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Abstract

In parametric equations—stochastic equations are a special case—one may want
to approximate the solution such that it is easy to evaluate its dependence of the para-
meters. Interpolation in the parameters is an obvious possibility, in this context often
labeled as a collocation method. In the frequent situation where one has a “solver”
for the equation for a given parameter value—this may be a software component or
a program—it is evident that this can independently solve for the parameter val-
ues to be interpolated. Such uncoupled methods which allow the use of the original
solver are classed as “non-intrusive”. By extension, all other methods which produce
some kind of coupled system are often—in our view prematurely—classed as “intrus-
ive”. We show for simple Galerkin formulations of the parametric problem—which
generally produce coupled systems—how one may compute the approximation in a
non-intusive way.
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1 Introduction

Many problems depend on parameters, which may be a finite set of numerical values, or
mathematically more complicated objects like for example processes or fields. We address
the situation where we have an equation which depends on parameters; stochastic equa-
tions are a special case of such parametric problems where the parameters are elements
from a probability space. One common way to represent this dependability on paramet-
ers is by evaluating the state (or solution) of the system under investigation for different
values of the parameters. Particularly in the stochastic context this “sampling” is a com-
mon procedure. But often one wants to evaluate the solution quickly for a new set of
parameters where is has not been sampled. In this situation it may be advantageous to
express the parameter dependent solution with an approximation which allows for rapid
evaluation of the solution or functionals thereof—so called quantities of interest (QoI)—in
dependence of the parameters. Such approximations are also called proxy or surrogate
models, response functions, or emulators. This last term was chosen so as to contrast with
simulator, which is the original solver for the full equation. Such approximations are used
in several fields, notably optimisation and uncertainty quantification, where in the last case
the parameters are random variables and one deals with stochastic equations. All these
methods may be seen as functional approximations — representations of the solution by
an “easily computable” function of the parameters, as opposed to pure samples.

The most obvious methods of approximation used are based on interpolation, in this
context often labelled as collocation methods. In this case it is usually assumed that the
parameters are in some sub-domain of a manifold, usually simply just in some finite-
dimensional vector space, and the interpolation is often on sparse grids [4, 2, 23, 49]. This
process normally gives the approximation (interpolant) as a finite linear combination of
some basis functions used for the interpolation, often global multi-variate polynomials [51],
or piecewise polynomials [3, 48], or methods based on radial basis functions, kriging, or
neural networks.

Another approach is to again choose a similar finite set of basis functions, but rather
than interpolation use some other projection onto the subspace spanned by these func-
tions. Usually this will involve minimising some norm of the difference between the true
parametric solution and the approximation, and in many cases this norm will be induced
by an inner product, often in the form of an integral w.r.t. some measure—in the case of
stochastic equations this will be the underlying probability measure. These integrals in
turn may be numerically evaluated through quadrature formulas—often again on sparse
Smolyak or adaptive grids [42, 25, 43, 29, 24]—which need evaluations of the integrand—
part of which is the parametric solution—at a finite number of parameter values. Such
methods are sometimes called pseudo-spectral projections, or regression solutions, or dis-
crete projections [11, 14, 39, 10, 44, 6, 28, 5, 45].

In the frequent situation where one has a “solver” for the equation for a given para-
meter value, i.e. a software component or a program, it is evident that this can be used
to independently—i.e. if desired in parallel—solve for all the parameter values which sub-
sequently may be used either for the interpolation or in the quadrature for the projec-
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tion. Such methods are therefore uncoupled for each parameter value, and obviously al-
low to use the original solver. Therefore, they additionally often carry the label “non-
intrusive”. Without much argument all other methods—which produce a coupled system
of equations—are almost always labelled as “intrusive”, meaning that one cannot use the
original solver, e.g. [18, 27, 46, 19, 17]. We want to show here that this not necessarily the
case.

Like most methods which are based on the solution at discrete parameter values, the
non-intrusive methods mentioned above “forget” the original equation, i.e. the fact that
the approximation has to satisfy the parametric equation. This is generally the state of
affairs when using the proxy model in the domain of optimisation. On the other hand,
methods which try to ensure that the approximation satisfies the parametric equation as
well as possible are often based on a Rayleigh-Ritz or Galerkin type of “ansatz”, which
leads to a coupled system for the unknown coefficients [26, 33, 50, 3, 34, 22, 47, 32, 12].
This is often taken as an indication that the original solver can not be used, i.e. that these
methods are “intrusive”. But in many circumstances these methods may as well be used
in a non-intrusive fashion. Although there are some publications concerning special cases
of non-intrusive Galerkin-like methods [1, 13, 15], this has not been widely recognised as a
general possibility. A kind of in-between possibility is the so-called reduced basis method,
see [7, 8] for recent expositions. Here a new basis for the parametric solution is built from
solves at particular parameter values, but the “interpolation” is achieved by a Galerkin
projection onto the spanned subspace. This method also establishes a connection between
proxy models and reduced order models, something we will not pursue further here.

Recent developments for low-rank separated approximations [21, 9, 30, 40, 16, 41, 20]
of parametric or stochastic equations are based on the minimisation of a least squares or
similar functional, and naturally lead to Galerkin-type equations. Although it is important
to show that these can also be dealt with in a non-intrusive manner, here we concentrate on
the “plain vanilla”, i.e. standard, Galerkin case. Non-intrusive computation of separated
approximations will be investigated elsewhere.

Most of the literature cited so far is concerned with the case of stochastic equations,
and although these are a special case of parametric equations, the methods and techniques
used there may be used in the wider context of general parametric equations, see [38] for
a synopsis of these connections of such parametric problems.

The question whether a method is intrusive or not is often very important in practise.
The “solver” (for a single parameter value) may contain much specialised knowledge, and
may therefore represent quite a valuable investment of effort. In case the method is labelled
intrusive, it may seem like the whole—often very domain specific—process and effort of
producing a solver, now for the coupled Galerkin system, would have to be repeated again.
Therefore, in many cases the wish to re-use existing software guides the choice of method.
But as already mentioned, some very effective new methods based on low-rank approx-
imations fall in the class of “not obviously non-intrusive” methods; hence as a first step
we show here that the simple “plain vanilla” coupled Galerkin method may be computed
non-intrusively, the low-rank approximation case will be treated elsewhere.

A method for a parametric problem will be here considered intrusive if one has to
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modify the original software to solve the parametric problem. Thus it turns out that the
question of whether a method is intrusive or not hinges on what kind of interface one
has to the software, and is thus a software-engineering question. Most often it is possible
to not only compute the solution for a certain parameter value—the solver being usually
iterative—but also the residuum or a “preconditioned residuum” given a “trial solution”.
This usually means—for the preconditioned residuum—doing just one iteration with the
solver instead of iterating all the way to convergence. This is the kind of interface which
will be assumed here, and we shall show that this can be used without any change to solve
the Galerkin equation.

The plan for the rest of the paper is as follows: In the following Section 2 we introduce
the notation and assumptions for the parametric problem. In Section 3 we introduce the
Galerkin approximation, describe alternative formulations, and prove the convergence and
speed of a basic block-Jacobi algorithm for the coupled Bubnov-Galerkin system. In the
Section 4 it is shown how the residual in the iteration may be computed non-intrusively,
mainly via numerical integration. The behaviour of the modified iterates is analysed, and it
is shown that they accumulate in the vicinity of the solution. A small numerical example
is investigated in Section 5, it shows how the non-intrusive computation works, and it
confirms the theoretical predictions.

2 Parametric Problems

To be more specific, let us consider the following situation: we are investigating some
physical system which is modelled by an equation for its state u ∈ U — a Hilbert space
for the sake of simplicity,

A(p; u) = f(p), (1)

where A is an operator modelling the physics of the system, and f ∈ U∗ is some external
influence (action / excitation / loading). The model depends on some parameters p ∈
P. In many cases Eq. (1) is the abstract formulation of a partial differential equation.
But for the sake of simplicity we shall assume here that we are dealing with a model on
a finite-dimensional space U with N := dimU , e.g. a partial differential equation after
discretisation. For simplicity we will identify U and U∗, and if needed we will use an
orthonormal basis {vn}N

n=1, i.e. span{vn}N
n=1 = U and 〈vn, vm〉U = δn,m, the Kronecker-δ.

Assume that for all p ∈ P, Eq. (1) is a well-posed problem. This means that A
as a mapping u 7→ A(p; u) for a fixed p is bijective and continuously invertible, i.e. for
each p and f it has a unique solution, which will be denoted by u∗(p), such that for all
p : A(p; u∗(p)) = f(p).

Although this will not be needed here, let us remark that if the map A were also dif-
ferentiable w.r.t. u, well-posedness implies that this partial derivative DuA is non-singular
and also continuously invertible. Now — if the set P has a differentiable structure, e.g.
if it is a differentiable manifold or even a vector space — one may invoke a version of
the implicit function theorem, which, given the partial derivatives DpA and Dpf , provides
the derivative of the state u w.r.t. p as Dpu = [DuA]−1(Dpf − DpA). This — and higher
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derivatives — may be directly used in the approximation of u∗(p), as well as for a priori
bounds for some approximations. These topics will not be pursued further here.

Furthermore assume that we are also given an iterative solver — convergent for all
values of p — which generates successive iterates for k = 0, . . . ,

u(k+1)(p) = S(p; u(k)(p), R(p; u(k)(p)), with u(k)(p)→ u∗(p), (2)

where S is one cycle of the solver which may also depend on the iteration counter k, u(0)

is some starting vector, and R(p; u(k)(p)) is the residuum of Eq. (1)

R(u(k)) := R(p; u(k)(p)) := f(p)−A(p; u(k)). (3)

Obviously, when the residuum vanishes — R(p; u∗(p)) = 0 — the mapping S has a fixed
point u∗(p) = S(p; u∗(p), 0).

This mapping S is the mathematical formalisation of the software interface we will be
assuming in order to derive a non-intrusive Galerkin method, i.e. we will assume that the
mapping S is applied to its inputs with one invocation of the “solver”.

In the iteration in Eq. (2) we may set u(k+1) = u(k) + ∆u(k) with

∆u(k) := S(p; u(k), R(p; u(k)))− u(k), and usually (4)

P (∆u(k)) = R(p; u(k)), (5)

so that in Eq. (2): S(p; u(k)) = u(k) +P−1(R(p; u(k))), where by slight abuse of notation we
have shortened the list of arguments. Here P is some preconditioner, which may depend
on p, the iteration counter k, and on the current iterate u(k); e.g. in Newton’s method
P = DuA(p; u(k)). In any case, we assume that for all arguments the map P is linear in
∆u and non-singular. The iteration corresponding to a normal solve for a particular value
of p then is given in Algorithm 2.1.

Algorithm 2.1 Iteration of Eq. (2)

Start with some initial guess u(0)

k ← 0
while no convergence do

⊲ %comment: the global iteration loop%
Compute ∆u(k) according to Eq. (4) or Eq. (5)
u(k+1) ← u(k) + ∆u(k)

k ← k + 1
end while

We will assume additionally that the iteration converges at least linearly, i.e. one has
‖∆u(k+1)(p)‖U ≤ ̺(p) ‖∆u(k)(p)‖U , with ̺(p) < 1. For the convergence analysis to follow
later we will assume that the convergence factors or Lipschitz constants ̺(p) are uniformly
bounded for all values of p ∈ P by a constant strictly less than unity, i.e. ̺(p) ≤ ̺∗ < 1.
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Another way of saying this is that for all u, v ∈ U and p ∈ P the iterator S in Eq. (2) is
uniformly Lipschitz continuous with Lipschitz constant ̺∗ < 1, i.e. a strict contraction:

‖S(p; u(p), R(p; u(p)))− S(p; v(p), R(p; v(p)))‖U ≤ ̺∗ ‖u(p)− v(p)‖U . (6)

One may recall from Banach’s fixed point theorem that this provides us with the a posteriori
error bounds

‖u∗(p)− u(k+1)(p)‖U ≤
̺∗

1− ̺∗
‖∆u(k)(p)‖U , (7)

while the satisfaction of the equation may be gauged by ‖R(p; u(k))‖U .

3 Galerkin approximation of parametric dependence

The describe the dependence of u on the parameters p one would like to approximate u∗(p)
in the following fashion:

u∗(p) ≈ uI(p) =
∑

α∈I

uαψα(p), (8)

where uα ∈ U are vector coefficients to be determined, and ψα are some linearly independent
functions, whose linear combinationsQI := span{ψα}α∈I ⊂ R

P form the Galerkin subspace
of parametric “ansatz” functions, and I is some finite set of (multi-)indices of cardinality
M := |I|. Often the set I has no canonical order, but for the purpose of computation later
we will assume that some particular ordering has been chosen.

If we take the ansatz Eq. (8) and insert it into Eq. (1), the residuum Eq. (3) will
usually not vanish for all p, as the finite set of functions {ψα}α∈I can not match all possible
parametric variations of u(p).

3.1 The Galerkin equations for the residual

The Galerkin method — also called the method of weighted residuals — determines the
unknown coefficients uα in Eq. (8) by requiring that for all β ∈ I

GQ(ϕβ(·)R(·; uI)) = 0, (9)

where {ϕβ}β∈I is a set of linearly independent functions of p. The residuum R(p; uI(p))
in the argument of the linear Galerkin projector GQ is a parametric function, and such
functions may be represented by a sum R(p; uI(p)) =

∑

n φn(p)vn with φn ∈ R
P . Hence

the projector may be defined by requiring that for scalar functions ψ, φ ∈ Q ⊆ R
P and a

vector v ∈ U one has
GQ(φ(·)ψ(·) v) = 〈φ, ψ〉Q v, (10)

where 〈·, ·〉Q is some duality pairing or inner product on a subspace Q of the scalar func-
tions, and from this GQ can be extended by linearity:

GQ(ϕβ R(·; uI)) = GQ(ϕβ

∑

n

φn vn) =
∑

n

GQ(ϕβ φn vn) =
∑

n

〈ϕβ, φn〉Q vn.
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It is easy to see that this definition is independent of the particular representation of the
parametric function.

In case P is a measure space with measure µ, then that pairing often is 〈φ, ψ〉Q =
∫

P φ(p)ψ(p)µ(dp), and if µ(P) = 1, such that P may be considered as a probability space
with expectation operator E (φ) =

∫

P φ(p)µ(dp), then 〈φ, ψ〉Q = E (φψ). Observe that a
sum like 〈φ, ψ〉Q =

∑

j wjφ(pj)ψ(pj) with positive weights wj is a special form of such an
integral. A bit more general would be to allow 〈φ, ψ〉Q =

s
P×P

κ(p, q)φ(p)ψ(q)µ(dp)µ(dq),
where κ is a symmetric positive definite kernel. What is important for what is to follow,
and what we want to assume from now on, is that the pairing is given by some integral,
and we will assume the form

∫

P φ(p)ψ(p)µ(dp) for the sake of simplicity.
The set {ψα}α∈I determines the Galerkin subspace QI := span{ψα}α∈I ⊆ Q, which

is responsible for the approximation properties, whereas the set {ϕβ}β∈I determines the
projection onto that subspace which is important for the stability of the procedure, as
the projection is orthogonal to Q̂I := span{ϕβ}β∈I. Often one takes ϕβ = ψβ and hence
Q̂I = QI , and this is then commonly called the Bubnov-Galerkin method, whereas in the
general case Q̂I 6= QI one speaks of the Petrov-Galerkin method.

Explicitly writing down Eq. (9), one obtains for all β

GQ(ϕβ(·)(f(p)− A(p;
∑

α∈I

uαψα(p)))) = 0. (11)

It is important to recognise that Eq. (11) is a — usually coupled — system of equations for
the unknown vectors uα of size M ×N , as M = dimQI and N = dimU . These equations
look sufficiently different from Eq. (1), so that the common wisdom is that the solution of
Eq. (11) requires new software and new methods, and that the solver Eq. (2) is of no use
here. As a change or re-write of the existing software seems to be necessary, the resulting
methods are often labelled “intrusive”.

As a remark, observe that if one chooses ϕβ(p) = δβ(p) = δ(p − pβ) — the delta-
“function” associated to the duality pairing 〈·, ·〉Q (i.e. 〈δβ, φ〉Q = φ(pβ)) — where the pβ

are distinct points in P in Eq. (16), this becomes for all β:

0 = GQ(δβR(·; uI)) = R(pβ; uI(pβ)) =

f(pβ)−A(pβ;
∑

α∈I

uαψα(pβ)) = f(pβ)− A(pβ; uβ), (12)

where the last of these equalities holds only in case the basis {ψα} satisfies the Kronecker -δ
property ψα(pβ) = δα,β, as then uβ = uI(pβ). In this latter case these are M uncoupled
equations each of size N , and they have for each pβ the form Eq. (1) — we have recovered
the collocation method which independently for each pβ computes uβ, using the solver
Eq. (2). Such a method then obviously is non-intrusive, as the original software may be
used. Thus this is often the method of choice, as often there is considerable investment in
the software which performs Eq. (2), which one would like to re-use. Unfortunately this
choice is very rigid as regards the subspace QI and the projection orthogonal to Q̂I .

We believe that this is a false alternative, and that the distinction is not between
intrusive or non-intrusive, but between coupled or uncoupled. Furthermore, and more
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importantly, we want to show that also in the more general case of a coupled system like
in Eq. (11) the original solver Eq. (2) may be put to good use. This will be achieved by
making Eq. (2) the starting point, instead of Eq. (1) or Eq. (3). Such coupled iterations
also arise for example from multi-physics problem, and there these coupled iterations can
also be solved by what is called a partitioned approach, see e.g. [35], which is the equivalent
of non-intrusive here. Quite a number of different variants of global partitioned iterations
are possible [35], we only look at some of the simplest variants, as the point is here only
to dispel the myth about intrusiveness.

3.2 The fixed-point Galerkin equations

Whatever the starting point, we would still like to achieve the same result. So before
continuing, let us show

Proposition 1. Projecting the fixed point equation attached to the iteration Eq. (2), namely
uI = uI + P−1(R(uI)), is equivalent to projecting the preconditioned residual P−1(R(uI)),
that means for all β ∈ I

GQ(ϕβ(·)P−1(·)(R(·; uI(·)))) = 0. (13)

Moreover, if the preconditioner P in Eq. (5) does not depend on p nor u, then it is equivalent
to projecting the residual R(uI) from Eq. (9), that means for all β ∈ I

GQ(ϕβ(·)R(·; uI(·))) = 0. (14)

Proof. The Eq. (13) follows simply from linearity of GQ. Furthermore, in case P does not
depend on p nor u, for Eq. (14) we have from Eq. (13) for any β ∈ I

0 = GQ(ϕβ(·)P−1(R(·; uI(·)))) = P−1GQ(ϕβ R(uI)) ⇔ 0 = GQ(ϕβ R(uI)), (15)

on noting that for any linear map L one has GQ(ϕ(·)L(φ(·) v)) = 〈ϕ, φ〉QLv =
LGQ(ϕ(·)φ(·) v), and by observing that P−1 is non-singular.

This means that instead of the residual Eq. (3) we may just as well project the iteration
Eq. (5): with the abbreviation R(k)(·) := R(·; u(k)(·)) we have for all β ∈ I

GQ(ϕβ(·) u(k+1)) = GQ(ϕβ (u(k) + ∆u(k))) = GQ(ϕβ (u(k) + P−1R(k))). (16)

Expanding u(k)(p) =
∑

α u
(k)
α ψα(p) in Eq. (16), that becomes a coupled iteration equation

for the uα:

∀β : GQ(ϕβ(·)
∑

α

u(k+1)
α ψα(·)) = GQ(ϕβ(·) (

∑

α

u(k)
α ψα(·) + P−1R(k)(·))), (17)

which may now be written as

∀β :
∑

α

M β,αu
(k+1)
α =

∑

α

Mβ,αu
(k)
α + GQ(ϕβ P

−1R(k)), (18)
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where Mβ,α := 〈ϕβ, ψα〉Q. If the coefficients u(k)
α ∈ U are arranged column-wise in a N×M

matrix u(k) = [. . . , u(k)
α , . . . ] ∈ UI and similarly GQ(P−1R(k)) = [. . . ,GQ(ϕα P

−1R(k)), . . . ],
and the Mβ,α are viewed as entries of a M × M matrix M ∈ R

I×I, Eq. (18) may be
compactly written as

u(k+1)MT = u(k)MT + GQ(P−1R(k)), or as (19)

u(k+1) = u(k) + ∆Q(u(k)) =: SQ(u(k)), (20)

where we have defined two new functions ∆Q(u(k)) := [GQ(P−1R(k))]M−T , and SQ(u(k)) =
u(k) + ∆Q(u(k)), which will be needed later for the convergence analysis in Subsection 3.3.

It is apparent that the computation will be much simplified if the ansatz-functions
{ψα}α∈I and the test-functions for the projection {ϕβ}β∈I are chosen bi-orthogonal, i.e. if
one has for all α, β ∈ I that Mβ,α = δβ,α, i.e. M = I, which shall be assumed from now
on. Hence now

∆Q(u(k)) = GQ(P−1R(k)) = [. . . ,GQ(ϕα P
−1R(k)), . . . ]. (21)

Eq. (20) is already a possible way of performing the iteration. The practical, non-
intrusive, computation of the terms in Eq. (20) still has to be considered, but we may
formulate the corresponding Algorithm 3.1 and investigate its convergence beforehand.
The reader who is only interested in the computational description of the non-intrusive
algorithm may jump directly to Section 4.

Algorithm 3.1 Block Jacobi iteration of Eq. (20)

Start with some initial guess u(0)

k ← 0
while no convergence do

⊲ %comment: the global iteration loop%
Compute ∆Q(u(k)) according to Eq. (21)
u(k+1) ← u(k) + ∆Q(u(k)) [= SQ(u(k))]
k ← k + 1

end while

Although the underlying iteration Eq. (2) in Algorithm 2.1 may be of any kind — e.g.
Newton’s method — when one views Eq. (20) with regard to the block structure imposed
by the u = [. . . , uβ, . . . ], Algorithm 3.1 is a — maybe nonlinear — block Jacobi iteration.

3.3 Convergence of coupled iterations

Here we want to show that the map SQ in Eq. (20) satisfies a Lipschitz condition with the
same constant as in Eq. (6). This will need some more theoretical considerations. For the
sake of simplicity we will assume that 〈·, ·〉Q is actually an inner product on the Hilbert
space Q ⊆ R

P , such that QI ⊆ Q. The contraction condition for SQ with contraction
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factor (Lipschitz constant) less or equal to ̺∗ will only hold if the Galerkin projection is
orthogonal, i.e. we have to take ϕα = ψα, which means Q̂I = QI . Our previous assumption
that M = I — which is now the Gram matrix of the basis {ψα}α∈I — now means that
this basis is actually orthonormal.

Parametric elements like P ∋ p 7→ u(p) ∈ U are formally in the Hilbert tensor product
space of sums like

∑

n φn(p)vn =:
∑

φn ⊗ vn ∈ Q ⊗ U , with the inner product of two
elementary tensors φj ⊗ wj ∈ Q ⊗ U , (j = 1, 2), defined by 〈φ1 ⊗ w1, φ2 ⊗ w2〉Q⊗U :=
〈φ1, φ2〉Q〈w1, w2〉U , and then extended by bi-linearity. In the space Q, the subspace
QI , which is finite-dimensional and hence closed, leads to the orthogonal direct sum
decomposition Q = QI ⊕ Q⊥

I , and hence to the orthogonal direct sum decomposition
Q⊗ U = (QI ⊗ U)⊕ (Q⊥

I ⊗ U).
The mapping J : UI ∋ u = [. . . , uα, . . . ] 7→

∑

α ψα(·)uα ∈ QI ⊗U ⊆ Q⊗U is by design
bijective onto QI ⊗ U and may thus be used to induce a norm and inner product on UI

via ‖u‖2
UI := ‖Ju‖2

Q⊗U = ‖∑α ψα(·)uα‖2
Q⊗U =

∑

α ‖uα‖2
U , making it a unitary map, hence

‖J‖ = 1. When viewed as a mapping into the larger space Q⊗ U , were it is extended by
slight abuse of notation by the inclusion, it remains an isometry.

Lemma 2. The maps GQ : Q⊗ U → UI and J are adjoints of each other, G∗
Q = J , and

GQ is non-expansive, ‖GQ‖ = ‖G∗
Q‖ = 1.

Proof. For all v ∈ UI and φ⊗ w ∈ Q⊗ U :

〈GQ(φ⊗ w),v〉UI = 〈[. . . , 〈ψα, φ〉Qw, . . .], [. . . , vα, . . .]〉UI =
∑

α

〈ψα, φ〉Q〈w, vα〉U = 〈φ⊗ w,
∑

α

ψα ⊗ vα〉Q⊗U = 〈φ⊗ w, Jv〉Q⊗U , (22)

and hence G∗
Q = J . But J is an isometry, so that one has ‖G∗

Q‖ = ‖J‖ = 1. As
‖GQ‖ = ‖G∗

Q‖, we are finished.

With the observation that

GQ(S(·; u(k)(·), R(k)(·)) = GQ(u(k)(·) + P−1R(k)(·)) =

u(k) + GQ(P−1R(k)) = u(k) + ∆Q(u(k)) = SQ(u(k)), (23)

the map SQ : UI → UI in Eq. (20) may be factored in the following way:

SQ : UI J→ Q⊗U S̃→ Q⊗U GQ→ UI , (24)

SQ = GQ ◦ S̃ ◦ J = GQ ◦ S̃ ◦G∗
Q, (25)

where S̃ is defined via the solver map S in Eq. (2) by

S̃ : Q⊗ U ∋ u(·) 7→ S(·; u(·), R(·, u(·))) ∈ Q⊗ U . (26)

For this mapping we have the following result:
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Proposition 3. In Eq. (26), the map denoted S̃ has the same Lipschitz constant ̺∗ as the
map S in Eq. (2), cf. Eq. (6); i.e. S̃ is a contraction with contraction factor ̺∗ < 1.

Proof. We now use the assumption that the inner product on Q is given by an integral,
〈ϕ, φ〉Q =

∫

P ϕ(p)φ(p)µ(dp). In that case Q = L2(P, µ;R), and the Hilbert tensor product
Q ⊗ U is isometrically isomorphic to L2(P, µ;U). Hence with Eq. (6) for all u(·), v(·) ∈
L2(P, µ;U)

‖S̃(u(·))− S̃(v(·))‖2
L2(P,µ;U) =

∫

P
‖S(p; u(p), R(p; u(p)))− S(p; v(p), R(p; v(p)))‖2

U µ(dp)

≤ (̺∗)2
∫

P
‖u(p)− v(p)‖2

U µ(dp) = (̺∗)2‖u(·)− v(·)‖2
L2(P,µ;U),

and the proof is concluded by taking square roots.

This immediately leads to

Corollary 4. The map SQ from Eq. (20) is a contraction with contraction factor ̺∗ < 1
(see Eq. (6)):

∀u,v ∈ UI : ‖SQ(u)− SQ(v)‖UI ≤ ̺∗ ‖u− v‖UI , (27)

and hence the Galerkin equations have a unique solution u∗ ∈ UI .

Proof. This follows from the decomposition Eq. (25), Lemma 2, and Proposition 3, as
‖SQ‖ = ‖GQ ◦ S̃ ◦ G∗

Q‖ ≤ ‖GQ‖ ‖S̃‖ ‖G∗
Q‖ ≤ ̺∗, and Banach’s contraction mapping

theorem.

Now we may state the main result about the convergence of the simple block-Jacobi
Algorithm 3.1 for the coupled Galerkin system:

Theorem 5. As the map SQ from Eq. (20) has Lipschitz constant ̺∗ < 1, and is thus a
contraction with the same factor as the solver S in Eq. (2), the Algorithm 3.1 converges to
the unique solution u∗ ∈ UI with the same linear speed of convergence as Algorithm 2.1.
Additionally, we have the a posteriori error estimate (see Eq. (7))

‖u∗ − u(k+1)‖UI ≤ ̺∗

1− ̺∗
‖∆Q(u(k))‖UI . (28)

The satisfaction of the parametric equation may be gauged by ‖R(k)‖Q⊗U = ‖R(·; u(k))‖Q⊗U .

Proof. Everything simply follows from Corollary 4, Banach’s contraction mapping theorem,
and the fact that R(k)(·) is the residuum at iteration k before any preconditioning or
projection.

Observe that this only holds for the linear convergence speed; in case Algorithm 2.1
has super-linear convergence, this can not be necessarily matched by Algorithm 3.1, for
this more sophisticated algorithms for the coupled equations are necessary, see e.g. [35].
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4 Non-intrusive residual

Here we want to look in more detail at the actual computation of the right hand side of
Eq. (20), in the form Eq. (21). One may observe that the term GQ(ϕα P

−1R(k)) in Eq. (21)
is the Galerkin projection of the preconditioned residual for that iteration. Let us recall
that the Galerkin projector was defined by Eq. (10) as GQ(ϕ(·) v φ(·)) = 〈ϕ, φ〉Q v.

4.1 Analytic computation

In some cases [38, 37], notably when the preconditioner P does not depend on p nor u, or
when the operator A is linear or polynomial in u, and linear in the parameters p, it may be
possible to actually represent P−1R(k), not just in principle, but actually non-intrusively
through the use of the solver S in Eq. (2) as

P−1R(k)(p) =
∑

n

ρn(p) vn =
∑

n,β

ρn,β ψβ(p) vn, (29)

where ρn,β = 〈ψβ , ρn〉Q, — remembering that we chose ϕα = ψα orthonormal. The Galerkin
projection of this then gives

GQ(ψα P
−1R(k)) = GQ(ψα

∑

n,β

ρn,βψβ vn) =

∑

n,β

ρn,β GQ(ψαψβ vn) =
∑

n,β

ρn,β 〈ψα, ψβ〉Q vn =
∑

n

ρn,α vn, (30)

using the linearity of GQ and the orthonormality of the basis {ψα}α∈I . This means that for
the right hand side of Eq. (20) in the form Eq. (21), given the representation Eq. (29), each
term may be computed through simple linear algebra operations Eq. (30). This expression
may be directly used in the block-Jacobi Algorithm 3.1 for ∆Q(u(k)) in the form Eq. (21),
and the description of the algorithm is complete. Let us remark finally that if the solver
actually returns S(p; u(k)(p), R(k)(p)) instead of the increment P−1R(k)(p), Algorithm 3.1
is easily adapted by computing completely analogously SQ(u(k)).

4.2 Numerical integration

The following idea to obtain a non-intrusive computation of the right hand side of Eq. (20)
in the form Eq. (21), is more general, but involves a further approximation, namely nu-
merical integration.

Remembering that it was assumed that the duality pairing on the scalar functions is
given by an integral with measure µ,

〈ϕ, φ〉Q =
∫

P
ϕ(p)φ(p)µ(dp), (31)

we now assume that this integral has some approximate numerical quadrature formula
∫

P
φ(p)µ(dp) ≈

Z
∑

z=1

wzφ(pz), (32)
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where the integrand is evaluated at the quadrature points pz and the wz are appropriate
weights.

With this approximation the term GQ(ψβ P
−1R(k)) in Eq. (18) becomes practically

computable without any further assumptions on the operator A, giving

GQ(ψβ P
−1R(k)) ≈ ∆Z,βu

(k) :=
∑

z

wzψβ(pz) ∆u(k)
z , where (33)

∆u(k)
z := P−1(pz)R(pz; u(k)(pz)) =P−1(pz)

(

f(pz)−A(pz; u(k)(pz))
)

, or (34)

=S(pz; u(k)(pz), R(pz; u(k)(pz)))− u(k)(pz) (35)

is the preconditioned residuum evaluated at pz, and u(k)(pz) =
∑

α u
(k)
α ψα(pz). This is

indeed the only interface needed to the original equation, something which can be easily
evaluated non-intrusively as the iteration increment ∆u(k)

z in Eq. (34) in case the current
state is given as u(k)(pz) for the parameter value pz. An alternative form is given in Eq. (35),
which is one iteration of the solver, starting at u(k)(pz) for the parameter pz. This variant is
for the case when the solver actually returns S(p; u(k)(p), R(k)(p)) instead of the increment
P−1R(k)(p).

4.3 Non-intrusive iteration

The term in Eq. (20) in the form of Eq. (21) has to be computed non-intrusively. Following
Subsection 4.2 about numerical integration of the terms — if applicable, the analytic coun-
terpart from Subsection 4.1 can be easily substituted — we formulate the approximation
of

∆Q(u(k)) = [. . . ,GQ(ϕα P
−1R(k)), . . . ] ≈∆Z(u(k)) = [. . . ,∆Z,αu

(k), . . . ] (36)

in Algorithm 3.1 from Eq. (21) in Algorithm 4.1, using Eq. (33) and Eq. (34):

Algorithm 4.1 Non-intrusive computation of Eq. (21) in the form of Eq. (36)
for α ∈ I do

∆Z,αu
(k) ← 0

end for

⊲ %comment: the loop over integration points%
for z ← 1, . . . , Z do

Compute ∆u(k)
z from Eq. (34)

rz ← wz ∆u(k)
z

for α ∈ I do

∆Z,αu
(k) ← ∆Z,αu

(k) + ψα(pz) rz

end for

end for

The result of this algorithm is ∆Z(u(k)), the approximation of ∆Q(u(k)) by numerical
integration. With Algorithm 4.1 it is now possible to formulate a non-intrusive version of
Algorithm 3.1, the block-Jacobi iteration, in Algorithm 4.2.

13



Algorithm 4.2 Non-Intrusive block Jacobi iteration of Eq. (20)

Start with some initial guess ũ(0) = [. . . , ũ(0)
α , . . . ]

k ← 0
while no convergence do

⊲ %comment: the global iteration loop%
Compute ∆Z(ũ(k)) = [. . . ,∆Z,αũ

(k), . . . ] according to Algorithm 4.1
ũ(k+1) ← ũ(k) + ∆Z(ũ(k))
k ← k + 1

end while

The sequence generated by Algorithm 4.2 has been labelled with a tilde {ũ(k)}k to
distinguish it from the exact sequence {u(k)}k generated by Algorithm 3.1. The question
arises as to how well the original sequence {u(k)}k is approximated by the one produced
non-intrusively by numerical integration {ũ(k)}k, and what its convergence behaviour is.
To that effect we partially cite and conclude from Theorem 4.1 in [36]:

Theorem 6. Assume that the numerical integration in Algorithm 4.1 is performed such
that ‖GQ(ψαP

−1R(·; ũ(k)))−∆Z,αũ
(k)‖U ≤ ε/

√
M , then the error in Eq. (36) is estimated

by
‖∆Q(ũ(k))−∆Z(ũ(k))‖UI ≤ ε, (37)

and we have the following a posteriori error estimate for the iterates

‖u∗ − ũ(k+1)‖UI ≤ ̺∗

1− ̺∗
‖∆Z(ũ(k))‖UI +

ε

1− ̺∗
. (38)

In addition, we have that

lim sup
k→∞

‖u∗ − ũ(k)‖UI ≤ ε

1− ̺∗
. (39)

The satisfaction of the parametric equation may be gauged by ‖R(·; ũ(k))‖Q⊗U .

Proof. The Eq. (37) is a simple consequence of the assumption by squaring and summing
M = |I| terms of size less than ε/

√
M , and then taking the square root. Everything else

are then statements of Theorem 4.1 in [36].

The Eq. (38) shows that the modified sequence {ũ(k)}k will not necessarily converge to
u∗, even if ∆Z(ũ(k)) → 0 as k → ∞, but Eq. (39) shows that it clusters around u∗ in a
small neighbourhood.

4.4 Computational effort and possible improvements

To assess the effort involved in a computational procedure and hence its efficiency is always
difficult, not least because it is not always clear on how to measure computational effort.
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Here we take the view that the effort is only counted in solver calls, i.e. invocations of
S(p; u,R(p; u)) Eq. (2) or equivalently of P−1R(p; u) Eq. (5). This means that the addi-
tional linear algebra and computation of ψα(pz) involved in the Algorithms 4.1 and 4.2 is
considered insignificant in comparison to an invocation of the solver S.

The main contender for the Galerkin procedure outlined so far is to be seen in what is
called in the introduction a pseudo-spectral or discrete projection, or a regression. This can
be described very quickly. With {ψα}α∈I orthonormal, the coefficients in the projection
uI =

∑

α∈I u
αψα can be simply computed by inner products:

uα = 〈ψα, u
∗〉Q =

∫

P
ψα(p)u∗(p)µ(dp) ≈

Z
∑

z=1

wz ψ(pz)u∗(pz). (40)

One may remind oneself that this — being the orthogonal projection onto the subspace
QI ⊆ Q— has the smallest error to u∗(p) in the norm ‖·‖Q, but it does not at all take into
account the parametric equation. The Galerkin projection on the other hand will produce
an approximation which is optimal in minimising the residuum. The approximation in
Algorithm 4.3 to Eq. (40) is computed very similarly to Algorithm 4.1.

Algorithm 4.3 Discrete projection according to Eq. (40)
for α ∈ I do

uα ← 0
end for

⊲ %comment: the loop over integration points%
for z ← 1, . . . , Z do

Compute u(pz) acording to Algorithm 2.1.
rz ← wz u(pz)
for α ∈ I do

uα ← uα + ψα(pz) rz

end for

end for

The iterations from Eq. (2) in Algorithm 2.1 with one solver call per iteration in Al-
gorithm 4.3 are assumed to be contractions with contraction factor at most ̺∗. Say that
an iteration with contraction factor of ̺∗ needs L iterations to converge to the desired
accuracy. The discrete projection needs L solver calls on Z integration points each, i.e.
L× Z solver calls.

The block Jacobi variant of the coupled Galerkin system in Algorithm 4.2 needs one
solver call on Z integration points. But as it converges also with contraction factor ̺∗ —
see Corollary 4, it also needs L iterations, i.e. in total also L× Z solver calls.

We see that in this measure of effort — solver calls — the discrete projection and the
block Jacobi iteration of the Galerkin system need the same effort for comparable accuracy;
something that is borne out also in the numerical example in Section 5. In case the iteration
in Eq. (2) is quadratically convergent, e.g. it is Newton’s method, then this can not be
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matched by the block Jacobi method; it will usually only have linear convergence. When
looking at the other computations apart from the count of solver calls, in both algorithms
integrals have to be approximated by quadrature formulas. In the discrete projection this
happens only once, whereas in the block Jacobi this is done in every global iteration.

Block Jacobi is probably the simplest method for coupled systems, however it can be
considerably accelerated [31, 35], this ranges from the simple Aitken acceleration over block
Gauss-Seidel to Quasi-Newton methods. In case the iterations from Eq. (2) converge only
linearly, these extensions can then produce an advantage for the Galerkin solution and
may need considerably fewer than L iterations, as “convergence information” is shared
for different values of p or α, something which will not happen in the decoupled discrete
projection. Even Newton’s method [31] can be emulated on the global Galerkin system,
where the action of the inverse of the derivative on a vector is approximated by finite
differences and non-intrusive solver calls. This last procedure is even able to maintain
quadratic convergence in case the iterations from Eq. (2) are quadratically convergent
themselves. These issues will be taken up and published elsewhere.

Another area where considerable saving of work is possible in the Galerkin procedure
are sparse or low-rank approximations. They come about when viewing the solution — and
also other parametric elements — as tensors, which may be used computationally in low-
rank representations / approximations, see for example [36]. Again this is beyond the scope
of the present paper, and will published elsewhere. Using such low-rank representations
in the originally uncoupled discrete projection produces a coupled system, which then
differs not substantially from the Galerkin system. Other ways of building a low-rank
representation were already discussed in the introduction, and will be the subject of a
future paper.

5 Numerical example

Here we want to show the procedures discussed on a tiny example which nonetheless is
representative of parametric problems. It is so simple that it may be programmed with
a few lines of code. This computational example derives from a little electrical resistor
network with a global non-linearity. The particular resistor network we use is shown in
Fig. 1.

Kirchhoff’s and Ohm’s laws lead to the following linear relation between voltages u

and currents j fed into the nodes, where the numbering of the nodes corresponds to the
equations — node 6 is grounded (u6 = 0) and so needs no equation, hence u ∈ U =
R

5,K ∈ R
5×5:

Ku = j, (41)
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Figure 1: Electrical resistor circuit.
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, (42)

where we take all resistors to have the value R = 100.
To make this toy system non-linear, we add a global cubic non-linearity with an un-

certain coefficient (p1 + 2)(uT u) u. We also make the feed-in current f = (p2 + 25)f 0

uncertain, so that we are eventually left to solve this system for u (this is a concrete
example of Eq. (1)):

A(p; u) :=(Ku + (p1 + 2)(uT u) u) = (p2 + 25)f0 =: f(p), (43)

f0 := [1, 0, 0, 0, 0]T , (44)

where the random parameters p = (p1, p2) are assumed uniformly and independently dis-
tributed in [−1, 1], and therefore we have for the residuum (compare Eq. (3))

R(p; u) = (p2 + 25)f0 − (Ku + (p1 + 2)(uT u) u), (45)

and for the preconditioner we take simply P = K = DuA(p; 0).
The system can be solved in an iterative way as formulated in Eq. (2), with effectively

u(k+1) = S(p; u(k),R(p; u(k))) = u(k) + P −1R(p; u(k)) =

K−1
(

(p2 + 25)f0 − (p1 + 2)((u(k))T u(k)) u(k)
)

(46)

17



The simple iteration Eq. (46) — indeed a linearly convergent modified Newton method —
converges quite well for the chosen parameters.

For the ansatz functions we take tensor products of Legendre polynomials, as they are
orthogonal for the uniform measure, i.e. we take ψα(p) = L̃α(p) = Lα(p)/‖Lα‖, the multi-
variate normalised Legendre polynomial, and Lα(p) =

∏2
i=1 ℓαi

(pi), where the ℓi are the
normal univariate Legendre polynomials, ‖Lα‖ = 4(2α1 + 1)−1(2α2 + 1)−1, and α ∈ (N0)2:

u(p) ≈
∑

|α|1≤m

uαL̃α(p) =: uI(p), with (47)

uα = [uα,1, · · · , uα,5]T ∈ U = R
5, and

I = {α = (α1, α2) : |α|1 = α1 + α2 ≤ m} ⊂ (N0)2, m ∈ N;

hence for different m ∈ N we will have different approximation orders by polynomials of
total degree m.

For the purpose of comparison we use two approaches to determine the coefficients uα

in Eq. (47), these are the Galerkin approach according to Algorithm 4.2 with numeric-
ally integrated residuum according to Algorithm 4.1 for uG(p), and collocation or more
specifically discrete projection with numerical integration according to Algorithm 4.3 for
uC(p), both with the same integration rule. We choose here — as we are only in two
dimensions — a tensor-product Gauss-Legendre quadrature. The quadrature order was
always taken so that products of test- and ansatz-functions ψαψβ were integrated exactly
for the chosen total polynomial degree m in Eq. (47).

First we computed a N = 1000 sample Monte Carlo solution on random points
pn ∈ P = [−1, 1]2, n = 1, . . . , N to high accuracy by setting the convergence criterion
in Algorithm 2.1 to the machine tolerance. These results were taken as the reference solu-
tion for the following error estimation. We computed the root-mean-squared-error (RMSE)
— effectively the L2 norm in Q⊗ U ∼= L2([−1, 1]2;R5) — as

ǫF =

(

1
N

N
∑

n=1

‖u(pn)− uF (pn)‖2

)1/2

, (48)

where the functional approximation method F is either G for the Galerkin method or C
for the collocation method.

The two approaches were carried out to compute the coefficients uα in Eq. (47). The
criteria of convergence for the iterative solvers were that the increment of u or uα is smaller
than ǫtol. Tabulated in Table 1 are the ǫtol values obtained in a sensitivity-range investig-
ation such that further reduction of these values would not improve accuracy, depending
on the total polynomial degree m. The errors ǫF of each approach were estimated as in
Eq. (48) and are displayed in Table 1, together with the number of solver (S(p,u)) evalu-
ations for total polynomial degrees m = 2, 3, 4 and 5. The coefficients computed by either
Galerkin or collocation differed only in the eighth or ninth digit.

It is seen in the results that in terms of “the best possible accuracy” the Galerkin
approach is slightly better than the collocation one, though the former needs slightly more
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Order of
polynomial

ǫtol # of solver evaluations RMSE ǫF from Eq. (48)

Collocation Galerkin F = C Collocation F = G Galerkin

m=2 10−6 73 81 8.5× 10−6 8.2× 10−6

m=3 10−7 151 160 6.4× 10−7 6.0× 10−7

m=4 10−8 268 300 4.2× 10−8 4.0× 10−8

m=5 10−9 430 468 3.1× 10−9 3.0× 10−9

Table 1: RMSE and number of solver evaluations of collocation and Galerkin approaches

evaluations of the solver. This comes because the same convergence tolerance is used for
different equations in the two approaches. The results essentially confirm the theoretical
analysis in Section 3; for the same accuracy both approaches need about the same number
of solver calls, i.e. the simple block Jacobi iteration of the Galerkin system converges at
essentially the same speed as the original iteration.

6 Conclusion

After reviewing the literature on numerical methods for parametric equations, with a spe-
cial emphasis on the subclass of stochastic equations, we have introduced a general meth-
odology to formulate numerical methods relying on functional or spectral approximations.
We have shown that the Galerkin orthogonality conditions for the residuum and the it-
eration equation are equivalent under certain conditions, and that the simplest iterative
scheme for the coupled Galerkin system, the block Jacobi method, converges essentially at
the same speed as the original solver for a single parameter value.

In the main part for this “plain vanilla” Galerkin formulation, we have shown how
to approximate the preconditioned residuum in the Galerkin equation through numerical
integration, and the effects of this on the iteration sequence. Then these explicit non-
intrusive Galerkin algorithms have been compared on one simple, easy to understand, baby
example. This showed that the theoretical analysis was validated with these computations,
and that even in the simplest case of block Jacobi the Galerkin formulation is competitive
with collocation. We finally recall once more the discussion in Section 4 on possibilities to
accelerate the coupled Galerkin solution, something that is not possible for the decoupled
collocation approach.
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