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IPIANO: INERTIAL PROXIMAL ALGORITHM FOR NON-CONVEX
OPTIMIZATION

PETER OCHS', YUNJIN CHENf, THOMAS BROX', AND THOMAS POCK?*

Abstract. In this paper we study an algorithm for solving a minimization problem composed
of a differentiable (possibly non-convex) and a convex (possibly non-differentiable) function. The
algorithm iPiano combines forward-backward splitting with an inertial force. It can be seen as a
non-smooth split version of the Heavy-ball method from Polyak. A rigorous analysis of the algo-
rithm for the proposed class of problems yields global convergence of the function values and the
arguments. This makes the algorithm robust for usage on non-convex problems. The convergence
result is obtained based on the Kurdyka-Lojasiewicz inequality. This is a very weak restriction, which
was used to prove convergence for several other gradient methods. First, an abstract convergence
theorem for a generic algorithm is proved, and, then iPiano is shown to satisfy the requirements
of this theorem. Furthermore, a convergence rate is established for the general problem class. We
demonstrate iPiano on computer vision problems: image denoising with learned priors and diffusion
based image compression.

Key words. non-convex optimization, Heavy-ball method, inertial forward-backward splitting,
Kurdyka-Lojasiewicz inequality, proof of convergence

1. Introduction. The gradient method is certainly one of the most fundamental
but also one of the most simple algorithms to solve smooth convex optimization
problems. In the last decades, the gradient method has been modified in many ways.
One of those improvements is to consider so-called multi-step schemes [,]. It has
been shown that such schemes significantly boost the performance of the plain gradient
method. Triggered by practical problems in signal processing, image processing and
machine learning, there has been an increased interest in so-called composite objective
functions, where the objective function is given by the sum of a smooth function and
a non-smooth function with an easy to compute proximal map. This initiated the
development of the so-called proximal gradient or forward-backward method [],
that combines explicit (forward) gradient steps w.r.t. the smooth part with proximal
(backward) steps w.r.t. the non-smooth part.

In this paper, we combine the concepts of multi-step schemes and the proximal
gradient method to efficiently solve a certain class of non-convex, non-smooth opti-
mization problems. Although, the transfer of knowledge from convex optimization
to non-convex problems is very challenging, it aspires to find efficient algorithms for
certain non-convex problems. Therefore, we consider the subclass of non-convex prob-
lems

i f(2) +g(z),
where g is a convex (possibly non-smooth) and f is a smooth (possibly non-convex)
function. The sum f + g comprises non-smooth, non-convex functions. Despite the
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non-convexity, the structure of f being smooth and g being convex makes the forward-
backward splitting algorithm well-defined. Additionally, an inertial force is incorpo-
rated into the design of our algorithm, which we termed iPiano. Informally, the
update scheme of the algorithm that will be analyzed is

7 = (I + 0dg) ™ (=" — aV (") + B — ")),

where o and (8 are the step size parameters. The term z™ — aV f(2™) is referred as
forward step, B(z™ — 2"~ 1) as inertial term, and (I +adg)~! as backward or prozimal
step.

For ¢ = 0 the proximal step is the identity and the update scheme is usually
referred as Heavy-ball method. This reduced iterative scheme is an explicit finite
differences discretization of the so-called Heavy-ball with friction dynamical system

E(t) +y&(t) + VF(z(t)) =0.

It arises when Newton’s law is applied to a point subject to a constant friction v > 0
(of the velocity #(t)) and a gravity potential f. This explains the naming “Heavy-ball
method” and the interpretation of 3(z™ — 2™~ 1) as inertial force.

Setting 8 = 0 results in the forward-backward splitting algorithm, which has the
nice property that in each iteration the function value decreases. Our convergence
analysis reveals that the additional inertial term prevents our algorithm from mono-
tonically decreasing the function values. Although this may look like a limitation
on first glance, demanding monotonically decreasing function values anyway is too
strict as it does not allow for provably optimal schemes. We refer to a statement of
Nesterov []: “In convex optimization the optimal methods never rely on relaxation.
Firstly, for some problem classes this property is too expensive. Secondly, the schemes
and efficiency estimates of optimal methods are derived from some global topological
properties of convex functions” L The negative side of better efficiency estimates of an
algorithm is usually the convergence analysis. This is even true for convex functions.
In case of non-convex and non-smooth functions, this problem becomes even more
severe.

Contributions. Despite this problem, we can establish convergence of the sequence
of function values for the general case, where the objective function is only required
to be a composition of a convex and a differentiable function. Regarding the sequence
of arguments generated by the algorithm, existence of a converging subsequence is
shown. Furthermore, we show that each limit point is a critical point of the objective
function.

To establish convergence of the whole sequence in the non-convex case is very hard.
However, with slightly more assumptions to the objective, namely that it satisfies the
Kurdyka-Lojasiewicz inequality [,,], several algorithms have been shown to
converge |[,,,]. In [] an abstract convergence theorem for descent methods
with certain properties is proved. It applies to many algorithms. However, it can not
be used for our algorithm. Based on their analysis, we prove an abstract convergence
theorem for a different class of descent methods, which applies to iPiano. By verifying
the requirements of this abstract convergence theorem, we manage to also show such
a strong convergence result. From a practical point of view of image processing,
computer vision, or machine learning, the Kurdyka-Lojasiewicz inequality is almost

IRelaxation is to be interpreted as the property of monotonically decreasing function values in
this context. Topological properties should be associated with geometrical properties.
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always satisfied. For more details about properties of Kurdyka-Lojasiewicz functions
and a taxonomy of functions that have this property, we refer to [,,].

The last part of the paper is devoted to experiments. We exemplarily present
results on computer vision tasks, such as denoising and image compression, and show
that entering the staggering world of non-convex functions pays off in practice.

2. Related Work.

Forward-backward splitting. In convex optimization, splitting algorithms usually
originate from the proximal point algorithm [|. It is a very general algorithm,
and results on its convergence affect many other algorithms. Practically, however,
computing one iteration of the algorithm can be as hard as the original problem.
Among the strategies to tackle this problem are splitting approaches like Douglas-
Rachford [,], several primal-dual algorithms [,,], and forward-backward
splitting [,,,]; see [] for a survey.

Especially the forward-backward splitting schemes seem to be appealing to gen-
eralize to non-convex problems. This is due to their simplicity and the existence of
simpler formulations in some special cases like, for example, the gradient projection
method, where the backward-step is the projection onto a set [,]. In [] the
classical forward-backward algorithm, where the backward step is the solution of a
proximal term involving a convex function, is studied for a non-convex problem. In
fact, the same class of objective functions as in the present paper is analyzed. The
algorithm presented here comprises the algorithm from [] as a special case. Also
Nesterov [] briefly accounts this algorithm in a general setting. Even the reverse set-
ting is generalized in the non-convex setting [,], namely where the backward-step
is performed on a non-smooth non-convex function.

As the amount of data to be processed is growing and algorithms are supposed
to exploit all the data in each iteration, inexact methods become interesting, though
we do not consider erroneous estimates in this paper. Forward-backward splitting
schemes also seem to work for non-convex problems with erroneous estimates [,].

A mathematical analysis of inexact methods can be found, e.g., in [,], but with the
restriction that the method is explicitly required to decrease the function values in each
iteration. The restriction comes with significantly improved results with regard of the
convergence of the algorithm. The algorithm proposed in this paper provides strong
convergence results, although it does not require the function values to decrease.

Optimization with inertial forces. In his seminal work [], Polyak investigates
multi-step schemes to accelerate the gradient method. It turns out that a particularly
interesting case is given by a two-step algorithm, which has been coined the Heavy-ball
method. The name of the method is because it can be interpreted as an explicit finite
differences discretization of the so-called Heavy-ball with friction dynamical system.
It differs from the usual gradient method by adding an inertial term that is computed
by the difference of the two preceding iterations. Polyak showed that this method can
speed up convergence in comparison to the standard gradient method, while the cost
of each iteration stays basically unchanged.

The popular accelerated gradient method of Nesterov [| obviously shares some
similarities with the Heavy-ball method, but it differs from it in one regard: while the
Heavy-ball method uses gradients based on the current iterate, Nesterov’s accelerated
gradient method evaluates the gradient at points that are extrapolated by the inertial
force. On strongly convex functions, both methods are equally fast (up to constants),
but Nesterov’s accelerated gradient method converges much faster on weakly convex
functions [].
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The Heavy-ball method requires knowledge about the function parameters (Lip-
schitz constant of the gradient and the modulus of strong convexity) to achieve the
optimal convergence rate, which can be seen as a disadvantage. Interestingly, the
conjugate gradient method for minimizing strictly convex quadratic problems can be
expressed as Heavy-ball method. Hence, it can be seen as a special case of the Heavy-
ball method for quadratic problems. In this special case, no additional knowledge is
required about the function parameters, as the algorithm parameters are computed
online.

The Heavy-ball method was originally proposed for minimizing differentiable con-
vex functions, but it has been generalized in different ways. In [], it has been gen-
eralized to the case of smooth non-convex functions. It is shown that, by considering
an appropriate Lyapunov objective function, the iterations are attracted by the con-
nected components of stationary points. In Section it will become evident that
the non-convex Heavy-ball method is a special case of our algorithm, and also the
convergence analysis of [] shows some similarities to ours.

In [,], the Heavy-ball method has been extended to maximal monotone op-
erators, e.g., the subdifferential of a convex function. In a subsequent work [],
it has been applied to a forward-backward splitting algorithm, again in the general
framework of maximal monotone operators.

3. An abstract convergence result.

3.1. Preliminaries. We consider the Euclidean vector space RN of dimension
N > 1 and denote the standard inner product by (-,-) and the induced norm by
|-13 := \/(,-). Let F: RN — RU{+00} be a proper lower semi-continuous function.

DEFINITION 3.1 (effective domain, proper). The (effective) domain of F' is de-
fined by dom F := {x € RY : F(z) < +o0o}. The function is called proper, if dom F
18 nonempty.

In order to give a sound description of the first order optimality condition for a
non-convex non-smooth optimization problem, we have to introduce the generalization
of the subdifferential for convex functions.

DEFINITION 3.2 (Limiting-subdifferential). The limiting-subdifferential (or sim-
ply subdifferential) is defined by (see [, Def. 8.3])

OF (r) = {€ e RN |3y, — =, Fy) = F(x), & — €, & € OF(y)}, (3.1)
which makes use of the Fréchet subdifferential defined by

OF () = {¢ € RY| liminf L (F(y) — F(x) — (y — 2,€)) > 0},
y#z

when © € dom F' and by 5F(x) = O else.
The domain of the subdifferential is dom OF := {z € RN |9F (x) # @}.

In what follows, we will consider the problem of finding a critical point z* €

dom F' of F', which is characterized by the necessary first-order optimality condition
0 € OF (z*).

We state the definition of the Kurdyka-Lojasiewicz property from [].
DEFINITION 3.3 (Kurdyka-Lojasiewicz property).
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1. The function F: RN — RU{oco} has the Kurdyka-Lojasiewicz property at x* €
dom OF, if there exist n € (0,00], a neighborhood U of x* and a continuous
concave function p: [0,n) — Ry such that (0) = 0, ¢ € C*((0,7n)), for all
s € (0,m) it is ¢'(s) > 0, and for all x € UN[F(z*) < F < F(z*) + ] the
Kurdyka-Lojasiewicz inequality holds, i.e.,

@ (F(x) — F(x*))dist (0, 0F (z)) > 1.

2. If the function F satisfies the Kurdyka-Lojasiewicz inequality at each point of
dom OF, it is called KL function.

Roughly speaking, this condition says that we can bound the subgradient of a
function from below by a reparametrization of its function values. In the smooth
case, we can also say that up to a reparametrization the function h is sharp, meaning
that any non-zero gradient can be bounded away from 0. This is sometimes called
a desingularization. It has been shown in [] that a proper lower semi-continuous
extended valued function h always satisfies this inequality at each non-stationary
point. For more details and other interpretations of this property, also for different
formulations, we refer to [].

A big class of functions that have the KL-property is given by real semi-algebraic
functions []. Real semi-algebraic functions are defined as functions whose graph is a
real semi-algebraic set.

DEFINITION 3.4 (real semi-algebraic set). A subset S of RV is semi-algebraic, if
there exists a finite number of real polynomials P; j,Q; j: RN — R such that

q
§=U Nz eRY: Piy(a) =0 and Qs <0}

j=1i=1

3.2. Inexact descent convergence result for KL functions. In the follow-
ing, we prove an abstract convergence result for a sequence (2")nen = (2", 2" 1) pen
in RV, 2" € RN, 27! € RY, satisfying certain basic conditions, N := {0,1,2,...}.
For convenience we use the abbreviation A, := [z — 2" ||y for n € N. We fix
two positive constants a > 0 and b > 0 and consider a proper lower semi-continuous
function F': RN — R U {oo}. Then, the conditions we require for (2"),cy are

(H1) For each n € N, it holds

F(z"™) +aA2 < F(2").

(H2) For each n € N, there exists w1 € 9F(2"*!) such that
n+1 b
[w" ™ |2 < §(An+An+1)-

(H3) There exists a subsequence (2™), ey such that
2™ =z and F(2")— F(2), asj — 0o.

Based on these conditions, we derive the same convergence result as in []. The
statements and proofs of the subsequent results follow the same ideas as [|. We
modified the involved calculations according to our conditions H1, H2, and H3.

REMARK 1. These conditions are very similar to the ones in [J, however, they
are not identical. The difference comes from the fact that [| does not consider a
two-step algorithm.
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e In [] the corresponding condition to HI1 (sufficient decrease condition) is
F(z" ™) +aA2 < F(a™).

e The corresponding condition to H2 (relative error condition) is |[w™ ||y <
bA, 1. In some sense, our condition H2 accepts a larger relative error.

e H3 (continuity condition) in [] is the same here, but for (x™);en.

REMARK 2. Our proof and the proof in [] mainly differ in the calculations that
are involved, the outline is the same. There is hope to find an even more general
convergence result, which comprises ours and [].

LEMMA 3.5. Let F': R?N — RU{co} be a proper lower semi-continuous function
which satisfies the Kurdyka-Lojasiewicz property at some point z* = (z*,z*) € R*V.
Denote by U, n and ¢: [0,n) — Ry the objects appearing in Definition of the
KL property at z*. Let o,p > 0 be such that B(z*,0) C U with p € (0,0), where
B(z*,0) :={z € R*N : ||z — 2*|2 < 7}.

Furthermore, let (2™ )nen = (2™, 2" 1) nen be a sequence satisfying Conditions H1,
H2, and

VneN: "€ B(z%p) = 2" € B(z*,0) with F(z"T), F(z"?) > F(z*). (3.2)

Moreover, the initial point 2° = (2%, 271) is such that F(z*) < F(2°) < F(2*) + 1
and

F(20) — F(z* b
o — a0+ TELEED  Popeoy ke <20 )
Then, the sequence (2™)nen satisfies
Vn e N: 2" € B(z", p), Z A, <oo, F(z")—= F(z*), asn— o0, (3.4)
n=0

(2™)nen converges to a point Z = (ZT,Z) € B(z*,0) such that F(z2) < F(z*). If,
additionally, Condition H3 is satisfied, then 0 € OF (Z) and F(z) = F(z*).
Proof. The key points of the proof are the facts that for all 7 > 1:

2 € B(z%,p) and (3.5)

DA< %(Ao —45) + g[@(F(zl) = F(2") = o(F(7) = F(2)))] (3.6)

=1

Let us first see that p(F(2771) — F(2*)) is well-defined. By Condition H1, (F(2"))en
is non-increasing, which shows F(z"1) < F(2Y) < F(z*) +n. Combining this with
() implies ~ F(2"T1) — F(z*) > 0.

As for n > 1 the set 9F(z™) is nonempty (see Condition H2) every z™ belongs to
dom F'. For notational convenience, we define

Df = (F(2") = F(2")) = p(F(2"") = F(2")).

Now, we want to show that for n > 1 holds: if F/(z") < F(z*) +n and 2" € B(z*, p),
then

2An < gD;'—f + %(An + Anfl) . (37)
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Obviously, we can assume that A,, # 0 (otherwise it is trivial), and therefore H1 and
() imply  F(2") > F(2"*!) > F(2*). The KL inequality shows w™ # 0 and H2
shows A,, + A,,_1 > 0. Since w™ € 9F(z"), using KL inequality and H2, we obtain

/ n * 1 2
PUEE = FED) 2 a2 Wa, v A

As ¢ is concave and increasing (¢’ > 0), Condition H1 and () yield
D§ > ¢/ (F(2") = F(2"))(F(z") = F("™1)) 2 ¢(F(z") — F(2"))aA}, .
Combining both inequalities results in
(EDR)5(An-1+4A,) > AZ,

which by applying 2+/uv < u + v establishes ().

As () does only imply 2"t € B(z*,0), 0 > p, we can not use () directly for
the whole sequence. However, () and () can be shown by induction on j. For
j=0,() yields 2! € B(z*,0) and F(z!), F(2?) > F(z*). From Condition H1 with
n=1, F(z?) > F(z*) and F(z') < F(z°), we infer

A< \/F(zl) —F() _ \/F(zo) — F(z%) ’ (3.8)

a - a

which combined with () leads to

F(z%) - F(z%)

2% — 2|2 < 2% — 2|2 + A1 < [|2° — 2¥|2 + <

)

~— IR

and therefore z!' € B(z*,p). Direct use of () with ~n = 1 shows that () holds
with 7 = 1.
Suppose () and () are satisfied for j > 1. Then, using the triangle inequality

and (), we have

25 =2 o <l = 2T p + [la* — 27 lo
S 2”1‘* 7I0||2+ZZ§:1 A1+Aj+1
< 2z —afa + (Ao — Ay) + Ajpa
22[p(F(2') = F(2*)) — p(F(2711) = F(2)))]
< 2l =22+ Ag + Ajyr + 22[p(F(2°) = F(2¥))],

which shows, using A1 < \/%(F(zj“) — F(z71+2)) < \/%(F(zo) — F(z*))and (),
that 271 € B(z*,p). As a consequence (), with n = j + 1, can be added to ()
and we can conclude () with ~ j + 1. This shows the desired induction on j.

Now, the finiteness of the length of the sequence (z™)nen, L., Y oy A < 00, is

a consequence of the following estimation, which is implied by (),
J
ST A< B0+ Lp(F(2) - F(=") < o0
i=1

Therefore, ™ converges to some T as n — oo, and z" converges to zZ = (Z,T).
As ¢ is concave, ¢’ is decreasing. Using this and Condition H2 yields w™ — 0
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and F(z") — ¢ > F(z*). Suppose we have { > F(z*), then KL-inequality reads
O (¢ — F(z*))]Jw™||2 > 1 for all n > 1, which contradicts w™ — 0.

Note that, in general, Z is not a critical point of F', because the limiting sub-
differential requires F(z™) — F(Z) as n — oo. When the sequence (z"),cn addi-
tionally satisfies Condition H3, then Z = Z, and Z is a critical point of F', because
F(z) = limy, 00 F(2™) = F(2%). |

REMARK 3. The only difference to [| with respect to the assumptions is ()
In [J, 2" € B(z*,p) implies F(2"T1) > F(2*), whereas we require F(2"T1) > F(z*)
and F(z"*2) > F(z*). However, as Theorem shows, this does not weaken the
convergence result compared to [[. In fact, Corollary, which assumes F(z") >
F(z*) for alln € N and which is also used in [], is key in Theorem.

The next corollary and the subsequent theorem follow as in [] by replacing the
calculation with our conditions.

COROLLARY 3.6. Lemma holds true, if we replace (O by

n < a(o —p)? and  F(z") > F(z*), ¥n € N.

Proof. By Condition H1, for 2" € B(z*, p), we have

F(z"hH — F(z"t2) g
Ai+1§ )a ( §a<(0'_p)2

Using the triangle inequality on ||2"*1 — 2*||2 shows that 2"*! € B(z*,0), which
implies () and concludes the proof.

The work that is done in Lemma and Corollary allows us to formulate
an abstract convergence theorem for sequences satisfying the Conditions H1, H2, and
H3. Tt follows, with a few modifications, as in [].

THEOREM 3.7 (Convergence to a critical point). Let F: R?N — R U {oc} be a
proper lower semi-continuous function and (2™)nen = (2™, 2" 1) en a sequence that
satisfies H1, H2, and H3. Moreover, let F' have the Kurdyka-Lojasiewicz property at
the cluster point T specified in H3.

Then, the sequence ()3, has finite length, i.e., > -~ | A, < o0, and converges
to T =1 as n — oo, where (T,T) is a critical point of F.

Proof. By Condition H3, we have 2™ — z = Z and F(z™) — F(Z) for a sub-
sequence (2" ),en. This, together with the non-decreasingness of (F/(2"))nen (by
Condition H1), imply that F(z") — F(2) and F(z") > F(2) for all n € N. The KL-
property around Z states the existence of quantities ¢, U, and n as in Definition.
Let o0 > 0 be such that B(z,0) C U and p € (0,0). Shrink 7 such that n < a(o—p)? (if
necessary). As ¢ is continuous, there exists ng € N such that F(z") € [F(Z), F(2)+n)
for all n > ng and

F(zn0) — F(2¥)

% — 2™z +

Then, the sequence (y™),en defined by y™ = 20+ satsifies the conditions in Corol-
lary, which concludes the proof. a0

4. The proposed algorithm - iPiano.
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4.1. The optimization problem. We consider a structured non-smooth non-
convex optimization problem with a proper lower semi-continuous extended valued
function h: RN — RU {+o0c}, N > 1:

min h(z) = min f(z)+ g(x), 4.1
min h(r) = min f(z) +g(a) (41)
which is composed of a C'-smooth (possibly non-convex) function f: RY — R with
L-Lipschitz continuous gradient on dom g, L > 0, and a convex (possibly non-smooth)
function g: RV — R U {+oc}. Furthermore, we require h to be coercive, i.e.,
[|z]l2 = +o0 implies h(x) — 400, and bounded from below by some value h > —oc.

The proposed algorithm, which is stated in Subsection, seeks for a critical
point z* € dom h of h, which is characterized by the necessary first-order optimality
condition 0 € 9h(x*). In our case, this is equivalent to

—Vf(x*) € dg(z¥).

This equivalence is explicitly verified in the next subsection, where we collect some
details and state some basic properties, which are used in the convergence analysis in
Subsection.

4.2. Preliminaries. Consider the function f first. It is required to be C!-
smooth with L-Lipschitz continuous gradient on dom g, i.e., there exists a constant
L > 0 such that

IVf(z) =ViWlz < Ll —ylla, Va,y € domyg. (4.2)

This directly implies that domh = dom g is a non-empty convex set, as domg C
dom f. This property of f plays a crucial role in our convergence analysis due to the
following lemma (stated as in []).

LEMMA 4.1 (descent lemma). Let f: RN — R be a C-function with L-Lipschitz
continuous gradient Vf on domg. Then for any x,y € dom g it holds that

F(@) < F) + (VT ) o — ) + 5 oyl (13)

Proof. See for example []. |

We assume that the function g is a proper lower semi-continuous convex function
with an efficient to compute proximal map.

DEFINITION 4.2 (proximal map). Let g be a proper lower semi-continuous convex
function. Then, we define the proximal map
= — 2[5

(I +adg)~'(#) := arg min

min, +ag(z),

where o > 0 is a given parameter, I is the identity map, and & € RV

An important (basic) property that the convex function g contributes to the
convergence analysis is the following:

LEMMA 4.3. Let g be a proper lower semi-continuous convex function, then it
holds for any x,y € domg, s € dg(x) that

9(y) > g(x) + (s,y — ) . (4.4)
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Proof. This result follows directly from the convexity of g. |

Finally, consider the optimality condition 0 € h(z*) more in detail. The follow-
ing proposition proves the equivalence to —V f(z*) € dg(z*). The proof is mainly
based on Definition of the limiting-subdifferential.

PROPOSITION 4.4. Let h, f, and g be like before, i.e., let h = f + g with f con-
tinuously differentiable and g convex. Sometimes, h is then called a C'-perturbation
of a convez function. Then, for x € domh holds

Oh(z) = Vf(z) + 0g(x).

Proof. We first prove “C”. Let £" € Oh(z), i.e., there is a sequence (yx)32, such

that vy, — , h(yx) — h(z), and & — £, where & € 8h(yk) We want to show that
€9 :=¢h —Vf(x) € 9g(x). As f € C and " € Oh(x), we have

Yp — T
o) = hlo) — Suw) "= hia) ~ f@) = o(v)
=€l = Vi) TF Vi) =0
It remains to show that & € 5g(yk) First, remember that liminf is superad-
ditive, i.e., for two sequences (an)o2,, (bn)o2, in R it is liminf, ,oo(an + by) >

liminf,,_, o @, + liminf,, o b,. However, convergence of a,, implies lim inf,,_, . (a, +
b,) = lim,, o0 @y, +liminf, . b,. This fact and again thanks to f € C!, we conclude

0 < liminf (h(y},) — h(yr) — (Wi — Yx-E0)) /e — will2
< liminf (f(y) = f(ye) + 9(wi) — 9(ue) — Wi — vk, Vi (r) +E0) /Ny — vell
= lim (f(yy) — f(yr) — (yk*yk,Vf(yk»)/Hyfﬁkaz
+ hmmf( W) — 9(ur) = Wi — vk E0) /Nlws — wrllz
= liminf (g(y;,) — 9(vr) — (Yi yk,§k>)/||y;—yk||2,

where liminf and lim are over y;, — yi,y}, # yr. Therefore, & € gg(yk)
The other inclusion “D” is trivial. ]

As a consequence, a critical point can also be characterized by the following
definition.

DEFINITION 4.5 (proximal residual). Let f and g be as afore. Then, we define
the proximal residual

r(z) =z — (I 4+099) (x — Vf(x)).

It can be easily seen that r(x) = 0 is equivalent to x = (I+3dg)~*(z —V f(z)) and
(I+0g)(xz) = (I-Vf)(z), which is the first-order optimality condition. The proximal
residual is defined with respect to a fixed step size of 1. The rationale behind this
becomes obvious when g is the indicator function of a convex set. In this case, a small
residual could be caused by small step sizes as the reprojection onto the convex set is
independent of the step size.
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4.3. The generic algorithm. In this paper, we propose an algorithm, iPiano,
with the generic formulation in Algorithm. It is a forward-backward splitting algo-
rithm incorporating an inertial force. In the forward step, a,, determines the step size
in the direction of the gradient of the differentiable function f. The step in gradient
direction is aggregated with the inertial force from the previous iteration weighted by
Br. Then, the backward step is the solution of the proximity operator for the function
g with the weight «,.

Algorithm 1. inertial proximal algorithm for non-conver optimization (iPi-
ano)
e Initialization: Choose a starting point x° € domh and set x=! = 20.
Moreover, define sequences of step size parameter (a,)22, and (Bn)5% -
o Iterations (n > 0): Update

2" = (I + ap09) (2" — anVF(a") + Bl — 2" 1)).  (4.5)

In order to make the algorithm specific and convergent, the step size parameters
must be chosen appropriately. What “appropriately” means, will be specified in
Subsection and proved in Subsection.

4.4. Rules for choosing the step size. In this subsection, we propose several
strategies for choosing the step sizes. This will make it easier to implement the
algorithm. One may choose among the following variants of step size rules depending
on the knowledge about the objective function.

Constant step size scheme. The most simple one, which requires most knowledge
about the objective function, is outlined in Algorithm. All step size parameters are
chosen a priori and are constant.

Algorithm 2. inertial proximal algorithm for non-conver optimization with
constant parameter (ciPiano)
o Initialization: Choose 5 € [0,1), set o < 2(1 — 5)/L, where L is the
Lipschitz constant of V f, choose , 2° € domh and set x=! = 2V,

o lterations (n > 0): Update x™ as follows:

P o - ([ 4 aag)fl(xn — Osz(.Z‘n) + ﬂ(l‘n — :Enil)) (4'6)

REMARK 4. Observe that our law on «, f is equivalent to the law found in []
for minimizing a smooth non-convexr function. Hence, our result can be seen as an
extension of their work to the presence of an additional non-smooth convex function.

Backtracking. The case where we have only limited knowledge about the objective
function occurs more frequently. It can be very challenging to estimate the Lipschitz
constant of V f beforehand. Using backtracking the Lipschitz constant can be esti-
mated automatically. A sufficient condition that the Lipschitz constant at iteration
n to n + 1 must satisfy is

Ly,

f(anrl) < f(l‘n) + <Vf(xn),$n+1 _xn> + 5

lz" = a™3. (4.7)
Although, there are different strategies to determine L,,, the most common one is by
defining an increment variable n > 1 and looking for L,, € {L,—1,nLy_1, nan,l, .
minimal satisfying (). Sometimes, it is also feasible to decrease the estimated



12 P. Ochs, Y. Chen, T. Brox, T. Pock

Lipschitz constant after a few iterations. A possible strategy is as follows: if L, =
L,,_1, then search for the minimal L,, € {n~'L,,_1,77 2L, _1,...} satisfying ().

In Algorithm we propose an algorithm with variable step sizes. Any strategy
for estimating the Lipschitz constant may be used. When changing the Lipschitz
constant from one iteration to another, all step size parameters must be adapted.
The rules for adapting the step sizes will be justified during the convergence analysis
in Subsection.

Algorithm 3. inertial proximal algorithm for non-conver optimization with
backtracking (biPiano)

e Initialization: Choose § > cy > 0 with ¢y close to 0 (e.g. co := 1076),

and z° € dom h and set =1 = 20.

e [terations (n > 0): Update x" as follows:
2" = (I 4 0,09) 7 (2" — @, VF(@") + Bp(z™ — 2™ 1)), (4.8)
where Ly, > 0 satisfies () and

fa= 0=/ 1), b=+ ) et 2,

an=2(1-8,)/2¢cs+ L,).

Lazy backtracking. Algorithm presents another alternative of Algorithm. It
is related to Algorithm and in the following way. Algorithm makes use of the
Lipschitz continuity of Vf in the sense that the Lipschitz constant is always finite.
As a consequence, using backtracking with only increasing Lipschitz constants, after
a finite number of iterations ny € N the estimated Lipschitz constant will not change
anymore, and starting from this iteration the constant step size rules as in Algorithm
are applied. Using this strategies, the results that will be proved in the convergence
analysis are satisfied only as soon as the Lipschitz constant is high enough and does
not change anymore.

Algorithm 4. non-monotone inertial proximal algorithm for non-convex
oplimization with backtracking (nmiPiano)

e Initialization: Choose 3 € [0,1), L_1 >0, n > 1, and 2° € domh and

set 71 = 0.

e [terations (n > 0): Update 2™ as follows:
2" = (I 4+ a,09) ' (2" — a, Vf(x") + B(z™ — 2™ 1)), (4.9)
where L, € {Ln,17nLn,1,n2Ln,1, ...} is minimal satisfying

Ly,

f(x"+1) < f(l‘n) + <Vf(.rn),$n+l —.Z‘n> + 5

lz" = a3 (4.10)

and oy, < 2(1 = B)/L,.

General rule of choosing the step sizes. Algorithm defines the general rules that
the step size parameters must satisfy. It contains the Algorithms,, and as special
instances. This is easily verified for Algorithms and. For Algorithm the step
size rules are derived from the proof of Lemma.
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Algorithm 5. inertial prozimal algorithm for mon-conver optimization (iPi-
ano)
o Initialization: Choose ci,ca > 0 close to 0, 2° € dom h and set x—! = 0.
e [terations (n > 0): Update

2 = (14 0,09) (" — an V(") + Ba(a” —a"7Y)), (411)

where L, > 0 is the local Lipschitz constant satisfying
n n n n n Ln n n
F@mh) < Fa) + (V)2 —a) + Sl —aE, (412)

and o, > ¢y, Bn > 0 are chosen such that 6, > 7y, > co defined by

6’”, == d n i —— = —— — — . 4.].3
(07% 2 20én an K Qnp, 2 Qp ( )

and (6,,)22, is monotonically decreasing.

As Algorithm is the most general one, now, let us analyze the behavior of this
algorithm.

4.5. Convergence analysis. In all what follows, let (z™)5%, be the sequence
generated by Algorithm and with parameters satisfying the algorithm’s require-
ments. Furthermore, for a more convenient notation we abbreviate Hj(z,y) :=
h(x) + o8|z —y||3, 6 € R, and A,, := |2™ — 2" !||s. Note, that for z = y it is
Hy(2,) = h(w).

Let us first verify that the algorithm makes sense. We have to show that the
requirements to the parameters are not contradictory, i.e., that it is possible to choose
a feasible set of parameters. In the following Lemma, we will only show existence of
such a parameter set, however, the proof helps us to formulate specific step size rules.

LEMMA 4.6. For alln > 0, there are 6, > Y, fn € [0,1), and o, < 2(1 — 5,,)/ L.
Furthermore, given L, > 0, there exists a choice of parameter ay, and B, such that
additionally (6,)52, is monotonically decreasing.

Proof. By the algorithm’s requirements it is

a, 2 20, T an 2 oy

The upper bound for 3, and a, come from rearranging v, > ¢ to 8, < 1—a, L, /2—
caay and oy, < 2(1 — 8,)/(Ly, + 2¢2), respectively.
The last statement follows by incorporating the descent property of d,,. Let d_1 > ¢
be chosen initially. Then, the decent property of (d,)22, requires one of the equivalent
statements

1 Ln ﬁn 1- %

On-120p & Op1>———— S ap >
n—1 = Un nlfoén 2 20(7; ni(sn_1+l/2f"

to be true. An upper bound on «, is obtained by
1- Bn
C2 + L;

’777,202 = an<
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The only thing that remains to show is that there exists «,, > ¢; and 8, € [0,1) such

that these two relations are fulfilled. Consider the condition for a non-negative gap

between the upper and lower bound for «,,
1-8, 1-5& - 5n_1+L2—">1—%n
o+ s+ o+l T 18,

Defining b := (8,,—1+%*)/(co+%42) > 1, it is easily verified that there exists 3, € [0,1)
satisfying the equivalent condition

b—1
b—

T 2 Bn- (4.14)
2

As a consequence, the existence of a feasible «, follows, and the decent property for
0p, holds. O

In the following proposition, we state a result which will be very useful. Although,
iPiano does not imply a descent property of the function values, we construct a ma-
jorizing function that enjoys a monotonically descent property. This function reveals
the connection to the Lyapunov direct method for convergence analysis as used in

-
PROPOSITION 4.7.

(a) The sequence (Hg, (x™, 2"~ 1)), is monotonically decreasing and thus converg-
ing. In particular, it holds

Hs,  (z" 2™) < Hy (2™, 2" 1) — 7, A% . (4.15)

n+1

(b) It holds 3"y A2 < 0o and, thus, lim,_,. A, = 0.
Proof.

(a) From () it follows that

n _ n+1
T G + Bn

Qn Gn

(xn o xnfl) c ag(xn+1)

Now using z = 2! and y = 2™ in () and () and summing both inequalities
it follows that

1 LTL n —
h(z" ™) < h(z™) — (= — =) AZH + P <x”+1 -z " — " 1>
Qn 2 o,
1 Ln Bn 2 671 2
<ha")—(——-———-—=—")A —A

where the second line follows from 2 (a,b) < ||al|3 + ||b||3 for vectors a,b € RYN.
Then, a simple rearrangement of the terms shows

B(a™) 4 6,02, < B(e") + 6,02 — 3,42,

which establishes () as 0, is monotonically decreasing. Obviously, the se-
quence (Hj, (z", 2" 1)), is monotonically decreasing if and only if v, > 0,
which is true by the algorithm’s requirements. By assumption, h is bounded
from below by some constant h > —oo, hence (Hs, (2", 2" 1)), converges.
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(b) Summing up () from  n=0,..., N yields (note that Hs, (2°,271) = h(z?))

N N
Z A2 < Z Hs (z" 2" 1) — H5n+1(z”+1, x™)
n=0 n=0
= h(2%) - H5N+1(xN+1,xN) <hz®) —h < oo.

Letting N tend to co and remembering that vy > c2 > 0 holds implies the

statement.
O

REMARK 5. The function Hs is a Lyapunov function for the dynamical system
of described by the Heavy-ball method. It corresponds to a discretized version of the
kinetic energy of the Heavy-ball with friction.

In the following theorem, we state our general convergence results about Algo-
rithm.

THEOREM 4.8.

(a) The sequence (h(z™))22, converges.

(b) There exists a converging subsequence (x™ )72

(c) Any limit point ©* := limy_, o, ™ is a critical point of () and h(x™) — h(z*)
as k — oo.
Proof.

(a) This follows from the Squeeze theorem as for all n > 0 holds

H_ ;5 (z", 2" ') < h(z™) < Hs, (x™, 2" 1)
and thanks to Proposition() and () holds

lim H s, (z",2"" ) = lim Hs, (2", 2" ') —26,A2 = lim H; (2™, 2" '),
n—oo

n— oo n— oo
(b) By Proposition() and Hs, (2%, 271) = h(z) it is clear that the whole se-
quence (1), is contained in the level set {z € RY : h < h(z) < h(29)},

which is bounded thanks to the coercivity of h and h = inf,cgn h(x) > —o0.
Using the Bolzano-Weierstrass theorem, we deduce the existence of a converging
subsequence (™).

(c) To show that each limit point z* := lim;_, 2™ is a critical point of () recall
that the subdifferential () is closed []. Define

. nj . gpnitl .
&= r r —Vf(z™) + &(xny — ) 4 V().

Qp; Qip,

Then, the sequence (z"7,&7) € Graph(0h) := {(x,£) € RN x RN|¢ € Oh(x)}.
Furthermore, it holds z* = lim;_,o, ™ and due to Proposition(), the Lip-
schitz continuity of V f, and

I — 0l

IN

1 /an n; n;
fAnj-i-lJ'— ‘Anj + |V f(z -7+1)—Vf($ 2

Qip, «

it holds lim;_,o, & = 0. It remains to show that lim;_, . h(z") = h(z*). By the
closure property of the subdifferential 0h it is (z*,0) € Graph(dh), which means
that x* is a critical point of h.
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The continuity statement about the limiting process as j — oo follows by the
lower semi-continuity of g, the existence lim;_, ., £ = 0, and the convexity prop-
erty in Lemma

limsup g(z™) = limsup g(z"™) + (¢, z* — 2™ ) < g(z*) < liminf g(z™).
j—00 j—o0 J—r0

The first equality holds because the subadditivity of limsup becomes an equal-

ity when the limit exists for one of the two summed sequences®, here it exists

lim; o0 <§j R Ak > = 0. Moreover, as f is differentiable it is also continuous,

thus lim;_,o f(z™) = f(«*). This implies lim;_,o h(z™) = h(z*).

d

REMARK 6. The convergence properties shown in Theorem should be the basic
requirement of any algorithm. Very loosely speaking, it states that the algorithm ends
up in a meaningful solution. It allows us to formulate stopping conditions, e.g., the
residual between successive function values.

Now, using Theorem, we can verify the convergence of the sequence ( 2")pen
generated by Algorithm. We assume that after a finite number of steps the sequence
(0n)nen is constant and consider the sequence (z™),en starting from this iteration
(again denoted by (2™),en). For example, if §,, is determined relative to the Lipschitz
constant, then as the Lipschitz constant can be assumed constant after a finite number
of iterations, J,, is also constant starting from this iteration.

THEOREM 4.9 (Convergence of iPiano to a critical point). Let (z™),en be gener-
ated by Algorithm, and let &, =& for all n € N. Then, the sequence ("1, 2™),en
satisfies H1, H2, and H3 for the function Hs: R*N — R U {co}, (x,y) — h(z) +
Sl —yli3.

Moreover, if Hs(x,y) has the Kurdyka-Lojasiewicz property at a cluster point
(z*,2*), then the sequence (x™)nen has finite length, ™ — x* asn — oo, and (z*,z*)
is a critical point of Hg, hence x* is a critical point of h.

Proof. First, we verify that the Assumptions H1, H2, and H3 are satisfied. We
consider the sequence 2" = (z", 2" 1) for all n € N and the proper lower semi-
continuous function F' = Hj.

e Condition H1 is proved in Proposition(a) with a=cy < Y.

e To proof Condition H2, consider w"** := (witt, wypt)T € OHs(x" ', 2™)
with wi ' € dg(a" ) + Vf(a" ) +26(2" ! —2™) and wyt! = —26(2" ! —
2™). The Lipschitz continuity of Vf and using () to specify an element
from Og(z" 1) imply

[w e < flwp™H2 + [lwy 2

< VS = Vam)|le + (55 +40) [z — 2l
+% " — xn—l”g
< (%n(OénLn +14+4ap0)Ani1 + iﬁnAn

As o, L, <2(1 - B,) <2 and da, = 1 — Sa,L, — 38, <1, setting b = g
verifies condition H2, i.e., [[w™ s < b(A, + Api1).

e In Theorem() it is proved that there exists a subsequence ( x™ T ey of
(2™)nen such that lim;j_,o h(z™ 1) = h(z*). Proposition() shows that

2In general, the existence of (&7 );?';0 is not guaranteed. Compared to the general case, additionally

lim;j o0 &9 =0 is known here.
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*

Apt1 — 0 as n — oo, hence limj_, oo 2™ = 2.
continuous in x and y, we deduce

As the term d|jz — y|3 is

lim H(z™ 2") = lim h(z™ ) 4+6]ja™ T — 2™ ||y = H(2z*, 2%) = h(z*).
j—o0 j—o0

Now, the abstract convergence Theorem concludes the proof. 0

The next corollary makes use of the fact that semi-algebraic functions (Defini-
tion) have the Kurdyka-Lojasiewicz property.

COROLLARY 4.10 (Convergence of iPiano for semi-algebraic functions). Let h
be a semi-algebraic function. Then, Hs(x,y) is also semi-algebraic. Furthermore, let
(™) nen, (6n)nen, (@"TH 2™)en be as in Theorem. Then the sequence (™) nen
has finite length, ™ — x* as n — oo, and =* is a critical point of h.

Proof. As h and 6||z — y||2 are semi-algebraic, Hs(x,y) is semi-algebraic and has
the KL property. Then, Theorem concludes the proof. 0

4.6. Convergence rate. In the following, we are interested in determining a
convergence rate with respect to the proximal residual from Definition. Since
all preceding estimations are according to [|#"*! — 2"|| we establish the relation to
|7 ()] first. The following lemmas about the monotonicity and the non-expansiveness
of the proximity operator turn out to be very useful for that. Coarsely speaking,
Lemma states that the residual is sub-linearly increasing. Lemma formu-
lates a standard property of the proximal operator.

LEMMA 4.11 (Proximal monotonicity). Let y,z € RY, and a > 0. Define the
functions

1 -1
pg(a) := —[I(I +adg) ™" (y — az) — yll2

and

gg(a) := |(I + adg) ' (y — az) — 2.

Then, py(v) is a decreasing function of a, and qg() increasing in c.
Proof. See e.g. [, Lemma 1] or [, Lemma 4]. O

LEMMA 4.12 (Non-expansiveness). Let g be a convex function and > 0, then,
for all x,y € dom g we obtain the non-expansiveness of the proximity operator

I+ adg) (@) — (I +adg) ")z < o — yll2, Va,y € RN (4.16)

Proof. Tt is a well-known fact. See for example []. 0

The two preceding lemmas allow us to establish the following relation.
LEMMA 4.13. We have the following bound:

N 9 N
S lr@)lle £ = 30 e = 2. (4.17)
n=0 1 n=0
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Proof. First, we observe the relations 1 < a = ¢4(1) < ¢4(e) and 1 > o =
pg(1) < pg(a) = Lgy(), which are based on Lemma. Then, invoking the non-
expansiveness of the proximity operator (Lemma) we obtain

Ballz™ ="Mz = [la" — anVf(2") + Bu(a” — 2" 1) = (2" — an Vf(2")) |2

> ||xn+1 -+ anag)_l(gc” — anVIE)s. (4.18)

This allows us to compute the following lower bound

™+t — 2|y > ™t — 27|y — Ballz™ — 2"z
+ 2" = (I + andg) 2" — anV f(z™))]2

> ||l — (I + andg) ' (2" — anVf(a™) ]2 = Ball2™ — 2" 7|2

> min(1, oy ) [[r(z")]]2 = 2" — 2" 72

> erflr(@)ll2 — [|l2" — 2" 2,

where the first inequality arises from adding zero and using (), the second uses
the triangle inequality, the next one applies Lemma and Bn < 1. Now, summing
both sides from n = 0,..., N and using z~! = 20 the statement easily follows. 0

Next, we prove a global O(1/n) convergence rate for |z"*! —2"||3 and the
residuum ||r(2™)||3 of the algorithm. The residuum provides an error measure of
being a fixed point and hence a critical point of the problem. We first define the error
un to be the smallest squared ¢ norm of successive iterates and, analogously, the
error py

pn = min |z and ply = min_|r(z")|3.

n xnfl ”2
0<n<N 2 0<n<N

THEOREM 4.14. Algorithm guarantees that for all N >0

2 1 h(2%) —h
o< = d < 17/ =
MNfcl,UfN ana  pUN = Cy N +1
Proof. In view of Proposition(), and the definition of v in (), summing

up both sides of () for n=0,...,N and using that o,y > 0 from () we obtain

min .
Sn<N TnMN

N
B < h(z) =Y nlla™ — 2" < h(a®) — (N +1)
n=0 0
As it is v, > co, a simple rearrangement invoking Lemma concludes the proof.
0

REMARK 7. The convergence rate O(1/N) for the squared {5 norm of our error
measures is equivalent to stating a convergence rate O(1/\/N) for the error in the {y
norm.

REMARK 8. A similar result can be found in [| for the case 3 =0.

5. Numerical experiments. In all the following experiments, let u,u® € RV
be vectors of dimension N € N, where N depends on the respective problem. In the
case of an image N is the number of pixels.
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(a) Contour plot of h(z) (b) Energy landscape of h(x)

Fic. 5.1. Contours plot (left) and energy landscape (right) of the non-convez function h shown
i () . The four diamonds mark stationary points of the function h.

5.1. Ability to overcome spurious stationary points. Let us present some
of the qualitative properties of the proposed algorithm. For this, we consider to
minimize the following simple problem

N
min h(z) = () +o(e), ()= 3 D log(ltu(m—ul)?), g(r) =zl (5.1
i=1

RN

where x is the unknown vector, u° is some given vector, and A, > 0 are some free
parameters. A contour plot and the energy landscape of h in the case of N =2, A =1,
p =100, and u°® = (1,1)7 is depicted in Figure. It turns out that the function h
has four stationary points, i.e. points T, such that 0 € Vf(Z) + 09(Z). These points
are marked by small black diamonds. Clearly the function f is non-convex but has a
Lipschitz continuous gradient with components

l’i*u?

R g

The Lipschitz constant of Vf is easily computed as L = p. The function ¢ is non-
smooth but convex and the proximal operator with respect to g is given by the well-
known shrinkage operator

(I+adg)~'(y) = max(0, |y| — a)) - sgn(y), (5.2)

where all operations are understood component-wise. Let us test the performance of
the proposed algorithm on the example shown in Figure. We set a=2(1-p)/L.
Figure shows the results of using the iPiano algorithm for different settings of

the extrapolation factor 8. We observe that iPiano with 5 = 0 is strongly attracted
by the closest stationary points while switching on the inertial term can help to
overcome the spurious stationary points. The reason for this desired property is that
while the gradient might vanish at some points, the inertial term B(z" — 2"~ 1) is
still strong enough to drive the sequence out of the stationary region. Clearly, there
is no guarantee that iPiano always avoids spurious stationary points. iPiano is not
designed to find the global optimum. However, our numerical experiments suggest
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Fi1G. 5.2. The first row shows the result of the iPiano algorithm for four different starting points
when using B = 0, the second row shows the results when using 8 = 0.75. While the algorithm without
inertial term gets stuck into unwanted local stationary points in three of four cases, the algorithm
with inertial term always succeeds to converge to the global optimum.

that in many cases, iPiano finds lower energies than the respective algorithm without
inertial term. A similar observation about the Heavy-ball method is described in [].

5.2. Image processing applications. It is well-known that non-convex regu-
larizers are better models for many image processing and computer vision problems,
see e.g. [,,,]. However, convex models are still preferred over non-convex
ones, since they can be efficiently optimized using convex optimization algorithms.
In this section, we demonstrate the applicability of the proposed algorithm to solve a
class of non-convex regularized variational models. We present examples for natural
image denoising, and linear diffusion based image compression. We show that iPiano
can be easily adapted to all these problems and yields state-of-the-art results.

5.2.1. Student-t regularized image denoising. In this subsection, we inves-
tigate the task of natural image denoising. For this we exploit an optimized MRF
(Markov random field) model, which is learned in following [], and make use of the
iPiano algorithm to solve it. In order to evaluate the performance of iPiano, we com-
pare it to the well-known bound constrained limited memory quasi Newton method
(L-BFGS) [] 3. As an error measure, we use the energy difference

E"=h"—h*, (5.3)

where h™ is the energy of the current iteration n and h* is the energy of the true
solution. Clearly, this error measure makes sense only when different algorithms can
achieve the same true energy h* which is in general wrong for non-convex problems.
In our image denoising experiments, however, we find, that all tested algorithms find
the same solution, independent of the initialization. This can be explained by the
fact that the learning procedure [] also delivers models that are relatively easy to

optimize, since otherwise they would have resulted in a bad training error. In order to
compute a true energy h*, we run the iPiano algorithm with a proper g (e.g., 8 = 0.8)

3We make use of the implementation distributed at http://www.cs.toronto.edu/ liam/
software.shtml .
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for enough iterations (~1000 iterations). We run all the experiments in Matlab on a
64-bit Linux server with 2.53GHz CPUs.
The MRF image denoising model based on learned filters is formulated as

Ny
min 9 ®(Kiu) + g1.2(u,u’), (5.4)
uwERN P
where v and u® € RY denote the sought solution and the noisy input image respec-
tively, ® is the non-convex penalty function, ®(K;u) = 3 ¢((K;u)p), K; are learned,
linear operators with the corresponding weights ¥;, and Ny is the number of the fil-
ters. The linear operators K; are implemented as 2D convolutions of the image u
with small (e.g. 7 x 7) filter kernels k;, i.e. K;u = k; *u. The function gq o is the data
term, which depends on the respective problem. In the case of Gaussian noise, gi 2 is
given as

A
g2(u,u’) = 5”” —u’|l3,
and for the impulse noise (e.g., salt & pepper noise), g1 2 is given as
g1 (u,u’) = Alu— |y .

The parameter A > 0 is used to define the tradeoff between regularization and data
fitting.

In this paper, we consider the following non-convex penalty function, which is
derived from the Student-t distribution:

o(t) = log(1 +?). (5.5)

Concerning the filters k;, for the ¢5 model (MRF-¢5), we make use of the filters
learned in [], by using a bi-level learning approach. The filters are shown in Fig-
ure(a) together with the corresponding weights ¥;. For the MRF-¢; denoising
model, we employ the same bi-level learning algorithm to train a set of optimal fil-
ters specialized for the ¢; data term and input images degraded by salt & pepper
noise. Since the bi-level learning algorithms requires a twice continuously differen-
tiable model we replace the £; norm by a smooth approximation during training. The
learned filters for the MRF-¢; model together with the corresponding weights ¢J; are
shown in Figure(b).

Let us now explain how to solve () using the iPiano algorithm. Casting ()
in the form of (), we see that  f(u) = Zf\]:fl 9;®(K;u) and g(u) = g1.2(u,u®). Thus,
we have

Ny
Vi(u) =Y 0K (Ku),
1=1

where ®(K;u) = [ (Kiu)1) o @' (Kiu)a), ... (Kou),)] ™ and @/(t) = 2¢/(1+2).
The proximal map with respect to g simply poses point-wise operations. For the case
of gs, it is given by

; 0
Up + adu,

u=(I+adg) (i) <= u, = Y

, p=1.N
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(8.39,0.32) (8.00,0.05) (8.00,0.02) (8.00,0.04) (8.00,0.03) (8.00,0.01) (8.00,0.01) (8.00,0.02) (8.00,0.03) (8.00,0.02) (8.00,0.02) (7.99,0.03) (7.97,0.06) (7.97,0.04) (7.97,0.10) (7.94,0.04)

ENEERNE SN EENNE

(7.93,0.11) (7.92,0.18) (7.91,0.38) (7.89,0.13) (7.89,0.10) (7.82,0.18) (7.74,0.13) (7.72,0.33) (7.39,0.07) (7.37,0.29) (7.36,0.29) (7.35,0.24) (7.30,0.39) (7.26,0.09) (7.21,0.23) (7.02,0.44)

(6.91,0.28) (6.51,0.21) (6.49,0.24) 631025 (6.03,0.42) (5.60,0.39) (5.07,0.48) (4.83,0.48) (4.66,0.39) (4.25,0.47) (4.16,0.51) (3.38,0.78) (3.37,0.67) (3.25,0.45) (3.20,0.71) (3.20,0.82)

(a) Learned filters for the MRF-£3 model

(8.07,0.17) (8.06,0.16) (8.06,0.16) (8.05,0.15) (8.05,0.14) (8.04,0.14) (8.03,0.13) (8.03,0.13) (8.02,0.13) (8.02,0.12) (8.02,0.11) (8.02,0.11) (8.02,0.11) (8.01,0.11) (8.01,0.12) (8.00,0.10)
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(8.00,0.09) (8.00,0.11) (8.00,0.09) (7.99,0.08) (7.99,0.08) (7.99,0.07) (7.99,0.10) (7.99,0.08) (7.98,0.06) (7.98,0.07) (7.97,0.05) (7.97,0.08) (7.97,0.08) (7.97,0.09) (7.97,0.05) (7.96,0.04)

ENEN=NE=S0=ES=R =

(7.96,0.07) (7.96,0.05) (7.96,0.02) (7.96,0.01) (7.96,0.03) (7.95,0.01) (7.95,0.01) (7.95,0.03) (7.95,0.01) (7.95,0.01) (7.95,0.03) (7.95,0.06) (7.94,0.04) (7.94,0.04) (7.94,0.02) (7.94,0.07)

RN EEESEERRCEENRET

(b) Learned filters for the MRF-¢; model

Fi1c. 5.3. 48 learned filters of size 7 x 7 for two different MRF denoising models. The first
number in the bracket is the weights ¥;, and the second one is the norm ||k;||2 of the filters.

(a) Clean image (b) Noisy image (o = 25) (¢) Denoised image

Fic. 5.4. Natural image denoising by using Student-t reqularized MRF model (MRF-{2). The
noisy version is corrupted by additive zero mean Gaussian noise with o = 25.

and for the function g1, it is given by the well-known soft shrinkage operator (),
which in case of the MRF-¢; model becomes

u=(I+adg) ' (0) <=

up = max(0, |, — u)| — aX) - sgn(d, —uy) +uy, p=1.N.
Now, we can make use of our proposed algorithm to solve the non-convex optimization
problems. In order to evaluate the performance of iPiano, we compare it to L-BFGS.
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(a) Clean image (b) Noisy image (25% salt & pepper noise)

(c) Denoised image

Fi1c. 5.5. Natural image denoising in the case of impulse noise by using the MRF-£1 model.
The noisy version is corrupted by 25% salt & pepper noise.

To use L-BFGS, we merely need the gradient of the objective function with respect to
u. For the MRF-¢; model, calculating the gradients is straightforward. However, in
the case of the MRF-¢; model, due to the non-smooth function g, we cannot directly
use L-BFGS. Since L-BFGS can easily handle box constraints, we can get rid of the
non-smooth function ¢; norm by introducing two box constraints.

LEMMA 5.1. The MRF-{1 model can be equivalently written as the bound-constraint
problem:

Ny
minZﬁiQ(Ki(w +0)+ A1 (v—w) st w<u®/2, v>ul/2. (5.6)
i

Proof. Tt is well-know that the ¢; norm ||u — u°||; can be equivalently expressed
as

||u—uo||1:mtinl—'—t7 st. t>u—u’, t>-—u+ul,

where t € RN and the inequalities are understood pointwise. Letting w = (u—1)/2 €
RY, and v = (u+1)/2 € RN, we find u = w + v and t = v — w. Substituting u and
t back into () while using the above formulation of the = ¢; norm yields the desired
transformation. ad
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10° |
10° |
= 10" | =
3 1100 L
107
—iPiano, = 0.§
—O(1/N) ‘ ‘
10° 10" 10> 10° 10 10
N N
(a) MRF-£2 model (b) MRF-¢1 model

Fic. 5.6. Convergence rates for the MRF-l2 and -£1 models. The figures plots the minimal
residual norm pn which also bounds the prozimal residual p'y . Note that the empirical convergence
rate is much faster compared to the worst case rate (See Theorem).

iPiano with different S L-BFGS
tol 0.00 0.20 040 0.60 0.80 0.95 | Ti(s) iter. | Th(s)
103 260 182 116 66 56 214 | 34.073 43 | 18.465
102 372 256 164 94 67 257 | 40.199 55 | 22.803
10! 505 344 222 129 79 299 | 47.177 66 | 27.054
10° 664 451 290 168 98 342 | 59.133 79 | 32.143
10°1 || 87 579 371 216 143 384 | 85.784 93 | 36.926
1072 || 1086 730 468 271 173 427 | 103.436 | 107 | 41.939
1073 || 1347 904 577 338 199 473 | 119.149 || 124 | 48.272
1074 || 1639 1097 697 415 232 524 | 138.416 || 139 | 53.290
1075 || 1949 1300 827 494 270 569 | 161.084 || 154 | 58.511

TABLE 5.1
The number of iterations and the run time necessary for reaching the corresponding error for
iPiano and L-BFGS to solve the MRF-l2 model. Ty is the run time of 1Piano with 8 = 0.8 and T>
shows the run time of L-BFGS.

Figure and Figure respectively show a denoising example using the MRF-
{5 model, and the MRF-¢; model. In both experiments, we use the iPiano version
with backtracking (Algorithm) with the following parameter settings:

L_,= 1, n= 1.2, a, = 199(1 - ﬁ)/L’ﬂ’

where § is a free parameter to be evaluated in the experiment. In order to make use
of possible larger step sizes in practice, we use a following trick: when the inequality
() is fulfilled, we decrease the evaluated Lipschitz constant L, slightly by setting
L,=L,/1.05.

For the MRF-/5 denoising experiments, we initialized v using the noisy image
itself, however, for the MRF-/; denoising model, we initialized u using a zero image.
We found that this initialization strategy usually gives good convergence behavior
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iPiano with different L-BFGS
tol 0.00 0.20 040 0.60 0.80 0.95 | Ti(s) iter. | Tx(s)
103 390 272 174 96 64 215 | 43.709 223 | 102.383
102 621 403 256 145 77 260 | 53.143 246 | 112.408
10t 847 538 341 195 96 304 | 65.679 265 | 121.303
100 1077 682 433 247 120 349 | 81.761 285 | 130.846
1071 || 1311 835 530 303 143 395 | 97.060 298 | 136.326
1072 || 1559 997 631 362 164 440 | 111.579 || 311 | 141.876
1073 || 1818 1169 741 424 185 485 | 126.272 || 327 | 148.945
1074 || 2086 1346 853 489 208 529 | 142.083 || 347 | 157.956

107° || 2364 1530 968 557 233 575 | 159.493 || 372 | 169.674
TABLE 5.2

The number of iterations and the run time necessary for reaching the corresponding error for

tPiano and L-BFGS to solve the MRF-01 model. Ty is the run time of iPiano with 8 = 0.8 and Ts

shows the run time of L-BFGS.

for both algorithms. For both denoising examples, we run the algorithms until the
error £" decreases to a certain predefined threshold tol. We then record the required
number of iterations and the run time. We summarize the results of the iPiano
algorithm with different settings and L-BFGS in Table and. From these two

tables, one can draw the common conclusion that iPiano with a proper inertial term
takes significantly less iterations compared to the case without inertial term, and in
practice 8 ~ 0.8 is generally a good choice.

In Table, one can see that the iPiano algorithm with B = 0.8 takes slightly
more iterations and run time to reach a solution of moderate accuracy (e.g., tol = 10%)
compared with L-BFGS. However, for high accurate solutions (e.g., tol = 1075), this
gap increases. For the case of the non-smooth MRF-¢; model, the result is just the
reverse. It is shown in Figure, that for reaching a moderately accurate solution,
iPiano with § = 0.8 consumes significantly less iterations and run time, and for the
solution of high accuracy, it still can save much computation.

Figure plots the error  px over the number of required iterations N for both
the MRF-¢5 and -¢; models using 5 = 0.8. From the plots it becomes obvious that
the empirical performance of the iPiano algorithm is much better compared to the
worst-case convergence rate of O(1/N) as provided in theorem.

The iPiano algorithm has an additional advantage of simplicity. The iPiano ver-
sion without backtracking basically relies on matrix vector products (filter operations
in the denoising examples) and simple pointwise operations. Therefore, the iPiano
algorithm is well suited for a parallel implementation on GPUs which an lead to
speedup factors of 20-30.

5.2.2. Linear diffusion based image compression. In this example we apply
B¢ hRienshalgorttian itnalgeecondpifesiom et iom fo eanprdsaionri Reedti fusidm fan
outperform the standard JPEG standard and even the more advanced JPEG 2000
standard, when the interpolation points are carefully chosen. Therefore, finding op-
timal data for interpolation is a key problem in the context of PDE-based image
compression. There exist only few prior works for this topic, see e.g. [,], and the
very recent approach presented in [] defines the state-of-the-art.

The problem of finding optimal data for homogeneous diffusion-based interpola-
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tion is formulated as the following constrained minimization problem:

1
min Ju— a3 + Alel, 57)
st. Clu—u’) — (I -—C)Lu=0,

where ©® € RY denotes the ground truth image, u € RY denotes the reconstructed
image, and ¢ € RV denotes the inpainting mask, i.e. the characteristic function of
the set of points that are chosen for compressing the image. Furthermore, we denote
by C = diag(c) € RV*Y the diagonal matrix with the vector ¢ on its main diagonal,
by I the identity matrix and by L € RV*¥ the Laplacian operator. Compared to the
original formulation [], we omit a very small quadratic term  £||c[|3, because we find
it unnecessary in experiments.
Observe that if ¢ € [0,1)", we can multiply the constraint equation in () from

the left by (I — C)~! such that it becomes

E(c)(u—u") —Lu=0,

where E(c) = diag(e1/(1 —¢1),...,en/(1 —en)). This shows that problem () is in
fact a reduced formulation of the bilevel optimization problem

't
ming [u(c) —u’ll5 + Allelx (5.8)
1
s.t. wu(c) = arg min ||Du||§ +||E(c)2(u — u0)||§ ,

where D is the nabla operator and hence —L = DT D.

Problem () is non-convex due to the non-convexity of the equality constraint.
In [], the above problem is solved by a successive primal-dual (SPD) algorithm,
which successively linearizes the non-convex constraint and solves the resulting convex
problem with the first-order primal-dual algorithm []. The main drawback of SPD
is, that it requires tens of thousands inner iterations and thousands of outer iterations
to reach a reasonable solution. However, as we now demonstrate, iPiano can solve
this problem with higher accuracy in 1000 iterations.

Observe that we can rewrite the problem () by solving  u from the constraints
equation, which gives

u=A"tCu’,

where A = C + (C —I)L. In [], it is shown that the A is invertible as long as at
least one element of ¢ is non-zero, which is the case for non-degenerate problems. Sub-
stituting back the above equation into (), we arrive at the following optimization
problem, which now only depends on the inpainting mask c:

N ST
mcln§||A Lou® — w3 + Aleflr - (5.9)

Casting () in the form of (), we have f(e) = 3|A71Cu®—u®||3, and g(c) = Al|c|1.
In order to minimize the above problem using iPiano, we need to calculate the gradient
of f with respect to c¢. This is shown by the following lemma.

LEMMA 5.2. Let

1. _
fle) = FlA7tcu — |3,
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then

Vf(c) = diag(—(I + L)u +u®)(A") " (u — u?). (5.10)

Proof. Differentiating both sides of

1
f=llu—ull3 =

5 <u—u0,u—u0>,

|~

we obtain
df = (du,u—u) . (5.11)
In view of u = A™'Cu® and dA™! = —A"'dAA~!, we further have

du=dA1Cu’ + A~1dCu°
= —A"tdAA I Cu’ + A7 Ldow®
= —A"'dAu+ A7 tdC°
=-A"'dC(I + L)u + A~ *dCu’
=A7'dC(— (I + Lyu+u’) .

Let t = —(I + L)u +u® € RV, and since C is a diagonal matrix, we have

dCt = diag(de)t = diag(t)de,
and hence

du = A~ diag(t)dc. (5.12)
By substituting () into (), we obtain
df = (A" diag(t))de,u — u°)

= (de, (A" diag(t)) " (u — u?)) .

Finally, the gradient is given by

Vf=(A"tdiag(t))" (u—u) (5.13)
= diag(—(I + L)u+u®)(AT) " (u — uP).

d

Finally, we need to compute the proximal map with respect to g(c¢) which is again
given by a pointwise application of the shrinkage operator ().

Now, we can make use of the iPiano algorithm to solve the problem (). We set
B = 0.8, which generally performs very well in practice. We additionally accelerate the
SPD algorithm used in the previous work [] by applying the diagonal preconditioning
technique [], which significantly reduces the required iterations for the primal-dual
algorithm in the inner loop.

Figure shows examples of finding optimal interpolation data for the three test
images. Table summarizes the results of two different algorithms. Regarding the
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reconstruction quality, we make use of the mean squared error (MSE) as an error
measurement to keep consistent with previous work, which is computed by

MSE(u,u’) = =Y (u; —u))?.

From Table, one can see that the Successive PD algorithm requires 200 x 4000
iterations to converge. iPiano only needs 1000 iterations to reach already a lower
energy. Note that in each iteration of the iPiano algorithm, two linear systems have
to be solved. In our implementation we use the Matlab “backslash” operator which
effectively exploits the strong sparseness of the systems. A lower energy basically
implies that iPiano can solve the minimization problem () better. Regarding the
final compression result, usually the result of iPiano has slightly less density, but
slightly worse MSE. Following the work [], we also consider the so-called gray value
optimization (GVO) as a post-processing step to further improve the MSE of the
reconstructed images.

Test Algorithm Iterations Energy Density MSE with

image GVO

frui iPiano 1000 21.574011 4.98% 17.31 16.89
SPD 200/4000 21.630280 5.08% 17.06  16.54

peppers iPiano 1000 20.631985 4.84% 19.50  18.99
SPD 200/4000  20.758777 4.93% 19.48  18.71

walter iPiano 1000 10.246041 4.82%  8.29 8.03
SPD 200/4000 10.278874 4.93%  8.01 7.72

TABLE 5.3

Summary of two algorithms for three test images.

6. Conclusions. In this paper, we have proposed a new optimization algorithm,
which we call iPiano. It is applicable to a broad class of non-convex problems. More
specifically, it addresses objective functions, which are composed as a sum of a dif-
ferentiable (possibly non-convex) and a convex (possibly non-differentiable) function.
The basic methodologies have been derived from the forward-backward splitting al-
gorithm and the Heavy-ball method.

Our theoretical convergence analysis is divided into two steps. First, we have
proved an abstract convergence result about inexact descent methods. Then, we
analyze the convergence of iPiano. For iPiano, we have proved that the sequence
of function values converges, that the subsequence of arguments generated by the
algorithm is bounded, and that every limit point is a critical point of the problem.
Requiring the Kurdyka-Lojasiewicz property for the objective function establishes
deeper insights into the convergence behavior of the algorithm. Using the abstract
convergence result, we have shown that the whole sequence converges and the unique
limit point is a stationary point.

The analysis includes an examination of the convergence rate. A rough upper
bound of O(1/n) has been found for the squared proximal residual. Experimentally,
iPiano has been shown to have a much faster convergence rate.
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(a) Test image (256 x 256) (b) Optimized mask (¢) Reconstruction

Fic. 5.7. Ezamples of finding optimal inpainting mask for Laplace interpolation based image
compression by using iPiano. First row: Test image trui of size 256 X 256. Parameter A = 0.0036,
the optimized mask has a density of 4.98% and the MSE of the reconstructed image is 16.89. Second
row: Test image peppers of size 256 X 256. Parameter A = 0.0034, the optimized mask has a density
of 4.84% and the MSE of the reconstructed image is 18.99. Third row: Test image walter of size
256 x 256. Parameter A = 0.0018, the optimized mask has a density of 4.82% and the MSE of the
reconstructed image is 8.03.

Finally, the applicability of the algorithm has been demonstrated and iPiano
achieved state-of-the-art performance. The experiments comprised denoising and im-
age compression. In the first two experiments, iPiano helped learning a good prior for
the problem. In the case of image compression, iPiano has demonstrated its use in a
huge optimization problem for computing an optimal mask for a Laplacian PDE-based
image compression method.

In summary, iPiano has many favorable theoretical properties, is simple and ef-
ficient. Hence, we recommend it as a standard solver for the considered class of
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problems.
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