation of the waveguide modes. We could have ar-
rived at the same wave decomposition if we worked directly with the transverse com-
ponents D and H of the fields. This observation is relevant because when the per-
mittivity varies in ~x, as in the random waveguide, it is no longer possible to solve
independently for the longitudinal wave fields Ez and Dz.

We let

H(~x) = coU
⊥(~x), (3.17)

where U is the rotated magnetic field scaled by 1/co. It is convenient to work in the D
and U variables because as we see below, they satisfy the same boundary conditions
and have the same physical units. Note from (3.12) and (3.13) that ϕ(s)(x) are
eigenfunctions of the vector Laplacian

∆ϕ
(s)
j (x) = ∇

[
∇ ·ϕ(s)

j (x)
]

+∇⊥
[
∇⊥ ·ϕ(s)

j (x)
]

= −λjϕ(s)
j (x), (3.18)

for x ∈ Ω, with boundary conditions

n⊥(x) ·ϕ(s)
j (x) = 0, ∇ ·ϕ(s)

j (x) = 0, x ∈ ∂Ω. (3.19)

The index s = 1, 2 corresponds to the multiplicity Mj of the eigenvalues. We can limit
the multiplicity of λj by assuming that the waveguide dimensions satisfy L1/L2 6= Q.
This implies that

λj 6= λj′ , if j = (j1, j2) 6= j′ = (j′1, j
′
2) . (3.20)

When j = (j1, j2) and either j1 or j2 are zero, Mj = 1, and only the TE modes

ϕ
(1)
j (x) exist. Otherwise Mj = 2.

The eigenfunctions satisfy the orthogonality relations〈
ϕ

(s)
j ,ϕ

(s′)
j′

〉
=

∫
Ω

dxϕ
(s)
j (x) ·ϕ(s′)

j′ (x) = δjj′δss′ . (3.21)

and
{
ϕ

(s)
j

}
1≤s≤Mj ,j≥1

is a complete set that can be used to describe an arbitrary

electromagnetic wave field in the waveguide [12, chapter8].
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The boundary conditions (3.19) are consistent with the conditions satisfied by
D(~x) and U(~x), derived from Maxwell’s equations. Indeed, equations (2.10), (2.14)
and the assumption (2.6) on the source density give that

∇ ·U(~x) = − 1

co
∇⊥ ·H(~x) = 0, x ∈ ∂Ω. (3.22)

Moreover, equation (3.3) says that

n⊥(x) ·U(~x) = − 1

co
n(x) ·H(~x) = 0, x ∈ ∂Ω. (3.23)

For the electric displacement we already know from (2.14) that

n⊥(x) ·D(~x) = 0, x ∈ ∂Ω. (3.24)

The divergence condition follows from (3.4) and (3.22)

∇ ·D(~x) = 0, x ∈ ∂Ω, (3.25)

and since ∂zDz = 0, it is consistent with the conservation of charge.

3.2. The solution in ideal waveguides. We expand D(~x) and U(~x) in the

basis
{
ϕ

(s)
j

}
1≤s≤Mj ,j≥1

and associate to each ϕ
(s)
j (x) a mode, which is a propagating

or evanescent wave. We rename the fields Do(~x) and Uo(~x) to remind us that we are
in the ideal waveguide.

Using the identities

k2ϕ
(s)
j (x) +∇

[
∇ ·ϕ(s)

j (~x)
]

=
[
k2δs1 + (k2 − λj)δs2

]
ϕ

(s)
j (x) , (3.26)

k2ϕ
(s)
j (x) +∇⊥

[
∇⊥ ·ϕ(s)

j (~x)
]

=
[
(k2 − λj)δs1 + k2δs2

]
ϕ

(s)
j (x) , (3.27)

we obtain that

Do(~x) =

N∑
j=1

Mj∑
s=1

ϕ
(s)
j (x)

(√
k

βj
δs1 +

√
βj
k
δs2

)(
A
±(s)
j,o eiβjz +B

±(s)
j,o e−iβjz

)
+

∑
j>N

Mj∑
s=1

ϕ
(s)
j (x)

(√
k

βj
δs1 +

√
βj
k
δs2

)
E
±(s)
j,o e−βj |z| , (3.28)

and

Uo(~x) =

N∑
j=1

Mj∑
s=1

ϕ
(s)
j (x)

(√
βj
k
δs1 +

√
k

βj
δs2

)(
A
±(s)
j,o eiβjz −B±(s)

j,o e−iβjz
)
±

i
∑
j>N

Mj∑
s=1

ϕ
(s)
j (x)

(√
βj
k
δs1 −

√
k

βj
δs2

)
E
±(s)
j,o e−βj |z| , (3.29)

for z 6= 0. The normalization coefficients
√
k/βj and

√
βj/k are not important here,

and could be absorbed in the mode amplitudes. We use them for consistency with
the mode expansions for the random waveguide in section 5. There the normalization
symmetrizes the system of equations satisfied by the mode amplitudes.
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The amplitudes in (3.28-3.29) are constant on each side of the source, and are
determined by the source density and the outgoing boundary conditions. There are
no backward going modes to the right of the source, at positive ranges, so we can set

B
+(s)
j,o = 0. Similarly, we let A

−(s)
j,o = 0. The remaining amplitudes are obtained from

the source conditions

Do(x, 0+)−Do(x, 0−) = − i

cok
∇Jz(x) ,

Uo(x, 0+)−Uo(x, 0−) = − 1

co
J(x) .

Substituting (3.28-3.29) in these conditions and using the orthogonality relations
(3.21), we get

A
+(s)
j,o =− 1

2co

(√
k

βj
δs1 +

√
βj
k
δs2

)〈
ϕ

(s)
j ,J

〉
−

i

2cok

(√
βj
k
δs1 +

√
k

βj
δs2

)〈
∇Jz,ϕ

(s)
j

〉
, (3.30)

and

B
−(s)
j,o =− 1

2co

(√
k

βj
δs1 +

√
βj
k
δs2

)〈
ϕ

(s)
j ,J

〉
+

i

2cok

(√
βj
k
δs1 +

√
k

βj
δs2

)〈
∇Jz,ϕ

(s)
j

〉
, (3.31)

for the propagating modes and

E
±(s)
j,o =

i

2co

(√
k

βj
δs1 −

√
βj
k
δs2

)〈
ϕ

(s)
j ,J

〉
∓

i

2cok

(√
βj
k
δs1 +

√
k

βj
δs2

)〈
∇Jz,ϕ

(s)
j

〉
, (3.32)

for the evanescent modes.

3.2.1. Energy conservation. The energy conservation is obvious in this case,
because the amplitudes are constant. Substituting (3.28-3.29) in the expression of the
flux S(z) and using the orthogonality relations (3.21), we obtain that

S(z) =
co
εo

∫
Ω

Re
[
Do(~x) ·Uo(~x)

]
=

N∑
j=1

Mj∑
s=1

(∣∣∣A±(s)
j,o

∣∣∣2 − ∣∣∣B±(s)
j,o

∣∣∣2) , ∀z ∈ R .

(3.33)

The flux changes value at z = 0, where the source lies, but it is constant for z 6= 0,

S(|z|) =
co
εo

N∑
j=1

Mj∑
s=1

∣∣∣A+(s)
j,o

∣∣∣2 = −S(−|z|) =
co
εo

N∑
j=1

Mj∑
s=1

∣∣∣B−(s)
j,o

∣∣∣2 , z 6= 0 . (3.34)

The evanescent modes play no role in the transport of energy.
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4. Statement of the problem in the random waveguide. We begin with
the model of the small fluctuations. Then we write the perturbed system of equations
for the wave fields, which we analyze in the remainder of the paper.

4.1. Model of the fluctuations. Let us denote by n(~x) the index of refraction

n(~x) =
co
c(~x)

=

√
ε(~x)

εo
. (4.1)

It is the ratio of the electromagnetic wave speeds co and c(~x) = 1/
√
ε(~x)µo in the

homogeneous and heterogeneous medium, respectively. We model the electrical per-
mittivity by

ε(~x) = εon
2(~x) , n2(~x) = [1 + εν(~x)] 1(0+,zmax)(z) , (4.2)

where ν(~x) is a dimensionless random function assumed twice continuously differen-
tiable, with almost sure bounded derivatives. It has zero mean

E [ν(~x)] = 0 , (4.3)

and it is stationary and mixing in z. We refer to [15, Section 4.6.2] for a precise
statement of the mixing condition. It means in particular that the covariance

Rν(x,x′, z) = E [ν(x, z)ν(x′, 0)] (4.4)

is integrable in z. The amplitude of the fluctuations in (4.2) is scaled by ε � 1, the
small parameter in our asymptotic analysis.

The indicator function 1(0+,zmax)(z) in (4.2) limits the support of the fluctuations
to the range interval z ∈ (0+, zmax), where 0+ denotes a range that is close to zero,
but strictly larger than it. The bounded support of the fluctuations is needed to state
the outgoing boundary conditions on the electromagnetic wave fields, and may be
justified in practice by the causality of the problem in the time domain. During a
finite observation time tmax, the waves are influenced by the medium up to a finite
range zmax ≈ cotmax , so we may truncate the fluctuations beyond the range zmax.
That there are no fluctuations at negative ranges may be motivated by two facts:
First, the source is at z = 0 and we wish to study the waves at positive ranges.
Second, we will consider a regime where the backscattered field is negligible. Thus,
we may neglect at z > 0 the waves that come from z < 0, and truncate the fluctuations
at z = 0+.

4.2. The perturbed system of equations in the random waveguide. We
work with the electric displacement D(~x) and the scaled rotated magnetic field U(~x),
defined in equation (3.17). As we explained in the previous section, this is convenient
because the fields satisfy the same boundary conditions and have the same units.

The equations for D(~x) and U(~x) follow from (2.8), (2.11-2.12), (4.2) and (3.17).
We have

∂zD(~x) =
i

k

{
k2n2(~x)U(~x) +∇ [∇ ·U(~x)]− n−2(~x)∇n2(~x)∇ ·U(~x)

}
+

n−2(~x)∂zn
2(~x) D(~x)− i

cok
∇Jz(~x) , (4.5)
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for the electric displacement and

∂zU(~x) =
i

k

{
k2D(~x) +∇⊥

[
∇⊥ ·

(
n−2(~x)D(~x)

)]}
− 1

co
J (~x) , (4.6)

for the rotated magnetic field, where we used that the fluctuations are supported away
from the source. Morever, substituting the model (4.2) of the fluctuations, we obtain

∂zD(~x) =
i

k

{
k2U(~x) +∇ [∇ ·U(~x)]

}
− i

cok
∇Jz(~x)+

ε

{
∂zν(~x) D(~x) +

i

k

[
k2ν(~x)U(~x)−∇ν(~x)∇ ·U(~x)

]}
+

ε2

2

[
−∂zν2(~x) D(~x) +

i

k
∇ν2(~x)∇ ·U(~x)

]
+O(ε3) , (4.7)

and

∂zU(~x) =
i

k

{
k2D(~x) +∇⊥

[
∇⊥ ·D(~x)

]}
− 1

co
J (~x)−

ε
i

k

{
∇⊥

[
ν(~x)∇⊥ ·D(~x)

]
+∇⊥

[
D(~x) · ∇⊥ν(~x)

]}
+

ε2
i

k

{
∇⊥

[
ν2(~x)∇⊥ ·D(~x)

]
+∇⊥

[
D(~x) · ∇⊥ν2(~x)

]}
+O(ε3) , (4.8)

with remainder involving powers (εν)q, for q ≥ 3. It is of order ε3 because ν(~x) is
twice differentiable, with almost sure bounded derivatives.

The leading order terms in (4.7-4.8) involve the operators (3.26-3.27), so we have
a perturbation of the problem in the ideal waveguide. The conservation of the energy
flux follows from (2.15) and definitions (2.8),(4.2) and (3.17)

S(z) =
co
εo

∫
Ω

dx Re
[
n−2(~x) D(~x) ·U(~x)

]
=
co
εo

∫
Ω

dx
[
1− εν(~x) + ε2ν2(~x) +O(ε3)

]
Re
[
D(~x) ·U(~x)

]
= S(0+) , z > 0. (4.9)

5. Mode decomposition and coupling in random waveguides. The equa-

tions in the random waveguide are no longer separable, but {ϕ(s)
j (x)}1≤s≤Mj ,j≥1 is

an orthonormal basis, so we can still use it to decompose the wave fields for any range
z. The essential difference in the decomposition is that while the mode amplitudes
are constant in ideal waveguides, they vary in range in the random waveguides, due
to scattering. The range evolution of the mode amplitudes is described by a cou-
pled system of infinitely many stochastic ordinary differential equations. We show in
section 5.3 that we can solve for the amplitudes of the evanescent modes, and thus
obtain in section 5.4 a closed and finite system of equations for the amplitudes of the
propagating modes. This system is the main result of the section. We use it in section
6 to obtain an explicit long range characterization of the statistical distribution of the
electromagnetic wave field.
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5.1. Mode decomposition. We decompose the fields as

D(~x) =

N∑
j=1

Mj∑
s=1

ϕ
(s)
j (x)

(√
k

βj
δs1 +

√
βj
k
δs2

)(
A

(s)
j (z)eiβjz +B

(s)
j (z)e−iβjz

)
+

∑
j>N

Mj∑
s=1

ϕ
(s)
j (x)

(√
k

βj
δs1 +

√
βj
k
δs2

)
V

(s)
j (z) , (5.1)

and

U(~x) =

N∑
j=1

Mj∑
s=1

ϕ
(s)
j (x)

(√
βj
k
δs1 +

√
k

βj
δs2

)(
A

(s)
j (z)eiβjz −B(s)

j (z)e−iβjz
)
±

i
∑
j>N

Mj∑
s=1

ϕ
(s)
j (x)

(√
βj
k
δs1 −

√
k

βj
δs2

)
v

(s)
j (z) , (5.2)

for z 6= 0. The decomposition is similar to that in ideal waveguides, but the mode
amplitudes vary in z due to scattering in the random medium. We show in section

(5.2) that the forward and backward going mode amplitudes A
(s)
j and B

(s)
j are coupled

with each other and with the evanescent modes written in (5.1-5.2) as V
(s)
j (z) and

v
(s)
j (z). In ideal waveguides the evanescent modes were equal to E

(s)
j,oexp(−βjz), for

1 ≤ s ≤ Mj and j > N . They have a more complicated expression in random
waveguides, as explained in section 5.3.

The expansions (5.1-5.2) satisfy the boundary conditions (3.22-3.25) at ∂Ω. The
outgoing conditions and the finite range support (0+, zmax) of the fluctuations give

B
(s)
j (zmax) = 0 , (5.3)

A
(s)
j (0+) = A

(s)
j,o . (5.4)

The first equation says that there are no backward going waves coming from infinity,
because there are no fluctuations beyond z = zmax. The second equation follows from
the source conditions

D(x, 0+)−D(x, 0−) = − i

cok
∇Jz(x) = Do(x, 0+)−Do(x, 0−) ,

U(x, 0+)− U(x, 0−) = − 1

co
J(x) = Uo(x, 0+)− Uo(x, 0−) ,

and the outgoing condition A
(s)
j (z) = 0 at ranges z < 0, where the medium is homo-

geneous. The evanescent modes satisfy

lim
|z|→∞

V
(s)
j (z) = lim

|z|→∞
v

(s)
j (z) = 0 . (5.5)

5.2. Mode coupling. Substituting (5.1-5.2) in (4.7-4.8) and using identities
(3.26-3.27) and the orthogonality relation (3.21), we obtain a system of stochastic
differential equations that describes the range evolution of the mode amplitudes. The
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rate of change of the amplitudes of the forward going modes is given by

∂zA
(s)
j (z) =ε

N∑
j′=1

Mj′∑
s′=1

[
M

(ss′)
AA,jj′(z) + εm

(ss′)
AA,jj′(z)

]
A

(s′)
j′ (z) ei(βj′−βj)z+

ε

N∑
j′=1

Mj′∑
s′=1

[
M

(ss′)
AB,jj′(z) + εm

(ss′)
AB,jj′(z)

]
B

(s′)
j′ (z) e−i(βj′+βj)z+

ε
∑
j′>N

Mj′∑
s′=1

[
M

(ss′)
AV,jj′(z) + εm

(ss′)
AV,jj′(z)

]
V

(s′)
j′ (z) e−iβjz+

ε
∑
j′>N

Mj′∑
s′=1

[
M

(ss′)
Av,jj′(z) + εm

(ss′)
Av,jj′(z)

]
v

(s′)
j′ (z) e−iβjz +O(ε3) , (5.6)

for z > 0, with initial condition (5.4). The rate of change of the amplitudes of the
backward moving modes is

∂zB
(s)
j (z) =ε

N∑
j′=1

Mj′∑
s′=1

[
M

(ss′)
BA,jj′(z) + εm

(ss′)
BA,jj′(z)

]
A

(s′)
j′ (z) ei(βj′+βj)z+

ε

N∑
j′=1

Mj′∑
s′=1

[
M

(ss′)
BB,jj′(z) + εm

(ss′)
BB,jj′(z)

]
B

(s′)
j′ (z) e−i(βj′−βj)z+

ε
∑
j′>N

Mj′∑
s′=1

[
M

(ss′)
BV,jj′(z) + εm

(ss′)
BV,jj′(z)

]
V

(s′)
j′ (z) eiβjz+

ε
∑
j′>N

Mj′∑
s′=1

[
M

(ss′)
Bv,jj′(z) + εm

(ss′)
Bv,jj′(z)

]
v

(s′)
j′ (z) eiβjz +O(ε3) , (5.7)

for z > 0, with end condition (5.3) at z = zmax. The evanescent components V
(s)
j (z)

and v
(s)
j (z) are described in the next section.

The coupling coefficients in the right hand side of equations (5.6-5.6) are sta-
tionary random processes in z, defined in terms of the fluctuations ν. We refer to
appendix A for their expression and symmetry relations. The leading order terms of

these coefficients, denoted by the capital letter M as in M
(ss′)
AA,jj′(z), are linear in ν,

so they have zero expectation. The second order terms, denoted by the small letter

m as in m
(ss′)
AA,jj′(z), are quadratic in ν.

5.3. The evanescent modes. The evanescent modes satisfy the equations

∂zV
(s)
j (z) + βjv

(s)
j (z) =εF

(s)
j (z) + ε

∑
j′>N

Mj′∑
s′=1

M
(ss′)
V V,jj′(z)V

(s′)
j′ (z) +

ε
∑
j′>N

Mj′∑
s′=1

M
(ss′)
V v,jj′(z) v

(s′)
j′ (z) +O(ε2) , (5.8)
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and

∂zv
(s)
j (z) + βjV

(s)
j (z) = εf

(s)
j (z) + ε

∑
j′>N

Mj′∑
s′=1

M
(ss′)
vV,jj′(z)V

(s′)
j′ (z) +O(ε2) , (5.9)

for z > 0, with forcing terms

F
(s)
j (z) =

N∑
j′=1

Mj′∑
s′=1

[
M

(ss′)
V A,jj′(z)A

(s′)
j′ (z) eiβj′z +M

(ss′)
V B,jj′(z)B

(s′)
j′ (z) e−iβj′z

]
, (5.10)

f
(s)
j (z) =

N∑
j′=1

Mj′∑
s′=1

[
M

(ss′)
vA,jj′(z)A

(s′)
j′ (z) eiβj′z +M

(ss′)
vB,jj′(z)B

(s′)
j′ (z) e−iβj′z

]
. (5.11)

The coupling coefficients are described in appendix A. They are stationary processes
in z that depend linearly on the fluctuations ν.

The system of equations (5.8-5.9) is solved in appendix B. We state the result in
Lemma 5.1 which we use in the next section to obtain a closed system of equations
for the propagating mode amplitudes.

Lemma 5.1. The evanescent modes are given by

V
(s)
j (z) =E

(s)
j,o e

−βjz +
ε

2

∫ ∞
−∞

dζ f
(s)
j (z + ζ) e−βj |ζ|+

ε

2

∫ ∞
0

dζ
[
F

(s)
j (z − ζ)− F (s)

j (z + ζ)
]
e−βjζ +O(ε2) , (5.12)

and

v
(s)
j (z) =E

(s)
j,o e

−βjz +
ε

2

∫ ∞
−∞

dζ F
(s)
j (z + ζ) e−βj |ζ|+

ε

2

∫ ∞
0

dζ
[
f

(s)
j (z − ζ)− f (s)

j (z + ζ)
]
e−βjζ +O(ε2) . (5.13)

The first terms in these equations are as in ideal waveguides. They decay expo-
nentially with z and have a negligible contribution at long ranges. The O(ε) terms
capture the coupling with the propagating modes and have long range effects in equa-
tions (5.6-5.7). The remaining terms are negligible in the limit ε→ 0.

5.4. Closed system for the propagating modes. The substitution of the
evanescent mode equations (5.12-5.13) in (5.6-5.7) gives a closed system of ordinary
differential equations for the amplitudes of the N forward and backward going modes

∂zA
(s)
j (z) =ε

N∑
j′=1

Mj′∑
s′=1

[
M

(ss′)
AA,jj′(z) + εm̃

(ss′)
AA,jj′(z)

]
A

(s′)
j′ (z)ei(βj′−βj)z+

ε

N∑
j′=1

Mj′∑
s′=1

[
M

(ss′)
AB,jj′(z) + εm̃

(ss′)
AB,jj′(z)

]
B

(s′)
j′ (z)e−i(βj′+βj)z +O(ε3) ,

(5.14)
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and

∂zB
(s)
j (z) =ε

N∑
j′=1

Mj′∑
s′=1

[
M

(ss′)
BA,jj′(z) + ε m̃

(ss′)
BA,jj′(z)

]
A

(s′)
j′ (z)ei(βj′+βj)z+

ε

N∑
j′=1

Mj′∑
s′=1

[
M

(ss′)
BB,jj′(z) + ε m̃

(ss′)
BB,jj′(z)

]
B

(s′)
j′ (z)e−i(βj′−βj)z +O(ε3) .

(5.15)

Here we let

m̃
(ss′)
AA,jj′(z) = m

(ss′)
AA,jj′(z) +m

(ss′)e
AA,jj′(z) ,

m̃
(ss′)
AB,jj′(z) = m

(ss′)
AB,jj′(z) +m

(ss′)e
AB,jj′(z) ,

m̃
(ss′)
BA,jj′(z) = m

(ss′)
BA,jj′(z) +m

(ss′)e
BA,jj′(z) ,

m̃
(ss′)
BB,jj′(z) = m

(ss′)
BB,jj′(z) +m

(ss′)e
BB,jj′(z) ,

with the second terms due to the interaction via the evanescent modes. They are
written explicitly in appendix B.1.

5.5. Energy conservation. Substituting equations (5.1-5.2) in the energy flux
(4.9) and using Lemma 5.1 we obtain that

N∑
j=1

Mj∑
s=1

[∣∣∣A(s)
j (z)

∣∣∣2 − ∣∣∣B(s)
j (z)

∣∣∣2] =

N∑
j=1

Mj∑
s=1

[∣∣∣A(s)
j,o

∣∣∣2 − ∣∣∣B(s)
j (0+)

∣∣∣2]+O(ε) . (5.16)

The evanescent modes do not contribute to leading order in the energy flux, but they
appear in the remainder O(ε). Consequently, the energy carried by the propagating
modes is not exactly conserved for ε > 0. However, energy conservation holds in the
limit ε→ 0, where the remainder becomes negligible.

6. The diffusion limit. In this section we describe the limit ε → 0 of the
propagating mode amplitudes satisfying the system of equations (5.14-5.15) for z > 0,
with initial conditions (5.4) at z = 0 and end conditions (5.3) at z = zmax.

Since ∂zA
(s)
j (z) and ∂zB

(s)
j (z) are order ε, it is clear that the fluctuations have no

effect over ranges z that are of order one, i.e., similar to the wavelength. If we let z
be of order ε−1, the right hand-side in (5.14-5.15) becomes order one, but still there
is no net scattering effect in the limit ε → 0. The fluctuations average out because

the expectation of the leading coupling coefficients M
(ss′)
AA,jj′(z/ε), . . . ,M

(ss′)
AA,jj′(z/ε) is

zero. See for example [13, 22] and [7, Chapter 6]. We need longer ranges, of order
ε−2, to see cumulative scattering effects, so we let z = Z/ε2 with Z of order one, and
rename the mode amplitudes in this scaling as

A
ε(s)
j (Z) := A

(s)
j

(
Z/ε2

)
, B

ε(s)
j (Z) := B

(s)
j

(
Z/ε2

)
, (6.1)

for j = 1, . . . , N, and 1 ≤ s ≤ Mj . Their ε → 0 limit is obtained with the diffusion
approximation theorem [21]. The result is simpler under the forward scattering ap-
proximation described in section 6.1, which is valid when the covariance (4.4) of ν(~x)
is smooth in z. The limit of the forward going mode amplitudes is described in detail
in section 6.2. This is the main result of the section. We use it to analyze the long
range cumulative scattering effects of the random fluctuations in section 7.
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6.1. The forward scattering approximation. The diffusion approximation
theorem applies to initial value problems, so we transform our system to such a
problem using the random propagator matrix Pε(Z). It equals the identity I at
Z = 0 and relates the mode amplitudes at Z > 0 to those at Z = 0 as(

Aε(Z)
Bε(Z)

)
= Pε(Z)

(
Ao

Bε(0)

)
. (6.2)

Here Aε(Z) is the vector of components A
ε(s)
j (Z) for j = 1, . . . , N , 1 ≤ s ≤Mj , and

similar for Bε(Z). The backward going amplitudes are not known at Z = 0, but can
be determined from the identity(

Aε(Zmax)
0

)
= Pε(Zmax)

(
Ao

Bε(0)

)
, Zmax = ε2zmax. (6.3)

The diffusion approximation theorem [21] states that Pε(Z) converges in distri-
bution as ε→ 0 to a matrix valued diffusion process P(Z). That is to say, the entries
of P(Z) satisfy a system of stochastic differential equations with initial condition
P(0) = I. We do not need to write all the details of the limit for the analysis below.
Let us just note that it has the block structure

P(Z) =

(
PAA(Z) PAB(Z)
PBA(Z) PBB(Z)

)
,

with entries determined by the z–Fourier transform R̂ν(x,x′, β) of the covariance
(4.4), evaluated at various values of the wavenumber β. Explicitly, for the entries in
the block PAA(Z) that couple the j and j′ forward going amplitudes, β = βj − βj′ ,
because the phases in the first sum in (5.14) are proportional to βj−βj′ . Similarly, for
the entries in the blocks PAB(Z) and PBA(Z) that couple the j and j′ forward and
backward going amplitudes, β = βj + βj′ , because the phases in the second sum in
(5.14) and the first sum in (5.15) are proportional to βj +βj′ . Thus, if the covariance
is smooth enough in z, so that∣∣∣R̂ν(x,x′, βj + βj′)

∣∣∣� 1 , ∀ j, j′ = 1, . . . , N , (6.4)

the forward and backward mode amplitudes are essentially uncoupled. Considering
that Bε(Z) vanishes at Zmax, we conclude that the backward going mode amplitudes
are negligible, and thus justify the forward scattering approximation.

6.2. The coupled mode diffusion process. Equations (5.14) simplify as

∂ZAε(Z) ≈ 1

ε
G

[
Aε(Z), ν

(
·, Z
ε2

)
,
Z

ε2

]
+ g

[
Aε(Z), ν

(
·, Z
ε2

)
,
Z

ε2

]
, Z > 0 , (6.5)

with initial conditions Aε(0) = Ao, and right hand-side

G

[
Aε(Z), ν

(
·, Z
ε2

)
,
Z

ε2

]
= M

[
ν

(
·, Z
ε2

)
,
Z

ε2

]
Aε(Z) , (6.6)

g

[
Aε(Z), ν

(
·, Z
ε2

)
,
Z

ε2

]
= m̃

[
ν

(
·, Z
ε2

)
,
Z

ε2

]
Aε(Z) . (6.7)

Here we let M be the matrix with entries M
(ss′)
AA,jj′(Z/ε

2)ei(βj−βj′ )Z/ε
2

, and emphasize

in the notation that it depends on Z/ε2 via the fluctuations ν and the phase. A similar
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notation applies to matrix m̃. The approximation sign in (6.5) reminds us that we
made the forward scattering approximation and neglected the O(ε) remainder that
plays no role in the limit ε→ 0.

To apply the diffusion approximation theorem stated and proved in [21] to (6.5),
we rewrite the system in real form, for the concatenated vector (Aε

R,A
ε
I) of real and

imaginary values of Aε. We also recall from complex differentiation that for any
vector a = aR + iaI , we have

∇aR
= ∇a +∇a, ∇aI

= i (∇a −∇a) ,

where the bar denotes complex conjugation. Therefore, if we let GR and GI be the
real and imaginary parts of G, we can write

(GR,GI) · (∇aR
,∇aI

) = G · ∇a + G · ∇a .

With these observations we state in the next lemma the limit ε → 0 given by the
diffusion approximation theorem.

Lemma 6.1. The mode amplitudes {Aε(s)j (Z)}j=1,...,N,1≤s≤Mj
converge in distri-

bution as ε → 0 to a diffusion Markov process denoted by {A(s)
j (Z)}j=1,...,N,1≤s≤Mj

,

with generator G. It is defined on smooth enough, scalar valued test functions ϕ(A,A)
as follows

Gϕ(A,A) = lim
T→∞

∫ T

0

dτ

T

∫ ∞
0

dz E
{[

G [A, ν(·, 0), τ ] · ∇A + G [A, ν(·, 0), τ ] · ∇A

]
×[

G [A, ν(·, z), τ + z] · ∇A + G [A, ν(·, z), τ + z] · ∇A

]}
ϕ(A,A)+

lim
T→∞

∫ T

0

dτ

T
E
{

[g [A, ν(·, 0), τ ] · ∇A + g [A, ν(·, 0), τ ]] · ∇A

}
ϕ(A,A).

6.3. Conservation of energy. Recall the conservation relation (5.16), and
rewrite it using the forward scattering approximation as

N∑
j=1

Mj∑
s=1

∣∣∣Aε(s)j (Z)
∣∣∣2 =

N∑
j=1

Mj∑
s=1

|Aj,o|2 +R(ε) , (6.8)

with negligible remainder R(ε) as ε→ 0. The diffusion limit gives that

N∑
j=1

Mj∑
s=1

∣∣∣Aε(s)j (Z)
∣∣∣2 ε→0−→

N∑
j=1

Mj∑
s=1

∣∣∣A(s)
j (Z)

∣∣∣2 =

N∑
j=1

Mj∑
s=1

|Aj,o|2 , (6.9)

where the convergence is in probability, because the limit is deterministic.

7. Cumulative scattering effects. We use the limit stated in Lemma 6.1 to
derive the main result of the paper: a detailed characterization of cumulative scatter-
ing effects of the random fluctuations of the electric permeability.

We begin in sections 7.1 and 7.2 with the calculation of the first and second
moments of the mode amplitudes. They determine the coherent part of the waves
and the intensity of their fluctuations. Then, we start from the energy conservation
relation (6.9) and derive in section 7.3 an important matrix identity, needed in sections
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7.4 and 7.5 to describe the loss of coherence of the waves and the energy exchange
between the modes. We also prove in section 7.5 that as the range grows, the waves
scatter so much that they enter the equipartition regime, where they forget all the
information about the source. We illustrate the results of the analysis with numerical
simulations.

7.1. The mean mode amplitudes. Let us denote by

〈A〉(Z) = E {A(Z)} , (7.1)

the expectation of the mode amplitudes with respect to their limit distribution. Using
the generator G in Lemma 6.1 and Kolmogorov’s equation [20, chapter 8], we obtain

∂Z 〈Aj〉(Z) = Qj 〈Aj〉(Z) , Z > 0 , (7.2)

with initial condition

〈Aj〉(0) = Aj,o . (7.3)

This is a block diagonal system of differential equations, for vectors Aj of components

A
(s)
j . There are N blocks Qj ∈ CMj×Mj , indexed by j = 1, . . . , N . Each one of them

is constant, with entries given by

Q
(ss′)
j =

N∑
l=1

Ml∑
q=1

∫ ∞
0

dz E
{
M

(sq)
AA,jl(z)M

(qs′)
AA,lj(0)

]
ei(βl−βj)z + E

{
m

(ss′)
j (0)

}
, (7.4)

where we introduced the simplified notation

mj(z) := m̃AA,jj(z). (7.5)

We give a few details of the calculation of Qj in appendix C, and use the result in
the numerical simulations of sections 7.4 and 7.5. Here it suffices to point out that
the last term in (7.4) is purely imaginary, so we can write it as

E {mj(0)} = iκj , (7.6)

with real matrix κj ∈ RMj×Mj . This is the only term of Q = diag (Q1, . . . ,QN ) that
is affected by the coupling of the propagating modes with the evanescent ones.

The mean amplitudes are decoupled for different indexes j of the modes. However,
for each j we have Mj coupled transverse electric and magnetic mode amplitudes, as
described by the matrix exponential in

〈Aj〉(Z) = eQjZAj,o , j = 1, . . . , N. (7.7)

We expect from physical arguments that the right hand-side in (7.7) decays with Z, on

some mode dependent range scales S(s)
j , the scattering mean free paths. The coherent

part of the amplitudes, the entries in 〈Aj〉(Z), become negligible beyond these scales,
and all the energy lies in their random fluctuations.

It is difficult to see the loss of coherence directly from (7.4). The expression of
Qj in appendix C is useful for numerical calculations, but it is too complicated to
prove that the spectrum of Qj lies in the left half of the complex plane. However, the
result follows from the energy conservation relation (6.9), as explained in section 7.4.
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7.2. The mean powers. We denote the mean power matrices of the amplitudes
of the modes with wavenumber βj by

Pj(Z) =
(
P ss

′

j (Z)
)

1≤s,s′≤Mj

:= E
{
Aj(Z)⊗Aj(Z)

}
. (7.8)

They are Hermitian, positive definite matrices, satisfying a coupled system of differen-
tial equations derived from the generator in Lemma 6.1 and Kolmogorov’s equation.
Explicitly, we have

∂ZPj(Z) =QjPj(Z) + Pj(Z)Q?
j+

N∑
l=1

∫ ∞
−∞

dzE
{
MAA,jl(z)Pl(Z)M?

AA,jl(0)
}
ei(βl−βj)z , (7.9)

for Z > 0, with initial condition

Pj(0) = Aj,o ⊗Aj,o. (7.10)

The matrix Qj is defined in (7.4), and the star superscript denotes complex conjugate
and transpose.

Equations (7.9) describe the exchange of energy between the modes and the loss
of polarization of the waves. Say for example that the source emits a single transverse
electric mode indexed by j

Pl(0) = δlj

(
|A(1)
j,o |2 0

0 0

)
, ∀ l = 1, . . . , N .

Cumulative scattering distributes the energy to all propagating modes for Z > 0, as
given by (7.9), and the wave loses its initial polarization.

7.3. Conservation of energy identity. The conservation of energy relation
(6.9) states that the mean power matrices satisfy

N∑
j=1

trace[Pj(Z)] =

N∑
j=1

trace[Pj(0)] =

N∑
j=1

Mj∑
s=1

∣∣∣A(s)
j,o

∣∣∣2 . (7.11)

Therefore, equations (7.9) and the properties of the trace operator imply that

N∑
j=1

trace
[(

Qj + Q?
j + Cj

)
Pj(Z)

]
= 0 , ∀ Z ≥ 0 , (7.12)

with Hermitian matrix Cj defined by

Cj =

N∑
l=1

∫ ∞
−∞

dz E
{
M?
AA,lj(z)MAA,lj(0)

}
ei(βl−βj)z . (7.13)

The terms in this sum are the power spectral densities of the stationary, matrix valued
processes MAA,jl(z), evaluated at the wavenumber difference βj − βl. This implies
that Cj is a positive definite matrix, as shown in appendix D.

The following lemma gives a matrix identity used in the next sections to prove
the loss of coherence of the waves and the equipartition regime as Z →∞.
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Lemma 7.1. The matrices Qj and Cj defined by (7.4) and (7.13) satisfy

Qj + Q?
j + Cj = 0 , ∀ j = 1, . . . , N. (7.14)

Proof. The result is a consequence of the fact that (7.12) holds for any correlation
matrices Pj(Z) and all Z ≥ 0. Indeed, let Xj be the M2

j dimensional vector space of
Mj ×Mj Hermitian matrices with inner product

(U, V )Xj
= trace[UV ?] , ∀ U, V ∈ Xj .

Let also X = X1 × X1 . . . × XN be the vector space defined by the product of the
spaces Xj , with inner product

(U,V)X =

N∑
j=1

(Uj , Vj)Xj
, ∀ U = (U1, . . . , UN ), V = (V1, . . . , VN ), Uj , Vj ∈ Xj .

Equation (7.12) evaluated at Z = 0 becomes

(Q + Q? + C,Po)X = 0 , ∀ P(0) = Po ∈ X.

We can take in particular the initial conditions

Po = (0, . . . ,0,Pj,o,0, . . . ,0) , ∀ Pj,o = Aj,o ⊗A?
j,o ∈ Xj ,

and conclude that (
Qj + Q?

j + Cj ,Pj,o

)
Xj

= 0.

The statement of the lemma follows from this equation and the observation that
matrices like Pj,o span Xj . For example,(

1
0

)
(1, 0) =

(
1 0
0 0

)
,

(
0
1

)
(0, 1) =

(
0 0
0 1

)
,

(
1
1

)
(1, 1) =

(
1 1
1 1

)
,(

i
1

)
(−i, 1) =

(
1 i
−i 1

)
,

is a basis of Xj . �

7.4. The loss of coherence. Lemma 7.1 and equation (7.2) give that

∂Z‖ 〈Aj〉(Z)‖2 = −〈Aj〉?(Z)Cj 〈Aj〉(Z), Z > 0, ‖ 〈Aj〉(0)‖2 = ‖Aj,o‖2,

where ‖·‖ is the Euclidian norm, and we recall that Cj is Hermitian, positive definite.
The result stated in the next theorem follows from Gronwall’s lemma:

Theorem 7.2. Let µj,q > 0 be the eigenvalues of Cj in increasing order, for all
j = 1, . . . , N and 1 ≤ q ≤Mj. We have that

e−µj,2Z‖Aj,o‖2 ≤ ‖ 〈Aj〉(Z)‖2 ≤ e−µj,1Z‖Aj,o‖2, if Mj = 2, (7.15)

and

‖ 〈Aj〉(Z)‖2 = e−µj,1Z‖Aj,o‖2, if Mj = 1. (7.16)
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Fig. 7.1. We plot in green Sj , the reciprocal of the minimum eigenvalue of Cj , and in blue
the reciprocal of the maximum eigenvalue. The equipartition distance is shown in red. We show
results for two waveguides (from left to right) (1) L1 = 3.03 and L2 = 5.84 giving N = 64, and (2)
L1 = 4.08 and L2 = 5.77 giving N = 84. The abscissa is the mode index j and the ordinate is in
units of the wavelength λ.

Thus, the mean amplitudes decay exponentially with Z, on mode dependent range
scales (scaled scattering mean free paths)

Sj = 1/µj,1 . (7.17)

Discussion and numerical illustration. The decay of the mean mode amplitudes
is a manifestation of the loss of coherence of the modes. This is a gradual process,
with the last indexed modes losing coherence faster than the first ones, as illustrated
by the numerical results displayed in Figure 7.1. We plot Sj = 1/µj,1 in green and
1/µj,Mj

in blue. Note that Sj are the scaled scattering mean free paths, as follows
from (6.1). The actual scattering mean free paths are given by Sεj = Sj/ε2, and are
much larger than the wavelength λ. The matrix Cj is computed as in (7.13), using the
coefficients defined in appendix A, for an isotropic random medium that is stationary
in x1, x2 and z, with covariance

E[ν(~x)ν(~x′)] = exp

(
−|
~x− ~x′|2

2`2

)
, ` = λ.

The left plot is for a waveguide with dimensions L1 = 3.03λ and L2 = 5.84λ, so that
N = 64. In the right plot L1 = 4.08λ and L2 = 5.77λ, so that N = 84.

Note that for any j the eigenvalues µj,s are almost the same for 1 � s � Mj ,
indicating that the equality in (7.15) holds independent of the multiplicity Mj . More-
over, Sj decreases with j, and the rate of decrease acellerates for j close to N . The
scale shown with red in Figure 7.1 is the equipartition distance, up to the ε−2 factor.
This is the range where cumulative scattering by the medium distributes the energy of
the waves uniformly over the modes, independent of their initial state. We give more
details in the next section, but it is important to note that the equipartition distance
is larger, by a factor of ten, than all the scattering mean free paths. This is very
similar to the result obtained for sound waves in random waveguides with straight
boundaries [3, Figure 4.2].

To interpret the results, let us note that the modes ϕ
(s)
j exp(iβjz), for 1 ≤ s ≤Mj ,
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are superpositions (component-wise) of the plane waves exp(i~Kj ·~x), with wave vectors

~Kj = (±πj1/L1,±πj2/L2, βj) , j = (j1, j2).

The plus and minus signs are due to the reflections of the waves at the walls of
the waveguide. Recall that βj =

√
k2 − λj , with eigenvalues λj defined by (3.8) and

enumerated in increasing order. When j is small, the wave vector ~Kj is almost aligned
with the range axis, and the waves propagate with large (group) range velocity

1/β′j(ω) = co

√
1− λj/k2 ≈ co.

They arrive quickly to range Z because they travel along shorter paths, with a small
number of reflections at the walls, and are least affected by the random medium. For
the high index modes λj ≈ k2, and the wave vectors ~Kj are almost orthogonal to
the range axis. The waves propagate very slowly along range because they strike the
waveguide walls many times. The interaction with the random medium accumulates
over the long travel paths of these modes, and the waves lose coherence over shorter
range scales, as modeled by the small scattering mean free paths.

For any given j the modes ϕ
(s)
j exp(iβjz) are the superposition of the same plane

waves for s = 1 and 2, so their interaction with the medium is the same. This is why
the eigenvalues µj,1 and µj,2 are almost equal.

7.5. The equipartition regime. The transport of energy in the waveguides is
modeled by the evolution equations (7.9). Our goal in this section is to describe their
solution in the limit Z →∞.

We begin by writing equations (7.9) as

∂ZP(Z) = Υ
(
P
)
(Z) = Υ+

(
P
)
(Z)−Υ−

(
P
)
(Z), Z > 0, (7.18)

with initial condition P(0) = Po. Here Υ,Υ± : X→ X are linear operators acting on
the vector space X defined in section 7.3, with values in X. We have Υ = Υ+ − Υ−

and

Υ+
(
P
)
j
(Z) =

N∑
l=1

Υ+
jl

(
Pl

)
(Z) , Υ−

(
P
)
j
(Z) =

N∑
l=1

Υ−jl
(
Pj

)
(Z), (7.19)

with operators Υ±jl : Xl → Xj acting on the spaces Xl of Hermitian matrices defined
in section 7.3, and given by

Υ+
jl

(
U
)

=

∫ ∞
−∞

dzE
{
MAA,jl(z)U M

?
AA,jl(0)

}
ei(βl−βj)z ,

Υ−jl
(
U
)

= −
(
Ql U + U Q?

l

)
δjl . (7.20)

We may think of Υ+
jl and Υ−jl as modeling the inflow/outflow of energy of the j � l

modes, because

Υ+
jl(U) ≥ 0 and trace

(
Υ−jl(U)

)
≥ 0 , (7.21)

for 1 ≤ l, j ≤ N, and all U ∈ Cl, the cone of positive semidefinite matrices in Xl.
The limit of P(Z) as Z → ∞ depends on the spectrum of the operator Υ, and in
particular its kernel, described in the next theorem.
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Theorem 7.3. The operator Υ has the following spectral properties:
(i) The eigenvalues of Υ lie in (−∞, 0].
(ii) The Kernel

(
Υ
)

is not trivial, it has an eigenbase, and it intersects the cone
C = C1 × C2 × . . .CN ⊂ X.
(iii) The Kernel

(
Υ
)

is one dimensional under the additional assumption that

Υ+
jl

(
U
)
> 0 , ∀ 0 6= U ∈ Cl and 1 ≤ j, l ≤ N. (7.22)

For any initial condition Po ∈ C we have P(Z) ∈ C for all Z, as shown in appendix
E. This is why we are interested in the cone C of the space X. The assumption
(7.22) says that there is positive flux of energy for all the waveguide modes. It
is the generalization of the condition stated in [7, Section 20.3.3] which gives the
equipartition regime for sound waves. The statement there is that the power spectral
density of the fluctuations of the wave speed does not vanish when evaluated at the
differences of the wavenumbers of the modes. Our condition (7.22) is similar, but
with Mj ×Mj matrices. The following corollary follows immediately from parts (i)
and (iii) of Theorem 7.3.

Corollary 7.4. Suppose that condition (7.22) holds, and let Uo be the unique
vector that spans Kernel

(
Υ
)
∩ C, normalized by ‖Uo‖ = ‖Po‖. We have∣∣P(Z)−Uo

∣∣ ≤ C (1 + Z)mΥ eλΥ
Z ,

where λΥ is the smallest (in magnitude) nonzero eigenvalue of Υ, and mΥ is its
multiplicity.

We display in Figure 7.2 the element Uo ∈ Kernel
(
Υ
)

for the same two random
waveguides considered in Figure 7.1. We normalize Uo so that its maximum entry is
equal to one. Because Uo is a concatenation of N matrices of size Mj×Mj , we embed
it in a square matrix for display purposes. The entries of interest in the square matrices
displayed in Figure 7.2 are the Mj ×Mj blocks along the diagonal. We note from the
figure that the result is almost the matrix identity. Therefore, Corollary 7.4 says that
in the limit Z →∞, the energy is distributed uniformly over the modes, independent
of the initial mode power distribution Po. This is the equipartition regime, and it is
reached when the waves travel beyond the equipartition distance

Leq = 1/|λ
Υ
|. (7.23)

Proof of Theorem 7.3:
Item (i). Let 0 6= λ ∈ C be an eigenvalue of Υ and U ∈ X an associated

eigenvector. Therefore, Υ
(
U
)

= λU, or componentwise,

λUj = Υ
(
U
)
j

= Υ
(
U
)?
j

=
(
λUj

)?
= λUj , 1 ≤ j ≤ N,

where we used definitions (7.19-7.20) to obtain the second equality. Consequently,
the eigenvalues of Υ are real valued. To see that they cannot be positive, we use that
P(Z) ∈ C for all Z as shown in appendix E, and the conservation of energy

N∑
j=1

trace
(
Pj(Z)

)
=

N∑
j=1

trace
(
Pj,o

)
, Z ≥ 0.
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Fig. 7.2. The element (matrix) Uo ∈ Kernel
(
Υ
)

for the same two waveguides considered in
Figure 7.1. The top plots are for the waveguide with N = 64 modes and the bottom plots for the
waveguide with N = 84 modes. We display Uo from the lateral side (left) to show the magnitude of
its entries (left), and from above (right) to show that it is almost diagonal.

Since Pj(Z) ∈ Cj , we have 0 ≤ P ssj (Z) ≤ trace
(
Pj(Z)

)
, for all Z ≥ 0, 1 ≤ j ≤ N and

1 ≤ s ≤Mj . Moreover∣∣P 12
j (Z)

∣∣ ≤√P 11
j (Z)P 22

j (Z) ≤ 1
2 trace

(
Pj(Z)

)
, Z ≥ 0,

when Mj = 2, where we used the Cauchy-Schwarz inequality. Therefore

sup
Z≥0

∣∣P(Z)
∣∣ ≤ N∑

j=1

trace(Po), ∀Po ∈ C.

Now consider an arbitrary initial state in X, not necessarily in C. We denote such a
state by P̃o to distinguish it from a physical initial mode power state that is necessarily
in C, and the corresponding solution of (7.18) by P̃ (Z). Since any P̃o can be writen as

a linear combination of elements in C, and (7.18) is linear, P̃ (Z) is a linear combination
of solutions with initial states in C, which are bounded as shown above. We conclude
that all trajectories are bounded, independent of the initial state.

Now, let U be an eigenvector of Υ for an eigenvalue λ, and set P̃0 = U. The
solution of (7.18) is P̃(Z) = U eλZ and it is uniformly bounded if and only if λ ≤ 0.

Item (ii). To characterize Kernel(Υ) we rewrite the conservation of energy as(
Υ(U),1

)
X

=
(
U,Υ?(1)

)
X

= 0 , ∀U ∈ X, (7.24)

where 1 is the vector of concatenated Mj ×Mj identity matrices, for j = 1, . . . , N ,
and Υ? is the adjoint of Υ. We conclude that 1 ∈ Kernel

(
Υ∗
)
, and therefore that the

kernel of Υ is not trivial.
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We also infer from the boundedness of the solutions of (7.18) that Kernel
(
Υ
)

has
an eigenbase. Otherwise the solutions could grow polynomially in Z.

Now let us write the solutions of (7.18) as

P(Z) = Uo +

n∑
j=1

mj∑
q=0

cjq Ujq (Z + 1)qeλjZ , (7.25)

where Uo ∈ Kernel
(
Υ
)
, and n is the number of distinct eigenvalues λj < 0 of Υ,

with multiplicity mj . The finite sequences {Ujq}
mj

q=1 are linear independent sets of
generalized eigenvectors corresponding to the eigenvalue λj . Equation (7.25) implies∣∣P(Z)−Uo

∣∣ ≤ C (1 + Z)mΥ eλΥ
Z , (7.26)

where we denote by λΥ the eigenvalue with smallest magnitude andmΥ its multiplicity.
Now, take 0 6= Po ∈ C, and therefore, P(Z) ∈ C for all Z ≥ 0. Letting Z → ∞ in
(7.26) we conclude that Uo ∈ C i.e., Uo ∈ Kernel

(
Υ
)
∩ C. Moreover, Uo 6= 0 by the

conservation of energy.
Item (iii). We prove that condition (7.22) guarantees a one dimensional kernel of

the adjoint operator Υ?, and therefore of Υ. We consider first a large family of linear
mappings defined in terms of Υ∗ and restricted to the subspace D ⊂ X of vectors of
diagonal matrices. We show that this family has the one dimensional kernel span{1}
in D. Then we show that Kernel(Υ?) = span{1} in X.

To define the family of mappings, we recall that the elements U = (U1, . . . , UN ) of
X are vectors of Hermitian matrices which are diagonalized by similarity transforma-
tions with orthogonal matrices of their eigenvectors. For any vector V = (V1, . . . , VN )
of orthogonal matrices we define the transformation ϕV : X→ X by

ϕV

(
U
)

= V? U V :=
(
V ?1 U1V1, · · · , V ?NUNVN

)
,

with dimensions of Uj and Vj assumed to match for each 1 ≤ j ≤ N . We also define
the family of operators Υ?

V : X→ X by Υ?
V = ϕ−1

V ◦Υ? ◦ ϕV, or more explicitly,

Υ?
V

(
U
)

= V Υ?
(
V? U V

)
V? , U ∈ X. (7.27)

Its restriction to the subspace D ⊂ X of vectors of diagonal matrices is denoted by

Υ?

V
∣∣D(D) = Υ?

V

(
D
)

for any D ∈ D,

and we wish to prove that

Kernel
(
Υ?

V
∣∣D) = span{1}, ∀V. (7.28)

Note that Υ?

V
∣∣D(1) = 0 by the definition (7.27) and Υ?(1) = 0.

The statement of the theorem is implied by (7.28). Indeed, take an arbitrary
U ∈ Kernel

(
Υ?
)
. Since U is a vector of Hermitian matrices, there exists a vector V of

orthogonal matrices and a vector D of diagonal matrices such that U = V∗DV. Then
D ∈ Kernel

(
Υ?

V
∣∣D) and (7.28) implies that D = α1 for some α ∈ R. Consequently,

U = V?α1V = α1,
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which means that Kernel(Υ?) = span{1}.
The proof of (7.28) is based on the Perron–Frobenius theorem for irreducible ma-

trices. We start by computing the matrix representation of the operator Υ?
V using the

properties of the adjoint operators Υ± ?jl : Xj → Xl that define Υ?. Then, we extract
a suitable irreducible matrix ΛV from it to apply the Perron–Frobenius theorem.

The matrix representation of Υ?
V consists of N2 blocks, where the lj–block is

the matrix representation of the operator Υ+?
Vlj −Υ−?Vlj , with Υ±?Vlj : Xj → Xl defined

naturally, in light of (7.27), as

Υ±?Vlj(U) = Vl Υ
± ?
jl

(
V ?j U Vj

)
V ?l , U ∈ Xj .

Recall that the dimension of Xj is M2
j , so the lj–block has dimension M2

l ×M2
j . To

be more precise, consider the case Mj = Ml = 2, and write explicitly

Υ±?Vlj =
(
υ± ss

′

lj

)
, 1 ≤ s ≤M2

l , 1 ≤ s′ ≤M2
j ,

In terms of the canonical basis for Xj{( 1 0
0 0

)
,
( 0 0

0 1

)
, 1√

2

( 0 1
1 0

)
, 1√

2

( 0 i
−i 0

)}
=:
{
E1, E2, E3, E4

}
,

we have

υ+ ss′

lj =
(
Es,Υ

+?
Vlj(Es′)

)
Xl

=
(
Es, Vl Υ

+ ?
jl

(
V ?j Es′ Vj

)
V ?l
)
Xl

=
(
V ?l Es Vl,Υ

+ ?
jl

(
V ?j Es′ Vj

))
Xl
. (7.29)

Note that E1 and E2 are positive semidefinite matrices, and so are V ?l E1 Vl and
V ?j E2 Vj . It follows from the explicit expression of Υ+ ?

jl computed from (7.20) as

Υ+ ?
jl (U) =

∫ ∞
−∞

dz E
{
M?
AA,jl(z)UMAA,jl(0)

}
e−i(βl−βj)z, (7.30)

and equation (7.29), that

υ+ ss′

lj ≥ 0 , 1 ≤ s, s′ ≤ 2. (7.31)

The remaining entries of Υ+?
Vlj do not have a definite sign, in general. The entries of

Υ−?Vlj are computed similarly, and take the form

υ− ss
′

lj =
(
Es,Υ

−?
Vlj(Es′)

)
Xl

=
(
Es, Vl Υ

− ?
jl

(
V ?j Es′ Vj

)
V ?l
)
Xl

=
(
Es,

(
Vl Cl V

?
l

)
Es
)
Xl
δss′ δjl ≥ 0 , 1 ≤ s, s′ ≤ 2. (7.32)

We used that EsEs′ = Esδss′ for s, s′ ∈ {1, 2} for the third equality, and properties
of positive definite matrices in the last inequality. In summary, the lj–block is of the
form (

υ+ ss′

lj

)
−
(
υ− ss

′

lj

)
=

(
υ+
lj ·
· ·

)
−

(
υ−ll ·
· ·

)
δlj , (7.33)
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with 2× 2 matrices υ±lj with nonnegative entries, and nonnegative diagonal matrices

υ−ll . Cases where Mj or Ml or both are equal to one are handled similarly.
Now, define the M×M square matrix

ΛV = Block
(
υ+
lj

)
− Block

(
υ−lj
)
, (7.34)

where M =

N∑
j=1

Mj , and observe that the dimension of its kernel satisfies

1 ≤ Dim
{

Kernel
(
Υ?

V
∣∣D)} ≤ Dim

{
Kernel

(
ΛV

)}
. (7.35)

This is because for any D ∈ Kernel
(
Υ?

V
∣∣D), by construction of ΛV, the M vector

formed by the diagonal entries of D lies in Kernel
(
ΛV

)
. In particular,

(
1, 1, · · · , 1

)
∈

Kernel
(
ΛV

)
so the entries in each row of ΛV sum to zero. Then, Gershgorin’s circle

theorem and the special structure of ΛV give that any eigenvalue λV of ΛV satisfies

λV ≤ v+ss
jj − v

−
jj + v+ss′

jj +
∑
l 6=j

Ml∑
s′′=1

v+ss′′

jl = 0,

for all 1 ≤ s, s′ ≤Mj and s 6= s′. This shows that the largest eigenvalue of λV is zero.
Consider now the matrix

ΛV + αI,

with α a sufficiently large positive real number such that the diagonal is positive.
The spectrum of this matrix is a translation by α of the spectrum of ΛV, therefore,
by the previous discussion α must be its largest positive real eigenvalue. Assuming
that Block

(
υ+
lj

)
is irreducible, ΛV + αI is a Perron–Frobenius matrix implying that

its largest positive real eigenvalue, in this case α, is simple, and therefore, zero is a
simple eigenvalue of ΛV. Thus, the kernel of ΛV is one dimensional and so is the
kernel of Υ?

V
∣∣D, by (7.35). This is precisely (7.28).

It remains to show that the condition (7.22) ensures that Block
(
υ+
lj

)
is irreducible,

regardless of the transformation ϕV. We already know that this is a matrix with
nonnegative entries, but we need to show that each entry is positive. From (7.29) we
observe that this means that1

υ+,ss′

lj = trace
(
Es Vl Υ

+ ?
jl

(
V ?j Es′ Vj

)
V ?l

)
> 0 , 1 ≤ s ≤Ml, 1 ≤ s′ ≤Mj ,

which is equivalent to saying that the diagonal entries of the matrix

Vl Υ
+ ?
jl

(
V ?j Es′ Vj

)
V ?l , 1 ≤ s′ ≤Mj ,

are positive. To see that this is true, observe that 0 6= V ?j Es′ Vj ∈ Cj for 1 ≤ s′ ≤Mj ,
and that condition (7.22) and definition (7.30) imply

Υ+ ?
jl

(
V ?j Es′ Vj

)
> 0 , 1 ≤ s′ ≤Mj .

The result follows immediately from this. �

1For dimension one, it is understood that the basis is given by {E1} = {1}.
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8. Summary. We presented a rigorous analysis of electromagnetic wave prop-
agation in waveguides with rectangular cross-section. The dielectric materials that
fill the waveguides are lossless isotropic, and contain numerous weak inhomogeneities
(imperfections). Consequently, their electric permittivity ε(~x) has small fluctuations
in ~x that are uncertain in applications, which is why we model them with a random
process. The main result of the paper is a detailed characterization of long range
cumulative scattering effects in random waveguides.

Our method of analysis decomposes the electromagnetic wave field in transverse
electric and magnetic modes, which are propagating and evanescent waves. The modes
are coupled by scattering in the random medium, so their amplitudes are random
processes. They satisfy a stochastic system of equations driven by the random fluctu-
ations of the permittivity ε(~x), and can be analyzed at long range using the diffusion
approximation theorem. The result is a detailed characterization of the loss of co-
herence of the modes, the depolarization of the waves due to scattering, and the
transport of energy by the modes. Loss of coherence means that the expectation of
the mode amplitudes (the coherent part) is overwhelmed by their random fluctuations
(the incoherent part) once the waves travel beyond distances called scattering mean
free paths. These are range scales that depend on the modes, the wavelength and
the covariance of the fluctuations of ε(~x). Our analysis of long range transport of
energy shows how scattering in the random medium redistributes the energy among
the waveguide modes. In particular, it identifies a range scale, called the equiparti-
tion distance, beyond which the energy is uniformly distributed among the waveguide
modes, independent of the initial conditions.

Our results have applications in long range communications and imaging in waveg-
uides. See for example the imaging and time reversal studies [4, 3, 8] that are
based on the theory of sound wave propagation in random waveguides developed
in [14, 6, 9, 1, 2]. Here we extended the theory to electromagnetic wave propagation
in random waveguides.
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Appendix A. The coupling coefficients. Let us denote by

OεDD =
[
∂zν(~x)− ε

2
∂zν

2(~x)
]
I , (A.1)

and

OεDU = ikν(~x)I− i

k
∇ν(~x)∇ ·+ iε

2k
∇ν2(~x)∇· , (A.2)

the perturbation operators in (4.7) acting on D and U, where I is the identity. Sim-
ilarly, we let OεUD be the perturbation operator in (4.8) acting on U. The coupling
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coefficients in equations (5.6-5.7) are linear combinations of

α
(ss′)ε
jj′ (z) =

(√
βj
k
δs1 +

√
k

βj
δs2

)〈
ϕ

(s)
j ,OεDDϕ

(s′)
j′

〉(√ k

βj′
δs′1 +

√
βj′

k
δs′2

)
,

γ
(ss′)ε
jj′ (z) =

(√
βj
k
δs1 +

√
k

βj
δs2

)〈
ϕ

(s)
j ,OεDUϕ

(s′)
j′

〉(√βj′

k
δs′1 +

√
k

βj′
δs′2

)
,

η
(ss′)ε
jj′ (z) =

(√
k

βj
δs1 +

√
βj
k
δs2

)〈
ϕ

(s)
j ,OεUDϕ

(s′)
j′

〉(√ k

βj′
δs′1 +

√
βj′

k
δs′2

)
,

where 〈·, ·〉 denotes inner product in L2(Ω). These expressions become after integra-
tion by parts

α
(ss′)ε
jj′ (z) =

(√
βj
k
δs1 +

√
k

βj
δs2

)(√
k

βj′
δs′1 +

√
βj′

k
δs′2

)
×[

∂zΨ
(ss′)
jj′ (z)− ε

2
∂zψ

(ss′)
jj′ (z)

]
, (A.3)

and

γ
(ss′)ε
jj′ (z) =

i

k

(√
βj
k
δs1 +

√
k

βj
δs2

)(√
βj′

k
δs′1 +

√
k

βj′
δs′2

)
×{

(k2 − λj′δs′2)Ψ
(ss′)
jj′ (z) + Θ

(ss′)
jj′ (z) +

ε

2

[
λj′δs′2ψ

(ss′)
jj′ (z)− θ(ss′)

jj′ (z)
]}

, (A.4)

and

η
(ss′)ε
jj′ (z) =

iλjδs1√
kβj

(√
k

βj′
δs′1 +

√
βj′

k
δs′2

)[
Ψ

(ss′)
jj′ (z)− εψ(ss′)

jj′ (z)
]
, (A.5)

where we introduced the notation

Ψ
(ss′)
jj′ (z) =

∫
Ω

dx ν(~x)φ
(s)
j (x) · φ(s′)

j′ (x) ,

ψ
(ss′)
jj′ (z) =

∫
Ω

dx ν2(~x)φ
(s)
j (x) · φ(s′)

j′ (x) , (A.6)

and

Θ
(ss′)
jj′ (z) =

∫
Ω

dx ν(~x)∇ · φ(s)
j (x)∇ · φ(s′)

j′ (x) ,

θ
(ss′)
jj′ (z) =

∫
Ω

dx ν2(~x)∇ · φ(s)
j (x)∇ · φ(s′)

j′ (x) . (A.7)

Note that since ∇ · φ(1)
j = 0, we have

Θ
(ss′)
jj′ (z) = δs2δs′2Θ

(22)
jj′ (z) , (A.8)

and similar for θ
(ss′)
jj′ (z).
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The coupling coefficients in (5.6) are given by

M
(ss′)
AA,jj′(z) + εm

(ss′)
AA,jj′(z) =

1

2

[
α

(ss′)ε
jj′ (z) + γ

(ss′)ε
jj′ (z) + η

(ss′)ε
jj′ (z)

]
, (A.9)

M
(ss′)
AB,jj′(z) + εm

(ss′)
AB,jj′(z) =

1

2

[
α

(ss′)ε
jj′ (z)− γ(ss′)ε

jj′ (z) + η
(ss′)ε
jj′ (z)

]
, (A.10)

M
(ss′)
AV,jj′(z) + εm

(ss′)
AV,jj′(z) =

1

2

[
α

(ss′)ε
jj′ (z) + η

(ss′)ε
jj′ (z)

]
, (A.11)

M
(ss′)
Av,jj′(z) + εm

(ss′)
Av,jj′(z) = − i

2
(−1)s

′
γ

(ss′)ε
jj′ (z) , (A.12)

and those in (5.7) are

M
(ss′)
BA,jj′(z) + εm

(ss′)
BA,jj′(z) =

1

2

[
α

(ss′)ε
jj′ (z) + γ

(ss′)ε
jj′ (z)− η(ss′)ε

jj′ (z)
]
, (A.13)

M
(ss′)
BB,jj′(z) + εm

(ss′)
BB,jj′(z) =

1

2

[
α

(ss′)ε
jj′ (z)− γ(ss′)ε

jj′ (z)− η(ss′)ε
jj′ (z)

]
, (A.14)

M
(ss′)
BV,jj′(z) + εm

(ss′)
BV,jj′(z) =

1

2

[
α

(ss′)ε
jj′ (z)− η(ss′)ε

jj′ (z)
]
, (A.15)

M
(ss′)
Bv,jj′(z) + εm

(ss′)
Bv,jj′(z) = − i

2
(−1)s

′
γ

(ss′)ε
jj′ (z) . (A.16)

Because γ
(ss′)ε
jj′ (z) and η

(ss′)ε
jj′ (z) are imaginary, we obtain the relations

M
(ss′)
BB,jj′(z) = M

(ss′)
AA,jj′(z) , m

(ss′)
BB,jj′(z) = m

(ss′)
AA,jj′(z) , (A.17)

M
(ss′)
BA,jj′(z) = M

(ss′)
AB,jj′(z) , m

(ss′)
BA,jj′(z) = m

(ss′)
AB,jj′(z) , (A.18)

M
(ss′)
BV,jj′(z) = M

(ss′)
AV,jj′(z) , m

(ss′)
BV,jj′(z) = m

(ss′)
AV,jj′(z) , (A.19)

M
(ss′)
Bv,jj′(z) = M

(ss′)
Av,jj′(z) , m

(ss′)
Bv,jj′(z) = m

(ss′)
Av,jj′(z) . (A.20)

Similarly, the coupling coefficients in equations (5.8-5.9) satisfied by the evanes-
cent modes are given by

M
(ss′)
V A,jj′(z) + εm

(ss′)
V A,jj′(z) = α

(ss′)ε
jj′ (z) + γ

(ss′)ε
jj′ (z) , (A.21)

M
(ss′)
vA,jj′(z) + εm

(ss′)
vA,jj′(z) = i(−1)sη

(ss′)ε
jj′ (z) , (A.22)

M
(ss′)
V V,jj′(z) + εm

(ss′)
V V,jj′(z) = α

(ss′)ε
jj′ (z) , (A.23)

M
(ss′)
V v,jj′(z) + εm

(ss′)
V v,jj′(z) = −i(−1)s

′
γ

(ss′)ε
jj′ (z) , (A.24)

M
(ss′)
vV,jj′(z) + εm

(ss′)
V v,jj′(z) = i(−1)sη

(ss′)ε
jj′ (z) , (A.25)

and by

M
(ss′)
V B,jj′(z) = M

(ss′)
V A,jj′(z) , m

(ss′)
V B,jj′(z) = m

(ss′)
V A,jj′(z) , (A.26)

M
(ss′)
vB,jj′(z) = M

(ss′)
vA,jj′(z) , m

(ss′)
vB,jj′(z) = m

(ss′)
vA,jj′(z) . (A.27)

In equations (5.8-5.9) we use only the leading part of these coefficients denoted by

the capital letter M , as in M
(ss′)
V A,jj′(z).

Appendix B. Analysis of the evanescent modes. Consider the 2×2 system

∂zV(s)
j (z) + βj

(
0 1
1 0

)
V(s)
j (z) = εF (s)

j (z,V) , (B.1)
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for vectors

V(s)
j (z) =

(
V

(s)
j (z)

v
(s)
j (z)

)
, (B.2)

which we string together in the infinite vector V(z). The system (5.8-5.9) is of this
form, with right hand-side

F (s)
j (z,V) =

(
F

(s)
j (z)

f
(s)
j (z)

)
+
∑
j′>N

Mj′∑
s′=1

(
M

(ss′)
V V,jj′(z) M

(ss′)
V v,jj′(z)

M
(ss′)
vV,jj′(z) 0

)
V(s′)
j′ (z) .

(B.3)
We neglect the O(ε2) remainder because it plays no role in our setup.

We diagonalize (B.1) by writing V(s)
j in the orthonormal basis {u+, u−} of R2,

where u± = 1√
2

(
1
±1

)
are the eigenvectors of matrix

(
0 1
1 0

)
for eigenvalues

±1. Explicitly, we write

V(s)
j (z) = θ

(s)+
j (z)u+ + θ

(s)−
j (z)u− , (B.4)

where θ
(s)±
j (z) are decaying and growing evanescent waves, satisfying

[∂z ± βj ] θ(s)±
j (z) = εu± ·F (s)

j (z,V) , (B.5)

the initial condition

θ
(s)+
j (0+) = u+ · V(s)

j (0+) =
√

2E
(s)
j,o , (B.6)

and the end condition

θ
(s)−
j (zmax) = 0. (B.7)

We obtain after integrating equations (B.5) and using (B.4) that

V
(s)
j (z) =E

(s)
j,o e
−βjz +

ε√
2

∫ z

0

dζu+ ·F (s)
j (ζ,V)e−βj(z−ζ)−

ε√
2

∫ zmax

z

dζ u− ·F (s)
j (ζ,V)eβj(z−ζ) , (B.8)

and

v
(s)
j (z) =E

(s)
j,o e
−βjz +

ε√
2

∫ z

0

dζu+ ·F (s)
j (ζ,V)e−βj(z−ζ)+

ε√
2

∫ zmax

z

dζ u− ·F (s)
j (ζ,V)eβj(z−ζ) , (B.9)

for j > N and 1 ≤ s ≤Mj .
Equations (B.8-B.9) form an infinite system of integral equations for the vector

V(z), which we write in compact form as

[I− εQ]V(z) = F(z) , (B.10)
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with infinite vector F(z) given by the terms in the right hand-side of (B.8-B.9) that
are independent of V . The operator in the left hand-side is a perturbation of the
identity I, with Q the linear integral operator that takes the infinite vector V(z) and
returns the infinite vector obtained by concatenating the entries

1√
2

∫ z

0

dζ
∑
j′>N

Mj′∑
s′=1

u+ ·

(
M

(ss′)
V V,jj′(ζ) M

(ss′)
V v,jj′(ζ)

M
(ss′)
vV,jj′(ζ) 0

)
V(s′)
j′ (ζ)e−βj(z−ζ)∓

1√
2

∫ zmax

z

dζ
∑
j′>N

Mj′∑
s′=1

u− ·

(
M

(ss′)
V V,jj′(ζ) M

(ss′)
V v,jj′(ζ)

M
(ss′)
vV,jj′(ζ) 0

)
V(s′)
j′ (ζ)eβj(z−ζ) ,

for j > N and 1 ≤ s ≤ Mj . We show in Lemma B.1 that Q is a bounded linear
operator, so we can solve (B.10) using Neumann series

V(z) = [I + εQ + . . .] F(z) ,

to obtain

V
(s)
j (z) =E

(s)
j,o e
−βjz +

ε

2

∫ z

0

dζ
[
F

(s)
j (ζ) + f

(s)
j (ζ)

]
e−βj(z−ζ)−

ε

2

∫ zmax

z

dζ
[
F

(s)
j (ζ)− f (s)

j (ζ)
]
eβj(z−ζ) +O(ε2) , (B.11)

and

v
(s)
j (z) =E

(s)
j,o e
−βjz +

ε

2

∫ z

0

dζ
[
F

(s)
j (ζ) + f

(s)
j (ζ)

]
e−βj(z−ζ)+

ε

2

∫ zmax

z

dζ
[
F

(s)
j (ζ)− f (s)

j (ζ)
]
eβj(z−ζ) +O(ε2) , (B.12)

for j > N and 1 ≤ s ≤ Mj . The result in Lemma 5.1 follows from (B.11-B.12) and
the approximations∫ z

0

dζ ψ(ζ)e−βj(z−ζ) =

∫ 0

−z
dt ψ(z + t)e−βt ≈

∫ 0

−∞
dt ψ(z + t)e−βt ,

and ∫ zmax

z

dζ ψ(ζ)eβj(z−ζ) =

∫ zmax−z

0

dt ψ(z + t)e−βj |t| ≈
∫ ∞

0

dt ψ(z + t)e−βj |t| ,

for an arbitrary bounded function ψ(z). The error in these approximations is similar
to e−βjz, and we can neglect it for large z.

B.1. Coupling of the propagating modes via the evanescent ones. The
substitution of the evanescent components defined in Lemma 5.1 in equations (5.6-
5.7) gives a closed system of equations for the amplitudes of the propagating modes.

The effect of the evanescent modes is captured by the coefficients ε2m
(ss′)e
AA,jj′(z),

ε2m
(ss′)e
AB,jj′(z), ε

2m
(ss′)e
BA,jj′(z) and ε2m

(ss′)e
BB,jj′(z) in equations (5.14-5.15). We write ex-
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plicitly just the first of them

m
(ss′)e
AA,jj′(z) =

1

2

∑
l>N

Ml∑
q=1

[∫ ∞
−∞
dζ M

(sq)
AV,jl(z)M

(qs′)
vA,lj′(z + ζ)eiβ

′
jζ−βl|ζ|+∫ ∞

−∞
dζ M

(sq)
Av,jl(z)M

(qs′)
V A,lj′(z + ζ)eiβ

′
jζ−βl|ζ|+∫ ∞

0

dζ M
(sq)
AV,jl(z)

1∑
r=0

(−1)rM
(qs′)
V A,lj′(z − (−1)rζ)e−i(−1)rβ′

jζ−βlζ+

∫ ∞
0

dζ M
(sq)
Av,jl(z)

1∑
r=0

(−1)rM
(qs′)
vA,lj′(z − (−1)rζ)e−i(−1)rβ′

jζ−βlζ

]
. (B.13)

The other three coefficients are similar.

B.2. Proof that Q is a bounded operator. The operator Q is defined by

(
QV

)(s)
j

(z) =

( (
QV

)(s)
j

(z)(
Q v
)(s)
j

(z)

)
,

for j > N and 1 ≤ s ≤Mj , where

(
QV

)(s)
j

(z) =
1

2

∫ z

0

dζ e−βj(z−ζ)
∑
j′>N

Mj′∑
s′=1

[[
α

(ss′)
jj′ (ζ) + i

(
− 1
)s
η

(ss′)
jj′ (ζ)

]
V

(s′)
j′ (ζ)−

i(−1)s
′
γ

(ss′)
jj′ (ζ) v

(s′)
j′ (ζ)

]
−

1

2

∫ zmax

z

dζ e−βj(ζ−z)
∑
j′>N

Mj′∑
s′=1

[[
α

(ss′)
jj′ (ζ)− i

(
− 1
)s
η

(ss′)
jj′ (ζ)

]
V

(s′)
j′ (ζ)−

i(−1)s
′
γ

(ss′)
jj′ (ζ) v

(s′)
j′ (ζ)

]
.

The components
(
Qv
)(s)
j

(z) are similar, with addition (instead of subtraction) of the

integrals above.
Lemma B.1. The linear operator Q is bounded in the space of square summable

sequences of L2(R+) vector–functions with w–weights, equipped with the norm

‖V‖w =

∑
j>N

Mj∑
s=1

(
βj w

(s)
j ‖V

(s)
j ‖L2(R+)

)21/2

, w
(s)
j =

(√
k

βj
δs1 +

√
βj
k
δs2

)
.

Proof. We present in detail the estimation of the most critical terms in Q, involv-

ing the processes γ
(ss′)
jj′ (z). The remaining terms are treated similarly. We rewrite the

processes γ
(ss′)
jj′ (z) as

i
(
− 1
)s
γ

(ss′)
jj′ (z) =

w
(s′)
j′

w
(s)
j

(βj′
k
δs′1 −

k

βj′
δs′2

)1

k

[(
k2 − δs′2λj′

)
Ψ

(ss′)
jj′ (z) + Θ

(ss′)
jj′ (z)

]

=:
w

(s′)
j′

w
(s)
j

(βj′
k
δs′1 −

k

βj′
δs′2

)
γ̃

(ss′)
jj′ (z), (B.14)
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and introduce the auxiliary operator,

(
Q̃γv

)(s)
j

(z) =
1

2

∫ z

0

dζ e−βj(z−ζ)
∑
j′>N

Mj′∑
s′=1

(βj′
k
δs′1 −

k

βj′
δs′2

)
γ̃

(ss′)
jj′ (ζ) v

(s′)
j′ (ζ).

We show that this operator is bounded in the space of square summable sequences of
L2(R+) vector–functions equipped with the norm

‖V‖ =

∑
j>N

Mj∑
s=1

(
βj‖V(s)

j ‖L2(R+)

)21/2

.

Indeed, Young’s inequality for convolutions implies

‖Q̃γv‖2 =
∑
j>N

Mj∑
s=1

β2
j ‖
(
Q̃γv

)(s)
j

(z)‖2L2(R+)

≤ 1

2p

∑
j>N

Mj∑
s=1

β2
j ‖e−βjz‖2L1(R+)

∥∥∥ ∑
j′>N

Mj′∑
s′=1

(βj′
k
δs′1 −

k

βj′
δs′2

)
γ̃

(ss′)
jj′ (z) v

(s′)
j′ (z)

∥∥∥2

L2(R+)

≤ 1

2

∑
j>N

Mj∑
s=1

(
a

(s)
j + b

(s)
j

)
, (B.15)

where we used that βj ‖e−βjz‖L1(R+) = 1, and let

a
(s)
j : =

∥∥∥ ∑
j′>N

Mj′∑
s′=1

βj′

k
δs′1 γ̃

(ss′)
jj′ (z) v

(s′)
j′ (z)

∥∥∥2

L2(R+)

=

∫
R+

dz
∣∣∣ ∑
j′>N

Ψ
(s1)
jj′ (z)βj′v

(1)
j′ (z)

∣∣∣2, (B.16)

and

b
(s)
j : =

∥∥∥ ∑
j′>N

Mj′∑
s′=1

k

βj′
δs′2 γ̃

(ss′)
jj′ (z) v

(s′)
j′ (z)

∥∥∥2

L2(R+)

=

∫
R+

dz
∣∣∣ ∑
j′>N

Mj′∑
s′=1

δs′2
β2
j′

[(
k2 − δs1 λj′

)
Ψ

(ss′)
jj′ (z)+

δs2
(
Θ

(ss′)
jj′ (z)− λj′Ψ(ss′)

jj′ (z)
)]
βj′v

(s′)
j′ (z)

∣∣∣2 . (B.17)

To estimate a
(s)
j , set j = (n, l) and j′ = (n′, l′) and use integration by parts to

obtain for n 6= n′ and l 6= l′

Ψ
(s1)
jj′ (z) =

∫
Ω

dx ν(~x)φ
(s)
j (x) · φ(1)

j′ (x)

=
π2

(L1L2)2

l n′√
λjλj′

∫
Ω

dx ν(~x) cos
(π(n−n′)x1

L1

)
cos
(π(l−l′)x2

L2

)
+ · · ·

=:
l n′ ν̂x1x2(n− n′, l − l′, z)

2
√
L1L2 (n− n′)(l − l′)

√
λjλj′

+ · · · .
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Here we let

ν̂x1x2
(n, l, z) =

2√
L1L2

∫
Ω

dx ∂2
x1x2

ν(~x) sin

(
πnx1

L1

)
sin

(
πlx2

L2

)
.

The dots stand for three similar terms in the case s = 2 and four in the case s = 1,
having the rest of index combinations n± n′ and l± l′. For the cases n = n′ or l = l′

we assume for convenience that the integral of ν over x1 or x2 is zero. Then, with the
understanding that the sums are performed over n 6= n′ or l 6= l′, we have

a
(s)
j ≤

1

L1L2

∫
R+

dz
∣∣∣ ∑
j′>N

l n′ ν̂x1x2(n− n′, l − l′, z)
(n− n′)(l − l′)

√
λjλj′

βj′v
(1)
j′ (z)

∣∣∣2 + · · · , (B.18)

where the j′–sum can be regarded as a discrete convolution∑
j′>N

l n′ ν̂x1x2(n− n′, l − l′, z)
(n− n′)(l − l′)

√
λjλj′

βj′ v
(1)
j′ (z)

=
l√
λj

( ν̂x1x2
(n′, l′, z)

n′ l′

)
?
(n′ βj′√

λj′
v

(1)
j′ (z)

)
(j) .

Thus, invoking Young’s inequality for discrete sums, and the simple inequality

l n′ ≤ L1L2

π2

√
λjλj′ ,

we obtain that

1

2

∑
j>N

Mj∑
s=1

a
(s)
j ≤ C

∫
R+

dz

∑
n 6=0

∑
l 6=0

∣∣∣ ν̂x1x2
(n, l, z)

n l

∣∣∣
2 ∑

j>N

∣∣βj v(1)
j (z)

∣∣2
≤ C

(∑
n 6=0

1

n2

)2

sup
z≥0

∥∥ν̂x1x2
(n, l, z)

∥∥2

`2

∥∥v∥∥2
, (B.19)

with constant C := C
(
p, L1, L2

)
. The last inequality follows from Cauchy-Schwarz,

and ∥∥ν̂x1x2(n, l, z)
∥∥2

`2
=
∑
n 6=0

∑
l 6=0

∣∣ν̂x1x2(n, l, z)
∣∣2 .

Moreover, since the set
{

2√
L1L2

sin
(
π n
L1
x1

)
sin
(
π l
L2
x2

)}
n,l

is a subset of the orthonor-

mal Fourier basis, we have∥∥ν̂x1x2(n, l, z)
∥∥
`2
≤ ‖∂2

x1x2
ν(x, z)‖L2(Ω) ≤ ‖ν(x, z)‖H2(Ω), ∀z ≥ 0.

It remains to estimate the term b
(s)
j given by (B.17). The first term in the j′–sum

is similar to that in a
(s)
j , estimated above, because

∣∣k2 − λj′
∣∣ = β2

j′ . The second term
in the sum appears only for s = s′ = 2,

Θ
(22)
jj′ (z)− λj′Ψ(22)

jj′ (z) =

∫
Ω

dx ν(~x)∇ · φ(2)
j ∇ · φ

(2)
j′ − λj′

∫
Ω

dx ν(~x)φ
(2)
j · φ

(2)
j′

=

√
λj′√

λjL1L2

(
λj −

( π
L1

)2

nn′ −
( π
L2

)2

l l′
)
×∫

Ω

dx ν(~x) cos
(π(n− n′)x1

L1

)
cos
(π(l − l′)x2

L2

)
+ . . . ,
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with the dots denoting similar terms, as before. Using integration by parts twice,

Θ
(22)
jj′ (z)− λj′Ψ(22)

jj′ (z) =

√
λj′

π2
√
λj(n− n′)(l − l′)

(
λj −

( π
L1

)2

nn′ −
( π
L2

)2

l l′
)
×∫

Ω

dx ∂2
x1x2

ν(~x) sin
(π(n−n′)

L1
x1

)
sin
(π(l−l′)

L2
x2

)
+ · · ·

=
L1L2

√
λj′

π4
√
λj(n− n′)2(l − l′)2

(
λj −

( π
L1

)2

nn′ −
( π
L2

)2

l l′
)
×[

νcx1x2
(z) + ν̂bx2

1x2
(n− n′, z) + ν̂bx1x2

2
(l − l′, z) + ν̂x2

1x
2
2
(n− n′, l − l′, z)

]
+ · · · ,

where we let,

νcx1x2
(z) : = (−1)n−n

′+l−l′∂2
x1x2

ν(L1, L2, z)− (−1)l−l
′
∂2
x1x2

ν(0, L2, z)−

(−1)n−n
′
∂2
x1x2

ν(L1, 0, z) + ∂2
x1x2

ν(0, 0, z) ,

ν̂bx2
1x2

(n− n′, z) : = −(−1)l−l
′
∫ L1

0

dx1 ∂
3
x2

1x2
ν(x1, L2, z) cos

(π(n− n′)x1

L1

)
+∫ L1

0

dx1 ∂
3
x2

1x2
ν(x1, 0, z) cos

(π(n− n′)x1

L1

)
,

ν̂bx1x2
2
(l − l′, z) : = −(−1)n−n

′
∫ L2

0

dx2 ∂
3
x1x2

2
ν(L1, x2, z) cos

(π(l − l′)x2

L2

)
+∫ L2

0

dx2 ∂
3
x1x2

2
ν(0, x2, z) cos

(π(l − l′)x2

L2

)
,

ν̂x2
1x

2
2
(n− n′, l − l′, z) : =

∫
Ω

dx ∂4
x2

1x
2
2
ν(~x) cos

(π(n− n′)x1

L1

)
cos
(π(l − l′)x2

L2

)
.

As before, the formula applies for n 6= n′ and l 6= l′. The cases with equality may be
assumed null without loss of generality. For the three terms considered below note
that √

λj′√
λj(n− n′)2(l − l′)2

[
λj −

( π
L1

)2

nn′ −
( π
L2

)2

l l′
]

=√
λj′√
λj

[( π
L1

)2 n

(n− n′)(l − l′)2
−
( π
L2

)2 l

(n− n′)2(l − l′)

]
.

(i) Term with νcx1x2
(z). This term is controlled using Lemma B.2. For example,

the critical term that decays linearly in the index n satisfies

∑
j>N

∣∣∣ ∑
j′>N

n
√
λj′ ν

c
x1x2

(z)
(
βj′v

(2)
j′ (z)

)
β2
j′

√
λj(n− n′)(l − l′)2

∣∣∣2 ≤ ∣∣∣L1

π
νcx1x2

(z)
∣∣∣2 ∥∥∥ 1

n l2
?

√
λj v

(2)
j (z)

βj

∥∥∥2

`2

≤ C
∣∣∣L1

π
νcx1x2

(z)
∣∣∣2 ∑

j>N

∣∣βj v(2)
j (z)

∣∣2.
The term with linear decay in the index l is similar.

(ii) Terms with ν̂b
x2

1x2
(n − n′, z) and ν̂b

x1x2
2
(l − l′, z). These are controlled using

either Lemma B.2, or the standard Young’s inequality for discrete convolutions. For
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instance

∑
j>N

∣∣∣∑
j′>N

n
√
λj′ ν̂

b
x2

1x2
(n− n′, z)

(
βj′v

(2)
j′ (z)

)
β2
j′

√
λj(n− n′)(l − l′)2

∣∣∣2≤ ∣∣∣L1

π

∣∣∣2 ∥∥∥ ν̂bx2
1x2

(n, z)

n l2
?

√
λj v

(2)
j (z)

βj

∥∥∥2

`2

≤ C
∣∣∣L1

π

∣∣∣2
∑
n 6=0

∑
l 6=0

∣∣∣ ν̂bx2
1x2

(n, z)

n l2

∣∣∣
2 ∑

j>N

∣∣βj v(2)
j (z)

∣∣2
≤ C

(∑
n 6=0

1

n2

)2∥∥ν̂bx2
1x2

(n, z)
∥∥2

`2

∑
j>N

∣∣βj v(2)
j (z)

∣∣2.
(iii) Term with ν̂x2

1x
2
2
(n − n′, l − l′, z). This term is estimated using Young’s

inequality for discrete convolutions. For instance,

∑
j>N

∣∣∣ ∑
j′>N

n
√
λj′ ν̂x2

1x
2
2
(n− n′, l − l′, z)

(
βj′v

(2)
j′ (z)

)
β2
j′

√
λj(n− n′)(l − l′)2

∣∣∣2
≤
∣∣∣L1

π

∣∣∣2 ∥∥∥ ν̂x2
1x

2
2
(n, l, z)

n l2
?

√
λj v

(2)
j (z)

βj

∥∥∥2

`2

≤ C
∣∣∣L1

π

∣∣∣2
∑
n6=0

∑
l 6=0

∣∣∣ ν̂x2
1x

2
2
(n, l, z)

n l2

∣∣∣
2 ∑

j>N

∣∣βj v(2)
j (z)

∣∣2
≤ C

(∑
n 6=0

1

n2

)2∥∥ν̂x2
1x

2
2
(n, l, z)

∥∥2

`2

∑
j>N

∣∣βj v(2)
j (z)

∣∣2 ,
with constant C := C(w,L1, L2).

Additionally, note that by the trace theorem∣∣νcx1x2
(z)
∣∣ ≤ C ∥∥τν(x, z)

∥∥
H3(∂Ω)

≤ C
∥∥ν(x, z)

∥∥
H4(Ω)

, ∀z ≥ 0,

where τ is the trace operator. The processes ν̂b
x2

1x2
(n, z) and ν̂x2

1x
2
2
(n, l, z) are Fourier

coefficients of the process ∂3νx2
1x2

(~x), x ∈ ∂Ω, and ∂4
x2

1x
2
2
ν(~x), x ∈ Ω, respectively, so

we have ∥∥ν̂bx2
1x2

(n, z)
∥∥
`2
≤ ‖τν(x, z)‖H3(∂Ω) , and∥∥ν̂x2

1x
2
2
(n, l, z)

∥∥
`2
≤ ‖ν(x, z)‖H4(Ω) , ∀z ≥ 0.

Thus, we conclude that

1

2

∑
j>N

Mj∑
s=1

b
(s)
j ≤ C

(∑
n6=0

1

n2

)2

sup
z≥0

∥∥ν(x, z)
∥∥2

H4(Ω)

∥∥v∥∥2
, (B.20)

for yet another constant C := C(w,L1, L2). Gathering (B.15), (B.19) and (B.20), we
obtain that the operator Q̃γ is bounded

‖Q̃γ‖ ≤ C sup
z≥0
‖ν(x, z)‖H4(Ω).
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Using the bounded auxilliary operator Q̃γ , we now define the operator Qγ that
enters the expression of Q,

(
Qγ v

)(s)
j

(z) : =
i

2

∫ z

0

dζ e−βj(z−ζ)
∑
j′>N

Mj′∑
s′=1

(−1)s
′
γ

(ss′)
jj′ (ζ) v

(s′)
j′ (ζ)

=
1

w
(s)
j

(
Q̃γ ṽ

)(s)
j

(z) , ṽ
(s)
j = w

(s)
j v

(s)
j .

It is bounded in the w–norm

‖Qγv‖w = ‖Q̃γ ṽ‖ ≤ ‖Q̃γ‖ ‖ṽ‖ = ‖Q̃γ‖ ‖v‖w .

The remaining terms defining Q are estimated similarly.

Lemma B.2. Let j = (n, l) ∈ Z× Z and define the convolution operator

T (v)(j) =
(κ(l)

n
∗ v
)

(j),

for a sequence v = {vj}. It satisfies the bound
∥∥T (v)

∥∥
`2
≤ π

∥∥κ∥∥
`1

∥∥v‖`2 .
Proof: Let j′ = (n′, l′) and define ξ(n′, l) :=

∑
l′ κ(l − l′)vj′ , so that

T (v)(j) =
∑
n 6=n′

ξ(n′, l)

n− n′
.

Compute the `2–norm,

∥∥T (v)
∥∥2

`2
=
∑
l

∑
n

∣∣∣ ∑
n 6=n′

ξ(n′, l)

n− n′
∣∣∣2
 ≤ π2

∑
l

∥∥ξ(·, l)∥∥2

`2
,

where we have used that, for each l, the discrete Hilbert transform [10] is bounded
with norm π. Thus,

∥∥T (v)
∥∥2

`2
≤ π2

∑
l

∑
n

∣∣ξ(n, l)∣∣2 = π2
∑
n

(∑
l

∣∣∣∑
l′

κ(l − l′)v(n,l′)

∣∣∣2) .
Using Young’s inequality, for each fixed n, leads to

∥∥T (v)
∥∥2

`2
≤ π2

(∑
l

∣∣κ(l)
∣∣)2∑

n

∥∥v(n, ·)
∥∥2

`2
= π2

∥∥κ∥∥2

`1

∥∥v‖2`2 . �

Appendix C. Calculation of the matrix Qj. The expression of E{m̃jj(0)}
follows by direct calculation from

mj(z) = mAA,jj(z) +me
AA,jj(z) ,

definitions (A.9) and (B.13), and integration by parts.

39



To write the contribution of the evanescent modes, let Ψjj′(z) and Θjj′(z) be the
matrices in RMj×Mj′ with entries given by the leading order stationary processes in
(A.6-A.7). They satisfy the symmetry relations

Ψjj′(z) = ΨT
j′j(z) , Θjj′(z) = Θj′j(z) = ΘT

j′j(z) ,

and we recall from (A.8) that Θjj′(z) has only one non-zero entry, for (s, s′) = 2. We
obtain after straightforward calculations that

E
{
me
AA,jj(0)

}
=
i

2

( √
βj/k 0

0
√
k/βj

)
Me

j

( √
k/βj 0

0
√
βj/k

)
, (C.1)

where Me
j is the Mj ×Mj matrix with entries

M(ss′)e
j =

∑
l>N

Ml∑
q=1

1

βj

[
λjδs1E

{
Ψ

(sq)
jl (0)Ψ

(qs′)
lj (0)

}
− E

{
Ψ

(sq)
jl (0)Θ

(qs′)
lj (0)

}]
+

∑
l>N

Ml∑
q=1

∫ ∞
0

ds e−βlz sin(βjz)
[
E
{

Θ
(sq)
jl (0)Ψ

(qs′)
lj (z)

}
+(

1 +
λj
β2
j

δs1

)
E
{

Ψ
(sq)
jl (0)Θ

(qs′)
lj (z)

}]
+

∑
l>N

Ml∑
q=1

∫ ∞
0

ds e−βlz cos(βjz)
[ 1

βjβl
E
{

Θ
(sq)
jl (0)Θ

(qs′)
lj (z)

}
+

βjβl

(
1 +

λj
β2
j

δs1

)(
λl
β2
l

δq1 − 1

)
E
{

Ψ
(sq)
jl (0)Ψ

(qs′)
lj (z)

}]
. (C.2)

Similarly, using the order ε terms in (A.6-A.7), we write

E {mAA,jj(0)} =
i

2

( √
βj/k 0

0
√
k/βj

)
Mj

( √
k/βj 0

0
√
βj/k

)
, (C.3)

with matrix Mj ∈ RMj×Mj defined by

M(ss′)
j =

λj
4βj

δs′2E{ψ(ss′)
jj (0)} − λj

2βj
δs1E{ψ(ss′)

jj (0)} − 1

4βj
E{θ(ss′)

jj (0)} . (C.4)

In equations (C.1) and (C.3) we assumed that Mj = 2. Otherwise we have

E{me
AA,jj(0)} =

i

2
Me

j , E{mAA,jj(0)} =
i

2
Mj , Mj = 1 ,

with scalar valued Me
j , Mj equal to the (s, s′) = (1, 1) entries in (C.2) and (C.4).

The imaginary matrix iκj in equation (7.6) is the sum of (C.1) and (C.3).

The matrix Qj is given by

Qj =

( √
βj/k 0

0
√
k/βj

)
Uj
( √

k/βj 0

0
√
βj/k

)
+ iκj (C.5)
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with matrix Uj ∈ CMj×Mj . The real part of its entries is

Re
[
U (ss′)
j

]
=− 1

4

N∑
l=1

Ml∑
q=1

∫ ∞
0

dz cos[(βl − βj)z]
(
k2

βj
δs1 + βjδs2

)(
k2

βl
δq1 + βlδq2

)
×

E


(

Ψ
(sq)
jl (0) +

Θ
(sq)
jl (0)

β2
j

)Ψ
(qs′)
lj (z) +

Θ
(qs′)
lj (z)

β2
l

 , (C.6)

and the imaginary part is

Im
[
U (ss′)
j

]
=

1

4

N∑
l=1

Ml∑
q=1

[(λj
βj
δs1 −

λl
βl
δq1

)
E
{

Ψ
(sq)
jl (0)Ψ

(qs′)
lj (0)

}
−

1

βj
E
{

Ψ
(sq)
jl (0)Θ

(qs′)
lj (0)

}
+

1

βl
E
{

Θ
(sq)
jl (0)Ψ

(qs′)
lj (0)

}]
−

1

4

N∑
l=1

Ml∑
q=1

∫ ∞
0

dz sin[(βl − βj)z]
(
k2

βj
δs1 + βjδs2

)(
k2

βl
δq1 + βlδq2

)
×

E


(

Ψ
(sq)
jl (0) +

Θ
(sq)
jl (0)

β2
j

)Ψ
(qs′)
lj (z) +

Θ
(qs′)
lj (z)

β2
l

 . (C.7)

Appendix D. Power spectral density of a stationary matrix process. Let
M(z) be an m× n matrix with entries given by stationary processes and covariance

RM (z) := E
{
M?(z)M(0)

}
.

Its power spectral density

SM (z) =

∫ ∞
−∞

dz′RM (z′)eizz
′
,

is easily verified to be a Hermitian matrix, and we show next that it is also positive
semidefinite for any z ∈ R. Indeed,

(
SM (z)x,x

)
=

∫ ∞
−∞

dz′
(
RM (z′)x,x

)
ei zz

′
=

∫ ∞
−∞

dz′ E
{(
M(z′)x,M(0)x

)}
ei zz

′
,

for all x ∈ Rn, and the vector µ(z) = M(z)x is stationary for any fixed x. Therefore

(
SM (z)x,x

)
=

∫ ∞
−∞
dz′ E

{(
µ(z′),µ(0)

)}
ei zz

′
=

m∑
i=1

∫ ∞
−∞
dz′ E

{
µi(z

′) µi(0)
}
ei zz

′
≥ 0,

with the inequality implied by Bochner’s theorem.

Appendix E. The evolution of the mean powers. We show here that since
Po ∈ C ⊂ X, the solution P(Z) of (7.18) remains in the cone C = C1 × . . . × CN for
all Z. Writing (7.18) component-wise and using (7.20), we obtain

∂ZPj(Z) = Υ+(P)j(Z) + QjPj(Z) + Pj(Z)Q?
j , Z > 0. (E.1)
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Equivalently,

∂Z

[
e−QjZPj(Z)e−Q

?
j Z
]

= e−QjZΥ+(P)j(Z)e−Q
?
jZ , (E.2)

and integrating in Z we obtain

Pj(Z) = eQjZPj,oe
Q?

jZ +

∫ Z

0

dz eQj(Z−z)Υ+(P)j(z)e
Q?

j (Z−z). (E.3)

That Pj(Z) ∈ Cj follows from Pj,o ∈ Cj and (7.21).
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