SUPPLEMENTARY MATERIAL:
A RENORMALIZED NEWTON METHOD
FOR LIQUID CRYSTAL DIRECTOR MODELING

EUGENE C. GARTLAND, JR* AND ALISON RAMAGE'

This note of Supplementary Material extends the modeling, analysis, and numeri-
cal experiments of the main paper. The general forms of the macroscopic liquid crystal
director models in the presence of electric and/or magnetic fields are discussed; they
are carefully compared and contrasted with the Landau-Lifshitz free energy models
for ferromagnetic materials; and a typical non-dimensionalization for our prototype
problem is presented. In addition, a simple example is given showing that liquid
crystal free-energy functionals in general do not possess the kind of “energy decay
property” (with respect to rescaling the director field n) that was used in earlier
work to analyze the “Harmonic Mapping Problem.” Finally, we include results from
additional numerical experiments, which validate certain properties of the Truncated
Newton Method discussed in the main paper.

S1. Liquid crystal director models. Many experiments and devices involving
liquid crystal materials can be effectively modeled using a macroscopic continuum
framework in which the orientational state of the system is described by a director
field (a unit-length vector field representing the average orientation of the molecules in
a fluid element at a point), traditionally denoted by m: with respect to an orthonormal
frame,
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One of the main difficulties in dealing with models such as these numerically is the
unit-vector constraint on n, which must be satisfied at each point in the region oc-
cupied by the liquid crystal material. If the director field is simple enough (e.g.,
a modest tilting or twisting), this can be managed by representing n in terms of
orientation angles (e.g., n = cosfe; + sinf es, in a 2-D setting), which recasts the
problem as an unconstrained problem for the scalar fields associated with these an-
gles. For more complicated director fields, there can be degeneracies associated with
the orientation angles, and an angle representation can’t be employed. In such cases,
it is common to enforce the constraint |n| = 1 either by Lagrange multipliers or by
penalty methods. Several other liquid crystal models involve unit-length vector fields
and constraints—see [8] for more discussion. Standard references on liquid crystals
include [2, 3, 9, 10]. Unit-vector constraints arise in other areas as well, including the
modeling of ferromagnetic materials—see [4, 6, 7].

S1.1. Coupled electric fields. Most devices and many experiments involve
the interaction between a liquid crystal material and an applied electric field (which
is used to control the liquid crystal orientational properties). The electric fields are
usually created by sandwiching a liquid crystal film between electrodes to which a
voltage is applied. This is a coupled interaction, with the electric field influencing the
orientations of the liquid crystal molecules and the molecular orientational properties
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in turn influencing the local electric fields through their effect on the dielectric tensor.
The free energy (expressed as an integral functional of the field variables) is the
thermodynamic potential that determines equilibrium states of systems such as these.
For a uniaxial nematic liquid crystal material in equilibrium with a coupled electric
field (at constant potential), the free energy has the generic form

f:/thVM—%DJ% D=¢(n)E, E=-VU.
Q

Here ) is the region occupied by the liquid crystal, W is the distortional elastic energy
density, D is the electric displacement (or flux), E is the local electric field, € is the
dielectric tensor, and U is the electrostatic potential.

The form of W commonly used to model experiments and devices with real (uni-
axial nematic) materials is the Oseen-Frank model [9, §2.2], [10, §3.2]:

2W = K;(divn)? + Ko(n - curln)? + K3|n x curln|?
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where Ki,..., K, are material-dependent and temperature-dependent “elastic con-
stants.” A simplified form, which embodies the essential features of importance to us
here, is the so-called “equal elastic constant” model (K1 = Ko = K3 = K, K4 = 0):

W= Eionp war= S (22)) koo

i,j=1
The expression for [Vn|? above is for a fixed Cartesian frame. This is the form that
we use in the main paper. We emphasize that this is done for simplicity and does not
limit the applicability of the ideas or analysis.

The anisotropy of the medium is reflected in the tensorial nature of the “dielectric
constant,” which here corresponds to the real, symmetric, positive-definite tensor field
€ (which is a function of m). At a point in a uniaxial nematic liquid crystal, the
tensor is transversely isotropic with respect to the local director m, that is, it has a
distinguished eigenvector parallel to n and a degenerate eigenspace perpendicular to
n:

e(n) =¢g (ELI +eamn® n) & gy =ceo(e 0ij +eaning), €a:=¢;—e,.. (S1.2a)

In an eigenframe with third eigenvector n at a point, for example, the € tensor would
have Cartesian components

e=¢p e, , l,m,n = orthonormal triple. (S1.2b)
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Here ¢ is a positive constant, and ¢, and €, are positive, material-dependent, relative
dielectric permittivities (for E oriented “parallel” to n, as opposed to “perpendicular”
to m). For situations involving AC electric fields (with the liquid crystal director
responding to the time-averaged electric field, at sufficiently high frequencies), ¢, and
e, would also depend on the frequency of the AC field. The dielectric anisotropy e,
can be positive or negative.



The total free energy of our simplified model then takes the form
1
Fln, U] = 5/ [K|Vnf> - e(n)VU - VU. (S1.3)
Q

This is the simplest prototype model that contains the essential features of importance
to us. One can see the intrinsic saddle-point nature of the electric-field coupling:
equilibria are minimizing with respect to n but maximizing with respect to U. In a
generic sense, the variational problem has the form

min max F[n, U],
nj=1 U

where the extremal elements are sought over sufficiently regular fields that conform
to any essential boundary conditions. The strong form of the constrained equilibrium
equations for (S1.3) (with € of the form (S1.2)) is

—KAn = Xn+¢e0e, (VU -n)VU, div(e(n)VU) =0, |n|=1, (S1.4)

which is to be solved in €2 subject to appropriate boundary conditions on n and U.
The Lagrange multiplier field ) is associated with the pointwise unit-vector constraint.
In terms of Cartesian components (with respect to a fixed frame), the electrostatics
equation takes the form

. 0 oUu
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By virtue of (S1.2), we see that the eigenvalues of e(n) are independent of n, are
strictly positive, and are given by

eigenvalues of e(n) =g * {g,¢,e.},

from which follows
somin{su,g}/ VU2 g/e(n)VU-VUgsomax{sn,sL}/ VU,
Q Q Q

Thus any combination of boundary conditions for U (as well as interface conditions
and far-field asymptotic conditions, if E extends beyond ) that yield a well-posed
problem for AU = 0 will also give a well-posed problem for div (e(n)VU ) = 0. Assum-
ing the auxiliary conditions on U to be such, then, for any given (sufficiently regular)
director field n, the associated electric potential field U is uniquely determined.

In (S1.4) one again sees the coupled nature of the problem, the electric field
influencing the director equilibrium solution via the VU terms in the first equation and
the director field influencing the electric potential through e(n) in the second equation.
Modeling a realistic system of interest can bring in multiple other complications (in
addition to the extra distortional elastic terms in (S1.1)), including chirality (favored
spontaneous twisting distortions of the director field), polarization (existence of a net,
macroscopic, electric dipole moment per unit volume), weak boundary conditions and
surface anchoring potentials, periodic solutions with a-priori unknown periodicity,
extended electric fields (if the region €2 is not completely enclosed by electrodes), etc.
See [5] for a recent example.



S1.2. Comparison with ferromagnetics. The Landau-Lifshitz free energy
provides a phenomenological model for equilibrium states of magnetization in ferro-
magnetic materials and bears some similarity to the Oseen-Frank model for liquid
crystals [4, 6, 7]. The free-energy density is expressed in terms of a unit-length vec-
tor field m, which corresponds to a normalized (saturated) magnetization vector M,
analogous to the liquid crystal director n but differing from it in the sense that m
is a proper vector (m and —m are not equivalent). The density contains terms pro-
portional to |[Vm|?, penalizing spatial variations in m (as do the terms in W(n, Vn)
to m). The magnetic stray field is given in terms of a magnetostatic potential via
H, = —VU (as with the local electric field and electrostatic potential in liquid crys-
tals, E = —VU). The magnetic medium can be regarded as isotropic and homoge-
neous, however, so that the magnetic potential solves AU = div M (in the material
domain); whereas the electric potential for liquid crystals satisfies div (s(n)VU) =0.
This last equation would become div (s(n)VU ) = div P in a ferroelectric liquid crystal
with polarization P.

The contribution of the (spontaneous) stray field to the magnetic free-energy
density is positive (3B Hs, B = po(Hg+ M)); whereas in a liquid crystal system at
constant voltage, the coupling to an applied electric field is negative (—%D -E, D=
e(n)E). Any externally applied magnetic field H, is treated as uniform throughout
the sample and acts as a fixed force (or torque) on the magnetization in much the
same way that external magnetic fields influence liquid crystals. Juxtaposing the two
free energies (for our model problem with an external magnetic field contribution
included), we would have

1

Fln] =3 /Q [K|Vnf* —e(n)VU - VU = poAx(He - n)?]

div(e(n)VU) =0 in Q, plus BCs

versus

Flm] = / [Cex\vmﬁ + %WUF — poH., - M+<I>(m)] + %/ VU2
Q RI\Q

divM, in Q _ N
AU = { 0, in R\Q’ plus BCs and interface conditions.

Here 1 is the vacuum magnetic permeability (the magnetic analogue of €y), Ay is
the diamagnetic anisotropy of the liquid crystal material (the magnetic analogue of
€a), Cox is the exchange constant, and ®(m) is the anisotropy energy density of the
ferromagnetic material (a potential favoring certain preferred directions of magneti-
zation). See, for example, [9, §2.2 and §2.3] or [10, §3.2 and §4.1] concerning the
Oseen-Frank expression, and [4, §1], [6, §1], or [7, Part I, Summary and Results] for
the Landau-Lifshitz expression.

Thus, while ferromagnetic systems have to deal with the extended nature of the
magnetic stray field and potential U, they do not have to cope with the indefiniteness
(lack of coercivity) that the U variables cause in liquid crystal systems. Furthermore,
in the liquid-crystal setting, it is not possible to introduce a Newtonian potential rep-
resentation for U, as is done in computational micromagnetics, since the liquid crystal
electrostatic problem div(e(n)VU) = 0 (or div(e(n)VU) = div P) does not reduce
to a Laplace (or Poisson) equation. The combination of inhomogeneity, anisotropy,
and negative-definiteness of the coupling between n and U add to the challenge of
numerical modeling of liquid crystal systems.
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S1.3. Non-dimensionalization. It is convenient for analysis and appropriate
for numerical explorations in general to express all aspects of the problem (free-energy
functional, Euler-Lagrange equations, etc.) in dimensionless form. This renders all
variables independent of changes of the system of units employed, reduces the total
number of parameters, and identifies the combinations of parameters upon which
the equilibrium solutions actually depend. If the problem were to be left in fully
dimensional form, then the vectors of unknowns in the discretized model in the paper
would contain mixtures of quantities of different physical dimensions, and the norms
of those vectors that are employed in our analysis would need to contain additional
weight factors to balance these physical dimensions appropriately.

As an example of a reasonable non-dimensionalization, consider the model free-
energy functional F in (S1.3) in d space dimensions (2 C R?). The director n is
dimensionless by definition, as are ¢, and ¢,, their difference ¢,, and the relative
dielectric tensor

1
g,i=—e=¢, I+e,nR®n.
€0

One can scale lengths by the diameter of €2 and scale the electrostatic potential by
the applied voltage V,

i . — U
T; = %, L :=diam(Q), U:= 7
to obtain the following dimensionless form:
Fin T — T2 _ 2 7 o771 F F 5  V?

Here € is the domain  in the rescaled coordinate system, and V is the spatial gradient
operator with respect to the rescaled coordinates (V = L~1V). The functional has
the same form as before in (S1.3) but now with K = 1 and g9 = o? (and all quantities
dimensionless). The Euler-Lagrange equations (S1.4) would transform in a similar
way. In the paper, we assume that the problem has been non-dimensionalized in a
reasonable way such as this, but we drop the overbars for convenience of notation.

S2. Lack of an energy decay property in general. Those familiar with the
analysis of the “harmonic mapping case” in [1] will wonder if any of those results are
relevant to the analysis in the main paper here. We address this now. The “Harmonic
Mapping Problem” is a special case of the types of models we consider here. It consists
of a normalized equal-elastic-constant model with no magnetic or electric fields (the
“Dirichlet Energy”):

1
Fn] = 5/ |Vn|?, minF[n], subject to |n| =11in Q, n =ng on 9Q.
Q

In [1], a convergence analysis was presented for an iterative scheme that involved a
renormalization step (n < n/|n|) similar to that employed in Algorithm 4.1 in the
main paper. The analysis relied upon the fact that renormalizing a director field that
is greater than unit length necessarily reduces the Dirichlet energy:

[n|>1onQ = |V(n/|n|)| <|Vn| = Fn/|n|] < Fin].
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Unfortunately, this decay property seems to be tied to the simple form of the
Dirichlet energy and does not hold for liquid crystal free-energy functionals in general.
To see this, consider, for example, an equal-elastic-constant model with an external
magnetic field:

Fln] = %/ [K\Vn|2 — poAx(H - n)2] , H =const, K,ug,Ax>0. (S2.1)
Q
If n is un-normalized with |n| > 1 on 2, then rescaling n < n/|n| will lower the
contribution of the distortional elasticity (|Vn|? term) but will increase (make less
negative) the contribution of the magnetic energy density ((H -n)? term). Thus one
may have in principle either F[n/|n|] < F[n] or F[n/|n|] > F[n|. For the special
case of rescaling n in (S2.1) by a constant multiplicative factor, we would have

Flen] = *F[n], ¢ = const,
for which
el <1and Fln] <0 = Flen|> Fnl.

It is common to have negative free energies for stable liquid crystal equilibrium director
fields with external magnetic fields or coupled electric fields, and this is the case, for
example, with all Fréedericksz-transition problems (classical magnetic-field or electric-
field induced distortions) beyond the “switching threshold”—see for example [9, §3.4
and §3.5] or [10, §4.2].

We do not know under what circumstances one can have an energy decay property
for the general Oseen-Frank distortional elastic energy density (S1.1) (with unequal
elastic constants), even in the absence of magnetic or electric fields. The problems
mainly of interest to us (with coupled electric fields) are not even free-energy min-
imization problems. They are minimax problems, and our analysis in §4.1 of the
main paper applies to any regular saddle-point equilibrium solution of such problems
(locally stable or unstable).

S3. Numerical experiments on the Truncated Newton Method. Numer-
ical experiments were conducted to explore some aspects of the Truncated Newton
Method (as discussed in §4.3 and §4.4): spectral properties of the projected Hessian
H(n) of (4.18) and solutions of the Truncated Newton step H(n)p = —G(n). For
this we used the same model problem (5.1), discretized as in (5.3). With N = (n—1)?
total free nodes, the projected Hessian H(n) is 3N x 3N, and the projected gradient
G(n) is a 3N-vector. Proposition 4.6 of §4.4 indicates that for a regular constrained
discrete equilibrium solution n* of this model problem, the nullity of H(n*) should
be equal to N. This was borne out for small-scale examples for which the full set of
eigenvalues of H(n*) could be computed using Matlab’s eigensolver for full (dense) ar-
rays, utilizing solution vectors n* that were computed to machine attainable accuracy
by the Renormalized Newton Method solver. Results are reported in Table S3.1 for
n = 4 using a fully converged upward “escape” solution for n*. In this case, N =9,
H(n*) is 27 x 27, and the first nine eigenvalues are of the order of the machine epsilon,
while the last 18 eigenvalues are order one.

Proposition 4.7 of §4.4 indicates that p = n is always a solution for the Trun-
cated Newton step H(n)p = —G(n), the only solution if H(n) is nonsingular. To
test this, we took for n the crude initial guess n'™ of (5.6) for an upward escape
solution with a = 0.6 and solved H(n)p = —G(n) using Matlab’s backslash operator
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TABLE S3.1
Eigenvalues of the projected Hessian H(n*) (4.18) of the Truncated Newton step (4.19) evalu-
ated at a fully converged “escape” solution n* (see §5.1 and Fig. 5.1 right) for n =4 and N = 9.
H(n*) is 27 x 27, and the eigenvalues are scaled and given in increasing sequence, left to right, top
to bottom. The eigenvalues were calculated using Matlab’s eig() function.

scale scaled eigenvalues of H(n*)
1015 | —1.06 -0.88 —0.57 —049 —043 —0.16 034 0.87 1.20
1 0.55 0.59 0.98 1.59 1.97 2.27 252 253 292
1 3.18 3.52 3.54 4.00 4.06 4.66 4.71 556 5.69
TABLE 53.2

Numerical aspects of the Truncated Newton step H(n)p = —G(n) (4.19) for the model Har-
monic Mapping Problem (5.1), discretized as in (5.3). Here n is the crude initial guess for the
upward “escape” solution (5.6) with a = 0.6, and H(n) is the projected Hessian of the Trun-
cated Newton Method (4.18). 1-norm condition numbers were estimated using Matlab’s condest ()
function, and minimum and mazimum eigenvalues of H(n) were computed using Matlab’s eigs ()
function. p is the solution of H(n)p = —G(n) computed using Matlab’s backslash operator (with
H(n) stored as a symmetric sparse Matlab array).

eigenvalues

n cond(H (n)) min max | [n— p|le
4| 7.67(+02) | —.824 6.06 | 3.44(—15)
8 | 1.64(+05) | —.846 7.52 | 6.34(—13)

16 8.61(406) —.855 7.88 7.34(—11)

)
)
)

32 | 2.34(+08) | —.857 7.97 | 1.92(—09)
64 | 5.04(+09) | —.857 7.99 | 7.24(—08)
128 | 9.16(+10) | —.857 8.00 | 1.23(—06)

for n =4,8,...,128. Also computed were the 1-norm condition number of H(n) (es-
timated by Matlab’s condest () function), the minimum and maximum eigenvalues
of H(n) (computed by Matlab’s eigs() function), and the max norm of the dif-
ference between the computed solution vector p and the true solution n (for H(n)
nonsingular). The results are reported in Table S3.2. The projected Hessian H(n)
was found to be indefinite but nonsingular, although ill-conditioned with condition
numbers much larger than those of M and Z7AZ in Table 5.5. The condition num-
bers grow with n but don’t appear to follow a regular scaling law. The relationship
between cond(H (n)) and ||n— p|| for the different values of n is as one would expect
(in double precision).
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